高中数学竞赛培训 函数方程和函数迭代问题 Word版 含答案

高中数学竞赛培训 函数方程和函数迭代问题 Word版 含答案
高中数学竞赛培训 函数方程和函数迭代问题 Word版 含答案

第四讲函数方程和函数迭代问题

在国内外数学竞赛中函数方程和函数迭代问题备受命题者的青睐形式灵活多变,结构变化无穷,大致可分为如下三类:⑴探求函数的解析式;⑵探求函数的值⑶讨论函数的性质.

一. 探求函数的解析式

函数方程的求解事实上也是一个探求函数解析式的过程,而函数方程常见的初等解法有许多,下面对其作进一步详尽的介绍.

1,换元法

换元法的解题基本思想是:将函数方程中自变量适当代换成别的自变量(应注意力求不改变函数的定义域),得到一个或几个新的函数方程,然后将它们与原方程联立,通过消元求得原函数方程的解. 例1 解函数方程 f(x)+f(x

x 1-)=1+x (x ≠0,x ≠1) 例2 设f(x)是定义在实数集上的实值函数,且满足af(x-1)+bf(1-x)=cx,其中a,b,c 为实常数,求f(x)

2.赋值法

赋值法基本思想是:对自变量多于一个的函数方程,将其中一个或几个自变量用一些特殊值赋进去代入原方程,从而简化函数方程,以达到求解的目的.

例3 已知定义在R 的函数满足

⑴ f(x 1+x 2)+f(x 1-x 2)=2f(x 1)cos2x 2+4asin 2x 2 (x 1,x 2∈R,a 为常数)

⑵ f(0)=f(

4

π)=1 ⑶ 当x ∈[0, 4π]时,f(x)≤2 试求⑴函数f(x)的解析式;

⑵常数a 的取值范围.

例4 f(x)是定义于非负实数集上且取非负实数值的函数,求所有满足下列条件的f(x)

⑴ f[xf(y)]f(y)=f(x+y);

⑵ f(2)=0

⑶ 当0≤x <2 f(x)≠0

3递推法

这一方法的其本思想是:当f(x)是定义在自然数集上的函数(实际上就是通项为a n =f(n)的数列)时,可根据题中所给函数方程,通过持殊值得到关于f(n)的递推关系,然后根据递推关系求出(即数列{a n}的通项表达式)

例5已知f(x)是定义在自然数集上的函数,满足f(1)=2

3,且对任意x,y ∈N,有 f(x+y)=(1+1+x y )f(x)+(1+1

+y x )f(y)+x 2y+xy+xy 2,求f(x) 4. 柯西法

柯西首先讨论了一个很重要的函数方程f(x+y)=f(x)+f(y)的解法,由此解决了一系列其他函数方程.他的方法是,依次求出所有自然数值,整数值,有理数值,直至所有实数值的函数方程的解

例6 设f(x) 是定义在有理数集上的函数,且对任意的有理数x,y 有

f(x+y)=f(x)+f(y),

试求f(x)

5, 待定系数法

这一方法的其本思想是:当f(x)是多顸式时,可设f(x)=a 0x n +a 1x n-1+….+a n (a 0≠0),代入函数方程的两端,然后比较方程两端x 最高次幂的指数和x 同次幂的系数,便可得出关于n 及a 0 a 1…a n .的方程组,解这个方程组便可确定n 及a 0 a 1…a n 的值,从而得到函数方程的解

例7 确定符合下列条件的所有多项式f(x) f(x+1)=21f[f(x)]+2

3 6 , 利用不等式夹逼

利用不等式夹逼求解函数方程,主要是利用下列几个明显的结论:

⑴ 若对任意x ∈I, 有f(x)≥g(x) 及f(x)≤g(x)则对任意x ∈I,有f(x)=g(x)

⑵ 若对任意x,y ∈I,有f(x)≤g(y)则交换x,y 得f(y)≤g(x)于是对任意的x,y ∈I 有f(x)=g(y)由此可得f(x)=常数(x ∈I).

⑶ 若f:N →N 满足m ≤f(n)<m+1或m-1<f(n)≤m 或m-1<f(n)<m+1(m,n ∈N)则f(n)=m,

例8 设f(x) 是具有下列性质的函数

⑴ f(n)对每一正整数n 有定义;

⑵ f(n)是正整数;

⑶ f(2)=2

⑷ f(mn)=f(m)f(n),对一切m,n 成立;

⑸ f(m)>f(n),当m >n 时

试证: f(m)=f(n)

例9 设f(n )是定义在自然数集N 上的函数,它的值域也是全体自然数所成的集N,并且对任意

两个自然m 与n,只要m ≥n 就有f(m) ≥n, 试证: f(m)= m 对任意的自然数m 成立.

