高一数学基础测试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学基础知识试题选
第I 卷(选择题,共60 分)
、选择题: (每小题5分,共60分,请将所选答案填在括号内)
且M 中至多有一个偶数,则这样的集合共有 1已知集合M {4,7,8}, (A)3 个 (B) 4 个 (C) 5 个 (D) 6 2.已知 S={x|x=2n,n € Z}, T={x|x=4k ± 1,k € Z},则 (A)S T 3.已知集合 4.不等式ax (A) 16 5.已知 f(x) (A)2 (B) T S (C)S 工T (D)S=T
P = y|y x 2 2,x R ,Q= y|y x 2,x R , 那么PI Q 等(
)
(0, 2), (1, 1) (B){ (0, 2 ), (1,1) } (C){1
,2} (D)
y|y 2
2 ax 4 0的解集为 R,则a 的取 值范围是
(
a 0 (B) a 16 (C) 16 a 0
(D)
a 0
x 5(x 6) f (3)的值为
= '丿,则 ( )
f(x 4)(x 6)
(B)5 (C)4 (D)3
( )
(A) )
2
4x 3,x [0,3]的值域为 (A)[0,3] (B)[-1,0] (C)[-1,3] (D)[0,2]
7.函数 y=(2k+1)x+b 在(-g
,+ g )上是减函数,则
( )
1 (A)k> — (B)k< 1 (C)k>
1
-
(D).k<
1 2
2
2
2
8.若函数f (x )= 2 x +2(a-1)x+2 在区间(
,4]内递
减,
那么实数 a 的取值范围为 ( )
(A)a w -3 (B)a > -3 (C)a
w 5
(D)a
> 3
9.函数y (2a 2 3a 2)a x 是指数函数,则a 的取值范围是
( )
( )
6.函数y (A) a 0,a 1
(B)
a 1
(C)
a 2 ( D) a 1 或 a i
10.已知函数f (x ) 4 x 1
a 的图象恒过定点
p ,则点p 的坐标是
( )
(A ) ( 1 , 5 )
(B ) ( 1,4 )
(C ) ( 0 , 4)
( D ) (4 , 0)
11.函数 y . log 1(3x
2)的定义域是
( )
(A ) [1,+ ]
(B)(
t,)
(C) [
f
,1]
(D)(
1,1]
12.设a,b,c 都是正数,且3a 4b 6c ,则下列正确的是
( )
2 2 1 1 2 2 2 1 2
(A) 1 1 1(B)
C~a -b (C) T a -b (D) ~c ~a
第H卷(非选择题,共60 分)
二、填空题:(每小题4分,共16分,答案填在横线上)
13. _________________________________________________________ 已知(x,y )在映射f下的象是(x-y,x+y),则(3,5)在f下的象是_________________________________,原象是______
2
14. _________________________________________________________ 已知函数f(x)的定义域为[0,1],则f( x )的定义域为__________________________________________。
15. 若log a §<1,则a的取值范围是__________
16. 函数f(x)=log 1 (x-x 2)的单调递增区间是___________________
三、解答题:(本大题共44分,17—18题每题10分,19--20题12分)
2
17.对于函数f x ax bx b 1 ( a 0).
(i)当a 1,b 2时,求函数f(x)的零点;
(n)若对任意实数b,函数f(x)恒有两个相异的零点,求实数a的取值范围.
18.求函数y x24x 5的单调递增区间。
19.已知函数f(x)是定义域在R上的奇函数,且在区间(,0)上单调递减,
2 2
求满足f(x +2x-3) > f(-x -4x+5)的x 的集合.
20.已知集合A {x|x2 3x 2 0},B {x|x2 2(a 1)x (a2 5) 0} ,
(1)若A B {2},求实数a的值;
(2)若A B A,求实数a的取值范围;
必修 1 高一数学基础知识试题选
高一数学基础知识试题选参考答案: 一、选择题:
1.D
2. C
3.D
4.C
5.A
6.C
7.D
8. A
9.C 10.A 11.D 1.B 二、填空题
是 : , 1 , 2 , 1,2 .分别求解,得 a 3 ;
13.(-2 ,8),(4,1) 14.[-1,1] 15 17. 略 18. 略
(0, 2/3)u ( 1 , +s) 16 . [0.5,1) 19. 解:Q f(x)在R 上为偶函数,在(
22
又 f ( x 2 4x 5) f (x 2 4x 5)
2 2 2
Q x 2 2x 3 (x 1)2 2 0 , x 2
22
由 f(x 2 2x 3) f(x 2 4x 5)得 解集为 {x|x 1} .
20. (1) a
1或 a 3 (2) ,0) 上单调递减 f (x) 在 (0,
) 上为增函数
4x 5
(x 2)2 10
2
x 2
2x
3 2
x 4x 5
x1 当
A B A 时 , B
A , 从而
B 可能