高中数学利用相关点法巧解对称问题知识点分析

高中数学利用相关点法巧解对称问题知识点分析
高中数学利用相关点法巧解对称问题知识点分析

高中数学利用相关点法巧解对称问题

对称问题在高考试题中经常出现,常见的有中心和轴对称两种。尽管试题年年翻新,情境不断变化,甚至不落俗套,但经研究可以发现,其解法的普遍规律还是可以归纳总结的。笔者认为,图象对称的原始基础是图象上点与点之间的对称,因此,抓住对称点之间的数量关系及其内在联系,可将几何对称语言转化为代数坐标、方程语言。代数化地展开研究是解决对称问题的有效方法,亦简称相关点法。下面通过一些实例加以说明。

一. 函数中的对称问题

例1 (2001年高考)设y f x =()是定义在R 上的偶函数,其图象关于直线x =1对称。证明y f x =()是周期函数。

证明:设(x ,y )为y f x =()图象上任意一点,则其关于x =1的对称点可求得:(,)2-x y ,于是根据函数关系有:y f x f x ==-()()2,又因为y f x =()是定义在R 上的偶函数,故有:f x f x ()()=-,因此结合上式有:f x f x f x ()()()=-=-2,故由f x f x ()()-=-+2知:y f x =()是周期函数,T =2。

例2 (1997年高考文)设y f x =()是定义在R 上的函数,则函数y f x =-()1与f f x =-()1的图象关于( )

A. 直线y =0对称

B. 直线x =0对称

C. 直线y =1对称

D. 直线x =1对称

解:可设(x 1,y )为y f x =-()1上任意一点,则有y f x =-()11;

若(x 2,y )为y f x =-()1上一点,也有y f x =-()12,一般地,由

f x f x ()()1211-=-可知:x x 1211-=-,所以x x 1

22

1+=,即(x 1,y )与(x 2,y )关于直线x =1对称,故选(D )。

评注:例1是一个函数图象本身内在对称问题,例2是两个函数图象之间的对称问题,尽管问题情境不同,但解法有相通之处,均可抓住对称点(即相关点)加以讨论。

二. 三角函数中的对称问题

例3 (2003年高考江苏卷)已知函数f x x ()sin()(,)=+>≤≤ω?ω?π00是R 上的偶函数,其图象关于点M (

,)340π对称,且在区间02,π?????

?上是单调函数,求?ω和的值。 解:由f x ()是偶函数,得f x f x ()()-=

即sin()sin()-+=+ω?ω?x x

所以-=cos sin cos sin ?ω?ωx x

对任意x 都成立,且ω>0,所以得

c o s ?=0 依题设0≤≤?π,所以解得?π

=2,这时f x x ()sin()=+ωπ

2

由y f x =()的图象关于点M 对称,可设P (x ,y )是其图象上任意一点,P 点关于M (

,)340π的对称点可求得为:(,)32

π--x y 即有y f x f x ==--()()32

π,(*) 取x =0,得f f ()()032=-π,所以,sin sin()ππωπ23221=-+=

所以sin(

)322

1πωπ+=- 所以ω=-=23

21123(),,,...k k 当k =1时,ωππ==+?????

?2323202,()sin(),f x x 在上是减函数; 当k =2时,ωπ==+222,()sin()f x x 在02,π?????

?上是减函数; 当k ≥2时,ωωππ≥=+?????

?103202,()sin(),f x x 在上不是单调函数; 所以,综合得ωω==232或 评注:本题是三角函数中含有中心对称问题,抓住对称点之间的中心对称关系,利用中点坐标公式求出对称点(或称相关点),寻求两相关点(对称点)之间的函数等量关系(见*)是解决问题的关键。

三. 解析几何中的对称问题

例4 (1998年高考理)设曲线C 的方程是y x x =-3,将C 沿x 轴、y 轴正向分别平行移动t 、s 单位长度后得曲线C 1

(I )写出曲线C 1的方程;

(II )证明曲线C 与C 1关于A t s (,

)22

点对称; (I )解:曲线C 1的方程为:

y x t x t s =---+()()3

(II )证明:在曲线C 上任取一点B 1(x 1,y 1)。设B 2(x 2,y 2)是B 1关于点A 的对称点,则有:

x x t y y s 12122222

+=+=, 所以x t x y s y 1212=-=-, 代入曲线C 的方程,得x 2和y 2满足方程:

s y t x t x y x t x t s

-=---=---+22322232()()

()()即

可知点B x y 222(,)在曲线C 1上 反过来,同样可以证明,在曲线C 1上的点关于点A 的对称点在曲线C 上。因此,曲线C 与C 1关于点A 对称。

例5 (1997年高考文)椭圆C 与椭圆C 1:()()x y -+-=3924

122

关于直线x y +=0对称,椭圆C 的方程是( )

