考研概率论复习-假设检验

考研概率论复习-假设检验
考研概率论复习-假设检验

假设检验

一.概念及方法

1. 概念

2. 方法

求正态总体未知参数的假设检验解题步骤:

(1) 根据实际问题构造统计量,要求仅含待估参数且抽样分布已知; (2) 令该统计量落在由分位点确定的不合理区间里的概率为给定的显著

性水平α,从而得拒绝域;

(3) 由观测值及α值查表计算该统计量值是否落在拒绝域内,从而判断

是否拒绝原假设.

二. 单正态分布),(2

σμN 中未知参数的假设检验(显著性水平α) 1. 单正态分布),(2σμN 中未知参数μ的双侧假设检验(显著性水平α)

2. 单正态分布),(2

σμN 中未知参数μ的单侧假设检验(显著性水平α)

例1:某厂用自动包装机装箱,在正常情况下,每箱重量服从正态分布N (100,2

σ)。某日开工后,随机抽查10箱,重量如下(单位:斤):99.3,98.9,100.5,100.1,99.9,99.7,100.0,100.2,99.5,100.9。问包装机工作是否正常,即该日每箱重量的数学期望与100是否有显著差异?(05.0=α)

解: 0H :1000==μμ, 1H :0μμ≠ 检验统计量为n

s

X T 0μ-=

,0H 的拒绝域为)}1(|{|2-≥=n t T W α

计算得9.99=x ,583.0=s ,542.010

583

.01009.990-=-=

-=

n

s

x t μ

对05.0=α,查得2622.2)9()1(025.02

==-t n t a

. 因为

)9(542.0.0||025.0t T <=,所以不拒绝0H ,即可以认为该日每箱重量的数

学期望与100无显著差异包装机工作正常。

3. 单正态分布),(2σμN 中未知参数2σ的双侧假设检验(显著性水平α)

4. 单正态分布),(2σμN 中未知参数2σ的单侧假设检验(显著性水平α)

例2:某维尼龙厂根据长期正常生产积累的资料知道所生产的维尼龙纤度服从正态分布,它的均方差为0.048。某日随机抽取5根纤维,测得其纤度为1.32,1.55,1.36,1.40,1.44。问该日所生产得维尼龙纤度的均方差是否有显著变化(显著水平α=0.1)? 解:0H :2202

048.0==σσ

, 1H :202σσ≠

检验统计量为2

2

2

)1(σχS n -=

0H 的拒绝域为: )]}1([)]1({[22

122

2

2-≤-≥=-

n n W ααχχχχ

计算得,0882.0=S ,507.13048

.00882.04)1(2

22

2

2

=?=-=

σχS n 对,1.0=a ,自由度n-1=4,查-2

x 分布表,得

77.0)4()1(,488.9)4()1(2

95.022

1205.022==-==--χχχχααn n 因为488.9507.132

>=χ,所以拒绝H 0,即可以认为该日的方差与往常的方差有显著差异

三.两个正态分布),(2

11σμN 、),(2

22σμN 均值的假设检验(显著性水平α)

X ~),(2

11σμN 、Y ~),(2

22σμN

其中2

)1()1(212

2

22112-+-+-=n n S n S n S w

例3:某卷烟厂生产甲、乙两种香烟,分别对他们的尼古丁含量(单位:毫克)作了六次测定,得子样观察值为:

甲:25,28,23,26,29,22; 乙:28,23,30,25,21,27。

假定这两种烟的尼古丁含量都服从正态分布,且方差相等,试问这两种香烟的尼古丁平均含量有无显著差异(显著水平α=0.05,)? 解:2112

10::μμμμ≠=H H 检验统计量为2

11

1n n s Y X t w

+-=

0H 的拒绝域为)}2(|{|212-+≥=n n t t W α

经计算:.33.3,67.25,6;

74.2,5.25,62211======s y n s x n

于是

.

097.06

161049

.367.255.2511049

.32

)1()1(2

1212

2

2211-=+-=

+-=

=-+-+-=

n n s y x t n n s n s n s w

w

.228.2)10()2(,,102,05.0025.021221==-+-=-+=t n n t t n n a a 得分布表查自由度对,

,228.2097.00H t 所以不拒绝因<=.古丁含量没有显著差异即可认为两种香烟的尼

历年考研概率真题集锦(2000-2019)-精品推荐

历年考研概率真题集锦(2000-2019) ——对应茆诗松高教出版社“概率论与数理统计” 第一章 §1.1 1、(2001数学四)(4)对于任意二事件A 和B ,与A B B ?=不等价的是( ) A 、A B ? B 、B A ? C 、AB =Φ D 、AB =Φ 2、(2000数学三、四)(5)在电炉上安装4 个温控器,其显示温度的误差是随机的,在使用过程中,只要有两个温控器显示的温度不低于临界温度0t ,电炉就断电。以E 表示事件“电炉断电”,而(1)(2)(3)(4)T T T T ≤≤≤为4 个温控器显示的按递增顺序排列的温度值,则事件E 等于( ) (A ) {}(1)0T t ≥ (B ) {}(2)0T t ≥ (C ) {}(3)0T t ≥ (D ) {} (4)0T t ≥ §1.2 1、(2007数学一、三)(16)在区间(0,1)中随机地取两个数,这两数之差的绝对值小于1 2 的概率为________. §1.3 1、(2009数学三)(7)设事件A 与事件B 互不相容,则( ) (A )()0P AB = (B )()()()P AB P A P B = (C )()1()P A P B =- (D )()1P A B ?= 2、(2015数学一、三)(7) 若A ,B 为任意两个随机事件,则( ) (A ) ()()()≤P AB P A P B (B ) ()()()≥P AB P A P B (C ) ()()()+2≤ P A P B P AB (D ) ()()() +2 ≥P A P B P AB 3、(2019数学一、三)(7)设A 、B 为随机事件,则()()P A P B =的充分必要条件是( ) (A )()()()P A B P A P B =+U (B ) ()()()P AB P A P B = (C )()()P AB P B A = (D )()()P AB P AB = §1.4

