高中数学解题思维策略
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高中数学解题思维与思想》
导读
数学家G.波利亚在《怎样解题》中说过:数学教学的目的
在于培养学生的思维能力,培养良好思维品质的途径,是进行有效
的训练,本策略结合数学教学的实际情况,从以下四个方面进行讲解:
一、数学思维的变通性
根据题设的相关知识,提出灵活设想和解题方案
二、数学思维的反思性
提出独特见解,检查思维过程,不盲从、不轻信。
三、数学思维的严密性
考察问题严格、准确,运算和推理精确无误。
四、数学思维的开拓性
对一个问题从多方面考虑、对一个对象从多种角度观察、对一个题目运用多种不同的解法。
什么”转变,从而培养他们的思维能力。
《思维与思想》的即时性、针对性、实用性,已在教学实践中得到了全面验证。
一、高中数学解题思维策略
第一讲 数学思维的变通性
一、概念
数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练:
(1)善于观察
心理学告诉我们:感觉和知觉是认识事物的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、比较持久的知觉。观察是认识事物最基本的途径,它是了解问题、发现问题和解决问题的前提。
任何一道数学题,都包含一定的数学条件和关系。要想解决它,就必须依据题目的具体特征,对题目进行深入的、细致的、透彻的观察,然后认真思考,透过表面现象看其本质,这样才能确定解题思路,找到解题方法。
例如,求和)
1(1431321211+++⋅+⋅+⋅n n . 这些分数相加,通分很困难,但每项都是两相邻自然数的积的倒数,且111)1(1+-=+n n n n ,因此,原式等于1
111113121211+-=+-++-+-n n n 问题很快就解决了。
(2)善于联想
联想是问题转化的桥梁。稍具难度的问题和基础知识的联系,都是不明显的、间接的、复杂的。因此,解题的方法怎样、速度如何,取决于能否由观察到的特征,灵活运用有关知识,做出相应的联想,将问题打开缺口,不断深入。
例如,解方程组⎩⎨⎧-==+3
2xy y x .