A. ()()x y +++=2439122

B. ()()x y -+-=2934

122

C. ()()x y +++=2934122

D. ()()x y -+-=2439

122

解:设(x ,y )是椭圆C 上任意一点,则其关于直线x y +=0的对称点可求得为

(,)--y x ,该点在椭圆C 1上,故其坐标适合椭圆C 1的方程,将其代入有:()()--+--=y x 3924

122

,化简后知选A 。 从以上几个方面的研究可以发现,相关点法是解决数学对称问题的有效方法,因为它抓住了图象对称的基本元素(即图象上点与点之间的一一对应的对称关系)和核心,并且将几何问题代数化的基本数学思想得到很好地体现运用。此外,相关点法在解决几何中才被得以提出并加以运用于解决对称问题,这一点从例4,例5可以感觉到,实际上,函数及三角函数中的对称与解析几何中的对称是相通的,因此,相关点法完全可以加以推广,实行方法共享。

哈尔滨师范大学(150080)

高中数学必修一教案全套

高中数学必修一教案全套 Last revision date: 13 December 2020.

『高中数学·必修1』第一章集合与函数概念 课题:§1.1 集合 教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方 面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。 课型:新授课 教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于” 关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不 同的具体问题,感受集合语言的意义和作用; 教学重点:集合的基本概念与表示方法; 教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合; 教学过程: 一、引入课题 军训前学校通知:8 月15日8点,高一年段在体育馆集合进行军训动员;试问 这个通知的对象是全体的高一学生还是个别学生? 在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高 一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新 的概念——集合(宣布课题),即是一些研究对象的总体。 阅读课本 P-P内容 二、新课教学 (一)集合的有关概念 1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能 意识到这些东西,并且能判断一个给定的东西是否属于这个总体。 2. 一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set), 也简称集。 ——————————————第 1 页(共 70页)——————————————

高中数学解题中数学分析法的运用

高中数学解题中数学分析法的运用 摘要:数学在高中是一项重要的学科,所以一定要引起师生的高度重视。而在 通过研究后了解到,学生若想提升数学成绩,不要只是做大量的习题,因为这样 会让思维产生局限性,不能让学生真正地理解数学题的含义。所以一定要加强学 生数学分析思想的水平,从而确保课堂教学效果达到理想的要求。 关键词:高中数学;数学分析法 一、数学分析思想概述 数学分析思想主要是把数学题目分成几个部分,同时来对这些部分做好正确 的分类,最终根据认真的分析来找到最为合理的答题思路。而之所以要进行数学 分析,作用在于能够找到答题的基本脉络,为随后的解题带来清晰的思路。在学 习高中数学的过程中,学生不但要掌握书本上的知识,同时也要了解多种解题的 技巧,这就增加了他们的负担。所以学生有必要丰富数学分析思想,并合理地运 用到数学解题的过程当中,这样不但能够确保解题的正确率,还能够提高学生对 于学习的积极性,这样一来就可以为学生成为一名综合性的人才助力。 二、高中数学解题采用数学分析思想的作用 (一)能够开发学生的思想潜能 在高中数学课堂教学期间,如果可以在教师的引导中采用数学分析思想来解题,那么便可以锻炼发散思维,同时还可以合理地利用所掌握的知识。除此之外 也可以丰富学生的解题思路,这样一来就能提升学生的思维和创造水平。所以具 备合理的数学分析思想是加强学生数学学习效率的重要方式。 (二)能够锻炼学生的观察水平 在高中数学课堂教学期间,想提高学生的学习效率,前提是要锻炼他们的洞 察力,如果教师在进行课堂教学期间可以合理地采用数学分析思维,那么便可以 达到理想的教学效果。教师不要只限于理论内容,而是要从数学题中发现问题的 本质,这样便能够让学生全面掌握数学内容,成为一名具有综合素养的人才。 (三)能够把不熟悉的题型转变成熟悉的题型 尽管数学概念和原理不多,不过能够根据数学题型的转化去检验学生对概念 和原理的理解情况,所以学生在做新题型的过程中,或许会觉得是相同类型的题,不过实际上是不熟悉的题型。而在做不熟悉的题型的时候,一部分学生找不到解 题的思路,这样就会让解题变得更加困难。所以学生要具有把不熟悉的题型转变 成熟悉的数学分析思想,创建辅助元素、题目已知条件和问题之间所存在的关联性,这是非常实用的分析思想。 三、数学分析思想在高中解题中的应用 (一)通过数学分析思想来转变解题思路 在高中数学当中,和数学题相比,数学概念和原理会少一些,同时数学题的 类型时常会出现变化,这无疑增加了解题的困难性。学生对于新题型总是会手足 无措,无法滤清思路,从而运算不出正确的答案。所以在这样的状况下,学生要 增强对于数学题的理解力,而这就要求他们要具备完善的数学分析思想。着重分 析数学题中已知条件和问题间所存在的关联性,这样就可以形成清晰的思路。 (二)采用类比和归纳的方式来解题 类比指的是把两者所具有的相同性质采取比较,然后由此分析出其余的性质 中会包括的类似方面。而归纳指的是从局部到整体的一种推理过程,在大量的事 物里对普遍的概念进行分析,并给出最终的结论。而无论是以上哪种形式,在进

高中数学知识点总结超全

高中数学 必修1知识点 第一章 集合与函数概念 【1.1.1】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法 N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. (3)集合与元素间的关系 对象a 与集合M 的关系是a M ∈,或者a M ?,两者必居其一. (4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类 ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(?). 【1.1.2】集合间的基本关系 (6)子集、真子集、集合相等 (7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集, 它有2 2n -非空真子集.

