1.1探索勾股定理11
北师版八年级数学上册第一章 勾股定理1 探索勾股定理
式中,涉及三个量,可“知二求一”.如果在直角
三角形中,已知两边的比值和另一边时,通常引入
一个辅助量,建立方程来求未知的边 .
2.运用勾股定理时,若分不清哪条边是斜边,则要分
类讨论,写出所有可能情况,以免漏解或错解 .
知1-练
例1 [母题 教材P4习题T1]在Rt△ABC中, ∠A,∠B,∠C 的对边分别为a,b,c,∠C=90° . (1)已知a=3,b=4,求c; (2)已知c=13,a=5,求b.
a2=c2-b2; b2=c2-a2
知1-讲
图示
感悟新知
知1-讲
勾股定理把“形”与 “数”有机地结合
基本思想
起来,即把直角三角形这个“形”与三 边关系这一“数”结合起来,它是数形
结合思想的典范
感悟新知
特别提醒
知1-讲
1. 在 Rt △ ABC 中,∠ C=90°,∠ A,∠ B,∠C的
对边分别为a,b,c,则有关系式a2+b2=c2. 在此关系
特别提醒
知2-讲
通过拼图验证定理的思路:
1. 图形经过割补拼接后,只要没有重叠、没有空隙,面积就不
会改变;
2. 根据同一种图形的面积的不同表示方法列出等式;
3. 利用等式性质变换验证结论成立.
即拼出图形→写出图形面积的表达式→找出等量关系→恒等变
形→推导结论.
续表 方法
伽菲尔德 总统拼图
图形
知2-讲
知1-练
感悟新知
1-1.在 Rt △ ABC 中,∠ C=90 °,∠ A,∠ B,∠ C知1-练 的对边分别为 a,b, c. 若 a ∶ b=3 ∶ 4,c=75, 求 a, b. 解:设a=3x(x>0),则b=4x. 由勾股定理得a2+b2=c2, 则(3x)2+(4x)2=752,解得x=15(负值已舍去). 所以a=3×15=45,b=4×15=60.
北师大版八年级上册第一章勾股定理1.1.1 探索勾股定理(教案)
1. 探究勾股定理1.经历用测量法和数格子的方法探究勾股定理的过程,开展合情推理才能,体会数形结合的思想.2.会解决直角三角形的两边求另一边的问题.1.经历“测量—猜测—归纳—验证〞等一系列过程,体会数学定理发现的过程.2.在观察、猜测、归纳、验证等过程中培养语言表达才能和初步的逻辑推理才能.3.在探究过程中,体会数形结合、由特殊到一般及化归等数学思想方法.通过让学生参加探究与创造,获得参加数学活动成功的经历.【重点】勾股定理的探究及应用.【难点】勾股定理的探究过程.【老师准备】分发给学生打印的方格纸.【学生准备】有刻度的直尺.导入一:展示教材P2开头的情境.如下图,从电线杆离地面8 m处向地面拉一条钢索,假如这条钢索在地面的固定点间隔电线杆底部6 m,那么需要多长的钢索?事实上,古人发现,直角三角形的三条边长度的平方存在一个特殊关系,学完了这节课,我们就会很容易地求出钢索的长度.[设计意图]创设问题情境,造成学生的认知冲突,激发学生的求知欲望.导入二:如下图,强大的台风使得一个旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处.旗杆折断之前有多高?【师生活动】在直角三角形中,任意两条边确定了,第三条边确定吗?为什么?在直角三角形中,任意两条边确定了,第三条边也就随之确定,三边之间存在着一种特定的数量关系.事实上,古人发现,直角三角形的三条边长度的平方存在一种特殊的关系.让我们一起去探究吧!一、用测量的方法探究勾股定理思路一【学生活动】1.画一个直角三角形,使直角边长分别为3 cm和4 cm,测量一下斜边长是多少.2.画一个直角边长分别是6 cm和8 cm的直角三角形,测量一下斜边长是多少.3.画一个直角边长分别是5 cm和12 cm的直角三角形,测量一下斜边长是多少.【问题】你能观察出直角三角形三边之间的关系吗?[设计意图]帮助学生感知直角三角形三条边的长度存在特殊的关系,进而激发学生的探究欲望.思路二任意画一个直角三角形,分别测量三条边长,把长度标在图形中,计算三边的平方,把结果填在表格中.直角三角形直角边长直角边长斜边长123【师生活动】师:观察表格,有什么发现?生1:a2+b2=c2.生2:两直角边的平方和很接近斜边的平方.师:很准确,他用了很接近这个词,非常棒!有哪些数据得到了a2+b2=c2?生:3,4,5;6,8,10;2,1.5,2.5;5,12,13……师:哪些数据没得到a2+b2=c2?生:2,4,4.5;5,8,9.5;2.4,4.8,9.3……师:怎样验证直角三角形三边之间的平方关系呢?二、验证直角三角形三条边长度存在的特殊关系,用数格子的方法探究勾股定理1.探究等腰直角三角形的情况.思路一展示教材P2图1 - 2局部图.探究问题:(1)这个三角形是什么样的三角形?(2)直角三角形三边的平方分别是多少?它们满足怎样的数量关系?(学生通过数格子的方法可以得出S A+S B=S C)[设计意图]通过三个正方形面积的关系,得到直角三角形三边的关系.思路二展示教材P2图1 - 2,直角三角形三边的平方分别是多少,它们满足上面所猜测的数量关系吗?你是如何计算的?【师生活动】师:在这幅图中,边长的平方是如何刻画的?我们的猜测如何实现?生:用正方形A,B,C刻画的,就是证A+B=C.师:再准确点说呢?生:是用三个正方形A,B,C的面积刻画的,就是证明正方形A的面积加上正方形B的面积等于正方形C的面积.师:请同学们快速算一算正方形A,B,C的面积.(学生交流面积C的求法,老师巡视点评)生:A的面积是9,B的面积也是9,C的面积是18.师:你用什么方法得到正方形C的面积为18个单位面积?