金属及各类晶体配位数计算图总结
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.六角密堆积(六角密积)
(1)堆积形式
如图所示,为ABAB…组合
(2)堆积特点
层的垂直方向为6度象转轴。
六角晶系中的 c 轴。它是
一种复式格子。原胞当中
含有两个粒子。
2.立方密堆积(立方密积)
(1)堆积形式
如图所示:ABCABC…组合
(2)堆积特点
层的垂直方向为三次象转轴。
既是立方体的空间对角线。 原胞当中包含一个粒子,是 布拉菲格子。
3(层状结构)、2(链状结构)。
4.氯化铯型结构的配位数
如图所示,大球(半径为R)中心为立方体顶角,小 球(半径为r)位于立方体的中心。 如果大球相切,则
立方体的边长为:
空间对角线的长度为: ak
a 2R
Cs
3a 2 3 R
RCl - 1.81 A rC s 1.69 A
3.配位数的可能值 配位数的可能值为:12(密堆积:fcc,hcp),8(bcc,氯化铯型
结构),6(sc,氯化钠型结构),4(ZnS,金刚石型结构),3(石墨层 状结构),2(链状结构)。
Cs
ak
Cl
aj
ai
4.致密度
如果把等体积的硬球放置在晶体结构中原子所在的位置上, 球的体积取得尽可能大,以使最近邻的球相切,我们把一个晶
c
b a
(2)立方密积
(Au,Ag,Cu,Al,Ni)
第一层:每个球与6个球相切,有6个空隙,如编 号为1,2,3,4,5,6。 第二层:占据1,3,5空位中心。 第三层:占据2,4,6空位中心, 按ABCABCABC··方式排列,形成 ·· ··
A B
面心立方结构,称为立方密积。
层的垂直方向:立方体的对角线。
配位场理论认为中心原子的内层轨道受 周围配体的影响,也即关系到配位数。 例如,Ni2+离子与H2O和NH3等具有小的相 互排斥力的弱场配体,生成配位数为 6 的【Ni(H2O)6】2+和【Ni(NH3)6】2+等八面 体配离子;与Br-和I-等具有大的相互排斥 力的弱场配体则趋向于生成配位数为4的 【NiBr4】2-和【NiI4】2-等正四面体配离 子;与CN-等强场配体则生成配位数为4
来自百度文库
这是因为中心离子的电荷愈高,就需要愈多 的配体负电荷来中和。 中心原子的成键轨道性 质和电子构型 从价键理论的观点来说,中心原 子成键轨道的性质决定配位数,而中心原子的 电子构型对参与成键的杂化轨道的形成很重要, 例如,Zn2+和Cu+离子的5个3d轨道是全满的,适 合成键的是一个4s和3个4p轨道,经sp3杂化形成 4个成键轨道,指向正四面体的四个角。 因此,Zn2+和Cu+与CN-生成配位数为4的配 离子【Zn(CN)4】2-和【Cu(CN)4】3-,并且是正 四面体构型。
1.配位数 一个粒子周围最近邻的粒子数称为配位数。描述晶 体中粒子排列的紧密程度。
2.粒子排列规律 粒子在晶体中的排列应该采取尽可能的紧密方式。
3.密堆积 由全同的小圆球组成的最紧密的堆积称为密堆积。 在一般情况下,晶体中的粒子不能看成全同的小圆球。
粒子处在晶体中的平衡位置时,相应的结合能最低,
二、六角密堆积和立方密堆积
二、离子晶体
CsCl型离子晶体:
所属晶系: 立方; 点阵: 立方P; 结构基元及每个晶胞中结构基元的数目: CsCl, 1个; Cs离子的配位数是8,Cl离子 的配位数也是8。
NaCl型离子晶体:
所属晶系: 立方; 点阵: 立方F;
结构基元及每个晶胞中结构基元
的数目: NaCl, 4个; Na和Cl离子的配位数都是6;
配体的性质
同一氧化态的金属离子的配位数不是固定 不变的,还取决于配体的性质。 例如,Fe3+与Cl-生成配位数为 4的【FeCl4】 -,而与F-则生成配位数为 6的【FeF 】3-。这 6 是因为 Fe3+从每个体积较大而较易极化的Cl接受的电荷要大于体积较小而较难极化的F-。 配合物的中心原子与配体间键合的性质,对决 定配位数也很重要。在含F-的配合物中,中心 原子与电负性很高的F-间的键合主要是离子键。 如在B3+、Fe3+和Zr4+与F-的配合物中,随着中心 原子半径的增加,配位数分别为4、6和7,主要 受中心原子与配体的半径比的限制。很多配合 物的中心原子与配体(例如CN-、SCN-、Br-、I-、 NH3和CO等)间主要形成共价键,它们的配位数