【1.1.3】集合的基本运算 (8)交集、并集、补集 名称记号意义性质示意图 交集A B {|, x x A ∈且 } x B ∈ (1)A A A = (2)A?=? (3)A B A ? A B B ? B A 并集A B {|, x x A ∈或 } x B ∈ (1)A A A = (2)A A ?= (3)A B A ? A B B ? B A 补集 U A{|,} x x U x A ∈? 且 1() U A A=?2() U A A U = 【补充知识】含绝对值的不等式与一元二次不等式的解法 (1)含绝对值的不等式的解法 不等式解集 ||(0) x a a <>{|} x a x a -<< ||(0) x a a >>|x x a <-或} x a > ||,||(0) ax b c ax b c c +<+>> 把ax b+看成一个整体,化成||x a<, ||(0) x a a >>型不等式来求解 判别式 24 b ac ?=- ?>0 ?=0 ?<二次函数 2(0) y ax bx c a =++> 的图象O 一元二次方程 20(0) ax bx c a ++=> 的根 2 1,2 4 2 b b ac x a -±- = (其中 12 ) x x < 122 b x x a ==-无实根 ()()() U U U A B A B = ()()() U U U A B A B =

高中数学数学归纳法教案新人教A版选修

第一课时 4.1 数学归纳法 教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写. 教学重点:能用数学归纳法证明一些简单的数学命题. 教学难点:数学归纳法中递推思想的理解. 教学过程: 一、复习准备: 1. 分析:多米诺骨牌游戏. 成功的两个条件:(1)第一张牌被推倒;(2)骨牌的排列,保证前一张牌倒则后一张牌也必定倒. 回顾:数学归纳法两大步:(i )归纳奠基:证明当n 取第一个值n 0时命题成立;(ii )归纳递推:假设n =k (k ≥n 0, k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立. 2. 练习:已知()*()13521,f n n n N =++++-∈L ,猜想()f n 的表达式,并给出证明? 过程:试值(1)1f =,(2)4f =,…,→ 猜想2()f n n = → 用数学归纳法证明. 3. 练习:是否存在常数a 、b 、c 使得等式132435......(2)n n ?+?+?+++= 21()6 n an bn c ++对一切自然数n 都成立,试证明你的结论. 二、讲授新课: 1. 教学数学归纳法的应用: ① 出示例1:求证*111111111,234212122n N n n n n n - +-+???+-=++??+∈-++ 分析:第1步如何写?n =k 的假设如何写? 待证的目标式是什么?如何从假设出发? 关键:在假设n =k 的式子上,如何同补? 小结:证n =k +1时,需从假设出发,对比目标,分析等式两边同增的项,朝目标进行变形. ② 出示例2:求证:n 为奇数时,x n +y n 能被x +y 整除. 分析要点:(凑配)x k +2+y k +2=x 2·x k +y 2·y k =x 2(x k +y k )+y 2·y k -x 2·y k =x 2(x k +y k )+y k (y 2-x 2)=x 2(x k +y k )+y k ·(y +x )(y -x ). ③ 出示例3:平面内有n 个圆,任意两个圆都相交于两点,任何三个圆都不相交于同一点, 求证这n 个圆将平面分成f (n )=n 2-n +2个部分. 分析要点:n =k +1时,在k +1个圆中任取一个圆C ,剩下的k 个圆将平面分成f (k )个部分,而圆C 与k 个圆有2k 个交点,这2k 个交点将圆C 分成2k 段弧,每段弧将它所在的平 面部分一分为二,故共增加了2k 个平面部分.因此,f (k +1)=f (k )+2k =k 2-k +2+2k =(k +1)2- (k +1)+2. 2. 练习: ① 求证: 11(11)(1)(1)321 n ++???+-g g n ∈N *). ② 用数学归纳法证明: (Ⅰ)2274297n n --能被264整除; (Ⅱ)121(1)n n a a +-++能被21a a ++整除(其中n ,a 为正整数) ③ 是否存在正整数m ,使得f (n )=(2n +7)·3n +9对任意正整数n 都能被m 整除?若存在, 求出最大的m 值,并证明你的结论;若不存在,请说明理由. 3. 小结:两个步骤与一个结论,“递推基础不可少,归纳假设要用到,结论写明莫忘掉”;从n =k 到n =k +1时,变形方法有乘法公式、因式分解、添拆项、配方等. 三、巩固练习: 1. 练习:教材50 1、2、5题 2. 作业:教材50 3、4、6题.