生1:我先数整个格子有12个,两个三角形格子拼成一个正方形格子,能凑6个,一共是18个.生2:把正方形对折,得到两个三角形.(学生板演,并列式计算) 生3:分成四个全等的直角三角形.(学生板演,口述面积求法)师:方法不错,你们很擅长动脑筋,我们用数格子、分割图形的方法得到C的面积,还有什么方法可以得到吗?生:在正方形C的外侧画一个大正方形,用大正方形的面积减去4个三角形的面积.(学生板演,口述面积求法)师:很好,他采用了补形的方法计算面积,我们能得到什么结论?生1:S A+S B=S C.生2:a2+b2=c2.师:我们看到上面的三角形具有特殊性,是等腰直角三角形,一般三角形能验证吗?2.探究边长为3,4,5的直角三角形的情况.展示教材P2图1 - 3局部图.对于一般的直角三角形是否也有这样的关系?你是如何计算的?【问题】(1)正方形A的面积是多少个方格?正方形B的面积是多少个方格?(2)怎样求出正方形C的面积是多少个方格?(3)三个正方形的面积之间有什么关系?同桌交流、小组讨论,共同讨论如何求正方形的面积,找到三边平方之间的关系.【提示】在正方形C的四周再补上三个相等的直角三角形,变成一个新的大正方形.【拓展】假如直角三角形的两直角边分别为1.6个单位长度和2.4个单位长度,上面所猜测的数量关系还成立吗?说明你的理由.学生考虑、交流,老师请学生口答,并板书,指出这就是这节课要学习的勾股定理.【学生总结】直角三角形两直角边的平方和等于斜边的平方.假如用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.[考虑](1)运用此定理的前提条件是什么?(2)公式a2+b2=c2有哪些变形公式?(3)由(2)知直角三角形中,只要知道条边,就可以利用求出.[设计意图]让学生经历“独立考虑——小组讨论——合作交流〞的环节,进一步加深对勾股定理的理解,并激发学生的爱国热情.[知识拓展]1.由勾股定理的根本形式a2+b2=c2可以得到一些变形关系式,如a2=c2-b2=(c+b)(c-b);b2=c2-a2=(c+a)(c-a).2.在钝角三角形中,三角形三边长分别为a,b,c,假设c为最大边长,那么有a2+b2<c2,在锐角三角形中,三角形三边长分别为a,b,c,假设c为最大边长,那么有a2+b2>c2.1.勾股定理的由来.2.勾股定理的探究方法:测量法和数格子法.3.勾股定理:直角三角形两直角边的平方和等于斜边的平方.假如a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.1.直角三角形ABC的两直角边BC=12,AC=16,那么ΔABC的斜边AB的长是()C.9.6D.8解析:BC2=122=144,AC2=162=256,AB2=AC2+BC2=400=202.应选A.2.直角三角形两直角边长分别是6和8,那么周长与最短边长的比是()A.7∶1B.4∶1C.25∶7D.31∶7解析:利用勾股定理求出斜边的长为10.应选B.3.(2021·温州模拟)如下图,在ΔABC中,AB=AC,AD是ΔABC的角平分线,假设BC=10,AD=12,那么AC=.解析:根据等腰三角形三线合一,判断出ΔADC为直角三角形,利用勾股定理即可求出AC的长为13.故填13.4.如下图,在RtΔABC中,∠ACB=90°,AB=10,分别以AC,BC为直径作半圆,面积分别记为S1,S2,那么S1+S2的值等于.解析:根据半圆面积公式结合勾股定理,知S1+S2等于以斜边为直径的半圆的面积.所以S1+S2=1πAB2=12.5π.故填12.5π.8第1课时1.概念:直角三角形两直角边的平方和等于斜边的平方.2.表示法:假如用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.一、教材作业【必做题】教材第3页随堂练习第1,2题.【选做题】教材第4页习题1.1第2题.二、课后作业【根底稳固】1.在RtΔABC中,AB=6,BC=10,∠A=90°,那么AC=.2.假设三角形是直角三角形,且两条直角边长分别为5,12,那么此三角形的周长为,面积为.3.(2021·凉山中考)直角三角形的两边长分别是3和4,那么第三边长为.4.假如梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是.【才能提升】5.如下图,在正方形网格中,ΔABC的三边长a,b,c的大小关系是() A.a<b<c B.c<a<b C.c<b<a D.b<a<c6.如下图,在一个由4×4个小正方形组成的正方形网格中,以EF为边的小正方形与正方形ABCD的面积比是.7.如下图,阴影局部是一个正方形,它的面积为.8.如下图,三个正方形的面积中,字母A所在的正方形的面积是.9.飞机在空中程度飞行,某一时刻飞机刚好飞到一个男孩头顶正上方4000米处,过20秒,飞机间隔这个男孩头顶5000米,飞机每小时飞行多少千米?10.一个门框的尺寸如下图,一块长3 m,宽2.2 m的薄木板能否从门框内通过?为什么?11.在ΔABC中,AB=25,AC=30,BC边上的高AD=24,求BC的长.【拓展探究】12.如下图,在RtΔABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,那么BD=.13.如下图,一个机器人从O点出发,向正东方向走3米到A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,…,按此规律走下去,当机器人走到A6点时,离O点的间隔是.