出口禽肉中二氯二甲吡啶酚残留量检验方法甲基化气相色谱法编制说明

出口禽肉中二氯二甲吡啶酚残留量检验方法甲基化气相色谱法编制说明
出口禽肉中二氯二甲吡啶酚残留量检验方法甲基化气相色谱法编制说明

《出口禽肉中二氯二甲吡啶酚残留量检验方法——气相色谱质谱检测

法》

编制说明

一、制标任务来源

本标准系国家质检总局标准委2009年标准制修订项目计划2009B680r《出口禽肉中二氯二甲吡啶酚残留量检验方法——气相色谱-质谱检测法》。

二、标准制定的目的和意义

二氯二甲吡啶酚是一种预防鸡球虫病的饲料药物添加剂,在国内养鸡业中被广泛应用。长期使用或不按规定用药会造成二氯二甲吡啶酚在动物体内和组织中残留。近年来药物残留一直是动物及动物源产品国际贸易中令人关注的焦点之一,欧盟以及美国、日本、中国都已规定并不断修订各种动物组织中二氯二甲吡啶酚残留的最高限量标准。美国、加拿大、日本和中国都规定禽肉组织中二氯二甲吡啶酚残留限量为5μg/kg。禽肝脏中二氯二甲吡啶酚残留限量为15 μg/kg.

国内外关于二氯二甲吡啶酚残留量的分析报道不多,主要有气相色谱法、液相色谱法和色谱-质谱法。气相色谱法一般通过酸酐酯化将二氯二甲吡啶酚分子中的活泼羟基去极性后形成易于汽化的衍生物,再采用电子捕获检测器检测,但检测时干扰多;液相色谱法一般需经两次固相萃取净化,前处理步骤繁多,灵敏度达不到现行限量要求,选择性也较差。因此开发一种能简单、灵敏、可靠的检测二氯二甲吡啶酚的方法具有重要的意义。

三、实验部分

1 主要仪器与试剂

1.1 主要仪器

气相色谱质谱仪、组织搅拌机、涡旋混匀器、高速离心机、旋转蒸发仪、氮吹仪、感量天平(0.1mg 和0.01g)、均质器。

1.2 试剂

甲醇(色谱纯)、正己烷(分析纯)、丙酸酐(纯度≥98%)、吡啶(分析纯)、四硼酸钠(分析纯)、中性氧化铝、超纯水。

标准品:(二氯二甲吡啶酚)购自Dr.Ehrenstorfer公司,纯度≥98%。

标准溶液(1.0 mg/mL):溶解10.0 mg二氯二甲吡啶酚标准品于少量甲醇中,以甲醇准确定容至100 mL,配成0.10mg/mL的标准储备溶液,于4℃冰箱内避光保存。保存期为一年。

标准工作液:移取1.00mL的0.10mg/mL二氯二甲吡啶酚,相当于0.10mg的二氯二甲吡啶酚于100mL容量瓶中,甲醇定容后稀释成1.0 μg/ml的标准工作液,于4℃冰箱内避光保存。保存期为六个月。

2 样品处理

2.1 提取

准确称取样品5 g(±0.05g)于50mL离心管中,加入25 mL甲醇,均质2 min;以4000 r/min 速率离心10min。

2.2 净化

用40 mL 甲醇活化氧化铝柱,用移液管准确移取上清液20 mL于氧化铝柱,待液面与氧化铝上端表面相切时加入10mL甲醇淋洗,然后用45 mL甲醇洗脱,收集洗脱液于250mL梨形瓶中。用50 ℃水浴的旋转蒸发器将溶液蒸干。用2-3 mL 甲醇溶解残渣,并定量转入15 mL带螺旋盖离心管,用氮气流将甲醇浓缩至0.5 mL。

2.3 酯化

在上述试管中依次准确加入4 mL饱和四硼酸钠溶液,0.25mL正己烷,25μL吡啶和50μL丙酸酐。加塞,振摇1 min。在4500r/min下离心5 min,将上层正己烷移入进样小瓶中,供气相色谱质谱分析。

3 检测条件

3.1色谱条件

a)色谱柱:弹性石英毛细管柱HP-5MS:30 m × 0.25 mm × 0.25μm,或相当者;

b) 升温程序:初始温度80 ℃,保持1 min,以10 ℃/min升高到250 ℃,保持5 min;

c) 进样口温度:260 ℃;

d) 流速:1.0 mL/min;

e) 载气:氦气,纯度≥99.999%;

f) 进样模式:不分流进样;

g)进样量:1μL;

3.2 质谱条件

质谱条件

a) 接口温度:280℃;

b)离子源:电子轰击源(EI);

c)电子能量:70eV;

d)离子源温度:230℃;

e)检测方式:SIM

f)选择离子(m/z)及相对丰度(%):见表1。

表1 二氯二甲吡啶酚的定性离子和相对丰度比确认表

四、技术条件的确定

4.1 质谱条件

通过对二氯二甲吡啶酚丙酯全扫描后获得EI质谱图(见图1),其特征碎片离子归属:m/z247为分子离子,m/z191为二氯二甲吡啶酚分子,m/z193 和m/z195为m/z191的C1同位素峰。为此,选择m/z191,193及195为特征离子,采用SIM模式对二氯二甲吡啶酚进行定性和定量分析。

图1二氯二甲吡啶酚丙酯的全扫描质谱图

4.2 色谱条件

在程序升温试验中,选择起始温度80℃,既可保证溶剂在3min内出峰,保护离子源灯丝,又可加快二氯二甲吡啶酚丙酯的出峰,减少分析时间,提高灵敏度;

4.3 提取方法

对于样品的提取.原来标准采用震荡抽滤的方法,要加入助滤剂改善过滤速度。本方法采用均质后将离心管以4000r/min离心10min后移取部分上清液进行后续净化操作,使过程简化。实践表明,采用此方法可使提取更完全,提取率更高且更稳定。离心分离后,液相清澈,液固界面非常明显。另外,直接移取部分上清液进行后续净化,这样可以避免了过滤后滤渣洗涤是否完全的问题,所以实验重现性较好。为了有效地提取鸡肉组织中的二氯二甲吡啶酚残留,采用甲醇、丙酮、乙酸乙酯、二氯甲烷等不同有机溶剂进行提取试验。试验中发现,丙酮与甲醇的提取回收率相当,但丙酮提取液中脂肪等杂质的含量相对高些;乙酸乙酯和二氯甲烷难以从未除去水的鸡肉组织中提取氯羟吡啶,回收率低。因此,本实验最终选择甲醇作为提取溶剂。

4.3 净化方法

在实验中还对市售氧化铝固相萃取(SPE)小柱的净化效果进行了试验,结果表明这些小柱都不能很好地除去脂肪等杂质。为此,采用自装填氧化铝层析柱净化提取试液,结果发现,氧化铝层为5g 和10g的层析柱回收率较低, 15g和20g的层析柱回收率高,二者差异不明显,洗脱液也相对干净。因此选择氧化铝层的填充质量为16g。