高中数学知识点题库 125数列

1.对于数列{a n},“a n+1>|a n|(n=1,2,…)”是“{a n}为递增数列”的() A、必要不充分条件 B、充分不必要条件 C、充要条件 D、既不充分也不必要条件 答案:B 解析:由a n+1>|a n|(n=1,2,)知{a n}所有项均为正项, 且a1<a2<…<a n<a n+1, 即{a n}为递增数列 反之,{a n}为递增数列, 不一定有a n+1>|a n|(n=1,2,), 如-2,-1,0,1,2 题干评注:数列 问题评注:按一定次序排列的一列数称为数列。数列中的每一个数都叫做这个数列的项。2.已知数列{a n}对任意的p,q∈N*满足a p+q=a p+a q,且a2=-6,那么a10等于()A、-165 B、-33 C、-30 D、-21 答案:C 解析:a4=a2+a2=-12, ∴a8=a4+a4=-24, ∴a10=a8+a2=-30 题干评注:数列 问题评注:按一定次序排列的一列数称为数列。数列中的每一个数都叫做这个数列的项。3.若数列{a n}前8项的值各异,且a n+8=a n对任意的n∈N*都成立,则下列数列中,能取遍数列{a n}前8项值的数列是() A、{a2k+1} B、{a3k+1} C、{a4k+1} D、{a6k+1} 答案:B 解析:由已知得数列以8为周期, 当k分别取1,2,3,4,5,6,7,8时, a3k+1分别与数列中的第4项,第7项,第2项,第5项,第8项,第3项,第6项,第1项相等, 故{a3k+1}能取遍前8项 题干评注:数列 问题评注:按一定次序排列的一列数称为数列。数列中的每一个数都叫做这个数列的项。4.对于数列{a n}(n∈N+,a n∈N+),若b k为a1,a2,a3…a k中的最大值,则称数列{b n}为数列{a n}的“凸值数列”.如数列2,1,3,7,5的“凸值数列”为2,2,3,7,7.由此定义可知,“凸值数列”为1,3,3,9,9的所有数列{a n}个数为() A、3 B、9 C、12 D、27 答案:D 解析:数列{a n}(n∈N+,a n∈N+),若b k为a1,a2,a3…a k中的最大值,则称数列{b n}为数列{a n}的“凸值数列” 数列{a n}的,“凸值数列”为1,3,3,9,9 ∴知数列{a n}中的a3和a5分别可取的值为1,2,3;1,2,3,4,5,6,7,8,9, 根据乘法原理得知满足条件的个数为:27 题干评注:数列 问题评注:按一定次序排列的一列数称为数列。数列中的每一个数都叫做这个数列的项。5.在数列a1,a2,…,a n…的每相邻两项中插入3个数,使它们与原数构成一个新数列,

高中数学方法篇之配方法

高中数学方法篇之配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式,如: a2+b2=(a+b)2-2ab=(a-b)2+2ab; a2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b 2 )2+( 3 2 b)2; a2+b2+c2+ab+bc+ca=1 2 [(a+b)2+(b+c)2+(c+a)2] a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα)2; x2+1 2 x =(x+ 1 x )2-2=(x- 1 x )2+2 ;……等等。 一、再现性题组: 1. 在正项等比数列{a n }中,a 1 ?a 5 +2a 3 ?a 5 +a 3 ?a 7 =25,则 a 3 +a 5 =_______。 2. 方程x2+y2-4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k=1 4 或k=1 3. 已知sin4α+cos4α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log 1 2 (-2x2+5x+3)的单调递增区间是_____。 A. (-∞, 5] B. [5,+∞) C. (-1,5] D. [5,3) 5. 已知方程x2+(a-2)x+a-1=0的两根x 1、x 2 ,则点P(x 1 ,x 2 )在圆x2+y2=4上,则实 数a=_____。

(完整版)人教版高中数学《排列组合》教案

排列与组合 一、教学目标 1、知识传授目标:正确理解和掌握加法原理和乘法原理 2、能力培养目标:能准确地应用它们分析和解决一些简单的问题 3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力 二、教材分析 1.重点:加法原理,乘法原理。解决方法:利用简单的举例得到一般的结论. 2.难点:加法原理,乘法原理的区分。解决方法:运用对比的方法比较它们的异同. 三、活动设计 1.活动:思考,讨论,对比,练习. 2.教具:多媒体课件. 四、教学过程正 1.新课导入 随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完成。排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键.