配位数越大,结合能越低,晶体结构越稳定。
2.密堆积 如果晶体由完全相同的一种粒子组成,而粒子被看作小圆 球,则这些全同的小圆球最紧密的堆积称为密堆积。 密堆积特点:结合能低,晶体结构稳定;配位数最大为12。
(1)六角密积
(Be,Mg,Cd,Zn)
AB
第一层:每个球与6个球相切,有6个空隙,
如编号1,2,3,4,5,6。
(3)如果小球直径小于0.73R, 则小球不能与大球相切, 小 球在中心可以摇动,结构不稳定,以致不能存在,于是 结构将取配位数较低的排列(配位数为6的排列)。
r 当 1 0.73时,两种球的排列为氯 化铯型。 R
5.氯化钠型结构的配位数
(1)如图所示,大球(半径 为R)相切,小球(半径为r) 也与大球相切。
胞中被硬球占据的体积与晶胞体积之比称为致密度(堆积比率,
堆积因子,最大空间利用率)。
例1:求面心立方的致密度。
设晶格常量为a,原子半径为R,则
ak
V a3
晶胞体积
aj
4 v N πR 3 3
4 R 2a
晶胞中原子所占体积 N是晶胞中原子个数4
ai
v 4 2 致 密 度: 4 π V 3 4
r 当 0.73 0.41时,两种球的排列为氯 化钠型。 R
RCl - 1.81 A rNa 0.95 A
o o
rNa RCl -
0.52
配位数和半径之比的关系
配位数
12 8
r/R
1 1~0.73
6
4 3
0.73~0.41
0.41~0.23 0.23~0.16
配位数的确定
2 R r 2 R
2
2
r 0.41 排列最紧密,结构最稳定。 R
(2)如果小球直径大于0.41R, 则小球可以与大球相切, 而 大球则不再相切。 (3)如果小球直径大于0.73R, 则变成氯化铯结构。 (4)如果小球直径小于0.41R, 则小球不能与大球相切, 小 球在中心可以摇动,结构不稳定,以致不能存在,于是 结构将取配位数较低的排列(配位数为4的排列)。
第二层:占据1,3,5空位中心。 第三层:在第一层球的正上方形成ABABAB··排列方式。 ·· ··
六角密积是复式晶格,其布拉维晶格是简单六角晶格。
基元由两个原子组成,一个位于(000),另一个原子位
于
2 1 1 3 3 2
, 即: r
2 1 1 a b c 3 3 2
一般离子晶体配位数由阴阳离子半径决定: 一般来说半径比(rˉ/r+)在0.2~0.4之间的,配 位数为4; 0.4~0.7之间,配位数为6; 0.7~1.0之间的,配位数为8。 配位数与 r+/r- 之比的关系: 0.225 ---- 0.414 4配位 ZnS 式晶体 结构 0.414 ---- 0.732 6配位 NaCl式晶体 结构 0.732 ---- 1.000 8配位 CsCl式晶体 结构
中心离子的配位数一般是2、4、6, 最常见的是4和6,配位数的多少取决于 中心离子和配体的性质──电荷、体积、 电子层结构以及配合物形成时的条件, 特别是浓度和温度。
一般来讲,中心离子的电荷越高 越有利于形成配位数较高的配合 物
如Ag,其特征配位数为2,如 [Ag(NH3)2];Cu,其特征配位数为4,例 [Cu(NH3)4]; Co,其特征配位数为6,例[Co(NH3)2( HO)4]。 但配体电荷的增加对形成高配位数是 不利的,因为它增加了配体之间的斥力, 使配位数减少。如[Co(HO)6]同[CoCl4]相 比,前者的配体是中性分子,后者是带 负电荷的Cl离子,使Co的配位数由6降为
3
2 π 6
典型的晶体结构
结构 晶胞中的 原子个数
配位数
最近邻距离
fcc
bcc
CsCl
4 2
Cs+ 1
12
2a 2 3a 2 3a 2
8
Cl- 1
8