【答案与解析】1.8(解析:AC2=BC2-AB2=64.)2.3030(解析:由题意得此直角三角形的斜边长为13.)3.5或√74.12米5.D(解析:两个正数比拟大小,可以按照下面的方法进展:假如a>0,b>0,并且a2>b2,那么a>b.可以设每一个小正方形的边长为1,在直角三角形BDC中,根据勾股定理可以求出a2=10,同理可以求出b2=5,c2=13,因为a>0,b>0,c>0,且b2<a2<c2,所以b<a<c.)6.5∶8(解析:可以设每个小正方形的边长为1,那么正方形ABCD的面积就是4×4=16,斜放的小正方形的边长应该是直角三角形DEF的斜边长,另外两条直角边长分别是1和3,根据勾股定理可以求出小正方形的面积是10.所以以EF为边的小正方形与正方形ABCD的面积比是10∶16=5∶8.)7.64 cm2(解析:设阴影局部的边长为x,那么它的面积为x2=172-152=64(cm2).)8.7(解析:根据正方形的面积公式和勾股定理,知以直角三角形的两条直角边为边的正方形的面积和等于以斜边为边的正方形的面积,由勾股定理可知A=16-9=7.故A的面积为7.)9.解:根据题意可以先画出符合题意的图形.如下图,在ΔABC中,∠C=90°,AC=4000米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里飞行的路程,即图中的CB长,由于RtΔABC的斜边AB=5000米=5千米,AC=4000米=4千米,由勾股定理得BC2=AB2-AC2,即BC=3千米.飞机20秒飞行3千米,那么它1小时飞行×3=540(千米).答:飞机每小时飞行540千米.的间隔为36002010.解:连接AC,在RtΔABC中,根据勾股定理得AC2=AB2+BC2=12+22=5.又因为2.22=4.84<5.所以AC>木板的宽,所以木板可以从门框内通过.11.解:在RtΔABD中,由勾股定理得BD2=AB2-AD2=252-242=49,所以BD=7.在RtΔADC中,由勾股定理得CD2=AC2-AD2=302-242=324,所以CD=18.所以BC=BD+DC=7+18=25.12.2(解析:∵在RtΔABC中,AC=3,BC=4,∴AB=5,∵以点A为圆心,AC 长为半径画弧,交AB于点D,∴AD=AC,∴AD=3,∴BD=AB-AD=5-3=2.)13.15(解析:解此题时要求出A1A2,A2A3,A3A4,A4A5,A5A6等各线段的长,再利用勾股定理求解.)从本节课教案的思路设计看,始终贯彻以学生为主体,充分运用各种手段调动学生参与探究活动的积极性.课前的导入利用生活中的问题,唤起学生带着问题进入本节课的学习.在探求直角三角形三边平方关系时,遵循了发现问题、证实问题到推导问题的认识过程.在引导学生进展探究的过程中,对学生的指导过多,不敢放手让学生自己进展尝试.比方在利用教材第2页下面的两幅图的时候,要求学生选取与教材一致的数据.在这里应该放手让学生自己选取数据.在总结勾股定理的时候,可以让学生自己总结勾股定理的数学表达式.在利用教材给出的例如进展勾股定理结论探究的时候,一定要立足于“面积相等〞这个探究的立足点,这样才能保证学生找准探究活动的方向.随堂练习(教材第3页)1.解:字母A代表的正方形的面积=225+400=625,字母B代表的正方形的面积=225-81=144.2.解:不同意他的想法,因为29 in的电视机是指屏幕长方形的对角线长为29 in,由屏幕的长为58 cm,宽为46 cm,可知屏幕的对角线长的平方=(46025.4)2+(58025.4)2,所以对角线长≈29 in.习题1.1(教材第4页)1.解:①x2=62+82=100,x=10.②y2=132-52=144,y=12.2.解:172-152=64,所以另一条直角边长为8 cm.面积为12×8×15=60(cm2).3.解:此题具有一定的开放性,现给出4种方案:如下图,设①的面积为g,③的面积为e,④的面积为f,⑦的面积为a,⑨的面积为b,⑧的面积为d ,⑩的面积为c ,那么(1)a +b +c +d =g ,(2)a +b +f =g ,(3)e +c +d =g ,(4)e +f =g.4.解:过C 点作CD ⊥AB 于D ,因为CA =CB =5 cm,所以AD =BD =12AB =3 cm .在Rt ΔADC 中,CD 2=AC 2-AD 2,所以CD =4 cm,所以S ΔABC =12AB ·CD =12×6×4=12(cm 2).(2021·淮安中考)如左下列图所示,在边长为1个单位长度的小正方形组成的网格中,点A ,B 都是格点,那么线段AB 的长度为( )C .7D .25〔解析〕 此题考察勾股定理的知识,解答此题的关键是掌握格点三角形中勾股定理的应用,建立格点三角形.如下图,利用勾股定理求解AB 的长度即可.由图可知AC =4,BC =3,那么由勾股定理得AB =5.应选A .如下图,直线l 上有三个正方形a ,b ,c ,假设a ,c 的面积分别为3和4,那么b 的面积为 .〔解析〕 ∵∠ACB +∠ECD =90°,∠DEC +∠ECD =90°,∴∠ACB =∠DEC.∵∠ABC =∠CDE ,AC =CE ,∴ΔABC ≌ΔCDE ,∴BC =DE.根据勾股定理的几何意义,b的面积=a的面积+c的面积,∴b的面积=3+4=7.故填7.。
北师大版八年级数学上册1.1 第1课时 勾股定理的认识 课件(共23张PPT)
探究新知
1.在纸上画若干个直角三角形,分别测量它们的
三条边,看看三边长的平方之间有怎么样的关系?