例10 设f(n )是定义在自然数集N 上的函数,满足: ⑴f(n )的值域为整数;⑵当m <n 时,f(m)

<f(n);⑶当m,n 互素时,f(mn)=f(m)f(n),试求符合上述条件的一切函数f(x).

二. 探求函数的值

在各级各类数学竞赛中除了求函数方程的解以外,还经常遇到由函数方程给出的特殊定义的抽象函数,要求参赛者探求其函数的特殊的函数值.

例11. 设N 是自然数集, f(x)是定义在N 上并在N 内取值的函数,且对x,y ∈N,有

f[f(x)+y]=x+y,

求f(1988)的所有可能的值

例12. 设f(n )对所有正整数有定义,取非负整数值,并且对所有正整数m,n 有f(m+n)-f(m)-f(n)=0

或1.

又f(2)=0.f(3)>0,f(9999)=3333,

求f(1982).

例13. 设f(x),g(x)是定义在正整数集Z +上并取整数的严格递增函数,如果它们满足:⑴f(Z +) ∪ g ( Z +) = Z +

(⑵f(Z +) ∩ g ( Z +) =

⑶g(n)=f(f(n))+1

试求f(240).

三.讨论函数的性质

探求讨论函数的有关性质,历年来都是数学竞赛的命题热点之一,例如探求函数的周期性,函数的不等式证明,以及解反函数的不等式等问题。而解决这类问题 的办法就是要“穿脱”函数符号“f ”,下面我们从具体的例子谈一谈“穿脱”的技巧与方法.

数学实验迭代(方程求解)

实验六 迭代(方程求解) 一.实验目的:认识迭代数列,考察迭代数列的收敛性.并学会用Mathematica 系统对线性和非线性的方程组进行迭代求解. 二.实验环境:计算机,Mathematica 数学软件,Word 文档,课本。 三.实验的基本理论和方法: 给定迭代函数f(x)以及一个初值0x 利用1(),0,1,n n x f x n +==???迭代得到数列n x ,0,1,n =???.如果数列n x 收敛与某个* x ,则有**()x f x =.即* x 是方程 ()x f x =的解.由此用如下的方法求方程()0g x =的近似解。 将方程()0g x =改写为等价的方程()x f x =,然后选取一初值利用 1(),0,1,n n x f x n +==???做迭代.迭代数列n x 收敛的极限就是()0g x =的解.线 性方程组以及非线性方程组的求解与单变量的方程求解方法类似.实验内容和步骤 四.实验内容与结果 1.线性方程组 ⑴编写给定初值0x 及迭代函数()f x ,迭代n 次产生相应的序列. ⑵给函数()(2/)f x x x =+初值为0进行迭代80次所产生的迭代序列并显示. 输入程序: Iterate f_,x0_,n_Integer :Module t ,i,temp x0, AppendTo t,temp ; For i 1,i n,i ,temp f temp ;AppendTo t,temp ; t f x_: x 2x 2; Iterate f,1.,80 运行结果得:

1.,1.5,1.41667,1.41422,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421,1.41421, 1.41421,1.41421,1.41421,1.41421,1.41421,1.41421 输入程序: NTIterate g_,x0_,n_Integer : Module i,var x0,t ,h, h x_Dt g x ,x; For i 1,i n,i ,AppendTo t,var ; If h var0,var N var g var h var ,20, Print"Divided by Zero after",i, "'s iterations."; Break ; t g x_:x^32; NTIterate g,1,40 运行结果得:

高中数学竞赛训练题(0530)

数学竞赛训练题 1、函数()x x x x x f 44cos cos sin sin ++=的最大值是_______。 2、已知S n 、T n 分别是等差数列{}n a 与{}n b 的前n 项的和,且2412-+=n n T S n n ,则=+++15 61118310b b a b b a _______。 3、若函数()?? ? ?? +=x a x x f a 4log 在区间上为增函数,则a 的取值范围是为_______。 4、在四面体ABCD 中,已知DA ⊥平面ABC ,△ABC 是边长为2的正三角形,则当二面角A-BD-C 的正切值为2时,四面体ABCD 的体积为_______。 5、已知定义在R 上的函数()x f 满足: (1)()11=f ; (2)当10<x f ; (3)对任意的实数x 、y 均有()()()()y f x f y x f y x f -=--+12。则=??? ??31f _______。 6、已知x 、y 满足条件484322=+y x ,则542442222++-+++-+y x y x x y x 的最 大值为_______。 7、对正整数n ,设n x 是关于x 的方程nx 3 +2x-n=0的实数根,记()[]()11>+=n x n a n n (符号表示不超过x 的最大整数),则()=++++20114321005 1a a a a _______。 8、在平面直角坐标系中,已知点集I={(x ,y )|x 、y 为整数,且0≤x ≤5,0≤y ≤5},则以 集合I 中的点为顶点且位置不同的正方形的个数为_______。 9、若函数()x x x x f 2cos 24sin sin 42+?? ? ??+=π。 (1)设常数0>w ,若函数()wx f y =在区间??????- 32,2ππ上是增函数,求w 的取值范围; (2)集合??????≤≤=326ππx x A ,(){} 2<-=m x f x B ,若B B A =?,求实数m 的取值范围。

