数学发展简史

数学发展简史
数学发展简史

数学发展简史

数学发展史大致可以分为四个阶段。

一、数学形成时期(——公元前5 世纪)

建立自然数的概念,创造简单的计算法,认识简单的几何图形;算术与几何尚未分开。

二、常量数学时期(前5 世纪——公元17 世纪)

也称初等数学时期,形成了初等数学的主要分支:算术、几

何、代数、三角。该时期的基本成果,构成中学数学的主要内容。

1.古希腊(前5 世纪——公元17 世纪)

毕达哥拉斯——“万物皆数”

欧几里得——《几何原本》

阿基米德——面积、体积

阿波罗尼奥斯——《圆锥曲线论》

托勒密——三角学

丢番图——不定方程

2.东方(公元2 世纪——15 世纪)

1)中国

西汉(前2 世纪)——《周髀算经》、《九章算术》

魏晋南北朝(公元3 世纪——5 世纪)——刘徽、祖冲之出入相补原理,割圆术,算π

宋元时期(公元10 世纪——14 世纪)——宋元四大家杨辉、秦九韶、李冶、朱世杰

天元术、正负开方术——高次方程数值求解;

大衍总数术——一次同余式组求解

2)印度

现代记数法(公元8 世纪)——印度数码、有0;十进制(后经阿拉伯传入欧洲,也称阿拉伯记数法)

数学与天文学交织在一起

阿耶波多——《阿耶波多历数书》(公元499 年)

开创弧度制度量

婆罗摩笈多——《婆罗摩修正体系》、《肯特卡迪亚格》代数成就可贵

婆什迦罗——《莉拉沃蒂》、《算法本源》(12 世纪)算术、代数、组合学

3)阿拉伯国家(公元8 世纪——15 世纪)

花粒子米——《代数学》曾长期作为欧洲的数学课本

“代数”一词,即起源于此;阿拉伯语原意是“还原”,即“移项”;此后,代数学的内容,主要是解方程。

阿布尔.维法

奥马尔.海亚姆

浅析高中数学情境教学法

浅析高中数学情境教学法 随着课改工作的进一步实施,高中数学中已经广泛应用情境教学法。该教学方法能够将老师与学生和谐的统一,使他们之间可以围绕一个问题展开研究,集中所有的学生的思想,充分地发挥学生的思维潜力。该教学可以给学生提供良好的外部教学环境,同时可以调整教学过程中的课堂气氛,从而激发学生学习的乐趣以及积极向上的学习态度。 标签:高中数学;情境教学法;课堂教学 情景教学是以情境和案例为载体,引导学生实施研究学习,将学生分析问题、解决问题的能力锻炼出来。将图片与文字相互结合,设置出对应的情境,刺激带动学生的各部分感官,从而养成学生的能力,加强学生对于知识的理解能力,提高学生的学习兴趣以及学习的效果。 一、情境教学应遵循的原则 一是合作学习原则。学习也可以看作是一种人际交往的形式,是一种信息流动的过程。课程进行过程能强化学生与老师之间的关系。通过一些互换角色,实现师生平等交流。一方面可以实现学生责任心与参与度的提高,另一方面也可以发挥出教师的模范指导作用。 二是主体性原则。在数学教学过程中,应营造出欢快活跃的学习氛围,这样可以尽快地将学生带入到学习中,达到自主学习的目的。尽可能地激发学生的主动性和主观性,让学生积极地假设问题,让学生自己研究知识,发现规律,从而提升学生的自主意识,进一步加强学生自主探究知识的能力。 三是探索性原则。教学应该在合适的时间,根据课程的难易程度,制造出相对应的问题,让学生进行探索研究。從学生的真实情况出发,进行场景的设立。在问题的探索过程中,教师应该与学生一起协同研究。 二、情境教学法在高中数学课堂中的应用 (一)根据现实情况设计出相关的教学情景 在数学教学过程中,常规模式会让学生从中感到枯燥乏味。出现这一现象的原因是,教学与生活存在差异。本应该活跃的课堂趣味性教学内容,却是一个个跟生活实际没有一点关联的知识点。在这样的教学环境下,学生会变得极为被动。学生会只会被动接受知识,课程变得更加的乏味,学生也只会是机械套用公式原理。由于教学法的引入,可以将生活学习中的一系列实际问题作为情境制造的素材,制造出一些具有思考性的、悬疑性的问题,让学生从中感受到问题的真实性,进而主动地思考问题。教师在设计这类探索情境时,应该融入自己的情感,让问题变得更加具有探索性。

高中数学集合典型例题

-- -- 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U:如U =R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围. 11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围. 12. 设集合(){}01,2=--=x y y x A ,(){} 05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.