概率论与数理统计考点详解:假设检验

概率论与数理统计考点详解:假设检验 在考研数学中,只有数一和数三才考概率论与数理统计,而数二是不考的。那么数一和数三对概率论与数理统计的考查难度和知识点基本相同,唯有两个考点是只有数一考而数三是不考的。第一,区间估计;第二,假设检验。在此篇文章中跨考教育数学教研室郭静娟老师主要分析一下假设检验这个考点。 数一的考试大纲对假设检验的考试要求是:1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。2.掌握单个及两个正态总体的均值和方差的假设检验。 首先,显著性检验的基本思想。显著性检验是针对我们对总体所做的假设做检验,其原理就是“小概率事件实际不可能性原理”来接受或否定假设。在抽样研究中,由于样本所来自的总体其参数是未知的,只能根据样本统计量对其所来自总体的参数进行估计,如果要比较两个或几个总体的参数是否相同,也只能分别从这些总体中抽取样本,根据这些样本的统计量作出统计推断,籍此比较总体参数是否相同。由于存在抽样误差,总体参数与样本统计量并不恰好相同,因此判断两个或多个总体参数是否相同是一件很困难的事情。如医生在某山区随机测量了25名健康成年男子的脉搏,平均次数为74.2次/分钟,标准差为5.2次/分钟,但是根据医学常识,一般男子的平均脉搏次数为72次/分钟,问该山区男子脉搏数与一般男子是否不同?要回答这个看似简单的问题并非易事。 这个问题难以从正面直接回答,可以先假定该山区所有男子脉搏数数值组成一个总体, 其总体均数和标准差均为未知数,不妨分别以、表示。如果我们假设该山区男子的脉搏数与一般地区的男子相同,即属于同一总体,=72,所测量的25名男子的平均脉搏数(样本均数)之所以不恰好等于72次/分,是由于抽样误差所致。 如果上述假设成立,则理论上讲,样本均数很可能在总体均数(=72)的附近,样 本均数远离总体均数的可能性很小。如果将样本均数变换为值,则值很可能在0的附近,值远离0的可能性很小。如果值很小上述假设可能不正确,可拒绝上述假设。 假设检验包括单侧检验和双侧检验两种情况,当根据专业知识已知两总体的参数中甲肯定不会小于乙,或甲肯定不会大于乙时,可考虑用单侧检验,否则,宜用双侧检验。 其次,假设检验的基本步骤。假设检验一般分为三步: 1、建立假设,确定检验水准。一般假设检验中的检验假设(或称为零假设、无效假设),假设样本来自同一总体,即其总体参数相等。往往建立两个假设,除建立检验假设外,还建立备择假设,作为拒绝检验假设时的备选假设,检验水准为拒绝检验假设是犯第一类错 误的概率。 2、为选择检验方法,并计算统计量。的类型不同、变量的分布类型不同、研究目的不同,都决定着选择何种检验方法。因此需选择合适的检验方法,并计算统计量。

概率论与数理统计(8)假设检验

概率论与数理统计(8)假设检验 第八章假设检验 第一节假设检验问题 第二节正态总体均值的假设检验 第三节正态总体方差的检验 第四节大样本检验法 第五节 p值检验法 第六节假设检验的两类错误 第七节非参数假设检验 第一节假设检验问题 前一章我们讨论了统计推断中的参数估计问题,本章将讨论另一类统计推断问题——假设检验.在参数估计中我们按照参数的点估计方法建立了参数的估计公式,并利用样本值确定了一个估计值,认为参数真值。由于参数是未知的,只是一个假设(假说,假想),它可能是真,也可能是假,是真是假有待于用样本进行验证(检验). 下面我们先对几个问题进行分析,给出假设检验的有关概念,然后总结给出检验假设的思想和方法. 一、统计假设 某大米加工厂用自动包装机将大米装袋,每袋的标准重量规定为10kg,每天开工时,需要先检验一下包装机工作是否正常. 根据以往的经验知道,自动包装机装袋重量X服从正态分布N( ).某日开工后,抽取了

8袋,如何根据这8袋的重量判断“自动包装机工作是正常的”这个命题是否成立? 请看以下几个问题: 问题1 引号内的命题可能是真,也可能是假,只有通过验证才能确定.如果根据抽样结果判断它是真,则我们接受这个命题,否则就拒绝接受它,此时实际上我们接受了“机器工作不正常”这样一个命题. 若用H0表示“”,用H1表示其对立面,即“”,则问题等价于检验H0:是否成立,若H0不成立,则H1:成立. 一架天平标定的误差方差为10-4(g2),重量为的物体用它称得的重量X服从N( ).某人怀疑天平的精度,拿一物体称n次,得n 个数据,由这些数据(样本)如何判断“这架天平的精度是10-4(g2)”这个命题是否成立? 问题2 记H0: =10-4,H1: ,则问题等价于检验H0成立,还是H1成立. 某种电子元件的使用寿命X服从参数为的指数分布,现从一批元件中任取n个,测得其寿命值(样本),如何判定“元件的平均寿命不小于5000小时”这个命题是否成立? 记 问题3