4.4 线性范围

二氯二甲吡啶酚标准品浓度在20μg/L~240μg/L内,浓度与响应值呈线性关系。 (相关系

数>0.99)

4.5 回收率、精密度和定量检测限

以不含二氯二甲吡啶酚的鸡肉和鸡肝为检测样品,采用外加法在样品中分别添加三个不同浓度的水平的二氯二甲吡啶酚,作回收率和精密度试验,见表2,其标准溶液及鸡肉中5.0μg/kg,

10.0μg/kg,20.0μg/kg添加水平的样品溶液图谱以及鸡肝中10.0μg/kg,15.0μg/kg,30.0μg/kg 添加水平的样品溶液图谱见图2~10。

定量检测限:鸡肉中二氯二甲吡啶酚的检测限(LOQ)为5.0μg/kg。鸡肝中二氯二甲吡啶酚的检测限(LOQ)为10.0μg/kg。

品种添加水平

(μg/kg)

回收率(%)

平均回收率

(%)

RSD(%)

鸡肉5

70.1 72.5 91.7 72.2

80.612.6

80.3 96.5 73.7 87.5

10

71.1 94.6 76.7 79.3

79.9 9.8

73.1 84.1 74.6 85.3

20

81.9 70.3 73.5 76.2

78.7 8.9

71.4 88.4 80.3 87.5

鸡肝10

75.2 86.3 70.5 74.8

80.1 10.1

71.7 81.7 91.2 89.1

15

80.3 73.4 89.4 76.8

82.3 8.8

75.3 93.5 87.4 82.4

30

86.4 92.4 81.3 76.5

85.1 7.8

83.6 79.8 96.7 84.1

气相色谱仪操作步骤(精)

气相色谱仪操作步骤 1 打开氮气、氢气、空气发生器的电源开关(或氮气钢瓶总阀),调整输出压力稳定在0.4Mpa左右(气体发生器一般在出厂时已调整好,不用再调整)。 2. 打开色谱仪气体净化器的氮气开关转到“开”的位置。注意观察色谱仪载气B的柱前压上升并稳定大约5分钟后,打开色谱仪的电源开关。 3. 设置各工作部温度。TVOC分析的条件设置:(a)柱箱:柱箱初始温度50℃、初始时间10min、升温速率5℃/min、终止温度250℃、终止时间10min; (b)进样器和检测器:都是250℃。苯分析时的色谱条件:(a)柱箱:柱箱初始温度100℃、初始时间0min、升温速率0℃/min、终止温度0℃、终止时间0min; (b)进样器和检测器:都是150℃。 4. 点火:待检测器(按“显示、换档、检测器”可查看检测器温度)温度升到100℃以上后,打开净化器上的氢气、空气开关阀到“开”的位置。观察色谱仪上的氢气和空气压力表分别稳定在0.1Mpa和0.15Mpa左右。按住点火开关(每次点火时间不能超过6~8秒钟)点火。同时用明亮的金属片靠近检测器出口,当火点着时在金属片上会看到有明显的水汽。如果在6~8秒时间内氢气没有被点燃,要松开点火开关,再重新点火。在点火操作的过程中,如果发现检测器出口内白色的聚四氟帽中有水凝结,可旋下检测器收集极帽,把水清理掉。在色谱工作站上判断氢火焰是否点燃的方法:观察基线在氢火焰点着后的电压值应高于点火之前。 5. 打开电脑及工作站A,打开一个方法文件:TVOC分析方法或苯分析方法。显示屏左下方应有蓝字显示当前的电压值和时间。接着可以转动色谱仪放大器面板上点火按钮上边的“粗调”旋钮,检查信号是否为通路(转动“粗调”旋钮时,基线应随着变化)。待基线稳定后进样品并同时点击“启动”按钮或按一下色谱仪旁边的快捷按钮,进行色谱数据分析。分析结束时,点击“停止”按钮,数据即自动保存。 8.关机程序:首先关闭氢气和空气气源,使氢火焰检测器灭火。在氢火焰熄灭后再将柱箱的初始温度、检测器温度及进样器温度设置为室温(20-30℃),待温度降至设置温度

4_二甲氨基吡啶合成工艺的改进_孙卫东

2006年5月内蒙古大学学报(自然科学版)M ay2006第37卷第3期Acta Scientiar um Naturalium U nivers itatis NeiM ongol Vol.37No.3 文章编号:1000-1638(2006)03-0276-03 4-二甲氨基吡啶合成工艺的改进X 孙卫东1,王小明2,单红岩2,张锁秦2,李耀先2 (1.赤峰学院化学系,内蒙古赤峰024001;2.吉林大学化学学院,长春130023) 摘要:采用DM F法合成了4-二甲氨基吡啶,并对该合成工艺进行了优化.由吡啶与氯化亚砜 合成中间体双吡啶盐酸盐的收率从文献报道的57%提高到65%;由中间体与DM F合成目标 化合物的收率从文献报道的53%提高到73%.所用合成方法简化了操作步骤,降低了合成成 本,减少了三废排放. 关键词:4-二甲氨基吡啶;双吡啶盐酸盐;合成 中图分类号:T Q253.2 文献标识码:A 4-二甲氨基吡啶(4-Dim ethylam inopyridine,简称DM AP)是一种新型高效催化剂,对酰化、酯化、酯交换、烷基化等有机反应均有明显的催化效果.对于酰化反应,DM AP的催化活性是传统催化剂吡啶的104~105倍.DM AP具有用量少、收率高、反应条件温和、溶剂选择范围广等优点,已经广泛应用到科研及精细化工领域〔1,2〕.随着DM AP应用范围的不断扩展,其需求量与日俱增. DM AP的合成有多种途径,均以吡啶作为起始原料〔3~5〕.一种相对简捷、比较适合于工业化生产的方法是DM F法.该法只有两步,即先用吡啶与氯化亚砜反应生成中间体N-(4-吡啶基)氯化吡啶盐酸盐(简称双吡啶盐酸盐),再与二甲基甲酰胺反应生成DM AP.反应式如下: 国内对该方法的改进已有多篇文献报道〔6~17〕.为了简化操作、提高收率、降低成本和减少三废排放,我们对该法做了进一步的研究,提出一套更为合理的合成工艺,并就有关问题进行了探讨. 1 实 验 1.1 主要试剂与仪器 吡啶经KOH干燥,DM F经4~分子筛干燥,其余试剂均为分析纯. X-4显微熔点测定仪(北京第三光学仪器厂,温度计未经校正),美国M er cury Varian YH-300型核磁共振仪(溶剂为CDCl3,T M S为内标). 1.2 实验操作 1.2.1 双吡啶盐酸盐的合成 向配有机械搅拌器、滴液漏斗、温度计和回流冷凝管(上口接干燥管) X收稿日期:2005-10-29 作者简介:孙卫东(1959~),男(蒙古族),内蒙古喀喇沁旗人,副教授.