浅谈数学文化

浅谈数学文化 数学文化,是数学作为人类认识世界和改造世界的一种工具、能力、活动、产品,是在社会历史实践中所创造的物质财富和精神财富的积淀,是数学与人文的结合。数学文化主要以数学史、数学问题、数学知识等为载体,介绍数学思想、数学方法、数学精神。 一、数学方法——数学文化的辩证法 数学方法和数学思想将数学的智慧和魅力展现得淋漓尽致,这些凝聚了数学家们智慧的知识不是几句话就能说明白。 数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识。通过数学思想的培养,数学的能力才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。数学的方法是贯穿了整个数学,也是学习数学的基础。数学文化中数学文化的辩证性法有具体与抽象,演绎与归纳,发现与证明,分析与综合。这些方法之间有联系又有区别。 1.(1)、具体与抽象 具体是社会实践,是客观存在的东西,因为数学是源于社会实践的。同时数学是一种利用自身已有的概念、定理、公设,借助已知的相互关系,通过推理、计算而获得新发现的学科。数学的概念是抽象的,数学的方法也是抽象的。爱因斯坦相对论的发现恰恰是借助于数学的方法论路径去实现的,如果没有非欧几何人类可能还要在牛顿的时空观中走过许多年才能寻找到相对论。 数学方法的抽象是借助数学概念、公理、定理、公设等,把所有涉及研究对象的概念以及研究对象的抽象性归并汇集在一起,找出他们更具体抽象、统一的结论。这种抽象方法,人们一般冠以公理化方法。它大大拓宽了人们的视野,从只抽象个别对象扩展到抽象整个数学理论的逻辑结构。现在,数学研究的对象已不是具体、特殊的对象,而是抽象的数学结构。 1.(2)、演绎与归纳 演绎法是由一般到特殊的推理,它有三段论的表现形式,由一般的判断,特殊判断,结论三部分组成。 归纳与演绎不同,归纳是这样一种推理:其中所得到的结论超越了经验材料所提供的东西的一种经验猜想。看起来归纳与演绎很有区别的,事实归纳与演绎是相依而存、互为发展、对立统一的。恩格斯在《自然辩证法》中说:“我们用世界上的一切归纳法都永远不能把归纳过程弄清楚,只有对这个过程的分析才能做到这一点——归纳与演绎,正如分析与综合一样是必然相互联系着的,不应当牺牲一个而把另一个捧上天,应当把每一个用到该用的地方,而要做到这一点,就只有注意它们的相互联系,它们的相互补充。” 1.(3)、发现与证明 发现实际上就是定律的发现和理论地提出问题,最主要是通过假说,猜想。猜想是提出新思想,一个猜想可以带出或生出一个新的学科方向。比如,对欧氏第五公设的证明产生了非欧几何理论,四色猜想对开辟数学研究新途径有重要意义。在数学史上有很多有名猜想,人们熟悉的费马猜想,曾是一个悬赏10万马克的定理,实际上,它是源于几千年前的勾股定理。德国数学家曾宣称:当n大于2时,不存在一个整数n次幂是另外两个整数n次幂之和。数学家韦尔斯花了34年心血来解这道难题,并获得沃尔夫奖。许许多多数学猜想是由简单到复杂无休无止地产生出来。一个猜想解决了,又猜想出来了,数学家们总有解决不完的猜想。许多重要猜想,总能吸引众多数学家为此皓首穷经。在证明各个猜想的过程中,数学们会取得一系列重要理论成果。 1.(4)、分析与综合 分析是由未知去推导已知,在假定的前提下导出结论,而这一结论恰恰是已给出的条件或已知的命题。综合是由已知命题开始,通过演绎、归纳能一连串来导出未有的命题,或解

(完整)高中数学导数典型例题

高中数学导数典型例题 题型一:利用导数研究函数的单调性、极值、最值 1. 已知函数32()f x x ax bx c =+++ 过曲线()y f x =上的点(1,(1))P f 的切线方程为y=3x +1 。 (1)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (2)在(1)的条件下,求函数)(x f y =在[-3,1]上的最大值; (3)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 解:(1)极值的求法与极值的性质 (2)由导数求最值 (3)单调区间 零点 驻点 拐点————草图 2. 已知).(3232)(23R a x ax x x f ∈--= (1)当4 1||≤ a 时, 求证:)x (f 在)1,1( -内是减函数; (2)若)x (f y =在)1,1( -内有且只有一个极值点, 求a 的取值范围. 解:(1)单调区间 零点 驻点 拐点————草图 (2)草图——讨论 题型二:利用导数解决恒成立的问题 例1:已知322()69f x x ax a x =-+(a ∈R ). (Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)当0a >时,若对[]0,3x ?∈有()4f x ≤恒成立,求实数a 的取值范围.

