几何直观在小学数学教学中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何直观在小学数学教学中的应用
一、前言
几何直观主要是指在小学数学的教学中,运用实际的或者能联想到的几何图形,通过图形之间的数量关系转换,形象地给学生带来数量上的直观感知,从而达到教学目的。
几何直观的教学作用不仅仅只体现在课程“图形与几何”的授课中,它还能应用到大部分的小学数学教学中,提高学生对数学学习的兴趣,激发学生的潜能,高质量地完成教学任务。
二、几何直观能让学生更加掌握数学知识
数学概念通常是学习一门课程的基础,反映着一个计算方式的基本原理,具有透过事物现象反映其本质的特点,但是也因此数学概念多是抽象的概念,不利于小学学生对其理解和学习,因此几何直观的运用十分重要,它能通过简单的实物让学生对数学知识更加了解和掌握。
比如在分数的学习当中,由于学生日常接触的大部分是整数,分数的学习会让学生在一时之间感到接受困难,因此教师在教授期间可以利用几何直观方法,用五个相同的长方形拼成一个整体,让学生动手操作取出整体的1/2、1/4等,让学生直观的了解分数的概念。
在对分数的概念进行巩固的时候,
教师可以通过逆向思维,拿出一个尺子,遮住其中的3/4部位,告诉学生:“这尺子没遮住的部分长5cm,是整个尺子长度的1/4,那么尺子的全长是多少?”从分数的学习慢慢过渡到整数中,让学生将分数的知识与整数的知识连接在一起,构成完整的知识点衔接,有利于帮助学生自我构建数学框架,提高逆向思维能力。
而在这道题的解答上,为了更直观的让学生了解分数,教师可以在四张图上各画出5cm的长度,然后由四个同学各拿一张图,以直线的方式站在讲台上,让学生明白尺子的总长度是一段5cm尺子的4倍,而分数在很多情况下也可以反映出两个事物的倍数关系,让学生对分数的了解不仅仅局限在整数与分数之间,分数还能与其他的数学知识相通。
几何直观能全面地将分数含义展现在学生的面前,让学生更加熟练地掌握数学知识。
三、几何直观能有效使用实物解决难点
在小学数学的教学当中,随着年级的提高,教材中的课程案例逐渐由实物图转变成示意图,最终成为线段图。
因此,数学这门课程所教授的知识会越来越深奥,内容也会越来越广阔,简单的实物图根本满足不了数学知识的传授,但是这种过渡方式能让学生将最初的实物图当作数学认知的起点,在转变成示意图之后通过一一对应的思想将实物图转变成简洁的示意图,然后过渡到将线段图来概括数学中的量,循序渐进,逐渐提高学生对数学知识的
认知和理解能力,有利于提高学生对数学知识的接受能力,化解在数学的学习中出现的难点。
而在过渡时期,为了让学生能很好地了解示意图或者线段图的含义,掌握知识的重点和难点,教师可以使用几何直观来辅助教学。
比如在进行学习平均数的时候,为了让学生了解平均数的抽象概念,教师可以使用“垒”球的方式来代替教材中的一些条形统计图,用10个球作为篮球,然后让学生思考哪一个数能形容教师的投篮水平。
引导学生学会“移多补少”的方式找出“垒”球的中间数,通过实际的例子能让学生克服示意图带来的思考难点,教导学生可以通过灵活的几何直观来解决学习中难以理解的知识点。
四、几何直观能有效使用实物解决疑问
几何直观属于形象与抽象思维的中介,能有效运用实物来解决学生生活和学习中的疑问,让学生能更直观地了解数学抽象知识的真正含义,比如教师可以提出一道题:“如果老师从七楼下到五楼用了30秒,那么从五楼下到一楼用多少秒?”许多学生都会下意识的选择75秒,因为从七楼到五楼用时30秒,下一个楼层使用15秒,则从五楼下到一楼用时为15秒的五倍,为75秒。
在得到答案之后教师可以鼓励学生将时间变化以数轴的形式画出时间图,如横轴表示楼层数,而纵轴表示时间,画出下楼梯的线段图,让学生将用实物解决的问题尝试着抽象化、线性化,给学
生之后学习的线段图打下基础。
五、几何直观能有效使用实物促进思考
虽然通过画图有助于学生分析问题,理解题目的含义,但是几何直观的用途不仅仅只是如此,几何直观能有效使用实物促进学生思考,加强推理能力,通过画图中隐藏的知识条件,提高学生的分析能力。
因此在解决数学问题的时候,教师可以鼓励学生通过几何直观学会对问题进行合理的猜想,抽丝剥茧,找出解题的思路,积累学习经验。
比如在学习四边形的时候,教师可以出这样一道题目:“在一个长为10cm,宽为6cm的长方形中减去最大的正方形,则该长方形的周长是多少?”题目给出的信息量不大,许多学生可能无法第一时间找到思路,这时教师可以引导学生思考正方形的特征,正方形最大的特征即是四边皆相等,那么最大的正方形边长即为8cm,而问题是“该长方形的周长是多少”,那么得出正方形的周长题目还是没能解决,但是这时通过几何直观的思考和联想,学生很容易就知道在减去正方形之后,长方形的长为2cm,宽为8cm,则周长等于四边长宽之和,即是20cm。
通过几何直观能让学生发现数学题目中陷阱,有利于提高学生的思考和逻辑思维能力。
六、结语
几何直观的运用能将抽象的概念具象化,让学生能通过实物了解数学概念,对数学知识的了解和掌握更加透彻,脉络清晰,几何直观还能有效地使用实物解决学习中的难点问题,促进学生思考能力和逻辑能力的发展,为学生之后学习更深奥的数学知识打下基础。
作者:曹志飞单位:江苏省如东县新店镇利群小学。