气相色谱法基本原理及其应用

安徽建筑大学 现代水分析技术论文 专业:xx级市政工程 学生姓名:xxx 学号:xxx 课题:气相色谱法基本原理及其应用指导教师:xxx xx年xx月xx日

气相色谱法基本原理及其应用 xx (安徽建筑工业学院环境与能源工程学院,合肥,230601) 摘要:气相色谱法是分离混合物中各组分的一种有效的手段,其中气相色谱仪是20世纪50年代末在多数科学家的共同努力下诞生的。本文针对气相色谱法的起源与发展历程、工作原理与特点、在环境水污染物分析领域的应用进行了详细的概述,并列举了饮用水中挥发性有机物的气相色谱检测方法,同时提出了该方法新的发展前景。它的发展已在环境监测、水污染控制领中得到了广泛的应用。 关键词:气相色谱法;发展历程;工作原理;水污染物分析 1.气相色谱法的起源与发展历程 (1)气相色谱法的起源 色谱的发现首先认识到这种分离现象和分离方法大有可为的是俄国的植物学家Tswett。Tswett于1903年在波兰华沙大学研究植物叶子的组成时,将叶绿素的石油醚抽提液倒入装有碳酸钙吸附剂的玻璃管上端,然后用石油醚进行淋洗,结果不同色素按吸附顺序在管内形成一条不同颜色的环带,就像光谱一样。1906年,Tswett在德国植物学杂志上发表的一篇论文中首次把这些彩色环带命名为“色谱图”,玻璃管称为“色谱柱”,碳酸钙称为“固定相”,石油醚称为“流动相”。Tswett开创的方法叫做“液-固色谱法”[1-2],这就是色谱法的起源。 1941年,英国科学家Martin和Synge在研究液-液分配色谱时,预言可以使用气体作流动相,即气-夜色谱法。他们在1941年发表的论文中写到“流动相不一定是液体,也可以是蒸气,如以永久性气体带动挥发性混合物,在色谱柱中通过装有浸透不挥发性溶剂的固体时,可以得到很好的分离”[3]。1950年,Martin和James使用硅藻土助滤剂做载体,硅油为固定相,用气体流动相对脂肪酸进行精细分离,这就是气^液分配色谱的起源。后来,他们在1952年的Biochemical Journal上又连续发表了3篇论文[4-6],叙述了用气相色谱分离低碳数脂肪酸、挥发性胺和吡啶类同系物的方法,这标志着气相色谱法正式进入历史舞台。当时在石油化工的分析中,正当传统的分析方法无能为力时,气相色谱法就像及时雨一样,成为化学分析的得力助手。从此,科学家对气相色谱法的研究逐步展开。 (2)气相色谱法的发展 在历史上,气相色谱法的发展总是和气相色谱仪器的发展密不可分。每一种气相色谱新技术的出现,往往都伴随着气相色谱仪器的改进。因此,了解气相色谱法的发展历史可以从气相色谱仪的发展入手。历史上最早的气相色谱仪1947年由捷克色谱学家Jaroslav Janak发明的。该仪器以C为流动相、杜马测氮管为检测器测定分离开的气体体积。在样品和CA 进入测氮管之前,通过KOH溶液吸收掉CA,按时间记录气体体积的增量。这台仪器虽然简陋,但对当时的气相色谱研究起到了巨大的推动作用。Jaroslav Janak发明的气相色谱仪也有一些明显的不足:它只能测室温下为气体的样品, 样品中的CA不能被测定,而且没有实现自动化。20世纪50年代末,它逐渐被更先进的气相色谱仪所取代。W55年,第一台商品化气相色谱仪诞生,标志着气相色谱仪的发展进入了崭新的时代。 现代气相色谱仪主要由5个系统组成,即气路系统、进样系统、分离系统、温度控制系统与检测记录系统。气路系统与温控系统自气相色谱诞生以来很少有突破性的进展。气路系统主要朝自动化方向发展,20世纪90年代出现了采用电子压力传感器和电子流量控制器,通过计算机实现压力和流量自动控制的电子程序压力流量控制系统,这是气路系统的一大进步[7]。温控系统则基本朝着精细、快速、自动化方向发展。相比之下,进样系统、分离系统与检测记录系统是气相色谱仪的核心组成系统,它们的每一次变革和进步都推动着气相色谱的

生活饮用水标准检验方法—吹扫捕集气相色谱质谱法测定挥发性有机物编制说明

生活饮用水标准检验方法—吹扫捕集气相色谱质谱法测定挥发性有机物GB/T5750-*****标准编制说明 1.任务来源 江苏省疾病预防控制中心受卫生部卫生政策法规司/ 卫生标准专业委员会、环境卫生标准委员会委托,对生活饮用水中挥发性有机物卫生标准方法GB5750-进行修订,任务项目号-6 2.起草单位及主要起草人 起草单位:江苏省疾病预防控制中心、中国疾病预防控制中心与健康相关产品安全所、黑龙江省疾病预防控制中心、苏州市疾病预防控制中心、广东省疾病预防控制中心 主要起草人:朱铭洪、马永建、吉文亮、张剑峰、朱炳辉、李建。 3.起草经过 接到标准修订任务后,标准起草单位成立了标准修订协作组,在查阅国内外测定挥发性有机物相关检验方法的基础上,综合考虑我国经济技术可行性、标准的先进性及与国际标准的可比性,确定了修订方案,通过实验提出了修订的内容,完成了方法的研究报告,并将方法发送验证单位进行验证,根据方法研究报告和方法验证报告,编制了标准的征求意见稿文本和编制说明。经征求专家意见,意见汇总和处理,形成送审稿。 4.制定的依据 挥发性有机物(volatile organic compounds,VOCs)是指在正常状态下[20℃,760mmHg(1mmHg=133.33Pa)] 蒸汽压大于0.1mmHg以上的有机物质, 特点是种类繁多,成分未知,浓度低,理化性质差异大,普遍具有挥发性和刺激性,