例2:已知函数222()2()21x x f x e t e x x t =-++++,1()()2 g x f x '=. (1)证明:当22t <时,()g x 在R 上是增函数; (2)对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b , 上是减函数; (3)证明:3()2 f x ≥. 解:g(x)=2e^(2x)-te^x+1 令a=e^x 则g(x)=2a^2-ta+1 (a>0) (3)f(x)=(e^x-t)^2+(x-t)^2+1 讨论太难 分界线即1-t^2/8=0 做不出来问问别人,我也没做出来 例3:已知3)(,ln )(2-+-==ax x x g x x x f (1)求函数)(x f 在)0](2,[>+t t t 上的最小值 (2)对(0,),2()()x f x g x ?∈+∞≥恒成立,求实数a 的取值范围 解:讨论点x=1/e 1/e

日本数学发展史

简述日本数学发展史 专业:09数学与应用数学 学号:N0939121 姓名:彭璐

人类从何时才开始定居于日本列岛,至今仍无定论。公元四世纪中叶,日本建立了第一个统一的国家。在十世纪以前,日本主要吸收外来的文化。中国、朝鲜和印度的文化对日本都有很大的影响,十世纪以后,真正的日本文化才发展起来。日本数学的繁荣则更晚,是十七世纪以后的事。 日本人把受西方数学影响以前,按自己的特点发展起来的数学叫和算,也算日本传统数学。十七世纪后期至十九世纪中叶是和算的兴盛时期。 和算在中国古代数学的影响下发展起来。公元六世纪始,中国的历法和数学就直接或间接地﹝通过朝鲜﹞传入日本,日本政府亦多次派留学生到中国唐朝学习数学。到八世纪初,日本已仿照隋唐时期的数学教育制度设立算学博士并采用《周髀算经》、《九章算术》、《孙子算经》、《缀术》等中国古算书作为教材,这是中国数学输入日本的第一个时期。 十三至十七世纪,是中国数学传入日本的第二个时期,《杨辉算法》、《算学启蒙》、《算法统宗》等陆续传入日本,对日本数学的发展有重要的影响。吉田光由的《尘劫记》﹝1627﹞使珠算术在日本迅速得到普及,其内容与《算法统宗》极为相似,只是其中许多例题是根据日本的实际情况编写的。这时期还有几本着作是专门介绍和解释《算学启蒙》的。 十七世纪初,日本数学家开始写出自己的著作,如毛利重能的《割算书》﹝1622﹞、今村知商的《竖亥录》﹝1639﹞等。到十七世纪末期,通过关孝和等人的工作,逐渐形成了日本数学体系──和算。 关孝和在日本被尊为「算圣」,十七世纪末到十八世纪初,以他为核心形成一个学派﹝关流﹞,这一学派的主要成就是「点术」和「圆理」。「点术」是把由中国传入的天文术改为笔算,并改进了算式的记法,是和算特有的笔算代数学。「圆理」可看作是和算特有的数学分析。建部贤弘求得弧长的无穷级数表达式,又称圆理公式。久留岛义太推广了圆理公式,发展了圆理的极数术﹝极值问题﹞,并在西方数学家之前发现了欧拉函数和行列式展开定理。关氏学派的第四代大师安岛直圆深入到微积分领域,提出一种求弧长的方法;又将此法推广,形成二重积分,求出了两相交圆柱公共部份的体积。晚期的关氏学派数学家和田宁进一步改进了圆理,使计算弧长、面积、体积等问题更加简化,他使用的方法和现在积分法的原理相近。 除了关氏学派外,还有一些较小的学派。他们总结了和算中的各种几何问题;深入研究了计算椭圆、球面等面积和体积的公式;探讨了代数方程理论等等。十九世纪中叶,日本政府采取了开国政策,西方数学大量传入。明治维新时期,日本政府实行「和算废止,洋算专用」政策,和算迅速衰废﹝只有珠算沿用至今﹞,同时开始了近代数学的研究。时至今日,日本已步入世界上数学研究先进国家的行列。 美国,法国,英国,日本以及德国是公认的数学大国。日本的数学在20世纪后半叶进步很快,尤其在代数,微分几何,代数几何等领域日本数学家都做出了巨大的贡献。Kobayashi和Nomizu的两卷本Foundations of Differential Geometry是微分几何的经典教材。1960年仅37岁就因病去世的Yamabe是当时几何分析领域的绝对权威。日本数学家Oka在二十世纪三,四十年代解决了一系列多复变函数论的难题,被法国著名数学家H.Cartan誉为super-human task。代数数论中Iwasawa理论就是日本数学家岩泽健吉的杰作,成为后来Wiles证明费马大定理的主要工具之一。 下面介绍一下日本的数学家。