高中数学竞赛专题讲座---函数方程与迭代

函数方程与迭代 1.迭代法 先看一个有趣的问题:李政道博士1979年4月到中国科技大学,给少年班的同学面试这样一道题: 五只猴子,分一堆桃子,怎么也平分不了,于是大家同意先去睡觉,明天再说.夜里一只猴子偷偷起来,把一个桃子吃掉后正好可以分成5份,收藏起自己的一份后又去睡觉了.第二只猴子起来后,像第一只猴子一样,先吃掉一个,剩下的又刚好分成5份,也把自己的一份收藏起来睡觉去了.第三、第四、第五只猴子也都是这样:先吃掉一个,剩下的刚好分成5份.问这堆桃子最少是多少个? 设桃子的总数为x 个.第i 只猴子吃掉一个并拿走一份后,剩下的桃子数目为i x 个,则14(1)5 i i x x -=-, 1,2,3,4,5i =.且0x x =.设44()(1)(4)455f x x x =-=+-.于是:14()(4)45 x f x x ==+-, 224(())()(4)45x f f x x ==+-,334((()))()(4)45 x f f f x x ==+-, 444(((())))()(4)45x f f f f x x ==+-,554((((()))))()(4)45 x f f f f f x x ==+-,由于剩下的桃子数都是整数,∴5 5|4x +.∴最小的x 为:5543121x =-=. 上面的解法,我们利用了一个函数自身复合多次,这就叫迭代. 一般地,设:f D D →是一个函数,对x D ?∈,记(0)()f x x =,(1)()()f x f x =,(2)()(())f x f f x =,…,(1)()()(())n n f x f f x +=,n N *∈,则称函数()()n f x 为()f x 的n 次迭代,并称n 为()()n f x 的迭代指数.反函数记为()()n f x -. 一些简单函数的n 次迭代如下: (1)若()f x x c =+,则()()n f x x nc =+; (2)若()f x ax =,则()()n n f x a x =; (3)若()a f x x =,则()()n n a f x x =; (4)若()1x f x ax = +,则()()1n x f x nax =+; (5)若()f x ax b =+(1a ≠),则()1()1n n n a f x a x b a -=+-; ()()n f x 的一般解法是先猜后证法:先迭代几次,观察规律并猜测表达式,证明时常用数学归纳法. 1.求迭代后的函数值 例1 自然数k 的各位数字和的平方记为1()f k ,且11()[()]n n f k f f k -=,求(11)n f (n N * ∈)的值域. 解:由条件可知: Λ;169)652()256()11(;256)961()169()11(; 169)94()49()11(;49)61()16()11(; 164)4()11(;4)11()11(21621521421321221=++===++===+===+======+=f f f f f f f f f f f

高中数学竞赛_函数【讲义】

1 第三章 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。集合{f (x )|x ∈A }叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。例如:函数y =x -11的反函数是y =1-x 1(x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称。 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。 定义7 函数的性质。 (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。 (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期。 定义8 如果实数a a }记作开区间(a , +∞),集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域。通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对称;(5)与函数y =-f (-x ) 的图象关于原点成中心对称;(6)与函数y =f -1(x )的图象关于直线y =x 对称;(7)与函数y =-f (x ) 的图象关于x 轴对称。 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”。例如y = x -21, u=2-x 在(-∞,2)上是减函数,y =u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数。 注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。 二、方法与例题 1.数形结合法。 例1 求方程|x -1|=x 1的正根的个数 .

