数学建模遗传算法与优化问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模遗传算法与优
化问题
Document number:NOCG-YUNOO-BUYTT-UU986-1986UT
实验十遗传算法与优化问题
一、问题背景与实验目的
遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显着特点,奠定了它作为21世纪关键智能计算之一的地位.
本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理
遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议).
(1)遗传算法中的生物遗传学概念
由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念.
首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下:
遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation).
遗传算法基本步骤主要是:先把问题的解表示成“染色体”,在算法中也就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就是假设的可行解.然后,把这些假设的可行解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉、变异过程产生
更适应环境的新一代“染色体”群.经过这样的一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就是问题的最优解.
下面给出遗传算法的具体步骤,流程图参见图1:
第一步:选择编码策略,把参数集合(可行解集合)转换染色体结构空间;
第二步:定义适应函数,便于计算适应值;
第三步:确定遗传策略,包括选择群体大小,选择、交叉、变异方法以及确定交叉概率、变异概率等遗传参数;
第四步:随机产生初始化群体;
第五步:计算群体中的个体或染色体解码后的适应值;
第六步:按照遗传策略,运用选择、交叉和变异算子作用于群体,形成下一代群体;
第七步:判断群体性能是否满足某一指标、或者是否已完成预定的迭代次数,不满足则返回第五步、或者修改遗传策略再返回第六步.
图1 一个遗传算法的具体步骤
遗传算法有很多种具体的不同实现过程,以上介绍的是标准遗传算法的主要步骤,此算法会一直运行直到找到满足条件的最优解为止.
2.遗传算法的实际应用
例1:设2()20.5f x x x =-++,求 max (), [1,2]f x x ∈-.
注:这是一个非常简单的二次函数求极值的问题,相信大家都会做.在此我们要研究的不是问题本身,而是借此来说明如何通过遗传算法分析和解决问题.
在此将细化地给出遗传算法的整个过程. (1)编码和产生初始群体
首先第一步要确定编码的策略,也就是说如何把1-到2这个区间内的数用计算机语言表示出来.
编码就是表现型到基因型的映射,编码时要注意以下三个原则: 完备性:问题空间中所有点(潜在解)都能成为GA 编码空间中的点(染色体位串)的表现型;
健全性:GA 编码空间中的染色体位串必须对应问题空间中的某一潜在解; 非冗余性:染色体和潜在解必须一一对应.
这里我们通过采用二进制的形式来解决编码问题,将某个变量值代表的个体表示为一个{0,1}二进制串.当然,串长取决于求解的精度.如果要设定求解精度到六位小数,由于区间长度为2(1)3--=,则必须将闭区间 [1,2]-分为6310⨯等分.因为216222097152231024194304=<⨯<= 所以编码的二进制串至少需要22位.
将一个二进制串(b 21b 20b 19…b 1b 0)转化为区间[1,2]-内对应的实数值很简单,只需采取以下两步(Matlab 程序参见附录4):
1)将一个二进制串(b 21b 20b 19…b 1b 0)代表的二进制数化为10进制数: 2)'x 对应的区间[1,2]-内的实数: 'x 2=2288967
利用这种方法我们就完成了遗传算法的第一步——编码,这种二进制编码的方法完全符合上述的编码的三个原则.
首先我们来随机的产生一个个体数为4个的初始群体如下: pop(1)={ <>, %% a1 <>, %% a2 <>, %% a3
<>} %% a4(Matlab 程序参见附录2) 化成十进制的数分别为: pop(1)={ , , , }
接下来我们就要解决每个染色体个体的适应值问题了. (2)定义适应函数和适应值
由于给定的目标函数2()20.5f x x x =-++在[1,2]-内的值有正有负,所以必须通过建立适应函数与目标函数的映射关系,保证映射后的适应值非负,而且目标函数的优化方向应对应于适应值增大的方向,也为以后计算各个体的入选概率打下基础.
对于本题中的最大化问题,定义适应函数()g x ,采用下述方法:
式中min F 既可以是特定的输入值,也可以是当前所有代或最近K 代中()f x 的最小值,这里为了便于计算,将采用了一个特定的输入值.
若取min 1F =-,则当()1f x =时适应函数()2g x =;当() 1.1f x =-时适应函数()0g x =.
由上述所随机产生的初始群体,我们可以先计算出目标函数值分别如下(Matlab 程序参见附录3):
f [pop(1)]={ , , , }
然后通过适应函数计算出适应值分别如下(Matlab 程序参见附录5、附录6):