如卤代烃、脂肪烃、芳香烃、酯类等。挥发性有机物(VOCs) 一般来自化工企业排放的废水、废气, 以及水中的腐殖酸、富里酸和藻类代谢产物等。由于水质污染、水处理工艺的限制等原因,加氯消毒后也会产生一些卤代烃,因此,挥发性有机物在饮用水中普遍存在。这些物质经呼吸、皮肤接触和饮水进入人体, 如果浓度过大将危害人体健康, 研究表明,一些挥发性有机物具有致畸、致癌、致突变作用。世界卫生组织《饮水水质准则》(第三版)和我国GB5749—2006《生用活饮用水卫生标准》等标准中均对这些指标提出了限值要求,是我国水质监测优先控制的污染物[ 1 - 2 ] 。我国2007年7月1日实施的《生活饮用水卫生标准》GB/T 5749-2006,把水质指标由35项增加至106项,增加了71项。其中毒理指标由5项增至53项,特别是对有机化合物中的挥发性的有机化合物,采用顶空或试剂萃取方法逐个或几个测定的方法,分析中常存在相互干扰的情况,照成定性困难,费时,费力且结果不稳定,不能够快速判定和快速检测水中有机污染物,大大增加了水质检测工作量,成为卫生监督执法工作中薄弱的领域。为了便于实验室判别水中不明有机污染物,快速检验水中挥发性有机污染物(VOCs),本方法采用吹扫捕集气相色谱质谱联用(GC/MS)法测定挥发性有机物。色谱-质谱联用技术[ 3 – 4],它具有选择性好,定性能力强,能对未知物进行分析鉴定,且灵敏度高,结合前处理如吹扫捕集,对多数水样有机物检出限可达10ng/L ~1μg/L;另自动化程度高,配备自动进样器和样品前处理装置,能对水样进行分离、浓缩;仪器能24小时连续运行;分析速度快、多组分同时分析,使得检测手段朝准确,灵敏,安全,快速方向发展,对挥发性有机物的检测具有非常重要的意义。现代有机分析发展趋势一定是自动化的样品前处理、进样技术以及高准确度,灵敏度的多组分快速测定,采用GC/MS技术是在符合国情的前提下,吸取了国际组织和

气相色谱定量分析方法

归一化法 归一化法有时候也被称为百分法(percent),不需要标准物质帮助来进行定量。它直接通过峰面积或者峰高进行归一化计算从而得到待测组分的含量。其特点是不需要标准物,只需要一次进样即可完成分析。 归一化法兼具内标和外标两种方法的优点,不需要精确控制进样量,也不需要样品的前处理;缺点在于要求样品中所有组分都出峰,并且在检测器的响应程度相同,即各组分的绝对校正因子都相等。归一化法的计算公式如下: 当各个组分的绝对校正因子不同时,可以采用带校正因子的面积归一化法来计算。事实上,很多时候样品中各组分的绝对校正因子并不相同。为了消除检测器对不同组分响应程度的差异,通过用校正因子对不同组分峰面积进行修正后,再进行归一化计算。其计算公式如下: 与面积归一化法的区别在于用绝对校正因子修正了每一个组分的面积,然后再进行归一化。注意,由于分子分母同时都有校正因子,因此这里也可以使用统一标准下的相对校正因子,这些数据很容易从文献得到。 当样品中不出峰的部分的总量X通过其他方法已经被测定时,可以采用部分归一化来测定剩余组分。计算公式如下: 内标法 选择适宜的物质作为预测组分的参比物,定量加到样品中去,依据欲测定组分和参比物在检测器上的响应值(峰面积或峰高)之比和参比物加入量进行定量分析的方法叫内标法。特点是标准物质和未知样品同时进样,一次进样。内标法的优点在于不需要精确控制进样量,由进样量不同造成的误差不会带到结果中。缺陷在于内标物很难寻找,而且分析操作前需要较多的处理过程,操作复杂,并可能带来误差。 一个合适的内标物应该满足以下要求:能够和待测样品互溶;出峰位置不和样品中的组分

重叠;易于做到加入浓度与待测组分浓度接近;谱图上内标物的峰和待测组分的峰接近。内标法的计算公式推导如下: 式中,Ai,As分别为待测组分和内标物的峰面积;Ws,W分别为内标物和样品的质量;Gwi/s是待测组分对于内标物的相对质量校正因子(此值可自行测定,测定要求不高时也可以由文献中待测组分和内标物组分对苯的相对质量校正因子换算求出)。 内加法 在无法找到样品中没有的合适的组分作为内标物时,可以采用内加法;在分析溶液类型的样品时,如果无法找到空白溶剂,也可以采用内加法。内加法也经常被称为标准加入法。 内加法需要除了和内标法一样进行一份添加样品的处理和分析外,还需要对原始样品进行分析,并根据两次分析结果计算得到待测组分含量。和内标法一样,内加法对进样量并不敏感,不同之处在于至少需要两次分析。下面我们用一个实际应用的例子来说明内加法是如何工作的: 题:在分析某混合芳烃样品时,测得样品中苯的面积为1100,甲苯的面积为2000,(其它组分面积略)。精确称取40.00g该样品,加入0.40g甲苯后混合均匀,在同一色谱仪上进混合后样品测到苯的面积为1200,甲苯的面积为2400,试计算甲苯的含量。 分析:本题的分析过程是一个典型的内加法操作,其中内加物为甲苯,待测组分为甲苯和苯。 解:1. 由于进样量并不准确,因此两次分析的谱图很难直接进行对比。为了取得可以对比的一致性,我们通过数字计算调整两次分析苯的峰面积相等。此时由于两次分析苯峰面积相等,因此可以断定两次分析待测样品的进样量是相等的。需要注意的是:此时两次分析的总的进样量并不相等,添加后样品比原始样品调整后的进样量中,多了添加的内标物的量。调整可以用原始样品谱图为依据,也可以用添加后样品谱图为依据。但是通常采用原始样品作为依据以便计算最终结果时比较简单。注意:选用的依据不同,中间计算结果会产生差异,但不会影响最终结果。依据的谱图一旦选定,计算就应该围绕此依据进行。 在以原始样品谱图为依据的情况下,调整添加后样品谱图中甲苯的峰面积如下: 对比两次分析,甲苯的面积增加为2200-2000=200。在两次分析待测样品量相同的情况下,内加物面积的增加来自于内加量。也就是说,由于内加物的加入,导致了内加物峰面积的增

气相色谱法附答案

气相色谱法(附答案) 一、填空题1. 气相色谱柱的老化温度要高于分析时最高柱温_____℃,并低于固定液的最高使用温度,老化时,色谱柱要与_____断开。答案:5~10 检测器 2. 气相色谱法分离过程中,一般情况下,沸点差别越小、极性越相近的组分其保留值的差别就_____,而保留值差别最小的一对组分就是_____物质对。答案:越小难分离3.气相色谱法分析非极性组分时应首先选用_____固定液,组分基本按沸点顺序出峰,如烃和非烃混合物,同沸点的组分中_____大的组分先流出色谱柱。答案:非极性极性4.气相色谱法所测组分和固定液分子间的氢键力实际上也是一种_____力,氢键力在气液色谱中占有_____地位。答案:定向重要 5.气相色谱法分离中等极性组分首先选用_____固定液,组分基本按沸点顺序流出色谱柱。答案:中极性 6.气相色谱分析用归一化法定量的条件是______都要流出色谱柱,且在所用检测器上都能_____。 答案:样品中所有组分产生信号 7.气相色谱分析内标法定量要选择一个适宜的__,并要求它与其他组分能__。答案:内标