概率论数学考研真题试卷

2002年全国硕士研究生入学统一考试数学(四)试题 一、 填空题(每小题3分) 二、 选择题(每小题3分) (4)设 X 1 和 X 2 是任意两个相互独立的连续型随机变量,它们的概率密度分别为 )(1 x f 和 )(2 x f ,分布函数分别为)(1x F 和)(2x F ,则( ) (A ))(1 x f + )(2 x f 必为某一随机变量的概率密度。 (B ))(1x F )(2 x F 必为某一随机变量的分布函数 (C ))(1 x F +)(2 x F 必为某一随机变量的分布函数 (D ) ) (1 x f )(2 x f 必为某一随机变量的概率密度 (5)设随机变量 X 1 , X 2 ,…, X n 相互独立, X X X S n n K ++=2 1 ,则根据列 维-林德伯格(Levy-Lindberg )中心极限定理,当n 充分大时,S n 近似服从正态分布,只 要 X 1 , X 2 … X n ( ) (A )有相同的数学期望 (B )有相同的方差 (D )服从同一指数分布 (D )服从同一离散型分布 十一、(本题满分8分) 设A ,B 是任意二事件,其中A 的概率不等于0和1,证明, )()(- =A B P A B P 是事件A 与B 独立的充分必要条件。 十二、(本题满分8分) 假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间(EX )为5小时。设备定时开机,出现故障时自动关机,而在无故障的情况下工作两小时便关机。试求该设备每次开机无故障工作的时间Y 的分布函数F (y )。 2003年全国硕士研究生入学统一考试数学(四)试题 一 、填空题(每小题4分) (6)设随机变量X 和Y 的相关系数为0.5,EX=EY=0,222 ==EY EX ,则

概率论和数理统计带答案

单选 题(共 40 分) 1、在假设检验问题中,犯第一类错误的概率α的意义是( ) (C) A、在H0不成立的条件下,经检验H0被拒绝的概率 B、在H0不成立的条件下,经检验H0被接受的概率 C、在H0成立的条件下,经检验H0被拒绝的概率 D、在H0成立的条件下,经检验H0被接受的概率 2、设,AB是两个事件,且P(A)≤P(A|B),则有 (C) A、P(A)=P(A|B) B、P(B)>0 C、P(A|B)≥P(B) D、设,AB是两个事件 3、某中学为迎接建党九十周年,举行了”童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年纪各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是( )(A) A、1/6. B、1/5. C、1/4. D、1/3. 4、设,,ABC是三个相互独立的事件,且0(B) A、AUB与c B、AC与C C、A-B与C D、AB与C 5、设随机事件A与B相互独立,P(A)=0.5,P(B)=0.6则P(A-B)= (D) A、1/2. B、1/5. C、1/4. D、1/12. 6、将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为 (A) A、4/7. B、4/9. C、5/11. D、6/7. 7、设事件,AB满足ABBB,则下列结论中肯定正确的是( )(D) A、AB互不相容 B、AB相容 C、互不相容 D、P(A-B)=P(A) 8、已知P(B)=0.3,P(AUB)=0.7,且A与B相互独立,则P(A)=(D) A、0.2 B、0.3 C、0.7 D、0.5 9、若事件A和事件B相互独立, P(A)==,P(B)=0.3,P(AB)=0.7,则则 (A) A、3/7. B、4/7. C、5/7. D、6/7. 10、,设X表示掷两颗骰子所得的点数,则EX =(D) A、2 B、3 C、4 D、7 ?多选 题(共 20 分) 1、甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(D) A、0.3 B、0.5 C、0.6 D、0.8

考研数学概率论重要知识点梳理

2017考研数学:概率论重要知识点梳理 来源:文都图书 概率论在历年考研数学真题中特点比较明显。概率论与数理统计对计算技巧的要求低一些,一些题目,尤其是文字叙述题要求考生有比较强的分析问题的能力。所以考生应在这门中尽量做到那全分,这样才能保证数学的分数,下面我们整理了一些概率论的重要知识点: 第一部分:随机事件和概率 (1)样本空间与随机事件 (2)概率的定义与性质(含古典概型、几何概型、加法公式) (3)条件概率与概率的乘法公式 (4)事件之间的关系与运算(含事件的独立性) (5)全概公式与贝叶斯公式 (6)伯努利概型 其中:条件概率和独立为本章的重点,这也是后续章节的难点之一,考生务必引起重视, 第二部分:随机变量及其概率分布 (1)随机变量的概念及分类 (2)离散型随机变量概率分布及其性质 (3)连续型随机变量概率密度及其性质 (4)随机变量分布函数及其性质 (5)常见分布 (6)随机变量函数的分布 其中:要理解分布函数的定义,还有就是常见分布的分布律抑或密度函数必须记好且熟练。 第三部分:二维随机变量及其概率分布 (1)多维随机变量的概念及分类 (2)二维离散型随机变量联合概率分布及其性质 (3)二维连续型随机变量联合概率密度及其性质