2.新课 我们先看下面两个问题. (l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 板书:图 因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有 4十2十3=9种不同的走法.一般地,有如下原理: 加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1十m2十…十m n种不同的方法. (2) 我们再看下面的问题: 由A村去B村的道路有3条,由B村去C村的道路有2条.从A 村经B村去C村,共有多少种不同的走法? 板书:图 这里,从A村到B村有3种不同的走法,按这3种走法中的每一

高中数学知识点题库 058直线与平面所成的角

1.如图9-7-21,三校柱O AB —O 1A 1B I ,平面O B 1⊥平面O AB ,∠O 1O B =60°,∠A O B=90°,且 O B=OO 1=2,O A=3,求异面直线A 1B 与A O 1所成角的大小. 答案:建立如图9-7-21所示的空间直角坐标系,则O (0,0,0),O 1(0,1,3),A(3,0,0),A 1(3,13),B (0,2,0). ∴B A 1=OB -1OA =(-3,1,-3),1OA =OA -1OO =(3,-1,3). 设异面直线所成的角为α,则cos α= A O B A A O B A 1111 ?=71 .故异面直线A 1B 与A O 1所成的角的大小 为arccos 71 . 解析:用平移A 1B 或A O 1的方法求解,是很困难的,于是我们很自然地想到向量法求解.充分 利用∠A O B=90°,建立空间直角坐标系,写出有关点及向量的坐标,将几何问题转化为代数问题计算. 题干评注:直线与平面所成的角 问题评注:平面的一条斜线和它在平面内的射影所成的锐角,叫这条直线和这个平面所成的角。 2.如图9-7-23,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求直线AC 1与侧面AB 1所成的角的大小. 答案:建立如图9-7-23所示的空间直角坐标系,则A(0,0,0),B(0,a ,0),A 1(0,0,2a),C 1(- 23a ,2a ,2a),取A 1B 1中点M ,则M(0,2a ,2a),连结AM ,MC 1,有1MC =(-23 a ,0, 0),AB =(0,a , 0),1AA =(0,0,2a).由于1MC ·AB =0,1MC ·1AA =0,∴MC 1⊥面AB 1.∴∠C 1AM 是AC 1与侧面AB 1所成的角θ. ∵1AC =(-23 a ,2a ,2a),AM =(0,2a ,2a), ∴1AC ·AM =0+42a +2a 2 =492 a . 而|1AC |=2 2 22443a a a ++=3a ,

高中数学解题方法大全

第一章 高中数学解题基本方法 一、 配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy 项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a +b) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 + b 2=(a +b)2 -2ab =(a -b)2 +2ab ; a 2 +a b +b 2 =(a +b)2 -ab =(a -b)2 +3ab ; a 2 + b 2 + c 2 +ab +bc +ca = 2 1[(a +b)2 +(b +c) 2+(c +a) 2] a 2+b 2+c 2=(a +b +c) 2-2(ab +bc +ca)=(a +b -c)2 -2(ab -bc -ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sin αcos α=(sin α+cos α) ; x + =(x + ) -2=(x - ) +2 ;…… 等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a }中,a ?a +2a ?a +a ?a =25,则 a +a =_______。 2. 方程x +y -4kx -2y +5k =0表示圆的充要条件是_____。 A. 1 C. k ∈R D. k = 或k =1 3. 已知sin α+cos α=1,则sin α+cos α的值为______。

高中生在数学解题中运用的类比与归纳法

高中生在数学解题中运用的类比与归纳法 作为高中生,合理运用所学知识解答数学难题是我们必须掌握的能力。因此,我们有必要合理运用类比与归纳法,提高自身知识运用及解题水平。 标签:高中生数学解题类比法归纳法 为了在考试中获得良好的成绩、发挥所学知识的用处,掌握类比、归纳法解题要点,是我们学生额必须掌握的学习技能之一。 一、高中生在数学解题中类比法的运用 (一)类比法的概念 所谓类比法,含义为运用以前类似的项目规律,借助类比、推理、估算的方式,分析正在处理的项目。其本质就是通过某种事物属性对相似的事物属性进行推理的方法。所得的结论,要接受实验检验才能够使用。若参与类比的两者属性共同点较多,则结论越可靠。同时,类比法也适用于运用在数学解题中。做好类比法的运用,有助于身为学生的我们提高解题效率。[1] (二)类比法在高中数学解析几何题中的运用 高中数学几何知识是我们学生学习的重难点知识之一,其中与圆锥曲线相关的曲线公式、定义、性质、推导结论等具有共性特点,在遇到此类问题时,运用类比法解题,可以改善解题准确性。 因此,合理运用归纳法结合题中已知条件以及我们掌握的知识,将提高解题速度、降低解题难度。 三、结语 总之,身为学生,在扎实记忆所学数学知识的同时,合理的运用类比与归纳法,才能提高所学知识在解题中的运用价值、改善自身的数学综合素质能力。 参考文献: [1]刘天炀.数学归纳法在高中數学中的应用[J].低碳世界,2017(35):352~353. [2]邹丽萍.类比法在中学数学教学中的应用[J].大连教育学院学报,2015(04):27~28. [3]张博宇.数学归纳法在高中数学中的应用[J].科技风,2016(24):28.