物完全分离 8.气相色谱法常用的浓度型检测器有_____和_____。答案:热导检测器(TCD) 电子捕获检测器(ECD) 9. 气相色谱法常用的质量型检测器有_____和_____。答案:氢火焰检测器(FID) 火焰光度检测器(FPD) 10. 电子捕获检测器常用的放射源是_____和_____。答案:63Ni 3H 11. 气相色谱分析中,纯载气通过检测器时,输出信号的不稳定程度称为_____。答案:噪音 12. 顶空气体分析法是依据___原理,通过分析气体样来测定__中组分的方法。答案:相平衡平衡液相 13. 毛细管色谱进样技术主要有_____和______。答案:分流进样不分流进样 14. 液—液萃取易溶于水的有机物时,可用______法。即用添加_____来减小水的活度,从而降低有机化合物的溶解度。答案:盐析盐 15.气相色谱载体大致可分为______和______。答案:无机载体有机聚合物载体

吡啶

吡啶 汉语拼音:bǐdìng 英文名称:pyridine 中文名称2:氮(杂)苯 CAS No.:110-86-1 分子式:C5H5N 分子量:79.10 吡啶是含有一个氮杂原子的六元杂环化合物。可以看做苯分子中的一个(CH)被N取代的化合物,故又称氮苯。 吡啶及其同系物存在于骨焦油、煤焦油、煤气、页岩油、石油中。 [编辑本段]物理性质 外观与性状:无色或微黄色液体,有恶臭。 熔点(℃):-41.6 沸点(℃):115.3 相对密度(水=1):0.9827 折射率:1.5067(25℃) 相对蒸气密度(空气=1):2.73 饱和蒸气压(kPa): 1.33/13.2℃ 闪点(℃):17 引燃温度(℃):482 爆炸上限%(V/V):12.4 爆炸下限%(V/V): 1.7 溶解性:溶于水、醇、醚等多数有机溶剂。 与水形成共沸混合物,沸点92~93℃。(工业上利用这个性质来纯化吡啶。) [编辑本段]化学性质 吡啶及其衍生物比苯稳定,其反应性与硝基苯类似。典型的芳香族亲电取代反应发生在3、5位上,但反应性比苯低,一般不易发生硝化、卤化、磺化等反应。吡啶是一个弱的三级胺,在乙醇溶液内能与多种酸(如苦味酸或高氯酸等)形成不溶于水的盐。工业上使用的吡啶,约含1%的2-甲基吡啶,因此可以利用成盐性质的差别,把它和它的同系物分离。吡啶还能与多种金属离子形成结晶形的络合物。吡啶比苯容易还原,如在金属钠和乙醇的作用下还原成六氢吡啶(或称哌啶)。吡啶与过氧化氢反应,易被氧化成N-氧化吡啶。 [编辑本段]用途 除作溶剂外,吡啶在工业上还可用作变性剂、助染剂,以及合成一系列产品(包括药品、消毒剂、染料、食品调味料、粘合剂、炸药等)的起始物。 吡啶还可以用做催化剂,但用量不可过多,否则影响产品质量。 [编辑本段]来源(合成方法) 吡啶可从天然煤焦油中获得,也可由乙醛和氨制得。吡啶及其衍生物也可通过多种方法合成,其中应用最广的是汉奇吡啶合成法,这是用两分子的β-羰基化合物,如乙酰乙酸乙酯与一分子乙醛缩合,产物再与一分子的乙酰乙酸乙酯和氨缩合形成二氢吡啶化合物,然后用氧化剂(如亚硝酸)脱氢,再水解失羧即得吡啶衍生物。 也可用乙炔、氨和甲醇在500℃通过催化剂制备。 [编辑本段]衍生物 吡啶的许多衍生物是重要的药物,有些是维生素或酶的重要组成部分。吡啶的衍生物异烟肼是一种抗结核病药,2-甲基-5-乙烯基吡啶是合成橡胶的原料。 中文名称:吡啶 [编辑本段]危险信息及使用注意事项(MSDS) 燃爆危险:本品易燃,具强刺激性。 危险特性:其蒸气与空气可形成爆炸性混合物,遇明火、高热极易燃烧爆炸。与氧化剂接触猛烈反应。高温时分解,释出剧毒的氮氧化物气体。与硫酸、硝酸、铬酸、发烟硫酸、氯磺酸、顺丁烯二酸酐、高氯酸银等剧烈反应,有爆炸危险。流速过快,容易产生和积聚静电。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。若遇高热,容器内压增大,有开裂和爆炸的危险。燃烧(分解)产物:一氧化碳、二氧化碳、氧化氮。 吡啶的危害:

气相色谱仪使用方法及实验操作步骤

液相色谱仪、气相色谱仪、原子吸收分光光度计、红外光谱仪、核磁共振、原子发射光谱等分析仪器 气相色谱仪使用方法及实验操作步骤: A、打开氮气、氢气、空气发生器的电源开关(或氮气钢瓶总阀),调整输出压力稳定在0.4Mpa左右(气体发生器一般在出厂时已调整好,不用再调整)。 B、打开色谱仪气体净化器的氮气开关转到“开”的位置。注意观察色谱仪载气B的柱前压上升并稳定大约5分钟后,打开色谱仪的电源开关。 C、设置各工作部温度。TVOC分析的条件设置:(a)柱箱:柱箱初始温度50℃、初始时间10min、升温速率5℃/min、终止温度250℃、终止时间10min; (b)进样器和检测器:都是250℃。脂肪酸分析时的色谱条件:(a)柱箱:柱箱初始温度140℃、初始时间5min、升温速率4℃/min、终止温度240℃、终止时间15min; (b)进样器温度是260℃,检测器温度是280℃。 D、点火:待检测器(按“显示、换档、检测器”可查看检测器温度)温度升到150℃以上后,打开净化器上的氢气、空气开关阀到“开”的位置。观察色谱仪上的氢气和空气压力表分别稳定在0.1Mpa 和0.15Mpa左右。按住点火开关(每次点火时间不能超过6~8秒钟)点火。同时用明亮的金属片靠近检测器出口,当火点着时在金属片上会看到有明显的水汽。如果在6~8秒时间氢气没有被点燃,要松开点火开关,再重新点火。在点火操作的过程中,如果发现检测器出口白色的聚四氟帽中有水凝结,可旋下检测器收集极帽,把水清理掉。在色谱工作站上判断氢火焰是否点燃的方法:观察基线在氢火焰点着后的电压值应高于点火之前。 E、打开电脑及工作站(通道一分析脂肪酸,通道二分析碘),打开一个方法文件:脂肪酸分析方法或碘分析方法。显示屏左下方应有蓝字显示当前的电压值和时间。接着可以转动色谱仪放大器面板上点火按钮上边的“粗调”旋钮,检查信号是否为通路(转动“粗调”旋钮时,基线应随着变化)。待基线稳定后进样品并同时点击“启动”按钮或按一下色谱仪旁边的快捷按钮,进行色谱数据分析。分析结束时,点击“停止”按钮,数据即自动保存。 F、关机程序:首先关闭氢气和空气气源,使氢火焰检测器灭火。在氢火焰熄灭后再将柱箱的初始温度、检测器温度及进样器温度设置为室温(20-30℃),待温度降至设置温度后,关闭色谱仪电源。最后再关闭氮气。 高效液相色谱 我国药典收载高效液相色谱法项目和数量比较表: 鉴于HPLC应用在药品分析中越来越多,因此每一个药品分析人员应该掌握并应用HPLC。 三、色谱法分类 (3) 四、色谱分离原理 (3) II.基本概念和理论 (5) 一、基本概念和术语 (5) 二、塔板理论 (8)