(no.1)2013年高中数学教学论文 教学中问题情境的创设

本文为自本人珍藏版权所有仅供参考 数学教学中问题情境的创设 数学问题情境是学生掌握知识、形成能力的重要源泉.作为教育工作者,应该在民主和谐的气氛下,联系实际,运用多种方法创设生动活泼的问题情境,提高数学教学的有效性. 数学是思维的体操,而思维从惊讶开始.数学学习过程是一个不断发现问题的动态过程,创设问题情境就是在教材内容和学生求知心理之间创造一种“不协调”,把学生引入与问题有关的情境中. 问题情境是指教师有目的、有意识地创设的各种情境,以促使学生去质疑问难、探索求解.因此,数学教学要以问题为载体,这样才能抓住课堂教学中思维这个“魂”,从而抓住课堂教学的根本. 问题情境对于学生来说,是引发认知冲突的条件,对于教师来说,是引发学生认知冲突的手段.教师可以利用各种各样的问题情境引发创新思维.创设合适的问题情境,能够改进数学教学的呈现方式,使学生的自主探索、动手实践、合作交流活动成为可能,从而改变学生的学习方式.学习方式的改变具有极其重要的意义,这是因为学习方式的转变将会牵引出思维方式、生活方式、生存方式的转变.学生的自主性、独立性、能动性和创造性将因此得到张扬,学生将成为学习的主人.面对问题情境,学生要亲历一个解决问题的“过程”,这是非常重要的.学生的学习过程不仅是一个接受知识的过程,而且也是一个发现问题、分析问题、解决问题的过程.在这个过程中,既能暴露学生产生的各种疑问、困难、障碍和矛盾,又能展示学生的聪明才智和创新成果,还可能会面临挫折和失败,结果造成表面上一无所获的局面,但这却是学生的学习、生存、成长、发展、创造所必须经历的过程,是学生能力智慧发展的内在要求.这些才是创设问题情境的深层次目的. 一、创设问题情境的主要方式 1.创设与生活有关的问题情境 数学来源于生活,数学又应用于生活,数学与生活密不可分,所以作为数学教师,我们应积极创设与生活有关的问题情境,引导学生自己发现数学命题(公理、定理、性质、公式). 例如,在讲“均值不等式”时,教师可设计测物体质量的实验,引导学生从中发现关于均值不等式的定理及其推论.通过物理中的问题,贴近生活,贴近实际,给学生创设了一个观察、联想、抽象、概括、数学化的过程.在这样的问题情境中,教师注意给学生动手、动脑的空间和时间,学生一定会想学、乐学、主动学. 2.创设趣味性问题情境,引发学生自主学习的兴趣

高中数学解题的21个典型方法与技巧

高中数学解题的21个典型方法与技巧 1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。 2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。 3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有: ①()2222a ab b a b ±+=± ②()2 222222a b c ab bc ca a b c +++++=++ ③()()()22222212a b c ab bc ca a b b c c a ??+++++=+++++? ? ④222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ??-????++=++=+??++-=++ ? ? ??????? 4、解某些复杂的特型方程要用到换元法。换元法解题的一般步骤是:设元→换元→解元→还元。 5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。其步骤是:①设②列③解④写 6、复杂代数等式条件的使用技巧:右边化为零,左边变形。 ①因式分解型:()()0---?---=,两种情况为或型。 ②配成平方型:()()22 0---+---=,两种情况为且型。 7、数学中两个最伟大的解题思路: ①求值的思路?????→方程思想与方法列欲求值字母的方程或方程组 ②求取值范围的思路 ??????→不等式思想与方法欲求范围字母的不等式或不等式组 8m 化成完全平方式。