(4)二维随机变量联合分布函数及其性质 (5)二维随机变量的边缘分布和条件分布 (6)随机变量的独立性 (7)两个随机变量的简单函数的分布 其中:本章是概率的重中之重,每年的解答题定会有一道与此知识点有关,每个知识点都是重点,务必重视! 第四部分:随机变量的数字特征 (1)随机变量的数字期望的概念与性质 (2)随机变量的方差的概念与性质 (3)常见分布的数字期望与方差 (4)随机变量矩、协方差和相关系数 其中:本章只要清楚概念和运算性质,其实就会显得很简单,关键在于计算 第五部分:大数定律和中心极限定理 (1)切比雪夫不等式 (2)大数定律 (3)中心极限定理 其中:其实本章考试的可能性不大,最多以选择填空的形式,但那也是十年前的事情了。 第六部分:数理统计的基本概念 (1)总体与样本 (2)样本函数与统计量 (3)样本分布函数和样本矩 其中:本章还是以概念为主,清楚概念后灵活运用解决此类问题不在话下 第七部分:参数估计 (1)点估计 (2)估计量的优良性 (3)区间估计

概率论 历年考研真题(牛人总结)

考研概率论部分历年真题(总结) 数学一: 1(87,2分) 设在一次试验中A 发生的概率为p ,现进行n 次独立试验,则A 至少发生一次的概率为 ;而事件A 至多发生一次的概率为 。 2(87,2) 三个箱子,第一个箱子中有4个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子中有3个黑球5个白球。现随机地取一个箱子,再从这个箱子中取出1个球,这个球为白球的概率等于 。已知取出的球是白球,此球属于第二个箱子的概率为 。 3(88,2分) 设三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于2719,则事件A 在一次试验中出现的概率为 。 4(88,2分) 在区间(0,1)中随机地取两个数,则事件“两数之和小于56”的概率为 。 5(89,2分) 已知随机事件A 的概率P (A )=0.5,随机事件B 的概率P (B )=0.6及条件概率P (B | A )=0.8,则和事件A B 的概率P (A B )= 。 6(89,2分) 甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 。 7(90,2分) 设随机事件A ,B 及其和事件A B 的概率分别是0.4, 0.3和0.6,若B 表示B 的对立事件,那么积事件A B 的概率P (A B )= 。 8(91,3分) 随机地向半圆0

概率论第八章 假设检验

第八章假设检验 第一节概述 统计推断中的另一类重要问题是假设检验(Hypothesis testing).当总体的分布函数未知,或只知其形式而不知道它的参数的情况时,我们常需要判断总体是否具有我们所感兴趣的某些特性.这样,我们就提出某些关于总体分布或关于总体参数的假设,然后根据样本对所提出的假设作出判断:是接受还是拒绝.这就是本章所要讨论的假设检验问题.我们先从下面的例子来说明假设检验的一般提法. 例8.1某工厂用包装机包装奶粉,额定标准为每袋净重0.5kg.设包装机称得奶粉重量X服从正态分布N(μ,σ2).根据长期的经验知其标准差σ=0.015(kg).为检验某台包装机的工作是否正常;随机抽取包装的奶粉9袋,称得净重(单位:kg)为 0.499 0.515 0.508 0.512 0.498 0.515 0.516 0.513 0.524 问该包装机的工作是否正常? 由于长期实践表明标准差比较稳定,于是我们假设X~N(μ,0.0152).如果奶粉重量X 的均值μ等于0.5kg,我们说包装机的工作是正常的.于是提出假设: H0:μ=μ0=0.5; H1:μ≠μ0=0.5. 这样的假设叫统计假设. 1.统计假设 关于总体X的分布(或随机事件之概率)的各种论断叫统计假设,简称假设,用“H”表示,例如: (1)对于检验某个总体X的分布,可以提出假设: H0:X服从正态分布,H1: X不服从正态分布. H0:X服从泊松分布,H1: X不服从泊松分布. (2)对于总体X的分布的参数,若检验均值,可以提出假设: H0:μ=μ0;H1:μ≠μ0. H0:μ≤μ0;H1:μ>μ0. 若检验标准差,可提出假设: H0:σ=σ0;H1:σ≠σ0. H0:σ≥σ0;H1:σ<σ0. 这里μ0,σ0是已知数,而μ=E(X),σ2=D(X)是未知参数. 上面对于总体X的每个论断,我们都提出了两个互相对立的(统计)假设:H0和H1,显然,H0与H1只有一个成立,或H0真H1假,或H0假H1真,其中假设H0,称为原假设(Original hypothesis)(又叫零假设、基本假设),而H1称为H0的对立假设(又叫备择假设). 在处理实际问题时,通常把希望得到的陈述视为备择假设,而把这一陈述的否定作为原假设.例如在上例中,H0:μ=μ0=0.5为原假设,它的对立假设是H1:μ≠μ0=0.5. 统计假设提出之后,我们关心的是它的真伪.所谓对假设H0的检验,就是根据来自总体的样本,按照一定的规则对H0作出判断:是接受,还是拒绝,这个用来对假设作出判断的规则叫做检验准则,简称检验,如何对统计假设进行检验呢?我们结合上例来说明假设检验

概率论与数理统计教学大纲

《概率论与数理统计》教学大纲 一、内容简介 《概率论与数理统计》是从数量侧面研究随机现象规律性的数学理论,其理论与方法已广泛应用于工业、农业、军事和科学技术中。主要包括:随机事件和概率,一维和多维随机变量及其分布,随机变量的数字特征,大数定律与中心极限定理,参数估计,假设检验等内容。 二、本课程的目的和任务 本课程是理工学科和社会学科部分专业的基础课程。课程内容侧重于讲解概率论与数理统计的基本理论与方法,同时在教学中结合各专业的特点介绍性地给出在科研、生产、社会等各领域中的具体应用。课程的任务在于使学生建立随机现象的基本概念和描述方法,掌握运用概率论和统计学原理对自然和人类社会的现象进行观察、描述和预言的方法和能力。为学生树立基本的概率论和统计思维素养,以及进一步在相关方向深造,打下基础。 三、本课程与其它课程的关系 学生在进入本课程学习之前,应学过:高等数学、线性代数。这些课程的学习,为本课程提供了必需的数学基础知识。本课程学习结束后,学生可具备进一步学习相关课程的理论基础,同时由于概率论与数理统计的理论与方法向各基础学科、工程学科的广泛渗透,与其他学科相结

