圆的标准方程公开课
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为:
x2 y2 r2
随堂练习
1、求:圆心及半径 (1). x2+y2=4 (2). (x+1)2+y2=1
2、圆心为 A(2,3),半径长等于5,求圆的方程
(x – 2 )2+(y + 3 )2=25
变式: 圆心C(2,-3),且过点M(5,1)的圆的方程
(x 2)2 ( y 3)2 25
1. 代数方法:待定系数法求
2. 几何方法:数形结合
则直线AB的中垂线为y+1= 1 (x 6) 2
即为x 2 y 8 0(1)
同理可得直线BC的中垂线为x y 1 0(2)
联立(1)和(2),得圆心为D(2,-3) 半径为 AD =5,圆的方程为(x-2)2 (y 3)2 25
一、圆的标准方 程
(x a)2 ( y b)2 r2 圆心C(a,b),半径r
解:设所求圆的方程是 (x a)2 ( y b)2 r2 (1)
因为A(5,1), B(7,-3),C(2, -8) 都在圆上,所以它 们的坐标都满足方程(1).于是
(5 a)2 (1 b)2 r 2 (7 a)2 (3 b)2 r 2 (2 a)2 (8 b)2 r 2
圆心--确定圆的位置(定位) 半径--确定圆的大小(定形)
探究一
已知圆的圆心C(a,b)及圆的半径R, 如何确定圆的方程?
y
M
C(a,b)
O
x
圆上的点的集合:P={M||MC|=R}
一、圆的标准方程
1、建立坐标系; 建 2、设点M(x, y)为圆上
的任意一点; 设
y M (x,y)
OC x
3、限定条件:|MC|= R 限
4、代点; (x a)2 ( y b)2 R 代
5、化简; (x a)2 ( y b)2 R2 化
圆心C(a,b),半径r M(x, y)
y M(x,y)
O C(a,b) x
(x a)2 (y b)2 r2
圆的标准方 程
2个条件( a,b )、r确定一个圆的方程.
特别地,圆心为O(0,0)半径r,则圆的方程
系 A在圆外
B在圆上 ( DA )
C在圆内
D在圆上或圆外
例题讲解 例1、写出圆的方程
过点(0,1)和点(2,1),半径为 5
解:设所求圆的方程为(x a)2 ( y b)2 5. 因为已知圆过点(0,1),(2,1),所以可得:
a2 (1 b)2 5
(2
a)2
(1 b)2
5
解得
ba11
a2 b 3
r 5
所求圆的方程为
(x 2)2 (y 3)2 25
待定系数法
y
L2 L1
A(5,1)
R
x
D B(7,-3)
O
E C(2,-8)
例2 ABC的三个顶点的坐标分别A(5,1), B(7,-3),C(2, -8),求它的外接圆的方程.
(法二)解:AB中点为(6,-1),kAB 2
1或 1
ba22
1 3
因此,所求圆的方程为
(x 1)2 ( y 1)2 5或(x 1)2 (y-3)2 5.
例题讲解 例1.写出圆的方程
过点(0,1)和点(2,1),半径为 5
例2. AB的C 三个顶点的坐标分别A(5,1),
B(7,-3),C(2, -8),求它的外接圆的方程.
例2 ABC的三个顶点的坐标分别A(5,1), B(7,-3),C(2, -8),求它的外接圆的方程.
探究二:点与圆的位置关系
怎样判断点 M 0 (x0在, y圆0 ) C 上?圆外呢?
(x a)2 ( y 内b)2? r圆2
y
M3
M2
C
o
M1
x
探究二:点与圆的位置关系
在平面几何中,如何确定点与圆的位置关系?
M M
M O
O
O
|OM|<r 点在圆内
|OM|=r 点在圆上
|OM|>r 点在圆外
点与圆的位置关系:
创设情境
一石激起千层浪 摩天轮
奥运五环
自然界中有着漂亮的圆,圆是最完美的曲线之一.
形
y
.
.
o
数
l : Ax By C 0
x
那么,直线可以用一个方程表示, 圆 是否可以用一个方程来表示呢?
马高丹
回顾旧知
1、什么是圆?
平面内到定点距离等于定长的点的集合(轨迹)是圆.
2、确定圆有需要几个要素?
已知:圆的标准方程 (x 2)2 ( y 3)2 25
请判断:点 M1(5,7) , M2 ( 5,1) 是否在该圆上?
把 M1(5,的7)坐标代入方程 (x 2)2 ( y 3)2 25 左右两边相等,点 M 1的坐标适合圆的方程,所以点 M 1在这个圆上;
把点 M 2 ( 5,的1) 坐标代入此方程,左右两边不 相等,点 M的2坐标不适合圆的方程,所以点 M不2在 这个圆上.
y
M
C
O
x
圆心O(0,0),半径r,则圆的标准方程:x2 y 2 r 2
二、点与圆的位置关 系:
(1)点P在圆上 x0 a2 y0 b2 r2 (2)点P在圆内 x0 a2 y0 b2 r2 (3)点P在圆外 x0 a2 y0 b2 r2
三、求圆的标准方程的方法:
(x0-a)2+(y0-b)2<r2时,点M在圆C内
(x0-a)2+(y0-b)2=r2时,点M在圆C上
(x0-a)2+(y0-b)2>r2时,点M在圆C外
M (x0 , y0 )
M (x0 , y0 )
M(x0 , y0 )
O(a, b)
O(a, b)
O (a,b)
练一ຫໍສະໝຸດ Baidu:
点P( m1,5)与圆x2+y2=25的位置关