数学文化与数学教育读后感汇编

《数学文化与数学教育》读后感 读了这本书对我的感触很深,使我懂得了好多数学的道理,对我的学习有了更大的帮助,而数学史对于大学数学教学来说就是一种十分有效、不可或缺的工具。认识到数学史在大学数学教学中的作用,并将数学史与大学数学教学紧密的结合起来,不但能有效的激发学生学习数学的兴趣,而且对于提高其数学方面的素质修养以及逻辑思维能力、启发文科学生的人格成长、发展其认知能力等都有十分重要的作用。 1.数学史是大学数学教学的重要的组成部分 俗言说的好“冰冻三尺非一日之寒”。数学知识的发生和发展过程其实就是数学家与困难、问题的斗争史。数学本身不仅是一门科学,而且还是一种精神,一种探索精神。比如,微积分是由牛顿、莱布尼兹、欧拉、维尔斯特拉斯等多位大数学家前赴后继,历尽艰辛,历时千年才建立和发展完善的。了解数学理论知识建立的历史,不但可以使学生对所学知识有一个全局的完整的认识,而且可以使学生学会由易到难、由已知到未知,逐步的克服障碍,在探索中学习。 2.数学史可以构建数学与人文之间的桥梁,激发学生学好大学数学的兴趣 数学学科的抽象性、严密的逻辑性, 使得很多学生有畏难心理, 大学数学的学习也相应的恶化成枯燥无味的公式记忆和解题演练。荷兰数学家和教育家赖登塔尔就批评那种注重逻辑严密性、而没有丝毫历史感的教育乃是“把火热的发明变成了冷冰冰的美丽”[2]。因此, 如何构建数学与人文之间的桥梁, 激发学生学习的兴趣就成了教师的首要任务。数学是各个时代人类文明的标志之一。数学对整个人类文明产生了不容质疑的影响,无论是物质文明还是精神文明两方面都是这样。数学对人类物质文明的影响,最突出的是反映在它直接或间接参与了从根本上改变人类物质生活方式的三次重大的产业革命。比如,第一次产业革命的主体技术是蒸汽机、纺织机等,它们的设计涉及对运动与变化的计算,而这只有在微积分发明后才有可能。又如,原子能的释放,首先是由于爱因士坦利用数学工具导出的著名公式揭示出质能转化的可能性。而现在的航天事业的发展更离不开数学的参与。“神舟飞船”的历次成功飞行都离不开数学家的参与。数学对于人类精神文明的影响同样也很深刻。比如,日心说的决定性胜利是在牛顿用当时最新的数学工具——微积分和严密的数学推理从动力学定律、万有引力定律出发推演出太阳系的运动之后。哥白尼的学说得到证实恰是通过这样的事实:天文学家加勒根据几位数学家在数学上的推算和预报找到了一颗新的行星——海王星。在大学数学的教学中,在学到相关数学知识的时候,适时的将数学知识与其在促进当时社会的发展联系起来,使学生认识到数学与人们的生活息息相关,其来源于生活、服务于生活。这将有助于树立学生对数学课正确的认识,增强学习兴趣。 3.数学史在大学数学教学中具有重要的德育功能 数学中蕴涵着丰富的辩证唯物主义的思想。在数学史上,数学概念的形成与演变,重要思想方法的确立与发展,重大理论的创立与变革等,无不体现唯物辩证法的核心思想——发展、运动与变化。比如,自从数学中引入了变量,运动就进入了数学。在高等数学中至始至终贯穿着动态的变量的思想,函数就是这一思想的具体体现。通过函数出现历史的介绍,就可以教会学生学会用变化、运动的观点看待事物、看待世界。在大学数学教学中融入数学史,

