胡运权运筹学教程答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

胡运权运筹学教程答案

【篇一运筹学基础及应用第四版胡运权主编课后练习答案】txt 习题一p461.1a23。

b用亂解法找到满足所打约柬条仲的公it范w,所以该问题无可行解。

1.2a约束方程组的系数矩阵r最优解a.o,iao,7,o,ob约束方程组的系数矩阵fi234、4l22i2,最优解1八,0,11,0八v551.3a1图解法⑵单纯形法首先在各约朿条件上添加松弛变铽,将问题转化为标准形式maxz10a-,5a20x30a4[3a-.4义2a39si.[5a-j2x2a48则a,p4组成个猫令a;c20得-站可行解a_0.0.9,8,山此列出初始单纯形表cr20,0-minj2a新的单纯形农为a,xoxax21414mtq.qco,表明已找到问题垴优解._5__25xi,a-30,a4(b)(1)图解法17最优解即为严aixy52x224的解x卩,2v最大值zii22/单纯形法(2)苘先在外约朿条件.h添加松弛变m,将问题转化为标准形式maxz

2.v,x2ox30.v4oa55a2156.y,2x2.v424【篇二运筹学(第五版)习题答案】章(39页)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。

(1)maxzx1x25x110x250x1x21x24x1,x20x13x23x1x22x1,x20(3)maxz2x12x2x1-x2-1-0.5x1x22x1,x20(4)maxzx1x2x1-x203x1-x2-3x1,x20解(1)(图略)有唯一可行解,maxz14(2)(图略)有唯一可行解,minz9/4(3)(图略)无界

解(4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。

(1)minz-3x14x2-2x35x44x1-x22x3-x4-2x1x23x3-x414-2x13x2-x32x42 x1,x2,x30,x4无约束(2)maxszkpkzkaikxiki1k1xk1mik1i1,...,nxikOi1n;k1,,m1解设z-z,x4x5-x6,x5,x60标准型maxz3x1-4x22x3-5x5-x60x70x8-mx9-mx10s.t.-4x1x2-2x3x5-x6x10 2x1x23x3-x5x6x714-2x13x2-x32x5-2x6-x8x92x1,x2,x3,x5,x6,x7,x8 ,x9,x100⑵解加入人工变量x1,x2,x3,xn,得maxs1/pki1nk1mikxik-mx1-mx2-..-mxns.t.xixik1i1,2,3,nk1mxik0,xi 0,i1,2,3n;k1,2.,m是任意正整数1.3在下面的线性规划问题中找出满足约束条件的所有基解。

指出哪些是基可行解,并代入目标函数,确定最优解。

1maxz2x13x24x37x42x13x2-x3-4x48x1-2x26x3-7x4-3x1,x2,x3,x40 2maxz5x1-2x23x3-6x4x12x23x34x472x1x2x32x43x1x2x3x401解系数矩阵a是23141267令ap1,p2,p3,p4pl与p2线形无关,以pl,p2为基,x1,x2为基变量。

有2x13x28x34x4x1-2x2-3-6x37x4令非基变量x3,x40解得x11;x22基解x11,2,0,0t为可行解z182同理,以p1,p45/13,0,-14/13,0t是非可行解;3为基,基解x以p1,p4为基,基

解x334/5,0,0,7/5t是可行解,z3117/5;⑷以p2,p0,45/16,7/16,0t 是可行解,z4163/16;3为基,基解x以p2,p4为基,基解x50,68/29,0,-7/29t是非可行解;6tx以p4,p为基,基解0,0,-68/31,-45/31是非可行解;3最大值为z3117/5;最优解x334/5,0,0,7/5t。

2解系数矩阵a是12342112令ap1,p2,p3,p4p1,p2线性无关,以p1,p2为基,有x12x27-3x3-4x42x1x23-x3-2x4令x3,x40得x1-1/3,x211/3基解x1-1/3,11/3,0,0t为非可行解;2同理,以p1,p2/5,0,11/5,0t是可行解z243/5;3为基,基解x以p1,p4为基,基解x3-1/3,0,0,11/6t是非可行解;⑷以p2,p0,2,1,0t 是可行解,z4-1;3为基,基解x6以p4,p0,0,1,1t是z6-3;3为基,基解x最大值为z243/5;最优解为x22/5,0,11/5,0t。

1.4分别用图解法和单纯形法求解下列线性规划问题,并指出单纯形迭代每一步相当于图形的哪一点。

1maxz2x1x23x15x2156x12x224x1,x202maxz2x15x2x142x2123x12x218x1,x20篇三运筹学习题一答案】【解】设x1、x2、x3分别为产品a、b、c的产量,则数学模型为maxz10x114x212x31.5x11.2x24x325003x1.6x1.2x1400231150x125 0260x2310120x3130x1,x2,x301.3【解】设xjj1,2,,14为第j种方案使用原材料的根数,则1用料最少数学模型为minzxjj1142x1x2x3x4300x23x52x62x7x8x9x10450x3x62x8x93x11

2x12x13400xx2xxx3x2x3x4x6004791012131423xj0,j1,2,,14用单纯形法求解得到两个基本最优解x150,200,0,0,84,0,0,0,0,0,0,200,0,0;z534x20,200,100,0,84,0,0,0,0,0, 0,150,0,0;z5342余料最少数学模型为minz0.6x10.3x30.7x40.4x130.8x142x1x2x3x4300x23x52x62x7x8x 9x10450xx2xx3x2xx4003689111213xx2xxx3x2x3x4x60047910121 31423xj0,j1,2,,14用单纯形法求解得到两个基本最优解x10,300,0,0,50,0,0,0,0,0,0,200,0,0;z0,用料550根x20,450,0,0,0,0,0,0,0,0,0,200,0,0;z0,用料650根显然用料最少的方案最优。

1.4【解】设xj、yjj1,2,,6分别为1〜6月份的生产量和销售量,则数学模型为maxz300x1350y1330x2340y2320x3350y3360x4420y4360x5410y53 00x6340y6x1800x1y1x2800x1y1x2y2x3800x1y1x2y2x3y3x4800xy xyxyxyx800233445112x1y1x2y2x3y3x4y4x5y5x68001x1y1200xyx y2002112x1y1x2y2x3y3200x1y1x2y2x3y3x4y4200x1y1x2y2x3y3x 4y4x5y5200x1y1x2y2x3y3x4y4x5y5x6y6200x,y0;j1,2,,6jj最优解x800,1000,1000,0,1000,1000y1000,1000,0,1000,1000,1000z310000【另解】变量设置如表月份123456月产量x1x2x3x4x5x6月销量y1y2y3y4y5y6月初库存z1z2z3z4z5z6zi1xizi-yi1maxz350y1-300x1340y2-330x2350y3-320x 3420y4-360x4410y5-360x5340y6-300x6x1-y1-z2-200z2x2-y2-z30z

相关文档
最新文档