水中VOC气相色谱法-编制说明

水质挥发性有机物的测定P&T与GC-FID/ECD联用法 编制说明 中国环境监测总站 江苏省环境监测中心 2008年8月

《水质挥发性有机物的测定吹扫捕集-气相色谱法》 编制说明 一、任务来源 根据2002年环办([2002]106 号),中国环境监测总站承担《水质挥发性有机物的测定吹扫捕集- 气相色谱法》国家环保标准制修订计划。 二、制标原则 本标准是按照GB/T 1.1-2000《标准化工作导则第1部分:标准的结构和编写规则》和GB/T 20001.4-2001《标准编写规则第4部分:化学分析方法》的要求编写的,遵循先进性、科学性、实用性的原则对现行的有关标准进行修订。本标准注重科学性和可操作性的结合,有利于推广应用。 三、标准化过程 本标准起草人在充分收集、认真研究了国内外相关标准及资料的基础上,结合本实验室的条件和本方法的技术特点,依据被测物的性质和特点,设计实验方案,确定水质样品中64种挥发性有机物的吹扫捕集和气相色谱/质谱分析条件,通过大量的添加回收、室内和室间精密度以及适用范围等一系列实验的研究,建立了一个高选择性、高灵敏度,既定性又定量的水中挥发性有机物的测定方法。 四、研究背景 关于VOC的定义,美国联邦环境保护局(US EPA)定义为:VOC是指所有参与大气光化学反应的碳化物(不包括CO、C O 2 、金属碳化物或碳酸盐及碳酸铵)。世界卫生组织(WHO, 1989)定义为:熔点低于室温,而沸点在50?2600C 之间的挥发性有机化合物的总称。欧共体的定义为:VOC 是在标准压力下(101.3Kpa)下,始沸点w 2500C的任何有机化合物(含有至少一个碳和一个或多个氢、氧、硫、磷、硅、氮或卤素的任何化合物),不包括二氧化碳、无机碳酸盐和碳酸氢盐。关于VOC 的上述定义,美国联邦环境保护局的定义偏重于VOC 的光化学污染,世界卫生组织和欧共体的定义既涵盖VOC 的局部和短期污染,又包括VOC 的光化学污染。实质都一样。 2004和2005两年,我国水利部和国家环保总局公布的官方资料表明,我国主要

有机化学合成常见缩写集锦

1 有机化学合成常见缩写 Ac Acetyl 乙酰基 DMAP 4-dimethylaminopyridine 4-二甲氨基吡啶 acac Acetylacetonate 乙酰丙酮基 DME dimethoxyethane 二甲醚 AIBN Azo-bis-isobutryonitrile 2,2'-二偶氮异丁腈 DMF N,N'-dimethylformamide 二甲基甲酰胺 aq. Aqueous 水溶液 dppf bis (diphenylphosphino)ferrocene 双(二苯基膦基)二茂铁 9-BBN 9-borabicyclo[3.3.1]nonane 9-硼二环[3.3.1]壬烷 dppp 1,3-bis (diphenylphosphino)propane 1,3-双(二苯基膦基)丙烷 BINAP (2R,3S)-2,2’-bis (diphenylphosphino)-1,1’-binaphthyl (2R,3S)-2.2'-二苯膦-1.1'-联萘亦简称为联二萘磷 BINAP是日本名古屋大学的Noyori(2001年诺贝尔奖)发展的一类不对称合成催化剂dvb Divinylbenzene 二乙烯苯 Bn Benzyl 苄基 e- Electrolysis 电解 BOC t-butoxycarbonyl 叔丁氧羰基(常用于氨基酸氨基的保护) %ee % enantiomeric excess 对映体过量百分比(不对称合成术语)%de % diasteromeric excess 非对映体过量百分比(不对称合成术语) Bpy (Bipy) 2,2’-bipyridyl 2,2'-联吡啶 EDA (en) ethylenediamine 乙二胺 Bu n-butyl 正丁基 EDTA Ethylenediaminetetraacetic acid 乙二胺四乙酸二钠 Bz Benzoyl 苯甲酰基 EE 1-ethoxyethyl 乙氧基乙基 c- Cyclo 环- Et Ethyl 乙基 FMN Flavin mononucleotide 黄素单核苷酸 CAN Ceric ammonium nitrate 硝酸铈铵 Cat. Catalytic 催化 Fp flash point 闪点 CBz Carbobenzyloxy 苄氧羰基 FVP Flash vacuum pyrolysis 闪式真实热解法 h hours 小时 Min Minute 分钟 hv Irradiation with light 光照 COT 1,3,5-cyclooctatrienyl 1,3,5-环辛四烯 1,5-HD 1,5-hexadienyl 1,5-己二烯 Cp Cyclopentadienyl 环戊二烯基 HMPA Hexamethylphosphoramide 六甲基磷酸三胺 CSA 10-camphorsulfonic acid 樟脑磺酸

气相色谱仪的及如何应用

气相色谱仪的简介及如何应用 气相色谱仪 气相色谱法适用于分析具有一定蒸气压且热稳定性好的组分,对气体试样和受热易挥发的有机物可直接进行分析,而对500℃以下不易挥发或受热易分解的物质部分可采用衍生化法或裂解法。 一、仪器的组成 气相色谱仪由载气源、进样部分、色谱柱、柱温箱、检测器和数据处理系统组成。进样部分、色谱柱和检测器的温度均在控制状态。 二、对仪器的基本要求 1.对仪器的一般要求 (1)载气源气体氦、氮和氢可用作气相色谱法的流动相,可根据供试品的性质和检测器种类选择载气,除另有规定外,常用载气为氮气。 (2)进样部分进样方式一般可采用溶液直接进样或顶空进样。采用溶液直接进样时,进样口温度应高于柱温30~50℃。顶空进样适用于固体和液体供试品中挥发性组分的分离和测定。 (3)色谱柱根据需要选择。新填充柱和毛细管柱在使用前需老化以除去残留溶剂及低分子量的聚合物,色谱柱如长期未用,使用前应老化处理,使基线稳定。 (4)柱温箱柱温箱温度的波动会影响色谱分析结果的重现性,因此柱温箱控温精度应在±1℃,且温度波动小于每小时0.1℃。 (5)检测器适合气相色谱法的检测器有火焰离子化检测器(FID)、热导检测器(TCD)、氮磷检测器(NPD)、火焰光度检测器(FPD)、电子捕获检测器(ECD)、质谱检测器(MS)等。火焰离子化检测器对碳氢化合物响应良好,适合检测大多数的药物;氮磷检测器对含氮、磷元素的化合物灵敏度高;火焰光度检测器对含磷、硫元素的化合物灵敏度高;电子捕获检测器适于含卤素的化合物;质谱检测器还能给出供试品某个成分相应的结构信息,可用于结构确证。除另有规定外,火焰离子化检测器一般用氢气作为燃气,空气作为助燃气。在使用火焰离子化检测器时,检测器温度一般应高于柱温,并不得低于150℃,以免水汽凝结,通常为250~350℃。 (6)数据处理系统目前多用计算机工作站。 药典规定,各品种项下规定的色谱条件,除载气、检测器、固定液品种及特殊指定的色谱柱材料不得改变外,其余如色谱柱内径、长度、载体牌号、粒度、固定液涂布浓度、载气流速、柱温、进样量、检测器的灵敏度等,均可适当改变,以适应具体品种并符合系统适用性试验