c
a
b
直角三角形的两直角边的平方和等于斜边的平方,这就是
著名的“勾股定理”。
如果直角三角形的两条直角边为a、b,斜边为c,那么有
a2+b2=c2.
数学小知识
我国古代称直角三角形的较短的直角边为勾,较长的直角
求 的长.
解:因为 ⊥ ,
所以 ∠ = ∠ = 90∘ .
在 Rt △ 中, 2 = 2 − 2 = 102 − 82 = 36 ,
所以 = 6 .
设 = = ,则 = − 6 .
在 Rt △ 中, 2 = 2 + 2 ,
所以 △ =
1
2
1
2
⋅ = × 25 × 12 = 150 .
6. 如图,直线 上有三个正方形 , , .若 , 的面积分别
为 5 和 11 ,则 的面积为( C )
A. 4
B. 6
C. 16
D. 55
7. 如图,在 △ 中, = , = 10 , ⊥ ,垂足为 , = 8 .
(2) 已知 = 12 , = 16 ,求 .
【解】在 Rt △ 中, ∠ = 90∘ , = 12 , = 16 ,
所以 2 = 2 + 2 = 122 + 162 = 400 .
所以 = 20 .
例2 如图,在 △ 中, ⊥ 于点 ,且 + = 32 ,
因为 ∠ = 90∘ ,所以 2 + 2 = 2 .
2017-2018学年北师大版八年级数学上册教师用书(pdf版):1.1探索勾股定理
点ꎬ则 CD 的长为
25 8
.
������������������������������������������������������������������
������������������������������������������������������������������
解:(1) 在 Rt△ABC 中ꎬc2 = a2 +b2 = 36+64 = 100ꎬ
∴ c = 10ꎻ
∵ S△ABC =
1 2
AC������BC =
1 2
AB������CDꎬ
∴ AC������BC = AB������CDꎬ
∴
CD
=
AC×BC AB
=
6×8 10
=
4.8ꎻ
(2) 在 Rt△ABC 中ꎬc2 = a2 +b2 ꎬ
C.8
D.10
2.等腰三角形底边上的高为 8ꎬ周长为 32ꎬ则三角形的面
积为
( B )A.56B. Nhomakorabea8C.40
D.32
3.已知直角三角形的两直角边长分别是 3 和 4ꎬ则第三
边长为 5 .
4. ( 2015 西 宁 ) 如 图ꎬ Rt △ABC 中ꎬ ∠B = 90°ꎬ AB = 4ꎬ
BC = 3ꎬAC 的垂直平分线 DE 分别交 ABꎬAC 于 DꎬE 两
专题11探索勾股定理-2021-2022学年八年级数学上(原卷版)【北师大版】
2021-2022学年八年级数学上册尖子生同步培优题典【北师大版】专题1.1探索勾股定理姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•英德市期末)如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4B.8C.16D.642.(2019秋•高新区校级期中)若直角三角形的两边长分别为a,b,且满足a2﹣6a+9+|b﹣4|=0,则该直角三角形的第三边长的平方为()A.25B.7C.25或7D.25或163.(2021春•金牛区校级月考)下列三条线段不能组成直角三角形的是()A.3、4、5B.5、12、13C.8、15、17D.4、5、64.(2019秋•滨海县期中)两个边长分别为a,b,c的直角三角形和一个两条直角边都是c的直角三角形拼成如图所示的图形,用两种不同的计算方法计算这个图形的面积,则可得等式为()A.(a+b)2=c2B.(a﹣b)2=c2C.a2+b2=c2D.a2﹣b2=c25.(2020秋•亭湖区校级期中)如图,在赵爽弦图中,已知直角三角形的短直角边长为a,长直角边长为b,大正方形的面积为20,小正方形的面积为4,则ab的值是()A.10B.8C.7D.56.(2020秋•明溪县期中)如图,“赵爽弦图”是用四个相同的直角三角形与一个小正方形无缝隙地铺成一个大正方形,已知大正方形面积为25,(x+y)2=49,用x,y表示直角三角形的两直角边(x>y),下列选项中正确的是()A.小正方形面积为4B.x2+y2=5C.x2﹣y2=7D.xy=247.(2020秋•东港市期中)如图,是由四个全等的直角三角形与中间一个小正方形拼成的个大正方形,若大正方形的面积是17,小正方形的面积是1,直角三角形的两直角边分别为a,b,则(a+b)2的值是()A.13B.25C.33D.1448.(2019秋•昌平区期末)如果正整数a、b、c满足等式a2+b2=c2,那么正整数a、b、c叫做勾股数,某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x+y的值为()A.47B.62C.79D.989.