合发展成不少边缘学科,所以它是许多新的重要学科的基础,学生应对本课程予以足够的重视。 四、本课程的基本要求 概率论与数理统计是一个有特色的数学分支,有自己独特的概念和方法,内容丰富,结果深刻。通过对本课程的学习,学生应该建立用概率和统计的语言对随机现象进行描述的基本概念,熟练掌握概率论与数理统计中的基本理论和分析方法,能熟练运用基本原理解决某些实际问题。具体要求如下: (一)随机事件和概率 1、理解随机事件的概念,了解样本空间的概念,掌握事件之间的关系和 运算。 2、理解概率的定义,掌握概率的基本性质,并能应用这些性质进行概率 计算。 3、理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公 式、贝叶斯公式,并能应用这些公式进行概率计算。 4、理解事件的独立性概念,掌握应用事件独立性进行概率计算。 5、掌握伯努利概型及其计算。 (二)随机变量及其概率分布 1、理解随机变量的概念 2、理解随机变量分布函数的概念及性质,理解离散型随机变量的分布律 及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分

概率论与数理统计历年考研试题-3

第3章 数字特征 1. (1987年、数学一、填空) 设随机变量X 的概率密度函数,1 )(1 22 -+-= x x e x f π 则 E(X)=( ),)(X D =( ). [答案 填:1; 2 1.] 由X 的概率密度函数可见X ~N(1, 21 ),则E(X)=1,)(X D =2 1. 2. (1990年、数学一、填空) 设随机变量X 服从参数为2的泊松分布,且Z=3X-2, 则E(X)=( ). [答案 填:4] 3. (1990年、数学一、计算) 设二维随机变量(X,Y)在区域D:0

4. (1991年、数学一、填空) 设X ~N(2,2 σ)且P{2

清华大学历年概率论考研试卷

清华大学2000年概率统计研究生入学考试试题 一、设(|)0.5P A B =,(|)0.4P B A =,()0.6P A =。求()P A B ?,并问事件A 与事件B 是否独立,为什么? 二、设随机向量(,)X Y 服从二维正态分布2 2 1212(,,,,)N a a σσρ。试证明:U X Y =+和 V X Y =-独立。 三、设(12,,,n X X X )是正态总体2 (,)X N μσ 的一个简单样本,X 为样本均值,求 1 (||)n i i E X X =-∑。 四、设12,,,n X X X 是总体X 的简单样本,而总体101X q r p -?? ? ?? ( 表示遵从),其中01,01,1p q p q r <<<<++=, 1) 求12,,,n X X X 最大值M 的分布。 2) 设0r =。当n 充分大时,利用极限定理求样本均值X 的近似分布。 五、设总体X 的概率密度函数为 (),()0, x e x f x λμλμμ --?>=? ≤?x 。 这里μ和λ(>0)都是参数。又设12,,,n X X X 为该总体的简单样本,而12,,,n x x x 为其样本观察值。 1) 设λ已知,求μ的极大似然估计 L μ 2) 设μ已知,求λ的矩估计 M λ 。 六、设网络中在(0,]t 时段内到某个网站访问的次数(0,]t ξ,0t ≥,是强度为λ(>0)的 Poisson 流。 (1)试求第k 次访问次网站的时间k η的分布,k 为正整数; (2)求比 1 2 ηη的分布和120(|)E t ηη=,00t >;

(3)利用Poisson 流的性质,证明Poisson 的可加性,即若随机变量1X ,2X 独立,且()i i X p λ (服从参数为i λ的Poisson 分布),1,2i =。则12X X +12()P λλ+ 。 清华大学2001年概率统计研究生入学考试试题 一、某项福利彩票的抽奖活动中有n 个号码(1,,n ),中奖的号码定为k 个,采用无放回 随机抽样。求k 个中奖号码算术平均值的期望。 二、12,,,n X X X 为独立2 (,)N μσ分布样本,X 为样本均值, 1) 求(||)i E X X -; 2) 用 1 ||n i i c X X σ==-∑作为σ的估计,确定c 使得次估计是无偏的。 三、1212,,;,,X X Y Y ,为两串随机变量序列。 1) 设当n →∞,n Y 依分布收敛到常数a ,证明n Y 依概率收敛到a 。 2) 设当n →∞,n X 依概率收敛到随机变量X ,n Y 依概率收敛到随机变量Y ,证明 n n X Y +依概率收敛到X Y +。 四、设X 和Y 为两个独立的随机变量,都服从期望值为θ的指数分布。 (1)求在已知X Y t +=的条件下,Y 的条件分布; (2)求 Y X Y +的分布。 五、12,,,n X X X 为独立(,1)N μ分布随机变量,记12(,,,)T n X X X X = ,A 为n 阶对 称矩阵。证明,当下列的三条件: (1)2 A A = (2)()tr A k = (3)AI =0,其中I 为所有元素为1的n 阶向量,0为所有元素为0的n 阶向量 全部满足时,T X AX 服从自由度为k 的2 χ分布。