高中数学知识点完全总结(绝对全)

高中数学概念总结 一、 函数 1、 若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有非空真子集的个数是22-n 。 二次函数c bx ax y ++=2的图象的对称轴方程是a b x 2-=,顶点坐标是??? ? ? ?--a b ac a b 4422,。用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即(一般式)c bx ax x f ++=2)(,(零点式))()()(21x x x x a x f -?-=和n m x a x f +-=2)()( (顶点式)。 2、 幂函数n m x y = ,当n 为正奇数,m 为正偶数, m

),(y x P ,点P 到原点的距离记为r ,则sin α= r y ,cos α=r x ,tg α=x y ,ctg α=y x ,sec α=x r ,csc α=y r 。 2、同角三角函数的关系中,平方关系是:1cos sin 2 2 =+αα,αα22sec 1=+tg ,αα22csc 1=+ctg ; 倒数关系是:1=?ααctg tg ,1csc sin =?αα,1sec cos =?αα; 相除关系是:αααcos sin = tg ,α α αsin cos =ctg 。 3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。如:=-)23sin( απαcos -,)2 15(απ -ctg =αtg ,=-)3(απtg αtg -。 4、 函数B x A y ++=)sin(?ω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ω π 2= T ,频 率是πω2= f ,相位是?ω+x ,初相是?;其图象的对称轴是直线)(2 Z k k x ∈+=+π π?ω,凡是该图象与直线B y =的交点都是该图象的对称中心。 5、 三角函数的单调区间: x y s i n =的递增区间是??? ?? ? + -222 2πππ πk k ,)(Z k ∈,递减区间是????? ? ++23222ππππk k ,)(Z k ∈;x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,tgx y =的递增区间是 ??? ? ? +-22ππππk k ,)(Z k ∈,ctgx y =的递减区间是()πππ+k k ,)(Z k ∈。 6、=±)sin(βαβαβαsin cos cos sin ± =±)c o s (βαβαβαs i n s i n c o s c o s = ±)(βαtg β αβ αtg tg tg tg ?± 1 7、二倍角公式是:sin2α=ααcos sin 2? cos2α=αα2 2 sin cos -=1cos 22 -α=α2 sin 21- tg2α= α α 2 12tg tg -。

高中数学选修2-2《分析法》教学案例

人教版高中数学(选修2-2)《分析法》教学案例本节课的教学课题是:人民教育出版社出版的普通高中课程标准实验教科书《数学(选修2-2)》,第二章“2.2.1综合法和分析法”中“分析法”的第一课时。 一、设计要点 本教案在挖掘教材中的创新因素和蕴涵的数学思想方法的基础上,以“创设情境、切入主题、感受新知、合作交流、尝试练习、感悟探究、综合提高、回顾小结”为基本教学过程,通过揭示知识的发现和发生过程,使学生在掌握分析法的同时,体验有关的数学思想,提高观察与交流、分析与解决问题的能力,培养“用数学”的意识和合作意识。 二、教学目标 1.知识与技能:结合数学实例,了解用分析法思考问题的过程和特点,对分析法的有一个较完整的认识; 2.过程与方法:通过学习分析法,掌握探索和分析问题的基本方法,培养思维的灵活性和深刻性,提高分析问题、解决问题的能力,提高观察、交流能力和发散性思维能力; 3.情感、态度与价值观:体会数学证明的特点,感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的习惯,激发勇于探索、创新的精神,磨练意志品质。 三、教学重点、难点、关键 1.重点:(1)了解分析法的思考过程和特点; (2)运用分析法证明数学问题。 2.难点:对分析法的思考过程和特点的概括。 3.关键:展现知识的内在联系,启发学生思考、探索。 四、教学方法 启发式与探究式相结合 五、教学过程 1.创设情境

教师请全体学生一起完成如下填空。 已知:如图,SA ⊥平面ABC,AB ⊥BC,D 为直线BS 上一点,求证:BC ⊥AD 证明:∵SA ⊥平面ABC ∵BC ?平面ABC ∴(___________________) ∵(___________________) ∴BC ⊥平面SAB ∵点D 在直线BS 上 ∴AD ?平面SAB ∴BC ⊥AD 教师教学时注意知识点拨:综合法表述形式:因为…,所以…;综合法思维过程:由因导果;综合法推理特点:顺推。并通过思路分析启发学生产生新的证明思路和方法。 设计意图:利用立体几何问题创设情境,既使学生自然地融入情境之中,又拓展了分析法的知识背景。让学生通过综合法的证明及思路分析,从数学问题本身探究新的思维方法,温故知新,体验新旧知识的密切联系,激发探索的热情。 2.切入主题 一般地, 从要证明的结论出发, 逐步寻找使它成立的充分条件, 直至最后, 把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等), 这种证明方法叫做分析法. 用Q 表示要证明的结论,则分析法可用框图表示如下: 表述形式:要证命题Q 成立, 只需证命题P 1 成立, 思路分析: 要证BC ⊥AD 只需证BC ⊥平面SAB( ∵______________) 只需证BC ⊥SA( ∵____________________) 由SA ⊥平面ABC 知上式成立 ∴BC ⊥AD 成立

