2016年解直角三角形最详细题型讲解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三人行教育陈老师教案——2014/2015年中考题整理

一、选择题(每题三分)

1.(2015•绵阳第10题,3分)如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()

A.(11﹣2)米B.(11﹣2)米C.(11﹣2)米D.(11﹣4)米

考点:解直角三角形的应用..

分析:出现有直角的四边形时,应构造相应的直角三角形,利用相似求得PB、PC,再相减即可求得BC长.解答:解:如图,延长OD,BC交于点P.

∵∠ODC=∠B=90°,∠P=30°,OB=11米,CD=2米,

∴在直角△CPD中,DP=DC•cot30°=2m,PC=CD÷(sin30°)=4米,

∵∠P=∠P,∠PDC=∠B=90°,

∴△PDC∽△PBO,

∴=,

∴PB===11米,

∴BC=PB﹣PC=(11﹣4)米.

故选:D.

点评:本题通过构造相似三角形,综合考查了相似三角形的性质,直角三角形的性质,锐角三角函数的概念.2.(2015•山东日照,第10题4分)如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tanB=,则tan∠CAD的值()

A.B.C.D.

考点:解直角三角形..

分析:延长AD,过点C作CE⊥AD,垂足为E,由tanB=,即=,设AD=5x,则AB=3x,然后可证明

△CDE∽△BDA,然后相似三角形的对应边成比例可得:,进而可得CE=x,DE=,从而可求tan∠CAD==.

解答:解:如图,延长AD,过点C作CE⊥AD,垂足为E,

∵tanB=,即=,

∴设AD=5x,则AB=3x,

∵∠CDE=∠BDA,∠CED=∠BAD,

∴△CDE∽△BDA,

∴,

∴CE=x,DE=,

∴AE=,

∴tan∠CAD==.

故选D.

3. (2015山东济宁,9,3分)如图,斜面AC的坡度(CD与AD的比)为1:2,AC=米,坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带相连,若AB=10米,则旗杆BC的高度为( )

A.5米

B.6米

C. 8米

D. 米

【答案】A

4、(2014•孝感,第8题3分)如图,在▱ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,则▱ABCD 的面积是()

A.absinαB.a bsinαC.a bcosαD.abcosα

考点:平行四边形的性质;解直角三角形.

分析:过点C作CE⊥DO于点E,进而得出EC的长,再利用三角形面积公式求出即可.

解答:解:过点C作CE⊥DO于点E,

∵在▱ABCD中,对角线AC、BD相交成的锐角为α,AC=a,BD=b,

∴sinα=,

∴EC=COsinα=asinα,

∴S△BCD=CE×BD=×asinα×b=absinα,

∴▱ABCD的面积是:absinα×2=absinα.

故选;A.

5、(2014•泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()

A.1,2,3 B.1,1,C.1,1,D.1,2,

考点:解直角三角形

专题:新定义.

分析:A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;

B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;

C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;

D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.

解答:解:A、∵1+2=3,不能构成三角形,故选项错误;

B、∵12+12=()2,是等腰直角三角形,故选项错误;

C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;

D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”

的定义,故选项正确.

故选:D.

6、(2014•扬州,第8题,3分)如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()

(第2题图)

A.B.C.D.﹣2

考点:全等三角形的判定与性质;三角形的面积;角平分线的性质;含30度角的直角三角形;勾股定理

专题:计算题.

分析:连接AC,通过三角形全等,求得∠BAC=30°,从而求得BC的长,然后根据勾股定理求得CM的长,连接MN,过M点作ME⊥ON于E,则△MNA是等边三角形求得MN=2,设NF=x,表示出CF,根据勾股定理即可求得MF,然后求得tan∠MCN.

解答:解:∵AB=AD=6,AM:MB=AN:ND=1:2,

∴AM=AN=2,BM=DN=4,

连接MN,连接AC,

∵AB⊥BC,AD⊥CD,∠BAD=60°

在Rt△ABC与Rt△ADC中,

∴Rt△ABC≌Rt△ADC(LH)

∴∠BAC=∠DAC=∠BAD=30°,MC=NC,

∴BC=AC,

∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,

3BC2=AB2,

∴BC=2,

在Rt△BMC中,CM===2.

∵AN=AM,∠MAN=60°,

∴△MAN是等边三角形,

∴MN=AM=AN=2,

相关文档
最新文档