专题——函数迭代

专题-----函数迭代 利用了一个函数自身复合多次,这就叫做迭代。一般地,设f :D →D 是一个函数,对任意的x ∈D ,记f (0)(x)=x ,f (1)(x)=f(x)f (2)(x)=f(f(x)),…,f (n+1)(x)=f(f (n)(x)).则称f (n)(x)为f(x)的n 次迭代,并称n 为f (n)(x)的迭代指数。 如果f (n)(x)有反函数,则记为f (-n)(x).于是迭代指数可以取所有整数. 对于一些简单的函数,它的n 次迭代是容易得到的. 若f(x)=x+c ,则f (n)(x)=x+nc. 若f(x)=x 2 ,则f (n) (x)=x 2n . 若f(x)=ax+b ,则f(n)(x)=a n x+a a n --11b(a ≠). 函数的迭代的理论与方法在计算数学和微分动力系统等领域中有着很重要的应用。然而,由于它的一些方法和结果是初等的,又较有趣,因而在数学竞赛中屡有出现。 ⑴观查法 例1、设f(x)=3x+2,证明:存在正整数m ,使f (100)(m)能被1988整除。 证 因为f(x)=3x+2,所以 f (100)(x)=3100x+(399+398+…+3+1)·2, f (100)(m)=3100m+(399+398+…+3+1)·2. 由于(3,1988)=1,因此(3100,1988)=1.根据裴蜀恒等式,存在正整数u ,v ,使得:1988u-3100v=1. 记n=2(399+398+…+3+1),那么由1988 3100v-1 ,知:1988 n(3100v+1). 因此,取m=nv ,则1988 3100m+n.从而命题得证。 注 裴蜀恒等式是:设(x ,y )=1,则存在正整数u ,v,使得 ux-vy=1. 例2、 设).(.1 2)()(2 x f x x x f n 计算-= 答案: . 2 22()(1) n n n n x f x x x = -- ⑵不动点求函数迭代:把f(x)写成f(x)=-21(x-3π)+3 π ,则 f (2)(x)=(-21)2(x-3π)+3π,f (3)(x)=(-21)3(x-3π)+3π,f (n)(x)=(-21)n (x-3π)+3 π. 把f(x)变形,找到了一个较易求f n (x)r 表达式。一般地,若f (x )=ax+b ,则把它成 f (x)=a(x- a b -1)+a b -1.

高一数学竞赛讲座2函数方程与函数迭代

函数方程与函数迭代 函数方程问题一直是各国重大竞赛中的热点问题,以IMO 为例,在已进行的四十七届竞赛的试题中,有30多道是函数方程的试题,几乎是每届一题.在我国冬令营与国家集训队的测试题中,函数方程问题也是屡见不鲜的.究其原因,它往往是给出较弱的条件,却要从中得出甚强的结论(一般是要直接求出表达式). 【基础知识】 表示某一类(或某一个)函数所具有的一定性质的关系式叫做函数方程(其中()f x 为未知函数).如果一个函数对其定义域内变量的一切值均满足所给的方程,则称()f x 为这个函数方程的解.寻求函数方程的解或证明函数方程无解的过程,就是解函数方程. 我们粗略地归纳其典型的解题方法,主要可以分成以下几类: 1.换元法: 2.解方程(组)法 3.待定系数法 4.代值减元法 当所给的函数方程中变量不止一个时,和普通方程一样,求解时首先要设法减少变量个数,代值减元就是一种减少变量的方法,它通过适当地对自变量赋于特殊值,从而简化方程,逐步靠近未知结果,最终解决问题. 5.柯西法 先求出对于自变量取所有正整数的值时函数方程的解具有的形式,然后依次证明对自变量取整数值,有理数值以及取实数值时函数方程的解仍具有这种形式,从而得到方程的解.这里我们给出一个定理: 柯西函数方程的解定理:若()f x 是单调(或连续)函数,且满足()()()f x y f x f y +=+ (,),x y R ∈则()(1).f x xf =(我们将此定理的证明放于例题中进行讲解.) 6.递归法 借助数列对函数方程加以研究的方法.设()f n 是定义在R +上的函数,如果存在递推关系S 和初始条件1(1),f a =当知道(1),(2),,()f f f n 的值后,由S 可以惟一确定(1)f n +的值,我们称()f n 为递归函数.递推法主要解决递归函数问题. 7.不动点法 一般地,设函数()f x 的定义域为D ,若存在0x D ∈,使00()f x x =成立,则称0x 为()f x 的不动点,或称00(,)x x 为函数()y f x =图象的不动点. 对于一些简单的函数,利用不动点,把函数变形后再迭代,最后利用数学归纳法证明,往往会使算法简单些. 【典例精析】 【例1】已知11()(),x x f x f x x --+=求().f x 〖分析〗令 1,x t x -=则1,1x t =-再令1 ,1y t =-则1,y t y -=因此可以将所得三个等式看成是关于11 (),(),()1x f x f f x x --的三个方程,便可解得().f x 解:设1,x t x -=则1,1x t =-代入原式,得11()(),11f f t t t +=--即11 ()()1,11f f x x x +=+-- ○ 1 设1,1t x = -则代入原式,得111()()1.1t t f f t t t --+=+-即1121()(),1x x f f x x x --+=- ○2 将○1○2与原方程联立,解得321 ().2(1) x x f x x x --+= - 〖说明〗如何换元才能将已知的函数方程转化为可以求解的方程组,是一个具有技巧性的问题,它需要分