(2019秋•建湖县期中)如图,∠ACD是△ABC的外角,CE平分∠ACB,交AB于E,CF平分∠ACD,且EF∥BC交AC、CF于M、F,若EM=3,则CE2+CF2的值为()A.36B.9C.6D.1810.(2021春•越秀区校级期中)如图,Rt△ABC中,∠ACB=90°,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且,且S1=4,S3=16,则S2=()A.20B.12C.2√5D.2√3二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2021春•武汉期中)一竖直的木杆在离地面4米处折断,木杆顶端落在地面离木杆底端3米处,木杆折断之前的高度为米.12.(2021春•隆回县期中)已知,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,且AD=3,AC=6,则AB=.13.(2021•龙泉驿区模拟)如图,在△ABC中,AB=10,AC=BC=13,CD是中线,则CD的长为.14.(2021春•安宁市校级期中)如图,已知正方形A的面积为25,如果正方形C的面积为169,那么正方形B的面积为.15.(2021春•天津期中)如图,已知在Rt△ABC中,∠ACB=90°,分别以AC,BC,AB为直径作半圆,面积分别记为S1,S2,S3,若S3=9π,则S1+S2等于.16.(2021•富阳区二模)有一根长33厘米的木棒(粗细忽略),木箱的长、宽、高分别为24厘米、18厘米、16厘米,这根木棒理论上(填“能”或“不能”)放进木箱.17.(2021春•江汉区期中)直角三角形两条直角边长分别为3和4,则该直角三角形周长为.18.(2021春•海淀区校级期中)如图,一棵高为16m的大树被台风刮断,若树在离地面6m处折断,树顶端刚好落在地可上,此处离树底部m处.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019春•宁都县期中)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”可翻译为:有一根竹子高一丈,今在A处折断,竹梢落在地面的B处,B与竹根部C相距3尺,求折断点A与地面的高度AC.(注:1丈=10尺)20.(2019春•望花区期末)我国古代数学著作《九章算术》中的一个问题.原文是:今有池方一丈,葭生其中央,出水尺.引葭赴岸,适与岸齐问水深、葭长各几何译文大意是:如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池边的中点,它的顶端恰好到达池边的水面.问水的深度与这根芦苇的长度分别是多少?21.(2018秋•台儿庄区校级月考)“交通管理条例第三十五条”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方50米处,过了6秒后,测得小汽车与车速检测仪间距离为130米,这辆小汽车超速了吗?22.(2018秋•晋江市期末)如图,一架2.5m长的梯子AB斜靠在墙AC上,梯子的顶端A离地面的高度为2.4m,如果梯子的底部B向外滑出1.3m后停在DE位置上,则梯子的顶部下滑多少米?23.(2020秋•盐湖区期中)如图是一底面周长为24m,高为6m的圆柱形油罐,一只老鼠欲从距地面1m的A处沿侧面爬行到对角B处吃食物,请算出老鼠爬行的最短路程为多少?24.(2018秋•灵石县期中)阅读材料,回答问题:(1)中国古代数学著作《周脾算经》有着这样的记载:“勾广三,股修四,径隅五.”这句话的意思是:“如果直角三角形两直角边为3和4时,那么斜边的长为5.“上述记载表明了在Rt△ABC中,如果∠C =90°,BC=a,AC=b,AB=c,那么a,b,c三者之间的数量关系是:(2)对于这个数量关系,可以利用面积法进行了证明.已知四个全等的直角三角形围成如图所示的正方形,请你参考右图,将下面的证明过程补充完整;证明:∵S△ABC=12ab,S正方形ABCD=c2,S正方形EFGB=又∵S正方形EFGB=+,∴=+,整理得a2+2ab+b2=2ab+c2,∴.。
北师大版八年级数学上册1.1《探索勾股定理》(教案)
5.培养学生的数学审美观念:让学生感受勾股定理及其应用的美,激发他们对数学美的追求和热爱。
本节课将紧扣核心素养目标,关注学生个体差异,以提高学生的综合素质为宗旨,促进他们全面发展。
三、教学难点与重点
1.教学重点
-理解并掌握勾股定理:包括定理的表述、记忆方法及其在直角三角形中的应用。