高中数学知识点题库 096通项

1.数列1,3,7,15,…的通项公式a n等于 答案:2n-1 解析:a2-a1=21,a3-a2=22,a4-a3=23,…依次类推可得a n-a n-1=2n-1 ∴a2-a1+a3-a2+a4-a3…+a n-a n-1=a n-a1=21+22+23+…+2n-1=2n-2 ∴a n-a1=2n-2,a n=2n-1 题干评注:通项 问题评注:如果数列{an}的第n项与序号之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式 2.已知数列前4项为4,6,8,10,则其一个通项公式为 答案:a n=2(n+1) 解析:该数列的前4项分别可写成:2×(1+1),2×(2+1),2×(3+1),2×(4+1), 所以数列的通项公式为a n=2(n+1) 题干评注:通项 问题评注:如果数列{an}的第n项与序号之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式 3.已知两个等差数列a n:5,8,11,…;b n:3,7,11,…,各100 项,则由他们共同项所构成的数列的通项公式为 答案:12k-1(k=1,2…25) 解析:设共同项构成的数列为C n,依题意可知a n=2+3n b m =-1+4m m=1,2,..75 a n= b m=2+3n=-1+4m ∴4m=3(n+1) ∵(3,4)=1,∴3|m ∴m=3k (k=1,2, (25) 4m=4?3k=3(n+1) ∴n=4k-1 (k=1,2, (25) C n=2+3?(4k-1)=12k-1 (k=1,2, (25) 题干评注:通项 问题评注:如果数列{an}的第n项与序号之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式 4.已知{a n}是首项为19,公差为-4的等差数列,S n为{a n}的前n项和. (Ⅰ)求通项a n及S n; (Ⅱ)设{b n-a n}是首项为1,公比为2的等比数列,求数列{b n}的通项公式及其前n项和T n.答案:(Ⅰ)-2n2+21n(Ⅱ)-2n2+21n+2n-1 解析:(Ⅰ)先根据等差数列的通项公式和求和公式求得a n和S n. (Ⅱ)根据等比数列的通项公式求得{b n-a n}的通项公式,根据(1)中的a n求得b n,可知数列{b n}是由等差数列和等比数列构成,进而根据等差数列和等比数列的求和公式求得T n. 题干评注:通项 问题评注:如果数列{an}的第n项与序号之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式 5.已知等差数列{a n}的通项为a n=90-2n,则这个数列共有正数项() A、44项 B、45项 C、90项 D、无穷多项 答案:A 解析:由题意知等差数列{a n}的通项为a n=90-2n大于零,可以得到数列的正项个数,

高中数学解题基本方法——换元法

高中数学解题基本方法——换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通 过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉 的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1-x的值域时,易发现x∈[0,1],设x =sin2α,α∈[0,π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中 主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=S 2 +t,y= S 2 -t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例 中的t>0和α∈[0,π 2 ]。 Ⅰ、再现性题组: 1.y=sinx·cosx+sinx+cosx的最大值是_________。 2.设f(x2+1)=log a (4-x4) (a>1),则f(x)的值域是_______________。 3.已知数列{a n }中,a 1 =-1,a n+1 ·a n =a n+1 -a n ,则数列通项a n =___________。 4.设实数x、y满足x2+2xy-1=0,则x+y的取值范围是___________。 5.方程13 13 + + -x x =3的解是_______________。 6.不等式log 2(2x-1) ·log 2 (2x+1-2)〈2的解集是_______________。

最全高中数学知识点总结(最全集)

最全高中数学知识点总结(最全集) 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系的扩充与复数 选修2—3:计数原理、随机变量及其分布列,统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。

(完整版)高中数学人教版必修5全套教案

课题: §1.1.1正弦定理 授课类型:新授课 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定 义 , 有 sin a A c =, sin b B c =,又sin 1c C c == , A 则sin sin sin a b c c A B C = = = b c 从而在直角三角形ABC 中, sin sin sin a b c A B C = = C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得sin sin c b C B = , b a 从而 sin sin a b A B = sin c C = A c B

