小学数学全套教案第8课时 练习课
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1单元小数乘法
第8课时练习课
【教学内容】:教材P14练习三第6~10题。
【教学目标】:
知识与技能:
1.熟练运用小数乘法运算定律进行简便计算,解决一些实际问题。
2.培养学生根据具体情况选择算法的意识与能力,以及思维的灵活性。
过程与方法:经历小数乘法运算定律的运用过程,熟练掌握小数乘法运算的简便方法。
情感、态度与价值观:在学习活动中,感受数学知识之间的密切联系,激发学生的学习兴趣,体验数学知识的应用价值,感受学习的成功与快乐,培养学生科学的思维方式。
【教学重、难点】
重点:熟练运用乘法运算定律进行小数乘法的简便运算。
难点:灵活运用计算策略进行简便运算,提高学生计算思维能力。
【教学方法】:质疑引导,讲解。迁移推理,合作交流。
【教学准备】:多媒体。
【教学过程】
一、回顾问题
1.回顾问题,加深认识。
上节课我们共同探究了小数乘法的简便运算,那么在计算中你有什么感受?(指4-5名学生回答:包括学困生、中、优生)
学生说在小数的混合运算中运用整数乘法的运算定律可以使计算变得简便,也就是说整数乘法的运算定律对于小数乘法同样适用。
出示练习
⑴1.25×7.7×8=□×□×7.7
⑵6.1×5.4+3.9×54=(□+□)×5.4
⑶2.5×(10+4)=□×□+□×□
⑷13×10.1=13×(□+□)=□×□+□×□
让学生在独立填空的基础上进行交流,让学生说一说填空的依据,加深对乘法运算律的认识和巩固。(交流时找中下等学生回答)
2.运用定律,快速判断。
每组题中你只需在A或B中选一题来算,看谁算得又对又快,你会选哪题呢?请你做在练习纸上。
A、(8×5.27)×1.25 A、4.5 × 99 A、2.3×0.6+2.3×0.4
B、(8×5.27)×1.24 B、4.5×100-4.5×1 B、2.3×0.6+0.4
为什么选?运用什么定律?(汇报时指名中等学生回答)
二、分层练习
1.基本练习,巩固新知。
(1)出示练习。
0.25×368×40 1.7×101 7.8×9+7.8
5.5×9.8 12.5×2.5×0.8×4 19.7×5.3+4.7×19.7
学生独立练习的同时,指名板演,做后共同订正。
2.综合练习,应用新知。
⑴出示教材第14页练习三第6题。
组织学生看图,理解题意。
分析:每箱有24瓶,每瓶1.3元,则每箱要(24×1.3)元,图中一共有5箱,一共需要(24×1.3×5)元,该算式用交换律计算比较方便。
指名学生板演,集体订正。
⑵完成教材第14页练习三第7题。
师指名学生板演,其余学生练习,并指出板演学生是否正确。
⑶完成教材第14页练习三第8、11题。先理解题意,获取题目所给的已知信息;再由学生独立完成,小组讨论,互相交流解题方法。
三、拓展新知
(1)说一说:7.69×101 2.5×(3.8×0.04) 0.125×72
观察这三道算式,哪个数最引起你的注意?你马上想到了几?它的好朋友8在哪里?你能找到吗?
小结:我们要找出能凑整的数时,要根据它不同的“藏”法,采用不同方法把它“找”出来。
⑵试一试:1.5×0.8+1.5×0.2 1.5×0.8+15×0.02
第一小题:能直接说出得数吗?运用了什么定律。
第二小题:能直接说出得数吗?还能直接用运算定律吗?为什么?。
利用积不变,因数变化规律进行变形15×0.02=1.5×0.2,
1.5×0.8+15×0.02=1.5×0.8+1.5×0.2出现了相同因数再运用乘法分配律进行简算。
小结:在不同的情况下,要灵活地选用不同的技巧把数进行凑整,使计算简便。
⑶根据实际情况求近似数
每千克白菜0.45元,妈妈买了3.7kg,一共要付多少钱?
学生思考:
分析解答:根据“单价×数量=总价”列出算式0.45×3.7≈1.67(元)。
教师提示:因为人民币常以“元”作为结算单位,在以“元”为单位的小数中,“分”所对应的是百分位数。所以在计算有关钱的问题时,即使没有要求取近似数,如果最后结果的小数位数多于两位,也要根据实际情况保留两位小数。
四、课堂小结
同学们,通过这节课的学习,你们有哪些收获?
五、作业:教材第14页练习三第9、10题。
【板书设计】
练习课
24×1.3×5
单价×数量=总价
0.45×3.7≈1.67(元)
数学学习技巧:良好习惯、终身受益小学阶段是儿童正式接受学习的最初阶段,
是良好学习习惯形成的关键时期,培养良好的学习习惯是形成学生学习能力的重要方面,也是发展个性的重要方面,因此掌握良好的学习方法是获得成功的关键。