-学会运ห้องสมุดไป่ตู้勾股定理解决实际问题:如求直角三角形的第三边长,判断一个三角形是否为直角三角形等。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指在直角三角形中,斜边的平方等于两直角边的平方和。它是解决直角三角形相关问题的重要工具,广泛应用于建筑、工程等领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何使用勾股定理计算直角三角形的第三边长,以及它如何帮助我们解决实际问题。
五、教学反思
今天我们在课堂上一起探索了勾股定理,看着学生们积极参与,我感到非常欣慰。我发现,通过引入生活中的实际例子,学生们对勾股定理的兴趣被成功激发,他们在小组讨论和实验操作中表现出了很高的热情。这一点让我深感欣慰,也证明了我的教学策略是有效的。
然而,我也注意到,在理论讲解和案例分析过程中,部分学生对勾股定理的理解还不够深入,尤其是对定理的推导过程感到困惑。这让我意识到,在今后的教学中,我需要更加关注学生的理解程度,尽量用更直观、更生动的方式讲解,以便帮助他们更好地消化吸收。
举例解释:
-在探索勾股定理的推导过程中,学生可能会遇到如何从多个具体实例中抽象出一般性规律的问题。教师需要引导学生进行观察、思考、总结,帮助他们理解归纳与推理的方法。
《探索勾股定理》教案设计从勾股定理到勾股数的进阶
一、教案设计概述1.1 教学目标(1)理解勾股定理的概念及含义;(2)掌握勾股定理的证明方法;(3)探索勾股数的性质及应用;(4)培养学生的逻辑思维能力、创新能力和团队协作能力。
1.2 教学内容(1)勾股定理的定义及历史背景;(2)勾股定理的证明方法;(3)勾股数的定义及性质;(4)勾股数在实际问题中的应用。
1.3 教学策略采用问题驱动的教学方法,引导学生通过自主学习、合作探讨的方式,深入理解勾股定理及其应用。
利用数学软件和互联网资源,丰富教学手段,提高学生的学习兴趣。
二、教学过程2.1 导入新课(1)利用数学软件展示勾股定理的动画效果,引导学生关注勾股定理;(2)提问:什么是勾股定理?它有什么含义?2.2 自主学习(1)让学生自主探究勾股定理的证明方法,鼓励学生发挥创意,尝试不同的证明思路;(2)学生展示证明成果,教师点评并总结。
2.3 合作探讨(1)引导学生探讨勾股数的定义及性质;(2)举例说明勾股数在实际问题中的应用;(3)学生分组讨论,分享讨论成果。
2.4 练习巩固(1)设计相关练习题,让学生巩固所学知识;(2)教师批改练习题,及时反馈错误,引导学生纠正。
三、教学评价3.1 过程性评价(1)观察学生在自主学习和合作探讨过程中的表现,评价其学习态度、创新能力和团队协作能力;(2)评价学生在练习巩固中的表现,关注其知识掌握程度。
3.2 总结性评价(1)期末考试中关于勾股定理的试题;四、教学资源4.1 教材《数学与应用》、《数学分析》等教材。
4.2 网络资源(1)数学课件、动画、视频等教学素材;(2)相关学术文章、研究报告。
五、教学进度安排5.1 第一课时(1)导入新课;(2)自主学习:探究勾股定理的证明方法;(3)合作探讨:探讨勾股数的定义及性质。
5.2 第二课时(1)合作探讨:举例说明勾股数在实际问题中的应用;(2)练习巩固:设计相关练习题,让学生巩固所学知识。
5.3 第三课时(1)总结本章内容;(2)布置课后作业;(3)开展课后辅导,解答学生疑问。
北师大版八年级数学上册第一章全部课件
勾股定理的验证主要是通过拼图法利用面积的 关系完成的,拼图又常以补拼法和叠合法两种方式拼 图,补拼是要无重叠,叠合是要无空隙;而用面积法 验证的关键是要找到一些特殊图形(如直角三角形、 正方形、梯形)的面积之和等于整个图形的面积,从 而达到验证的目的.
(来自《点拨》)
知1-练
1 用四个边长均为a,b,c的直角三角板,拼成如
(来自《典中点》)
知2-导
知识点 2 勾股定理的应用
例2 我方侦察员小王在距离东西向公路400m处侦察,发现一 辆敌方汽车在公路上疾驰.他赶紧拿出红外测距仪,测得 汽车与他相距400m,10s后,汽车与他相距500m,你能 帮小王计算敌方汽车的速度吗?
分析:根据题意,可以画出右图, 其中点A表示小王所在位置, 点C、点B表示两个时刻敌方 汽车的位置.
弦 勾
股 图1
北师大版八年级数学上册
C A
B C
图2-1
A
B
图2-2
(图中每个小方格代表一个单位面积)
知1-导
(1)观察图2-1 正方形A中含有 9 个 小方格,即A的面积 是 9 个单位面积. 正方形B的面积是 9 个单位面积.
正方形C的面积是 18 个单位面积.
北师大版八年级数学上册
C A
B C
(来自《点拨》)
知1-讲
总结
勾股定理的验证主要是通过拼图法利用面积的 关系完成的,拼图又常以补拼法和叠合法两种方式拼 图,补拼是要无重叠,叠合是要无空隙;而用面积法 验证的关键是要找到一些特殊图形(如直角三角形、 正方形、梯形)的面积之和等于整个图形的面积,从 而达到验证的目的.
(来自《点拨》)
知1-讲
1 课堂讲解 2 课时流程
北师大版八年级数学上册 (探索勾股定理)勾股定理教育教学课件
“弦高公式”,它常与勾股定理联合使用.