高中数学竞赛讲义_三角函数

三角函数 一、基础知识 定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。角的大小是任意的。 定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角的弧长为L ,则其弧度数的绝对值|α|=r L ,其中r 是圆的半径。 定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的距离为r,则正 弦函数s in α= r y ,余弦函数co s α=r x ,正切函数tan α=x y ,余切函数cot α=y x ,正割函数se c α=x r ,余割函数c s c α=.y r 定理1 同角三角函数的基本关系式,倒数关系:tan α=αcot 1,s in α=αcsc 1,co s α=α sec 1;商数关系:tan α=αααααsin cos cot ,cos sin =;乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α. 定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α, cot (π+α)=cot α;(Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α, cot (-α)=cot α; (Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α, cot (π-α)=-cot α; (Ⅳ)s in ??? ??-απ2=co s α, co s ??? ??-απ2=s in α, tan ?? ? ??-απ2=cot α(奇变偶不变,符号看象限)。 定理3 正弦函数的性质,根据图象可得y =s inx (x ∈R )的性质如下。单调区间:在区间 ?? ????+-22,22ππππk k 上为增函数,在区间??????++ππππ232,22k k 上为减函数,最小正周期为2π. 奇偶数. 有界性:当且仅当x =2kx +2π时,y 取最大值1,当且仅当x =3k π-2 π时, y 取最小值-1。对称性:直线x =k π+2 π均为其对称轴,点(k π, 0)均为其对称中心,值域为[-1,1]。这里k ∈Z . 定理4 余弦函数的性质,根据图象可得y =co s x (x ∈R )的性质。单调区间:在区间[2k π, 2k π+π]上单调递减,在区间[2k π-π, 2k π]上单调递增。最小正周期为2π。奇偶性:偶函数。对称性:直线x =k π均为其对称轴,点?? ? ?? +0,2ππk 均为其对称中心。有界性:当且仅当x =2k π时,y 取最大值1;当且仅当x =2k π-π时,y 取最小值-1。值域为[-1,1]。这里k ∈Z . 定理5 正切函数的性质:由图象知奇函数y =tanx (x ≠k π+ 2π)在开区间(k π-2π, k π+2π)上为增函数, 最小正周期为π,值域为(-∞,+∞),点(k π,0),(k π+2π ,0)均为其对称中心。 定理6 两角和与差的基本关系式:co s(α±β)=co s αco s β s in αs in β,s in (α±β)=s in αco s β±co s αs in β; tan (α±β)= .) tan tan 1()tan (tan βαβα ±

[第4讲]函数迭代和函数方程(上)

1.函数迭代 ⑴ 函数迭代的定义 设:f D D '→(其中D D '?)是一个函数,对任意x D ∈,记(0)()f x x =,(1)()()f x f x =, (2)()(())f x f f x =,(3)((()))f f f f x =,……,(1)()()(())n n f x f f x +=,……, 则称()()n f x 是函数()f x 在D 上的n 次迭代,并称n 是()()n f x 的迭代指数. 如果()()n f x 有反函数,则记为()()n f x -,于是,迭代指数可取所有整数. ⑵ 简单的函数迭代 求一个函数的n 次迭代,是数学竞赛中的一种基本题型.对于一些简单的函数,它的n 次迭代是容易得到的. 若()f x x c =+,则()n f x nc =+,(1)()f x x c -=-,()()n f x x nc -=-. 若3 ()f x x =,则() 3()n n f x x =,1(1) 3 ()f x x -=,1 () 3()n n f x x -=. 若()f x ax b =+,则()()11n n b b f x a x a a ??=-+ ?--??,(1) 1()11b b f x x a a a -??=-+ ?--??, ()1()11n n b b f x x a a a -??= -+ ?--??. ⑶ 函数迭代的求法 ①数学归纳法 这里用到的是先猜后证的想法,即先对函数()f x 迭代几次,观察出其规律,然后猜测出 ()()n f x 的表达式,最后用数学归纳法证之.这种方法只适用于一些较为简单的函数. ②递归法 设()f x 是定义在D 上且取值于D 的函数,由此定义数列{}n a :0a 已知,且0a D ∈, 2 函数迭代与函数方程