典型的晶体结构 结构
晶胞中的 原子个数 配位数 最近邻距离
金刚石
8
4
ZnS
3a 4
NaCl
Na+ 4
6
Cl- 4
a 2
我们在提到配位数时应当分 析其所处环境。
1、在晶体学中配位数与晶胞类型有关; 2、离子晶体中指一个离子周围最近的异 电性离子的数目; 3、配位化学中,化合物中性原子周围的 配位原子的数目。
一、晶胞密堆积、配位数
1.配位数 一个粒子周围最近邻的粒子数称为配位数。 它可以描述晶体中粒子排列的紧密程度,粒子排列越紧密,
立方ZnS型离子晶体:
所属晶系: 立方; 点阵: 立方F; 结构基元及每个晶胞中结构基元的数目: ZnS, 4个; Zn和S离子的配位数都是4;
CaF2型离子晶体:
所属晶系: 立方; 点阵: 立方F; 结构基元及每个晶胞中结构基元的数目: CaF2, 4个; Ca和F离子的配位数分别是8和4;
三、在配位化合物(简称配合物) 中
o o
aj
ai
rC s RCl -
Cl
0.93
a 2R
(1)如果小球恰好与大球 相切,则小球的直径为:
3a 2 R 2r 2 3 R
1 r 2 3R - 2R 2 3 - 1 R 0.73 R
排列最紧密,结构最稳定。
(2)如果小球直径大于0.73R, 则小球可以与大球相切, 而 大球则不再相切。
3.典型结构的配位数 (1)六角密积和立方密积的配位数都是十二。即晶体中最
大配位数为十二。
(2)当晶体不是由全同的粒子组成时,相应的配位数要发
生变化—减小。由于晶体的对称性和周期性的特点,以
及粒子在结合成晶体时,是朝着结合能最小、最稳固的
方向发展。因此,相应的配位数只能取:
8(CsCl型结构)、6(NaCl型结构)、4(金刚石型结构)、
高考备考
Cl-按面心立方堆积的配位数是12。怎么都 是配位数一会儿是6,一会儿又是12,这怎 么理解?
氯离子按面心立方堆积是没错,但那不是真 正的配位数,因为氯离子是同号离子,是相互斥 的; 同理,钠离子也是按面心立方堆积的,这两 种离子形成的面心立方堆积都产生八面体空穴, 彼此进入对方八面体空穴中就对了,此时异号离 子之间的接触才算配位数,这样配位数就是真正 的配位数,即6。 面心立方堆积如果是金属原子,则其配位数 是12,因为周围的原子都与该原子形成金属键的, 这时也是真正的配位数。
中心原子的电荷
中心原子的电荷高,配位数就大。 例如,等电子系列的中心原子Ag+、Cd2+和 In3+与Cl-分别生成配位数为2、4和6的 【AgCl2】-、【CdCl4】2-和【InCl6】3-配 离子。同一元素不同氧化态的离子常具 有不同的配位数,例如,二价铂离子Pt2+的 配位数为4,而4价铂离子配位数Pt4+为6。
配位数:在晶体中与离子(或原子)直接相连的 离子(或原子)数。
1、简单立方堆积 -配位数:6
6 1 4 3 2 1 4 3 5 2
2、钾型(体心立方堆积) -配位数:8
5 8 1 4 3
6
7 2
3. 镁型(六方堆积)
配位数:12
6
5 10 7
1
8
9
2
3
4
11
12
§1.8 密堆积 配位数 一、密堆积和配位数
2-
中心离子(或原子)同单基配体结合的数 目就是该中心离子(或原子)的配位数。 例如[Cu(NH3)4]SO4中Cu离子的配位数为4, [Co(NH3)2(HO)4]Cl中Co离子的配位数为6。 中心离子(或原子)同多基配体配合时, 配位数等同于配位原子数目,例如[Cu(en)] 中的乙二胺(en)是双基配体,因此Cu离 子的配位数为4。
影响配位数的因素如下 : 1、中心原子的大小 2、中心原子的电荷 3、配体的性质
中心原子的大小
中心原子的最高配位数决定于它在周期表中的 周次。 在周期表内,第1周期元素的最高配位数为2; 第2周期元素的最高配位数为4; 第3周期为6,以下为8、10。 最高配位数是指在配合物中,中心原子周围的最 高配位原子数,实际上一般可低于最高数。 在实际中第1周期元素原子的配位数为2,第2 周期不超过4。除个别例外,第3、4周期不超过6, 第5、6周期为8。 最常见的配位数为4和6,其次为2、5、8。配