高中数学教学过程中的情境创设

高中数学教学过程中的情境创设 发表时间:2015-05-13T09:47:57.033Z 来源:《教育学文摘》2015年4月总第152期供稿作者:陈再明 [导读] 尽管数学知识有很强的抽象性和严谨性,然而其产生和发展的过程却是多姿多彩的。 ◆陈再明江苏省宜兴市阳羡高级中学214200 摘要:在高中数学课堂教学过程中,要创设各种情境,以情促知,以境促思,激发学生联想力,联系生活实际来解决数学问题,这有利于培养学生的数学思维和运用能力。 关键词:教学过程情境兴趣探索 教学过程中创设情境的一个主要目的是以境育情,促使学生愉快地学习。教学可根据教学内容的特点设置故事情境、生活情境或问题情境,以引起学生的学习兴趣或获得情感上的共鸣,为顺利展开教学做好铺垫。 一、创设故事情境,激发学生学习的兴趣 “兴趣是最好的老师”,设置生动有趣的故事情境是激发学生数学兴趣的有效途径。 尽管数学知识有很强的抽象性和严谨性,然而其产生和发展的过程却是多姿多彩的。因此,在数学教学过程中,教师在注重严谨性的同时,还需把数学科学的发现发展过程展示给学生。数学发展的史料、数学家的传记等都是创设故事情境的好素材。 【案例】等比数列概念的引入 讲到等比数列时,我介绍了一个俄罗斯故事:某人卖马一匹,得钱156卢布。但是买主买到马以后又懊悔了,要把马退还给卖主,他说这匹马根本不值这么多钱。于是卖主向买主提出了另一种计算马价的方案说:如果你嫌马太贵了,那么就只买马蹄上的钉子好了,马就算白送给你。每个马蹄铁上有6个钉子,第一个钉子只卖1/4戈比(1卢布等于100戈比),第二枚卖半个戈比,第三枚一个戈比,后面每个钉子的价格依此类推。卖主认为钉子的价值总共也花不了10个卢布,还能白得一匹好马,于是就欣然同意了。结果买主算账后才明白上当了。试问买主在这笔交易中要亏损多少?学生听了,兴趣盎然,学习积极性高涨。 二、创设生活情境,加深对概念的理解 理论来源于实践而又必须回到实践中去。生活中有数学,而数学中又有生活。高中数学中有许多抽象的难以理解的概念,如果能创设恰当的生活情境,不仅使学生对数学有一种亲近感,感到数学与生活同在,并不高深莫测和枯燥乏味,而且可以帮助学生加深对数学概念的理解。 【案例】函数概念的教学 从一个有趣的“绕圈子”问题谈起(投影显示):在世界著名水都威尼斯有一个马克尔广场,广场的一端有一座宽82m的雄伟教堂,教堂的前面是一方开阔地,这片开阔地经常吸引着四方游人到这里来做一种奇特的游戏:先把眼睛蒙上,然后从广场的一端走向另一端,看谁能走到教堂的正前面。你猜怎么着?尽管这段距离只有175m,竟没有一名游客能幸运地做到这一点,他们都走了弧线或左右偏斜到了另一边。 1896年,挪威生物学家揭开了这个谜团。他搜集了大量事例后分析说:这一切都是由于个人自身的两条腿在作怪!长年累月的习惯,使每个人伸出的步子要比另一条腿伸出的步子长一段微不足道的距离,而正是这一段很小的步差x,导致人们走出了一个半径为y的大圆圈!设某人两脚踏线间相隔0.1m,平均步长为0.7m,当人在打圈子时,圆圈的半径y与步差x有如下的关系:y= (0<x<0.1)。 上述生动和趣味性的学习材料是学习的最佳刺激,在这种问题情境下,复习初中的函数定义,引导学生分析以上关系也是一个对应,将函数定义由变量说引向集合、对应说。在这种情境下,有利于学生信息的贮存和概念的理解。 三、创设问题情境,培养学生的探索精神 问题情境是指在新奇未知刺激下学生形成认知冲突后提出问题或接受教师提问,产生解决此问题的强烈愿望,并作为自己学习活动目的的一种情境。自主探索的积极性和主动性主要来自于充满疑问的问题情境。教师要善于巧妙地把数学教学内容转换成具有潜在意义的问题情境,在学生思维的最近发展区创设情境,提出疑问,引出递进式问题,引起矛盾冲突,激发学生探索知识的兴趣。 【案例】讲解“证明:不论m为何值,抛物线y=x2+(m-1)x+m+1(m为参数)恒过一定点,并求出定点坐标”一题时,我是这样进行教学设计的: 师:先说说你们的想法,好吗? 学生甲:若抛物线系过定点,则对于抛物线系中的任意两条抛物线的交点即为定点,于是令m=1、-1,解得x=1、y=3,所以抛物线系恒过定点(-1,3)。 师:大家认为甲的证法对吗? 学生展开了热烈讨论,课堂气氛活跃起来。 学生乙:不正确,甲的方法很好,但是考虑不全面。如果取-1、1以外的值呢?能否保证其他的抛物线也过此点?故应补充说明,即将点的坐标代入y=x2+(m-1)x+m+1得0·m=0恒成立,从而问题得证。 师:乙同学补充得很好!甲乙两位同学采用的方法称为特值法,体现了先猜后证的数学思想。还有其他的方法吗? 学生丙:可以将抛物线方程按m的降幂排列,得(x+1)m+x2-x-y+1=0。因为上式对m∈R恒成立,即关于m的一次方程的解集为R,所以x+1=0且x2-x-y+1=0,解得x=-1、y=3,所以抛物线恒过定点(-1,3)。 师:丙同学说的方法很好。上述证法转化为方程组是否有解,若有解,则曲线系恒过定点。下面将问题改动一下: 求证:不论m为何值,抛物线y=mx2+2x+m+1(m为参数)不过定点。 此时学生的探索热情又高涨了起来,经过一番讨论后,说曲线系是一条与m无关的曲线。 师:综合上述情况,大家归纳一下,可得出什么结论? 此问再次激发了学生的探索欲望与兴趣,没有多久就有学生提出了自己的看法。 培养学生主动探索、独立学习是新一轮课程改革的任务之一。作为数学教师,要关注社会变革和生产生活实际,要有丰富厚实的知识和扎实的基本功。在课堂教学中,教师要根据数学学科和学生的特点,合理恰当地创设情境,让他们更积极、更主动地参与到对知识的探