历年考研概率论填空题汇总(2004

历年考研概率论填空题汇总(2004—2013年) (含答案和解析) (2013Ⅰ,14)设随机变量Y 服从参数为1的指数分布,a 为大于零的常数,则(1|)P Y a Y a ≤+>=. 【详解】这是一个条件概率. 11(1,)(1)a x a a P Y a Y a e dx e e +-≤+>= =- ? ,()x a a P Y a e dx e +∞->= =? , 从而(1,) 1(1|)1() P Y a Y a P Y a Y a P Y a e ≤+>≤+>= =- >. (2013Ⅲ,14)设随机变量X 服从标准正态分布(0,1)X N ,则2()X E Xe =. 【答案】22e (2012ⅠⅢ,14)设A ,B ,C 是随机事件,A ,C 互不相容,11(),()23 P AB P C == , 则(|)P AB C =. 【答案】 34 【解析】由条件概率的定义,()(|)() P AB C P AB C P C =. (2011,14)设二维随机变量22(,)~(,,,,0)X Y N μμσσ,则2()E XY =. 【答案】32μμσ+ 【考点分析】本题考查二维正态分布的性质. 【解析】由于0ρ=,由二维正态分布的性质可知随机变量,X Y 独立.因此 2 2 ()E XY EX EY =?. 由于(,)X Y 服从22(,;,;0)N μμσσ,可知()2 222,EX EY DY EY μμσ==+=+,则 ()2 2 2 3 2 ()E XY μμσ μ μσ=+=+. (2010Ⅰ,14)设随机变量X 概率分布为{}(0,1,2,...)! C P X k k k ===,则2 E X =. 【答案】2 【解析】由归一性得 {}1k P X k ∞ ===∑,即0 11! k C C e k ∞ ===∑ ,所以1C e -= 即随机变量X 服从参数为 1的泊松分布,于是1DX EX ==,

《概率论与数理统计》第七章假设检验.

第七章 假设检验 学习目标 知识目标: 理解假设检验的基本概念小概率原理;掌握假设检验的方法和步骤。 能力目标: 能够作正态总体均值、比例的假设检验和两个正态总体的均值、比例之差的假设检验。 参数估计和假设检验是统计推断的两种形式,它们都是利用样本对总体进行某种推断,然而推断的角度不同。参数估计是通过样本统计量来推断总体未知参数的取值范围,以及作出结论的可靠程度,总体参数在估计前是未知的。而在假设检验中,则是预先对总体参数的取值提出一个假设,然后利用样本数据检验这个假设是否成立,如果成立,我们就接受这个假设,如果不成立就拒绝原假设。当然由于样本的随机性,这种推断只能具有一定的可靠性。本章介绍假设检验的基本概念,以及假设检验的一般步骤,然后重点介绍常用的参数检验方法。由于篇幅的限制,非参数假设检验在这里就不作介绍了。 第一节 假设检验的一般问题 关键词:参数假设;检验统计量;接受域与拒绝域;假设检验的两类错误 一、假设检验的基本概念 (一)原假设和备择假设 为了对假设检验的基本概念有一个直观的认识,不妨先看下面的例子。 例7.1 某厂生产一种日光灯管,其寿命X 服从正态分布)200 ,(2μN ,从过去的生产经验看,灯管的平均寿命为1550=μ小时,。现在采用新工艺后,在所生产的新灯管中抽取25只,测其平均寿命为1650小时。问采用新工艺后,灯管的寿命是否有显著提高?这是一个均值的检验问题。灯管的寿命有没有显著变

化呢?这有两种可能:一种是没有什么变化。即新工艺对均值没有影响,采用新工艺后,X 仍然服从)200 ,1550(2N 。另一种情况可能是,新工艺的确使均值发生了显著性变化。这样,1650=X 和15500=μ之间的差异就只能认为是采用新工艺的关系。究竟是哪种情况与实际情况相符合,这需要作检验。假如给定显著性水平05.0=α。 在上面的例子中,我们可以把涉及到的两种情况用统计假设的形式表示出来。第一个统计假设1550=μ表示采用新工艺后灯管的平均寿命没有显著性提高。第二个统计假设1550>μ表示采用新工艺后灯管的平均寿命有显著性提高。这第一个假设称为原假设(或零假设),记为0H :1550=μ;第二个假设1550>μ称为备择假设,记为1H :1550>μ。至于在两个假设中,采用哪一个作为原假设,哪一个作为备择假设,要看具体的研究目的和要求而定。假如我们的目的是希望从子样观察值对某一陈述取得强有力的支持,则把该陈述的否定作为原假设,该陈述本身作为备择假设。譬如在上例中,我们的目的当然是希望新工艺对产品寿命确有提高,但又没有更多的数据可以掌握。为此,我们取“寿命没有显著性提高)1550(=μ”作原假设,而以“寿命有显著性提高)1550(>μ”作为备择假设。 (二)检验统计量 假设检验问题的一般提法是:在给定备择假设1H 下对原假设0H 作出判断,若拒绝原假设0H ,那就意味着接受备择假设1H ,否则就接受原假设0H 。在拒绝原假设0H 或接受备择假设1H 之间作出某种判断,必须要从子样),,,(21n X X X 出发,制定一个法则,一旦子样),,,(21n x x x 的观察值确定之后,利用我们制定的法则作出判断:拒绝原假设0H 还是接受原假设0H 。那么检验法则是什么呢?它应该是定义在子样空间上的一个函数为依据所构造的一个准则,这个函数一般称为检验统计量。如上面列举的原假设0H :)1550(00==μμμ,