(1)堆积形式
如图所示,为ABAB…组合
(2)堆积特点
层的垂直方向为6度象转轴。
六角晶系中的 c 轴。它是
一种复式格子。原胞当中
含有两个粒子。
2.立方密堆积(立方密积)
(1)堆积形式
如图所示:ABCABC…组合
(2)堆积特点
层的垂直方向为三次象转轴。
既是立方体的空间对角线。 原胞当中包含一个粒子,是 布拉菲格子。
3(层状结构)、2(链状结构)。
4.氯化铯型结构的配位数
如图所示,大球(半径为R)中心为立方体顶角,小 球(半径为r)位于立方体的中心。 如果大球相切,则
立方体的边长为:
空间对角线的长度为: ak
a 2R
Cs
3a 2 3 R
RCl - 1.81 A rC s 1.69 A
3.配位数的可能值 配位数的可能值为:12(密堆积:fcc,hcp),8(bcc,氯化铯型
结构),6(sc,氯化钠型结构),4(ZnS,金刚石型结构),3(石墨层 状结构),2(链状结构)。
Cs
ak
Cl
aj
ai
4.致密度
如果把等体积的硬球放置在晶体结构中原子所在的位置上, 球的体积取得尽可能大,以使最近邻的球相切,我们把一个晶
c
b a
(2)立方密积
(Au,Ag,Cu,Al,Ni)
第一层:每个球与6个球相切,有6个空隙,如编 号为1,2,3,4,5,6。 第二层:占据1,3,5空位中心。 第三层:占据2,4,6空位中心, 按ABCABCABC··方式排列,形成 ·· ··
A B
面心立方结构,称为立方密积。
层的垂直方向:立方体的对角线。
配位场理论认为中心原子的内层轨道受 周围配体的影响,也即关系到配位数。 例如,Ni2+离子与H2O和NH3等具有小的相 互排斥力的弱场配体,生成配位数为 6 的【Ni(H2O)6】2+和【Ni(NH3)6】2+等八面 体配离子;与Br-和I-等具有大的相互排斥 力的弱场配体则趋向于生成配位数为4的 【NiBr4】2-和【NiI4】2-等正四面体配离 子;与CN-等强场配体则生成配位数为4
来自百度文库
这是因为中心离子的电荷愈高,就需要愈多 的配体负电荷来中和。 中心原子的成键轨道性 质和电子构型 从价键理论的观点来说,中心原 子成键轨道的性质决定配位数,而中心原子的 电子构型对参与成键的杂化轨道的形成很重要, 例如,Zn2+和Cu+离子的5个3d轨道是全满的,适 合成键的是一个4s和3个4p轨道,经sp3杂化形成 4个成键轨道,指向正四面体的四个角。 因此,Zn2+和Cu+与CN-生成配位数为4的配 离子【Zn(CN)4】2-和【Cu(CN)4】3-,并且是正 四面体构型。
1.配位数 一个粒子周围最近邻的粒子数称为配位数。描述晶 体中粒子排列的紧密程度。
2.粒子排列规律 粒子在晶体中的排列应该采取尽可能的紧密方式。
3.密堆积 由全同的小圆球组成的最紧密的堆积称为密堆积。 在一般情况下,晶体中的粒子不能看成全同的小圆球。
粒子处在晶体中的平衡位置时,相应的结合能最低,
二、六角密堆积和立方密堆积
二、离子晶体
CsCl型离子晶体:
所属晶系: 立方; 点阵: 立方P; 结构基元及每个晶胞中结构基元的数目: CsCl, 1个; Cs离子的配位数是8,Cl离子 的配位数也是8。
NaCl型离子晶体:
所属晶系: 立方; 点阵: 立方F;
结构基元及每个晶胞中结构基元
的数目: NaCl, 4个; Na和Cl离子的配位数都是6;
配体的性质
同一氧化态的金属离子的配位数不是固定 不变的,还取决于配体的性质。 例如,Fe3+与Cl-生成配位数为 4的【FeCl4】 -,而与F-则生成配位数为 6的【FeF 】3-。这 6 是因为 Fe3+从每个体积较大而较易极化的Cl接受的电荷要大于体积较小而较难极化的F-。 配合物的中心原子与配体间键合的性质,对决 定配位数也很重要。在含F-的配合物中,中心 原子与电负性很高的F-间的键合主要是离子键。 如在B3+、Fe3+和Zr4+与F-的配合物中,随着中心 原子半径的增加,配位数分别为4、6和7,主要 受中心原子与配体的半径比的限制。很多配合 物的中心原子与配体(例如CN-、SCN-、Br-、I-、 NH3和CO等)间主要形成共价键,它们的配位数