高中数学竞赛讲义_二次函数与命题

二次函数与命题 一、基础知识 1.二次函数:当≠a 0时,y =ax 2+bx +c 或f (x )=ax 2+bx +c 称为关于x 的二次函数,其对称轴为直线x =-a b 2,另外配方可得f (x )=a (x -x 0)2+f (x 0),其中x 0=-a b 2,下同。 2.二次函数的性质:当a >0时,f (x )的图象开口向上,在区间(-∞,x 0]上随自变量x 增大函数值减小(简称递减),在[x 0, -∞)上随自变量增大函数值增大(简称递增)。当a <0时,情况相反。 3.当a >0时,方程f (x )=0即ax 2+bx +c =0…①和不等式ax 2+bx +c >0…②及ax 2+bx +c <0…③与函数f (x )的关系如下(记△=b 2-4ac )。 1)当△>0时,方程①有两个不等实根,设x 1,x 2(x 1x 2}和{x |x 10,当x =x 0时,f (x )取最小值f (x 0)=a b a c 442 -,若a <0,则当x =x 0=a b 2-时,f (x )取最大值f (x 0)=a b a c 442 -.对于给定区间[m,n ]上的二次函数f (x )=ax 2+bx +c (a >0),当x 0∈[m, n ]时,f (x )在[m, n ]上的最小值为f (x 0); 当x 0n 时,f (x )在[m, n ]上的最小值为f (n )(以上结论由二次函数图象即可得出)。 定义1 能判断真假的语句叫命题,如“3>5”是命题,“萝卜好大”不是命题。不含逻辑联结词“或”、“且”、“非”的命题叫做简单命题,由简单命题与逻辑联结词构成的命题由复合命题。 注1 “p 或q ”复合命题只有当p ,q 同为假命题时为假,否则为真命题;“p 且q ”复合命题只有当p ,q 同时为真命题时为真,否则为假命题;p 与“非p ”即“p ”恰好一真一假。 定义2 原命题:若p 则q (p 为条件,q 为结论);逆命题:若q 则p ;否命题:若非p 则q ;逆否命题:若非q 则非p 。 注2 原命题与其逆否命题同真假。一个命题的逆命题和否命题同真假。 注3 反证法的理论依据是矛盾的排中律,而未必是证明原命题的逆否命题。 定义3 如果命题“若p 则q ”为真,则记为p ?q 否则记作p ≠q .在命题“若p 则q ”中,如果已知p ?q ,则p 是q 的充分条件;如果q ?p ,则称p 是q 的必要条件;如果p ?q 但q 不?p ,则称p 是q 的充分非必要条件;如果p 不?q 但p ?q ,则p 称为q 的必要非充分条件;若p ?q 且q ?p ,则p 是q 的充要条件。 二、方法与例题 1.待定系数法。 例1 设方程x 2-x +1=0的两根是α,β,求满足f (α)=β,f (β)=α,f (1)=1的二次函数f (x ). 【解】 设f (x )=ax 2+bx +c (a ≠0), 则由已知f (α)=β,f (β)=α相减并整理得(α-β)[(α+β)a +b +1]=0, 因为方程x 2-x +1=0中△≠0, 所以α≠β,所以(α+β)a +b +1=0. 又α+β=1,所以a +b +1=0. 又因为f (1)=a +b +c =1,

方程求根的迭代法

§4.1 引 言 绪论中讲到方程求根得二分法,但二分法收敛速度慢,有必要掌握新的方法。 §4.1.1迭代法的思想 迭代法是一种逐次逼近法,使用某个固定公式(迭代公式)反复校正,逐步精确,直到满足精度。 迭代法求根分两步: 1) 猜测初值 2)迭代 如求解初值问题00' )(),,(y x y y x f y ==用梯形公式 111[(,)(,)2 n n n n n n h y y f x y f x y +++≈+ + (1) 看作关于1+n y 的函数方程,按欧拉公式提供猜测值),() 0(1n n n n y x hf y y +=+,代入(1)得 )],(),([2 ) 0(11) 1(1+++++ =n n n n n n y x f y x f h y y 若) 1(1+n y 仍不满足要求,则将它代入(1)式,继续得到校正值) 2(1+n y ,写成迭代公式 )],(),([2 ) (11) 1(1 k n n n n n k n y x f y x f h y y ++++++ = (2) 一般地,为了求一元非线性方程0)(=x f 的根,可以先将其转换为如下的等价形式 ()x x ?= (3) 式(3)中连续函数()x ?称为迭代函数,其右端含未知数,不能直接求解。先用根的某个猜测值0x 代入(3),构造迭代公式:()k k x x ?=+1。如果迭代值k x 有极限,则称迭代收敛,极限值k k x x ∞ →=lim * 就是方程(3)的根。 几何意义P127图4-1 为使迭代法有效,必须保证它的收敛行,()x ?满足什么条件,才能保证收敛?以最简单的线性迭代()d kx x +=?,可以看出收敛的充分必要条件()1' <=k x ?。几何意义P127 图4-2,3,4,5。 §4.1.3 压缩映像原理 设* x 是方程()x x ?=的根,则由微分中值定理 ))(()()(* '*1* k k k x x x x x x -=-=-+ε???,如果存在10<≤L ,使得 ],[b a x ∈有() k k x x L x x L x -≤-?≤+* 1*' ? ,则迭代误差0e L e k k ≤,由于10<≤L , 故0→k e ,即迭代收敛。