数学文化与数学史答案

《数学文化与数学史》复习 Lecture 0 为什么要开设数学史 1.介绍文艺复兴时期意大利艺术大师达·芬奇(L. Da Vinci, 1452~1519)和19 世纪 英国业余数学家伯里加尔(H. Perigal, 1801~1898)证明勾股定理的方法。 达·芬奇 H. Perigal的水车翼轮法 2.谈谈你对数学史教育价值的认识。 一门学科一座桥梁一条进路一种资源一组专题 对学生来讲,通过对数学史的学习,有利于学生对数学知识的掌握和数学能力的提高,它不仅使学生获得了一种历史感,而且,通过从新的角度看数学学科,他们将对数学产生更敏锐的理解力和鉴赏力,有利于学生对数学的思考, 促进学生的数学理解,启发学生的人格成长,有利于激发学生的情感、兴趣和良好的学习态度,有利于辩证唯物主义世界观的形成, 有利于学生了解数学的应用价值和文化价值。 对于教师来讲,要使个体知识的发生遵循人类知识的发生过程,那么数学史就成为了数学教学的有效工具。将数学史作为一种资源运用到教学中,给教学提供一种新的视角,发挥其启发和借鉴的作用,并丰富课堂教学,使教学活动变得自然而有趣。这对数学教育改革也具有极其重要的意义。 Lecture 2 古代数学(I):埃及 3.Rhind 纸草书问题79 是一个等比数列求和问题,介绍其中蕴涵的等比数数列求和方法。

124 房屋 猫老鼠麦穗容积总数 7 49 343 24011680719607 2801 56021120419607 ()5749343230116807 717493432301 72801 19607 S =++++=++++=?= () ()() 21 221 1 11n n n n n n n n S a aq aq aq a q a aq aq aq a qS a q S aq a aq S q q ----=++++=++++=+=+--?=≠-L L 4. “埃及几何学中的珍宝”是什么 正四棱台体积公式: Lecture 3 古代数学(II ):美索不达米亚 3. 研究古巴比伦时期的泥版 BM 15285。设想你是一位祭司,你会提出什么数学问题 5 古代巴比伦人是如何求平方根近似值的 1211322, 1212a a a a a a a a a ??=+ ????? =+ ???L L 设第一个近似值为则第二个近似值为;第三个近似值为; 2 3 11 2 11;3021121;301;2521;30121;251;24,51,1021;25245110 1 1.4142155 606060?? += ????? += ????? += ??? + ++=设第一个近似值为, 则第二个近似值为; 第三个近似值为;第四个近似值为。 7. 美国哥伦比亚大学收藏的 Plimpton 322 号巴比伦泥版的内容是什么 泥版上有15行、4列数字,原来人们还以为是一份帐目。但是,奥地利著名数学史家诺伊格鲍尔(O. Neugebauer, 1899~1990)经过研究惊奇地发现:第3列数与第2列数的平方差竟都是平方数(少数行不满足这一规律,但显然是抄写错误所致)!例如(见下表,表中数字均为60进制):

数学发展简史

数学发展简史 数学发展史大致可以分为四个阶段。 一、数学形成时期(——公元前5 世纪) 建立自然数的概念,创造简单的计算法,认识简单的几何图形;算术与几何尚未分开。 二、常量数学时期(前5 世纪——公元17 世纪) 也称初等数学时期,形成了初等数学的主要分支:算术、几 何、代数、三角。该时期的基本成果,构成中学数学的主要内容。 1.古希腊(前5 世纪——公元17 世纪) 毕达哥拉斯——“万物皆数” 欧几里得——《几何原本》 阿基米德——面积、体积 阿波罗尼奥斯——《圆锥曲线论》 托勒密——三角学