配位数越大,结合能越低,晶体结构越稳定。
2.密堆积 如果晶体由完全相同的一种粒子组成,而粒子被看作小圆 球,则这些全同的小圆球最紧密的堆积称为密堆积。 密堆积特点:结合能低,晶体结构稳定;配位数最大为12。
(1)六角密积
(Be,Mg,Cd,Zn)
AB
第一层:每个球与6个球相切,有6个空隙,
如编号1,2,3,4,5,6。
(3)如果小球直径小于0.73R, 则小球不能与大球相切, 小 球在中心可以摇动,结构不稳定,以致不能存在,于是 结构将取配位数较低的排列(配位数为6的排列)。
r 当 1 0.73时,两种球的排列为氯 化铯型。 R
5.氯化钠型结构的配位数
(1)如图所示,大球(半径 为R)相切,小球(半径为r) 也与大球相切。
胞中被硬球占据的体积与晶胞体积之比称为致密度(堆积比率,
堆积因子,最大空间利用率)。
例1:求面心立方的致密度。
设晶格常量为a,原子半径为R,则
ak
V a3
晶胞体积
aj
4 v N πR 3 3
4 R 2a
晶胞中原子所占体积 N是晶胞中原子个数4
ai
v 4 2 致 密 度: 4 π V 3 4
r 当 0.73 0.41时,两种球的排列为氯 化钠型。 R
RCl - 1.81 A rNa 0.95 A
o o
rNa RCl -
0.52
配位数和半径之比的关系
配位数
12 8
r/R
1 1~0.73
6
4 3
0.73~0.41
0.41~0.23 0.23~0.16
配位数的确定
2 R r 2 R
2
2
r 0.41 排列最紧密,结构最稳定。 R
(2)如果小球直径大于0.41R, 则小球可以与大球相切, 而 大球则不再相切。 (3)如果小球直径大于0.73R, 则变成氯化铯结构。 (4)如果小球直径小于0.41R, 则小球不能与大球相切, 小 球在中心可以摇动,结构不稳定,以致不能存在,于是 结构将取配位数较低的排列(配位数为4的排列)。
第二层:占据1,3,5空位中心。 第三层:在第一层球的正上方形成ABABAB··排列方式。 ·· ··
六角密积是复式晶格,其布拉维晶格是简单六角晶格。
基元由两个原子组成,一个位于(000),另一个原子位
于
2 1 1 3 3 2
, 即: r
2 1 1 a b c 3 3 2
一般离子晶体配位数由阴阳离子半径决定: 一般来说半径比(rˉ/r+)在0.2~0.4之间的,配 位数为4; 0.4~0.7之间,配位数为6; 0.7~1.0之间的,配位数为8。 配位数与 r+/r- 之比的关系: 0.225 ---- 0.414 4配位 ZnS 式晶体 结构 0.414 ---- 0.732 6配位 NaCl式晶体 结构 0.732 ---- 1.000 8配位 CsCl式晶体 结构
中心离子的配位数一般是2、4、6, 最常见的是4和6,配位数的多少取决于 中心离子和配体的性质──电荷、体积、 电子层结构以及配合物形成时的条件, 特别是浓度和温度。
一般来讲,中心离子的电荷越高 越有利于形成配位数较高的配合 物
如Ag,其特征配位数为2,如 [Ag(NH3)2];Cu,其特征配位数为4,例 [Cu(NH3)4]; Co,其特征配位数为6,例[Co(NH3)2( HO)4]。 但配体电荷的增加对形成高配位数是 不利的,因为它增加了配体之间的斥力, 使配位数减少。如[Co(HO)6]同[CoCl4]相 比,前者的配体是中性分子,后者是带 负电荷的Cl离子,使Co的配位数由6降为
3
2 π 6
典型的晶体结构
结构 晶胞中的 原子个数
配位数
最近邻距离
fcc
bcc
CsCl
4 2
Cs+ 1
12
2a 2 3a 2 3a 2
8
Cl- 1
8
典型的晶体结构 结构
晶胞中的 原子个数 配位数 最近邻距离
金刚石
8
4