《水质吡啶的测定顶空气相色谱法》编制说明(征求意见稿)

附件3 《水质吡啶的测定顶空气相色谱法》 编制说明 (征求意见稿) 《水质 吡啶的测定 顶空气相色谱法》标准编制组 2008年12月

目录 1 项目背景 (2) 1.1 任务来源 (2) 1.2 工作过程 (2) 2 标准制修订的必要性 (2) 2.1 吡啶的环境危害 (2) 2.2 相关环保标准和环保工作的需要 (2) 2.3 污染物分析方法的最新研究进展 (2) 2.4 现行标准的局限性 (2) 2.5 本次修订的主要内容 (2) 3 国内外相关分析方法研究 (3) 3.1 主要国家、地区及国际组织相关分析方法研究 (3) 3.2 国内相关分析方法研究 (3) 4 标准制修订的基本原则和技术路线 (3) 4.1 标准制修订的基本原则 (3) 4.2 标准制修订的技术路线 (3) 5 方法研究报告 (4) 5.1 方法研究的目的 (4) 5.2 方法原理 (4) 5.3 试剂和材料 (5) 5.4 仪器和设备 (5) 5.5 样品 (5) 5.6 分析步骤 (5) 5.7 结果计算 (6) 5.8 精密度和准确度 (7) 6 方法验证 (7) 7 相关分析方法 (8) 8 对实施本标准的建议 (9)

《水质吡啶的测定顶空气相色谱法》编制说明 1 项目背景 1.1 任务来源 2006 年6 月原国家环境保护总局公布了《关于下达2006 年度国家环境保护标准制修订项目计划的通知》(环办函[2006]371 号),下达了关于修订《水质吡啶的测定气相色谱法》的项目计划,项目统一编号为156,由中国船舶重工集团公司第七一八研究所承担标准的修订工作。 1.2 工作过程 标准项目任务下达后,七一八研究所立即成立了标准编制组。标准编制组在查阅国内外相关文献、标准的基础上,完成了开题报告及编制实施报告。根据现有标准、国内外相关资料及相关意见完成标准草稿的编制。按照制定方法验证试验方案对标准草稿进行试验的准备、试验及对试验结果进行分析。通过试验验证,完成标准征求意见稿的编制。 2 标准制修订的必要性 2.1 吡啶的环境危害 吡啶,分子式C5H5N,含有一个氮杂原子的六元杂环化合物。即苯分子中的一个-CH=被氮取代而生成的化合物,故又称氮苯。吡啶及其同系物存在于骨焦油、煤焦油、煤气、石油中。熔点-42℃,沸点115.5℃,密度 0.9819 g/ml(20℃),溶于水、乙醇、乙醚、丙酮和苯等。 吡啶是生产青霉素等医药的原料,广泛用于合成树脂的缩合。吡啶的衍生物异烟肼是一种抗结核病药,2-甲基-5-乙烯基吡啶是合成橡胶的原料。 吡啶为无色可燃液体,有特殊臭味,易燃,其蒸汽与空气能形成爆炸性混合物,毒性较大。其液体及蒸气刺激皮肤和粘膜,能使神经中枢麻醉,可引起流泪、流涎、咳嗽、不适、眩晕、头痛、疲劳、呼吸频繁、四肢震颤、麻醉和昏睡等症状。当皮肤接触时,发生独特的炎症,使皮肤脱脂并致皮裂,伴有剧烈的灼痛。由生产工艺及排放废水中存在一定浓度的吡啶,构成对环境和人体健康造成危害。因此,修订水质中吡啶的气相色谱法监测方法环保标准,对保护环境、保证人民身体健康具有重要意义。 2.2 相关环保标准和环保工作的需要 《地表水环境质量标准》(GB3838-2002)规定吡啶的标准限值为0.2mg/L。现行标准《水质

气相色谱法

气相色谱法测定丁醇中少量甲醇含量 一、实验目的 1. 掌握用外标法进行色谱定量分析的原理和方法。 2. 了解气相色谱仪氢火焰离子检测器FID的性能和操作方法。 3. 了解气相色谱法在产品质量控制中的应用。 4. 学习气相色谱法测定甲醇含量的分析方法。 二、实验原理 在丁醇生产的过程中,不可避免地有甲醇产生。甲醇是无色透明的具有高度挥发性的液体,是一种对人体有害的物质。甲醇在人体内氧化为甲醛、甲酸,具有很强的毒性,对神经系统尤其是视神经损害严重,人食入 5 g 就会出现严重中毒,超过 12. 5 g 就可能导致死亡,在白酒的发酵过程中,难以将甲醇和乙醇完全分离,因此国家对白酒中甲醇含量做出严格规定。根据国家标准(GB10343-89),食用酒精中甲醇含量应低于0.1g?L-1(优级)或0.6 g?L-1(普通级)。 气相色谱法是一种高效、快速而灵敏的分离分析技术,具有极强的分离效能。一个混合物样品定量引入合适的色谱系统后,样品被气化后,在流动相携带下进入色谱柱,样品中各组分由于各自的性质不同,在柱内与固定相的作用力大小不同,导致在柱内的迁移速度不同,使混合物中的各组分先后离开色谱柱得到分离。分离后的组分进入检测器,检测器将物质的浓度或质量信号转换为电信号输给记录仪或显示器,得到色谱图。利用保留值可定性,利用峰高或峰面积可定量。 外标法是在一定的操作条件下,用纯组分或已知浓度的标准溶液配制一系列不同含量的标准溶液,准确进样,根据色谱图中组分的峰面积(或峰高)对组分含量作标准曲线。在相同操作条件下,依据样品的峰面积(或峰高),从标准曲线上查出其相应含量。利用气相色谱可分离、检测丁醇中的甲醇含量,在相同的操作条件下,