C
4
B
3.阴影部分是一个正方形,则此正方形的面积为
常用数据: 112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361
15 cm 17 cm
64.cm²
4.求出图中直角三角形第三边的长度.
a2 b2 c2
三、得出结论:勾股定理
直角三角形两直角边的平方和等于斜边的平方,如果用a,b,c 分别表示直角三角形的两直角边和斜边,那么
a2 b2 c2
B
几何语言:
c
a
∵在Rt △ABC,∠C=90°
C
b
A
∴a2+b2=c2
说明:勾股定理的应用条件是在直角三角形中;勾股定理是刻画 直角三角形三边平方的关系.
趣味小常识
直角三角形中 较短的直角边称为 勾 ,
较长的直角边称为 股 ,
在中国古代,
斜边称为 弦 .
人们把弯曲成直角
的手臂的上半部分 勾
弦
称为“勾”,下半
部分称为“股”.
(在西方称为毕达
股
勾2 + 股2 = 弦2
哥拉斯定理)
a2 b2 c2
四、探究活动
观察图片,分别求出正方形A,B,C的面积。
2. 思考:任意一个的直角三角形都满足你 所猜测的规律吗?用网格纸中画的直角三角 形尝试证明一下吧?
语言表述: 几何表示:
勾股定理 P3
A c
b
C
a
B
赵爽弦图
2002年国际数学家大会会标
1. 从这个会标中你能证明你的猜想吗?如何证明? 你的思路是什么? 2. 给四个完全一样的直角三角线,你能否把它们 拼成正方形?能同样推导出勾股定理吗?
北师大八年级数学上册1.1.1探索勾股定理
谢谢!
A
B 15 cm
A
17 cm
D
C
5.观察下列表格:
列举 3,4,5 5,12,13 7,24,25 9,b,c
猜想 32=4+5 52=12+13 72=24+25 92=b+c
请你结合该表格及相关知识,求出b, c的值.即b= 40 ,c= 41 .
课后作业
如图所示,一棵大树在一次强烈台风中于 离地面10 m处折断倒下,树顶落在离树根 24 m处. 大树在折断之前高多少米?
课外练习
一、判断题.
1.△ABC的两边AB=5,AC=12,则BC=13 ( )
2.△ABC的a=6,b=8,则c=10 (
)
二、填空题
3.在△ABC中, ∠C=90°,AC=6,CB=8,则
△ABC面积为_2_4___,斜边为上的高为_4_._8___.
A D
C
B
4.阴影部分是一个正方形,则此正方形ABCD的面积 为 64 cm² .
图1-2 (图中每个小方格代表一个单位面积)
1.阅读课本 回答问题
(2)在图1-2中,正方形1,
2,3中各含有多少个小方
格?它们的面积各是多少?
3 1
4,4,8
(3)你能发现两图中三个
2
3
图1-1 1
正方形1,2,3的面积之间 有什么关系吗?
2
图1-2
S1+S2=S3
(图中每个小方格代表一个单位面积)
D
解:∵ ∠ACB=90°,AC=3,BC=4, 3
∴在Rt△ABC中根据勾股定理可得,
AC² + BC² =
C4
B
北师大版八年级数学上册1.1探索勾股定理 课件
B4.如图,要修一个育苗棚,棚宽4米,高3米, 长20米,则覆盖在顶上的塑料薄膜要多少平方 米?
拓展延伸:
已知等腰三角形的腰长为10cm,底边长为12cm,则
该三角形的面积是 48cm 。
A
求等腰三角形的面积
做高线,构造直角三角形
10
10
勾股定理求相应线段长度 B
D
C
12
A
a2 b2 c2
b
c弦
股
Ca B
勾
典型例题
上周四青岛市受对流天气影响,海边附近刮起 了九级大风,一棵大树在离地面6米处折断倒下, 树顶落在离树根8米处. 树在折断之前高多少?
A
6 米
B
C
8米
变式训练一:
如图在Rt△ABC中,∠C=90°,BC=7,
AB=13,求AC边的长。
A
13
变式训练二:
12
B D13
A
求直角三角形斜边上的高
等面积法
感悟收获
通过本节课的学习你有哪些收获? 有哪些困惑?
达标检测 1.如图①,正方形A的面积是 325 。
100
B
225x
17
9cmA?Fra bibliotek15C 图③
A
图①
图②
2.如图②,x= 8
。
B3. 在Rt△ABC中,∠C=90°,
AB:AC=5:4,BC=9cm,则AB= 15cm 。
正方形面积 (单位面积)
正方形 A
正方形B
正方形C
图3
16 9
25
图4
1
9
10
正方形A、B、C 面积关系
SA+SB=SC
北师大 版 八年级数学上册 1.1探索勾股定理
分析表中数据, 你发现了什么?
C A
B
C A
B
A的面积 B的面积 C的面积
左图 4
9
13
右图 16
9
25
A
a
Bb c
C
SA+SB=SC
a2+b2=c2
猜想:两直角边a、b与斜边c 之间的关系?
归纳总结
勾股定理(毕达哥拉斯定理)
直角三角形两直角边的平方和等于斜边的
平方.如果a,b和c分别表示直角三角形的两
∵y>0,∴ y=5
练习1:如图,直线l上有三个正方形a,b,c,
若a,c的面积分别为3和4,则b的面积为( D )
A.3 B.4 C.5
D.7
例3. 已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.
解:由勾股定理可得, AB2=AC2+BC2=25,
A
D 3
∵AB>0 ∴ AB=5.