ZnS
3a 4
NaCl
Na+ 4
6
Cl- 4
a 2
我们在提到配位数时应当分 析其所处环境。
1、在晶体学中配位数与晶胞类型有关; 2、离子晶体中指一个离子周围最近的异 电性离子的数目; 3、配位化学中,化合物中性原子周围的 配位原子的数目。
一、晶胞密堆积、配位数
1.配位数 一个粒子周围最近邻的粒子数称为配位数。 它可以描述晶体中粒子排列的紧密程度,粒子排列越紧密,
立方ZnS型离子晶体:
所属晶系: 立方; 点阵: 立方F; 结构基元及每个晶胞中结构基元的数目: ZnS, 4个; Zn和S离子的配位数都是4;
CaF2型离子晶体:
所属晶系: 立方; 点阵: 立方F; 结构基元及每个晶胞中结构基元的数目: CaF2, 4个; Ca和F离子的配位数分别是8和4;
三、在配位化合物(简称配合物) 中
o o
aj
ai
rC s RCl -
Cl
0.93
a 2R
(1)如果小球恰好与大球 相切,则小球的直径为:
3a 2 R 2r 2 3 R
1 r 2 3R - 2R 2 3 - 1 R 0.73 R
排列最紧密,结构最稳定。
(2)如果小球直径大于0.73R, 则小球可以与大球相切, 而 大球则不再相切。
3.典型结构的配位数 (1)六角密积和立方密积的配位数都是十二。即晶体中最
大配位数为十二。
(2)当晶体不是由全同的粒子组成时,相应的配位数要发
生变化—减小。由于晶体的对称性和周期性的特点,以
及粒子在结合成晶体时,是朝着结合能最小、最稳固的
方向发展。因此,相应的配位数只能取:
8(CsCl型结构)、6(NaCl型结构)、4(金刚石型结构)、
高考备考
Cl-按面心立方堆积的配位数是12。怎么都 是配位数一会儿是6,一会儿又是12,这怎 么理解?
氯离子按面心立方堆积是没错,但那不是真 正的配位数,因为氯离子是同号离子,是相互斥 的; 同理,钠离子也是按面心立方堆积的,这两 种离子形成的面心立方堆积都产生八面体空穴, 彼此进入对方八面体空穴中就对了,此时异号离 子之间的接触才算配位数,这样配位数就是真正 的配位数,即6。 面心立方堆积如果是金属原子,则其配位数 是12,因为周围的原子都与该原子形成金属键的, 这时也是真正的配位数。
中心原子的电荷
中心原子的电荷高,配位数就大。 例如,等电子系列的中心原子Ag+、Cd2+和 In3+与Cl-分别生成配位数为2、4和6的 【AgCl2】-、【CdCl4】2-和【InCl6】3-配 离子。同一元素不同氧化态的离子常具 有不同的配位数,例如,二价铂离子Pt2+的 配位数为4,而4价铂离子配位数Pt4+为6。
配位数:在晶体中与离子(或原子)直接相连的 离子(或原子)数。
1、简单立方堆积 -配位数:6
6 1 4 3 2 1 4 3 5 2
2、钾型(体心立方堆积) -配位数:8
5 8 1 4 3
6
7 2
3. 镁型(六方堆积)
配位数:12
6
5 10 7
1
8
9
2
3
4
11
12
§1.8 密堆积 配位数 一、密堆积和配位数
2-
中心离子(或原子)同单基配体结合的数 目就是该中心离子(或原子)的配位数。 例如[Cu(NH3)4]SO4中Cu离子的配位数为4, [Co(NH3)2(HO)4]Cl中Co离子的配位数为6。 中心离子(或原子)同多基配体配合时, 配位数等同于配位原子数目,例如[Cu(en)] 中的乙二胺(en)是双基配体,因此Cu离 子的配位数为4。
影响配位数的因素如下 : 1、中心原子的大小 2、中心原子的电荷 3、配体的性质
中心原子的大小
中心原子的最高配位数决定于它在周期表中的 周次。 在周期表内,第1周期元素的最高配位数为2; 第2周期元素的最高配位数为4; 第3周期为6,以下为8、10。 最高配位数是指在配合物中,中心原子周围的最 高配位原子数,实际上一般可低于最高数。 在实际中第1周期元素原子的配位数为2,第2 周期不超过4。除个别例外,第3、4周期不超过6, 第5、6周期为8。 最常见的配位数为4和6,其次为2、5、8。配