解函数方程的几种方法

绪论 在数学研究的许多领域中如代数学、几何学、概率论等都涉及函数方程问题,在计算机科学中迭代理论和方法也涉及函数方程问题,在航空技术、遥感技术、经济学理论、心理学理论等诸多方面也提出了许多函数方程模型.函数方程因此一直受到广泛关注,是当今数学研究的一个十分重要的课题.由于函数方程形式多样,涉及面广,难度大,需要大量的数学基础知识.尤其是在中学数学教学中,函数方程是最基本、最易出现的问题,也是历年高考的重点.在中学教学和国外数学竞赛中,经常遇到函数方程问题.这类题目一般是求解某一给定的函数方程,而数学上尚无一般方法可循.当然,较大一部分中学生在遇到这类问题时,常常没有比较清晰的解题思路.本文就着重以函数与方程的性质来讨论函数方程在中学数学中的应用,及解决问题的途径,并通过实际问题的求解过程来阐述. 首先,我们会给出函数方程的相关概念包括函数方程的定义、函数方程的解以及解函数方程. 其次,利用函数与方程的基本性质,就中学数学中常出现的方法进行归纳并结合相应的例题解析.当然由于中学数学中考查点的不同,我们的讨论也有所侧重.对常见的方法包括换元法(代换法)、赋值法、迭代周期法(递推法)、待定系数法等均会加重笔墨,尤其会给出一些较为典型的例题分析以及巧解的方法,而对于不常用的方法本文也会提到,以让读者了解到比较前全面的函数方程问题的解题策略. 最后,就种种方法进行总结归纳.“法无定法”,关键在于人们对问题的观察、分析,进而选择最优的方法来解决问题.很多情况下,由于解决的途径并不唯一,所以在解决问题的时候一般采用多种方法同步求解,以达到简化求解过程的目的. 1函数方程的一些相关概念 1.1函数方程的定义 含有未知函数的等式叫做函数方程.如()() f x f x -=, =-,()() f x f x +=等,其中() f x即是未知函数. f x f x (1)() 1.2函数方程的解 设某一函数() f x对自变量在其定义域的所有值均满足某已知方程,那么把 f x就叫做函数方程的f x就叫做已知函数方程的解.即能使函数方程成立的() () 解.函数方程的解可能是一个函数,也可能是若干个函数或无穷多个函数或无解.如偶函数、奇函数、()1 =-分别是上述各方程的解. f x x 1.3解函数方程 求函数方程的解或证明函数方程无解的过程就称为解函数方程.即指的是在不给出具体函数形式,只给出函数的一些性质和一些关系式而要确定这个函数,

高中数学竞赛 函数【讲义】

高中数学竞赛标准教材 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。集合{f (x )|x ∈A }叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。例如:函数y =x -11的反函数是y =1-x 1(x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称。 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。 定义7 函数的性质。 (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。 (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期。 定义8 如果实数a a }记作开区间(a , +∞),集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域。通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对称;(5)与函数y =-f (-x ) 的图象关于原点成中心对称;(6)与函数y =f -1(x )的图象关于直线y =x 对称;(7)与函数y =-f (x ) 的图象关于x 轴对称。 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”。例如y = x -21, u=2-x 在(-∞,2)上是减函数,y =u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数。 注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。 二、方法与例题 1.数形结合法。 例1 求方程|x -1|=x 1的正根的个数 .

高中数学必修一 竞赛讲义:函数的基本性质

竞赛讲义:函数的基本性质 基础知识: 函数的性质通常是指函数的定义域、值域、解析式、单调性、奇偶性、周期性、对称性等等,在解决与函数有关的(如方程、不等式等)问题时,巧妙利用函数及其图象的相关性质,可以使得问题得到简化,从而达到解决问题的目的. 关于函数的有关性质,这里不再赘述,请大家参阅高中数学教材及竞赛教材:陕西师范大学出版社 刘诗雄《高中数学竞赛辅导》。. 例题: 1、已知f(x)=8+2x -x 2,如果g(x)=f(2-x 2),那么g(x)( ) A.在区间(-2,0)上单调递增 B.在(0,2)上单调递增 C.在(-1,0)上单调递增 D.在(0,1)上单调递增 2、设f(x)是R 上的奇函数,且f(x +3)=-f(x),当0≤x≤2 3时,f(x)=x ,则f(2003)=( ) A.-1 B.0 C.1 D.2003 3、定义在实数集上的函数f(x),对一切实数x 都有f(x +1)=f(2-x)成立, 若f(x)=0仅有101个不同的实数根,那么所有实数根的和为( ) A.150 B.2303 C.152 D.2 305 4、实数x ,y 满足x 2=2xsin(xy)-1,则x 1998+6sin 5y =______________. 5、已知x =9919+是方程x 4+bx 2+c =0的根,b ,c 为整数,求b +c 6、已知f(x)=ax 2+bx +c(a >0),f(x)=0有实数根,且f(x)=1在(0,1)内有 两个实数根,求证:a >4. 7、已知f(x)=x 2+ax +b(-1≤x≤1),若|f(x)|的最大值为M ,求证:M≥ 21. 8、⑴解方程:(x +8)2001+x 2001+2x +8=0 ⑵解方程:2)1x (222221)1x (1x 1 x 4x 2-=++++++ 9、设f(x)=x 4+ax 3+bx 2+cx +d ,f ⑴=1,f ⑵=2,f ⑶=3,求 41[f ⑷+f(0)]的值 10、设f(x)=x 4-4x 3+213x 2-5x +2,当x ∈R 时,求证:|f(x)|≥2 1