AR P
CQ B
(3)正方形R的面积是 2 平方厘米.
上面三个正方形的面积之间有什么关系?(图中每一格代 表一平方厘米)
SP+SQ=SR
等腰直角三角形ABC三边长度之间存在什么关系吗?
Sp=AC2 SQ=BC2 SR=AB2
AC2+BC2=AB2
填一填:观察右边两 幅图:完成下表(每 个小正方形的面积为 单位1).
1.了解勾股定理的内容,理解并掌握 直角三角形三边之间的数量关系. (重点) 2.能够运用勾股定理进行简单的计算. (难点)
情境引入
如图,这是一幅美丽的图案,仔细观察,你能发现 这幅图中的奥秘吗?带着疑问我们来一起探索吧.
讲授新课
八年级数学上册 1.1.1 探索勾股定理课件 (新版)北师大版
A.5
B.6
C.7
D.25
A
关闭
答
4
3.斜边长为17 cm,一条直角边长为8 cm的直角三角形的面积是
.
因为 172-82=152,所以另一条直角边长为 15 cm.
所以该直角三角形的面积为12×15×8=60(cm2). 60 cm2
关闭 关闭
解析 答案
4.求下列图中阴影部分的面积: (1)
答案
1.我国古代把直角三角形中较短的直角边称为 勾
为
股 ,斜边弦称为
.
2.勾股定理:直角三角形两直角边的平方和等于斜边的
,较长的直角边称 平方 .如果用a,b和
c分别表示直角三角形的两直角边和斜边,那么 a2+b2=c2 .
3.在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长的平方为( B )
轻松尝试应用
1
2
3
4
(2)
关闭
解:(1)由题图,得 132-122=25(cm2),则阴影部分的面积为 25 cm2.
(2)设半圆的直径为 d cm,由勾股定理,得 d2=252-72=576,则 d=24,S 半圆=12 π
������ 2
2
=
12π×122=72π(cm2),即阴影部分的面积为 72π cm2.
第一章 勾股定理
1 探索勾股定理
第一课时 探索勾股定理
学前温故 新课早知
快乐预习感知
1.直角三角形:有一个角是 直角 的三角形叫做直角三角形. 2.直角三角形的两个锐角 互余 . 3.三角形的三边关系:三角形任意两边之和 大于 第三边,任意两边之差
小于 第三边.
学前温故 新课早知
探索勾股定理ppt课件
欣赏下面一幅美丽的图案,仔细观察,你能发现这 幅图中的奥秘吗?带着疑问我们来一步认识
做一做 观察正方形瓷砖铺成的地面. (1)正方形P的面积是 1 平方厘米; (2)正方形Q的面积是 1 平方厘米;
AR P
CQ B
(3)正方形R的面积是 2 平方厘米.
左图 4
9
13
右图 16
9
25
分析表中数据,你发现了什么?
A的面积
左图
4
右图 16
B的面积 9 9
C的面积 13 25
结论 以直角三角形两直角边为边长的小 正方形的面积的和,等于以斜边为边长 的正方形的面积.
总结归纳
勾股定理
直角三角形两直角边的平方和等于斜边的 平方.
几何语言 ∵在Rt△ABC中 ,∠C=90°, ∴.AC2+BC2=AB2 (勾股定理)
五、分层作业 课后思考
基础训练:1、小明的妈妈买了一部29in的电 视机。小明量了电视机的屏幕后,发现屏幕只 有58cm长和46cm宽,他觉得一定是销售员搞错 了。你同意他的想法吗?你能解释这是为什么 吗?
2、求下列图中未知数x,y的值
提高训练:1.今有池方一丈,葭生其中央,出水一 尺.引葭赴岸,适与岸齐.问水深、葭长各几何?译: 有一个一丈大小的池子,中央长有芦苇,高出水面 一尺长.把芦苇拽向岸边,刚好与到岸.请问水有多 深,芦苇有多高?
小男孩又问道:“如果两条直角边分别为5和7,那么这个直角 三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“ 那斜边的平方一定等于5的平方加上7的平方。”小男孩又说道 :“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无 法解释了,心理很不是滋味。于是伽菲尔德不再散步,立即回 家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演 算,终于弄清楚了其中的道理,并给出了简洁的证明方法。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了 他对勾股定理的这一证法。1881年,伽菲尔德就任美国第二十 任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、 明了的证明,就把这一证法称为“总统。”证法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理
(gou-gu theorem)
如果直角三角形的两个直角边分 别是a、b,斜边是c,那么
a2+b2=c2
即直角三角形两直角边的平方 和等于斜边的平方
练一练
• 1.求出下图中直角三角形中未知边的长度
X 8
X
13
6
5
2.如图,在三角形△ABC中,
∠ACB=900,AB=5CM,BC=3CM, CD⊥AB于D,求CD的长
C
B
D
A
作业:
•P6 第 3、4题
• 完成本课时相应练习
探索勾股定理(1)
数一数
C A
B
C A
B
议一议
三个正方形A、B、C的面积之 间的关系?
C A
B
C A
B
议一议
1、三个正方形A、B、C的面积 之间的关系?
2、三个正方形中间的直角三 角形三边关系是什么?
做一做
分别以5cm和12cm为直角边 做直角三角形测量斜边,看 看是否还是有以上的规律?