2001-2011考研(数一)概率论部分历年真题

2001年全国硕士研究生入学统一考试数学(一) 一、填空题 (5)()2D X =,则根据车贝晓夫不等式有估计≤≥-}2)({X E X P _____________. 二、选择题 (5)将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数, 则X 和Y 相关系数为 (A) -1 (B)0 (C)1 2 (D)1 十一、(本题满分7分) 设某班车起点站上客人数X 服从参数为(0)λλ>的泊松分布,每位乘客在中途下车的概率为(01),p p <<且中途下车与否相互独立.Y 为中途下车的人数,求: (1)在发车时有n 个乘客的条件下,中途有m 人下车的概率. (2)二维随机变量(,)X Y 的概率分布. 十二、(本题满分7分) 设2~(,)X N μσ抽取简单随机样本122,,,(2),n X X X n ≥ 样本均值∑==n i i X n X 2121,∑=+-+=n i i n i X X X Y 12)2(,求().E Y

2002年全国硕士研究生入学统一考试 一、填空题 (5)设随机变量),(~2 σμN X ,且二次方程042=++X y y 无实根的概率为0.5,则μ=_____________. 二、选择题 (5)设X 和Y 是相互独立的连续型随机变量,它们的密度函数分别为)(x f X 和)(y f Y ,分布函数分别为)(x F X 和)(y F Y ,则 (A))(x f X +)(y f Y 必为密度函数 (B) )(x f X )(y f Y 必为密度函数 (C))(x F X +)(y F Y 必为某一随机变量的分布函数 (D) )(x F X )(y F Y 必为某一随机变量的分布函数. 十一、(本题满分7分) 设维随机变量X 的概率密度为 ()f x = 1c o s 0220 x x x ≤≤其它 对X 独立地重复观察4次,用Y 表示观察值大于 3π的次数,求2Y 的数学期望. 十二、(本题满分7分) 设总体X 的概率分布为 其中θ(1 02θ<<)是未知参数,利用总体X 的如下样本值

考研概率论复习-假设检验

假设检验 一.概念及方法 1. 概念 2. 方法 求正态总体未知参数的假设检验解题步骤: (1) 根据实际问题构造统计量,要求仅含待估参数且抽样分布已知; (2) 令该统计量落在由分位点确定的不合理区间里的概率为给定的显著 性水平α,从而得拒绝域; (3) 由观测值及α值查表计算该统计量值是否落在拒绝域内,从而判断 是否拒绝原假设. 二. 单正态分布),(2 σμN 中未知参数的假设检验(显著性水平α) 1. 单正态分布),(2σμN 中未知参数μ的双侧假设检验(显著性水平α) 2. 单正态分布),(2 σμN 中未知参数μ的单侧假设检验(显著性水平α) 例1:某厂用自动包装机装箱,在正常情况下,每箱重量服从正态分布N (100,2 σ)。某日开工后,随机抽查10箱,重量如下(单位:斤):99.3,98.9,100.5,100.1,99.9,99.7,100.0,100.2,99.5,100.9。问包装机工作是否正常,即该日每箱重量的数学期望与100是否有显著差异?(05.0=α)

解: 0H :1000==μμ, 1H :0μμ≠ 检验统计量为n s X T 0μ-= ,0H 的拒绝域为)}1(|{|2-≥=n t T W α 计算得9.99=x ,583.0=s ,542.010 583 .01009.990-=-= -= n s x t μ 对05.0=α,查得2622.2)9()1(025.02 ==-t n t a . 因为 )9(542.0.0||025.0t T <=,所以不拒绝0H ,即可以认为该日每箱重量的数 学期望与100无显著差异包装机工作正常。 3. 单正态分布),(2σμN 中未知参数2σ的双侧假设检验(显著性水平α) 4. 单正态分布),(2σμN 中未知参数2σ的单侧假设检验(显著性水平α) 例2:某维尼龙厂根据长期正常生产积累的资料知道所生产的维尼龙纤度服从正态分布,它的均方差为0.048。某日随机抽取5根纤维,测得其纤度为1.32,1.55,1.36,1.40,1.44。问该日所生产得维尼龙纤度的均方差是否有显著变化(显著水平α=0.1)? 解:0H :2202 048.0==σσ , 1H :202σσ≠ 检验统计量为2 2 2 )1(σχS n -= , 0H 的拒绝域为: )]}1([)]1({[22 122 2 2-≤-≥=- n n W ααχχχχ 计算得,0882.0=S ,507.13048 .00882.04)1(2 22 2 2 =?=-= σχS n 对,1.0=a ,自由度n-1=4,查-2 x 分布表,得

(完整版)考研数学概率论总结(强烈推荐),推荐文档

,则可作图长方形内的点的范围。这样一来即易看出事件包含关系的定义

可作图,则,对于这个大图形中的任意一点来说,不是属于 至少有一个发生”的定义;同理,事件可以借助右图表示公式左端的三个圆形各自互不相交的三部分再加上a 代表的区域包括、)(C P A B ,比左端多加了一次)22d c +