函数迭代与函数方程初步

本讲主要讲述竞赛数学中六大模块之一的函数方程问题. 在联赛大纲中明确要求函数方程问题在联赛中不作过高要求,也就是说专业级的函数方程问题一般都在冬令营乃至集训队的考试中出现,在联赛中出现的函数方程问题一般难度不高.本讲的目标是能够解决联赛级别的函数方程问题. 函数迭代严格来说其实并不算函数方程的内容,联赛中涉及到的函数迭代问题一般来说也就是寻找迭代规律进而探求一般表达式这种类型,即确定()()((((()))n n f x f f f f x =??????1442443 的具体表达式; 函数方程,是指这样一种特殊的方程,它的解是某一个函数表达式.绝大部分函数方程的求解需要 用到高深的数学工具.能用初等数学方法求解的函数方程数量不多,且其方法往往非常独特巧妙,难以想到.因此函数方程问题成为高难度数学竞赛命题者青睐的对象,在2010年IMO 中第1、3题都是函数方程问题,每年的IMO 中也至少会出现一道函数方程问题. 联赛与高考中的函数方程问题很多并不要求求出函数解析式,而是要求根据给定的函数方程探究该函数的性质:对称性、奇偶性、单调性、周期性并进而证明某个相关命题或确定某个特定的函数值; 根据函数方程求解析式的方法一般有:1、赋值法;2、换元法;3、迭代解方程组法;4、柯西法等等. 本讲我们主要关注前面这些常规的解法,而对于柯西法以及函数方程的较专业的解法本讲只是略讲. 这里仅给出一些利用基本的找规律方法来解决的问题,而桥函数方法、不动点方法这里不涉及.实际上,如果我们令()()()01,,n n a x a f x a f x ===,那么函数迭代问题就变成了递归数列求通项问题,因此我们主要在以后的递归数列一讲讲述此类问题. 知识点睛 经典精讲 8.1函数迭代问题 本讲关键词 第8讲 函数迭代与函 数方程初步

高中数学竞赛函数练习题1

高中数学竞赛 函数练习题 (幂函数、指数函数、对数函数) 一、选择题 1.定义在R 上的任意函数f(x)都可以表示为一个奇函数g(x)和一个偶函数h(x)之和,若f(x)=lg(10x +1),则 A .g(x)=x, h(x)=lg(10x +10-x +2) B .g(x)= 21[lg(10x +1)+x], h(x)=2 1[lg(10x +1)-x] C .g(x)=21x, h(x)= lg(10x +1)-2 1x D .g(x)=-21x, h(x)= lg(10x +1)-21x 2.若(log 23)x -(log 53)x ≥(log 23)-y -(log 53)-y ,则 A .x -y ≥0 B .x+y ≥0 C .x -y ≤0 D .x+y ≤0 3.已知f(x)=ax 2-c 满足-4≤f(1)≤-1,-1≤f(2)≤5,那么f(3)应该是 A .7≤f(3)≤26 B .-4≤f(3)≤15 C .-1≤f(3)≤20 D .-338≤f(3)≤3 35 4.已知f(n)=log n (n+1) (n ∈N*且n ≥2),设∑=10232)(100log 1n n f = p q (p,q ∈N*且(p,q)=1),则p+q= A .3 B .1023 C .2000 D .2001 5.如果y=log 56?log 67?log 78?log 89?log 910,则 A .y ∈(0,1) B .y=1 C .y ∈(1,2) D .y ∈[2,3] 6.若实数a, x 满足a>x>1,且A=log a (log a x),B=log a 2x, C=log a x 2,则 A .A>C> B B .C>B>A C .B>C>A D .C>A>B 7.设a>0,a ≠1,函数f(x)=log a |ax 2-x|在[3,4]上是增函数,则a 的取值范围是 A .a>1 B .a>1或61≤a<4 1 C .a>1或 81≤a<41 D .a>1或61

相关文档
最新文档