浅谈类比推理在高中数学中的应用

浅谈类比推理在高中数学中的应用 发表时间:2015-06-16T15:22:24.450Z 来源:《中小学教育》2015年6月总第208期供稿作者:孟祥功[导读] 伟大的数学家开普勒将类比比作自己最信赖的老师,认为通过类比就能更好地探究自然的奥妙。孟祥功山东省郯城第一中学276100 摘要:随着学习的深入,在高中数学中会运用到越来越多的推理方法,类比法作为一种重要的推理方法,在高中数学中发挥着重要的作用,类比推理方法的使用对学生简洁高效解决数学难题,形成知识迁移以及培养学的数学思维能力都有重要的影响。本文首先阐述了类比推理的具体内涵,并对对类比推理方法的意义及其在高中数学课堂中的应用作了详细描述,最后笔者结合教学实践和高中学生的特点提出了可行性建议,以期对高中数学课堂的有效性研究具有借鉴意义。关键词:类比推理方法高中数学课堂应用 随着新课程改革的推进,高中数学课堂中引入了更多的推理方法,然而教学中时常会有学生面对复杂的数学难题手足无措、一筹莫展,如何帮助高中学生有效地解决数学问题呢?我在教学中按照课程标准的要求,从高中阶段的教学实践中钻研实例,努力探索有利于高中数学课堂效率的提高的教学推理方式和方法。我发现通过习题的积累,针对错题进行反复地练习,对学生认知体系的构建有很好的帮助。经过长时间的锻炼,学生能够举一反三,从大脑中提取解题的方法。这样的方法在数学上叫做类比法,类比推理很好地体现了数学知识的迁移。 纵观近几年的高考试题,类比推理在代数和解析几何中占据了很大比重,必须加以重视。 一、类比推理的内涵 关于类比推理的概念,国际上有不同的解释,一般认为类比推理,即熟知某些类似对象中的一个对象某些特征之后,根据这一对象的特征,对其他对象举一反三,推知出其他对象具有同样的特征。简单而言,就是根据具有相似特征的甲乙两种事物,根据已知的甲的特征而推知乙有同样的特征,在多种事物中类比推理也同样适用。 数学中的类比推理是一种为了更快地解决问题而进行推测得到结论的方法,是从特殊到特殊的过程。通常我们所说的大前提、小前提、结论三步走其实也是一种类比推理,它应用广泛,是高中数学中的一种重要的解题方法,在高中数学课堂中,有着重要的意义。 二、类比推理的意义 1.学生的学习兴趣 伟大的数学家开普勒将类比比作自己最信赖的老师,认为通过类比就能更好地探究自然的奥妙。作为一种灵活有效的推理方法,类比法被同学们认可,很多人就是在轻松高效的解题过程中,找到了数学学习的乐趣,从而爱上数学。 2.培养学生的思维能力 高中数学课程的学习中,学生在解决数学问题的过程中,大脑高度参与其中,各种思维活动集聚,或者通过直观发现、或者通过抽象概括,亦或是通过反思建构,是一种综合的思维过程。是学生思维灵感地迸发,对学生数学思维能力的培养具有特殊的影响。 3.培养学生的探究精神 自主、合作、探究是新课程倡导的新型学习方式,高中数学中探究能力的培养尤为重要。高中数学课程中,会遇到很多相似的题目,如果掌握了解题的系统方法和解题策略,就能够有效地帮助学生举一反三,形成有效的迁移,对学生探究意识和探究能力的培养,意义重大。 三、类比推理在高中数学中的应用 伟大的数学家波利亚曾经说过:“类比推理好比一个伟大的领路人,譬如立体几何的数学问题推导过程,离不开平面几何的数学问题的推导。”课件数学中类比推理的应用。类比推理在高中数学中应用同样广泛,包括函数、比例、排列组合、解析几何、立体几何在内,都用到了类比推理这一方法。在日常教学中,数学教师要形成意识自觉地将类比推理的思想渗透到整个教学中。具体应该怎么做呢?笔者结合实践和学生特点进行了探索。 四、针对类比推理应用的几点建议 1.根据教材特点,在传授新知识时,有意识地引导学生,通过类比与归纳得出新的知识,逐步学会类比推理的方法。 2.在进行知识复习时,经常对相关的知识进行类比,培养学生对相关知识进行类比的习惯。 3.在解题教学中,通过类比,引导学生推广数学命题,或通过类比,探求解题途径,深化对知识的理解,对数学思想方法的掌握。 4.通过类比,拓展学生的数学能力,提高学生的发现问题、分析问题和解决问题的能力,提高学生的实践能力和创新精神。总之,作为高中数学阶段的一项重要的推理方法,类比推理具有非常重要的意义,在数学中的应用非常广泛,对类比推理进行研究,并能针对教学实际形成有效地策略,显得极为必要。这也是我们培养学生的探究能力和创新精神,促进学生综合素质的形成,构建和谐高效的数学课堂的需要。 参考文献 [1]顾国章高考对类比推理的考查.中学数学,2005,2。 [2]张巧凤从平面到空间的类比思维.高中数学教与学,2004,11。 [3]邓益阳探究一类新型题的解题策略.高中数学教与学,2004,2。

相关文档
最新文档