很多题利用这三个公式间的相互转化关系很容易求得答案。这三个公式的含义从直观上就能理解:公式(1)表示事件、同时发生的概率等于发生的概率减去发生而A B A A 不发生的概率;(2)式表示事件、同时发生的概率等于发生的概率乘以在B A B A 发生的条件下也发生的概率;当、相互独立时,也就是指事件与事件A B A B A 的发生互不影响,此时应该有、所以B )()|(B P A B P =)()|(A P B A P =由(2)式即可得出(3)式。出题人)()()|()()(B P A P A B P A P AB P ==从这三个公式意义上的相通性出发可以很灵活地构造题目,在后面的评题中会对这个知识点作更具体的讨论。 1.3第二章《随机变量及其分布》、第三章《随机变量的数字特征》、第四章《大数定律和 中心极限定理》 对于这一部分的复习可说的东西不多,因为在考试中出现的概率题目其实有相当大一部分难度是被解题所用的繁杂公式“分走”了,既然理解、掌握和牢记公式本身就不容易,那么题目的结构相对而言就要简单一些,我们甚至会发现历年真题中的有的题就像是课本上的例题一样。 这种情况有点像我们在英语考试中作阅读理解题,问题本身的含义并不复杂,难就难在文章中的单词“似曾相识”和句子看不懂上。而英国学生考“语文”时做的阅读理解问题肯定要比我们遇到的题目要复杂深入的多——因为考察的重点不一样。所以对于概率部分的复习,有两个步骤即可:首先是牢记公式,然后是把题做熟,在练习过程中透彻理解概念公式和性质定理。 陈文灯复习指南概率第二、三章把知识点列成了大表格,所有东西一目了然,复习时用来记忆和对比很方便。对于第二章的大表格也可以利用各部分之间的联系来对照复习,比如说二维分布的性质基本上与一维分布的性质一一对应(类似于二重积分和定积分性质之间的关系),二维边沿分布的内容与一维分布本质上也是相通的,离散型和连续型分布的各知识点也可互相对比、区别记忆。也就是“一维和二维相联系、离散和连续相对比、随机变量分布和随机变量函数的分布相区别”。 同时对于重要分布如二项、泊松、正态、均匀、指数分布必需记得非常牢,因为考试时会直接拿这些分布做题干来考察各章知识点,万一出现“由于题干中的分布函数不会写或写错而导致整道大题知道怎么做也没法做”的情况将是非常可惜的。 本章的一维连续分布和二维离散分布在历年真题中出现频率最高,最常考分布是均匀、指数和正态分布。对于一维连续型分布的性质可借助图像理解

概率统计第八章假设检验参考答案

概率论与数理统计作业 班级 姓名 学号 任课教师 第八章 假设检验 教学要求: 一、理解假设检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误; 二、了解一个正态总体均值与方差的假设检验,了解两个正态总体均值差与方差比的假设检验; 三、了解总体分布假设的2χ检验法,会应用该方法进行分布拟合优度检验(选学). 重点:假设检验的基本思想、假设检验的基本步骤、单个正态总体均值和方差的假设检验. 难点:正态总体均值和方差的假设检验. 一、基本计算题 1.某灯泡厂生产一种节能灯泡,其使用寿命(单位:小时)长期以来服从正态分布 )(2150,1600N .现从一批灯泡中随意抽取25只,测得它们的平均寿命为1636小时.假定 灯泡寿命的标准差稳定不变,问这批灯泡的平均寿命是否等于1600小时(取显著性水平 05.0=α)? 解:(1) 依题意,检验假设1600:00==μμH ,(1600:01=≠μμH ); (2) 由于标准差σ已知,在0H 成立时,采用U 检验法.选择统计量: n X U σ μ0 -= ~()1,0N (3) 对于给定的显著性水平05.0=α,当25=n 时,查正态分布表得临界点 96.1025.02 ==z z α (4)由25=n ,,1636=x ,150=σ,计算统计值: 2.125 150 1600 16360 =-= -= n x u σ μ (5) 由于96.12.1025.02 ==<=z z u α落在拒绝域

?? ??? ? ????≥-==20 ασμz n x u W 之外,所以在显著性水平05.0=α下,接受1600:0=μH .即认为这批灯泡的平均寿命等于1600. 2.正常人的脉搏平均为72(次/min ),检查10例四乙基铅中毒患者,测的他们的脉搏(次/min )为: 54 67 68 78 70 66 67 70 65 69 已知脉搏服从正态分布,在显著性水平05.0=α下,问四乙基铅中毒患者与正常人的脉搏有无显著差异? 解:(1) 依题意,检验假设72:00==μμH ,(72:01=≠μμH ); (2) 由于标准差σ未知,在0H 成立时,采用T 检验法.选择统计量: n S X T 0 μ-= ~()1-n t (3) 对于给定的显著性水平05.0=α,当10=n 时,查t 分布表得临界点 : ()2622.2)9(1025.02 ==-t n t α, (4) 由10=n ,,4.67=x ,9292.5=s 计算统计值: 4534.210 9292.572 4.670=-=-= n s x t μ (5) 由于>=4534.2t ()2622.2)9(1025.02 ==-t n t α,t 落在拒绝域 : )}1(/{2 -≥-= =n t n s x t W αμ 之内,故拒绝72:00==μμH ,即四乙基铅中毒患者与正常人的脉搏有显著差异. 3.某食品厂生产一种食品罐头,每罐食品的标准重量为500克.今从刚生产的一批罐头中随机抽取10罐,称得其重量为(单位:克) 495 510 505 498 503 492 502 512 497 506 假定罐头重量服从正态分布,问这批罐头的平均重量是否合乎标准(取05.0=α)? 解:(1) 依题意,检验假设500:00==μμH ,(500:01=≠μμH ); (2) 由于标准差σ未知,在0H 成立时,T 检验法.选择统计量:

相关文档
最新文档