4-二甲氨基吡啶(DMAP) 安全技术资料

4-二甲氨基吡啶(DMAP) 安全技术资料 第一部分:化学品名称 产品目录编号:04153 化学品中文名:4-二甲氨基吡啶 化学品英文名:4-Dimethylaminopyridine; DMAP 第二部分:成分/组成信息 有害成份:4-二甲氨基吡啶 纯度:不低于 99% CAS No:1122-58-3 分子式:C7H10N2 分子量:122.17 第三部分:危害性概述 危害性类别: 危害性概述:高毒性、刺激性。 目标组织:眼睛、皮肤、呼吸系统、消化道、神经系统 健康危害: 眼睛:对眼睛有刺激性。 皮肤:中等刺激。皮肤接触有较高毒性。 食入:误食有毒。 吸入:可能有毒,并有可能刺激呼吸道。 慢性毒性:无资料 第四部分:急救措施 眼睛: 立即用大量清水冲洗眼睛至少20分钟,必要时需要将上、下眼睑拉开以保证冲洗干净;若有持续刺激症状应立即就医。 皮肤: 立即除去被污染的衣物,用大量流动清水冲洗至少20分钟;若刺激症状持续发展,应立即就医。食入:立即寻求急性毒性控制机构的帮助;若人已昏迷,切勿通过口腔给与任何食物;除非得到医务人员的指示,切勿使用催吐措施;就医。 吸入:迅速脱离现场至空气新鲜处。如呼吸停止,立即进行人工呼吸;如呼吸困难,给予输氧;立即就医。 第五部分:消防措施 易燃性:可燃烧 闪点:124°C (255.2°F)

自燃点:420°C (788°F) 概述:在任何形式的火情发生时,应戴防毒面具,以及全身消防服。 灭火方法:干粉或二氧化碳,不建议使用水灭火。 第六部分:泄漏应急处理 建议工作人员穿戴适当的防尘面罩及防护服。 将泄漏的物质清理,并放入适当的废物容器中。 第七部分:操作处置及储存 操作注意事项: 操作人员必须经过严格训练,或在经过专业训练人员的指导下使用该物质。该物质应在通风橱或类似的条件下使用。操作者应认识到许多物质的毒性、理化性质并没有被人类全面认识,在化学反应过程中有可能形成新的毒性物质。应避免化学物质接触皮肤、眼睛,及衣物。 贮存注意事项: 该物质对湿气敏感。应贮存于阴凉干燥、通风良好的环境下,并避免与热源及不相容的物质混放。在不使用时,应将容器密闭良好。 清洁卫生: 使用后及时彻底清洗,避免接触眼睛及皮肤,避免吸入含有该物质的尘土、蒸汽等。 第八部分:接触控制及个人防护 职业控制: 采取必要的职业控制措施,如操作区域封闭、局部副压通风,或其他控制措施以防止空气中的含量达到危害性的程度。如果以上条件不能达到,操作人员应穿戴适当的防护装备。必要时应寻求专业的培训机构帮助,来选择合适的防护措施,并接受合适的训练、监督。 职业防护: 眼睛:戴化学安全防护眼镜。 皮肤:戴防护服及手套以避免皮肤接触。 衣物:穿防毒物渗透工作服。 呼吸:若空气中该物质的浓度超过限度,应穿戴具有空气过滤装置的防毒面罩,但仅限于空气中该物质的浓度在危害水平10倍以下时适用;否则应穿戴具有正压供气系统的防毒面具。若泄露无法控制、空气中浓度无法估计,以及其他空气过滤装置无法提供足够防护的情形下,也应采用可正压供气的防毒面具。 其他防护: 使用、贮存该物质的场所应配备眼睛冲洗、喷淋装置。 第九部分:理化特性 外观与形状:白色固体。 气味:有淡的氨水气味。 沸点: 162 C。 熔点/冰点: 112-114 oC

气相色谱仪验证方案07June2018(2)

精品文档

目录 1 验证概述......................................................................................................第1页2 相关文件......................................................................................................第1页 3 验证目的.................. ....................................................................................第1页 4 验证职责......................................................................................................第1页 5 风险评估... .............................................................................................第1页 6 验证安排..........................................................................................第2页7 验证内容和方法..........................................................................................第3页8 验证结论 (6)

气相色谱仪操作步骤

气相色谱仪操作步骤 1、打开氮气、氢气、空气发生器的电源开关(或氮气钢瓶总阀),调整输出压力稳定在0.4Mpa左右(气体发生器一般在出厂时已调整好,不用再调整)。 2、打开色谱仪气体净化器的氮气开关转到“开”的位置。注意观察色谱仪载气B的柱前压上升并稳定大约5分钟后,打开色谱仪的电源开关。 3、设置各工作部温度。TVOC分析的条件设置:(a)柱箱:柱箱初始温度50℃、初始时间10min、升温速率5℃/min、终止温度250℃、终止时间10min; (b)进样器和检测器:都是250℃。脂肪酸分析时的色谱条件:(a)柱箱:柱箱初始温度140℃、初始时间5min、升温速率4℃/min、终止温度240℃、终止时间15min; (b)进样器温度是260℃,检测器温度是280℃。 4、点火:待检测器(按“显示、换档、检测器”可查看检测器温度)温度升到150℃以上后,打开净化器上的氢气、空气开关阀到“开”的位置。观察色谱仪上的氢气和空气压力表分别稳定在0.1Mpa和0.15Mpa左右。按住点火开关(每次点火时间不能超过6~8秒钟)点火。同时用明亮的金属片靠近检测器出口,当火点着时在金属片上会看到有明显的水汽。如果在6~8秒时间内氢气没有被点燃,要松开点火开关,再重新点火。在点火操作的过程中,如果发现检测器出口内白色的聚四氟帽中有水凝结,可旋下检测器收集极帽,把水清理掉。在色谱工作站上判断氢火焰是否点燃的方法:观察基线在氢火焰点着后的电压值应高于点火之前。 5、打开电脑及工作站(通道一分析脂肪酸,通道二分析碘),打开一个方法文件:脂肪酸分析方法或碘分析方法。显示屏左下方应有蓝字显示当前的电压值和时间。接着可以转动色谱仪放大器面板上点火按钮上边的“粗调”旋钮,检查信号是否为通路(转动“粗调”旋钮时,基线应随着变化)。待基线稳定后进样品并同时点击“启动”按钮或按一下色谱仪旁边的快捷按钮,进行色谱数据分析。分析结束时,点击“停止”按钮,数据即自动保存。 8.关机程序:首先关闭氢气和空气气源,使氢火焰检测器灭火。在氢火焰熄灭后再将柱箱的初始温度、检测器温度及进样器温度设置为室温(20-30℃),待温度降至设置温度后,关闭色谱仪电源。最后再关闭氮气。

相关文档
最新文档