丢番图——不定方程 2.东方(公元2 世纪——15 世纪) 1)中国 西汉(前2 世纪)——《周髀算经》、《九章算术》 魏晋南北朝(公元3 世纪——5 世纪)——刘徽、祖冲之出入相补原理,割圆术,算π 宋元时期(公元10 世纪——14 世纪)——宋元四大家杨辉、秦九韶、李冶、朱世杰 天元术、正负开方术——高次方程数值求解; 大衍总数术——一次同余式组求解 2)印度 现代记数法(公元8 世纪)——印度数码、有0;十进制(后经阿拉伯传入欧洲,也称阿拉伯记数法)

数学与天文学交织在一起 阿耶波多——《阿耶波多历数书》(公元499 年) 开创弧度制度量 婆罗摩笈多——《婆罗摩修正体系》、《肯特卡迪亚格》代数成就可贵 婆什迦罗——《莉拉沃蒂》、《算法本源》(12 世纪)算术、代数、组合学 3)阿拉伯国家(公元8 世纪——15 世纪) 花粒子米——《代数学》曾长期作为欧洲的数学课本 “代数”一词,即起源于此;阿拉伯语原意是“还原”,即“移项”;此后,代数学的内容,主要是解方程。 阿布尔.维法 奥马尔.海亚姆

高中数学如何进行问题情境教学

高中数学如何进行问题情境教学 问题情境创设是高中数学教学中的重要环节之一。精彩巧妙的问题情境,不仅会引起学 生的注意,起到承前启后、建立知识联系的作用,能让学生在进行数学学习的过程中学会去发 现和创造,给学生智慧的启迪和美的享受。因此,在数学教学中,教师精心设计的问题情境,能使学生由情人境,学习欲望高涨,兴趣浓厚,收到事半功倍的效果,笔者就一些做法加以 总结,就此谈一些体会。 一、创设悬念式问题情境. 悬念是一种学习心理机制,它是由学生对所学对象感到疑惑不解而又想解决它时产生的 一种心理状态,对大脑皮层有强烈而持续的刺激作用,使学生一时既猜不透、想不通,又丢 不开、放不下。所以悬念式问题的设置,能激发学生的学习动机和兴趣,开启学生的思路, 活跃思维、丰富想象、加强记忆,有利于学生在紧张而又愉快的氛围中获取新知,发展智力。 二、创设数学实验的问题情境,激发兴趣 . 教学过程是师生双边活的过程,数学教学活动也不例外,离开了学生的参与,整个过程 就难以畅通。有些数学概念可以通过引导学生从自己的亲自实验去领悟数学概念的形成,让 学生在动手操作、通过观察发现得出概念,探索反思中掌握数学概念. 案例1 :椭圆概念 . (1)学生动手实验,获得感性认识。(授课前一周要求学生事先准备一个鞋盒的外壳、两 个小图钉和一条细线)先用图钉将细线的两端固定,再用铅笔把细线拉紧,使笔尖在纸上慢慢 移动,画得图形为椭圆。 (2)提出问题,思考讨论。先固定图钉再系细线,是否一定能画出椭圆?试试看.椭圆上 的点有何特征?当细线长大于图钉距离时,其轨迹是什么?当细线长等于图钉距离时,其轨迹 是什么?当细线长小于图钉距离时,其轨迹是什么?你能给椭圆下一个定义吗?这一环节整个课堂气氛高涨,学生纷纷作答。 (3)揭示本质,给出定义。学生经历了实验、讨论后,对椭圆的定义的实质会较易掌握,不易犯忽略椭圆定义中的定长应大于焦距的错误。 三、创设质疑式问题情境. 亚里士多德说:“思维是从疑问和惊奇开始的。”疑问是发现问题的信号,解决问题的前提,形成创新思维的起点。有了疑问,学生就不再依赖于既有的方法和答案,不再轻易认同 别人的观点,而是敢于摆脱习惯、权威的影响,打破思维定势的束缚,敢于用一种新颖的、 充满睿智的眼光来看待事物,力求通过自己的独立思考和判断发现新问题并提出自己的独特 见解。如“相互独立事件”教学中,可以根据我国民间流传寓意深刻的谚语“三个臭皮匠臭死诸 葛亮”设计这样一个问题: 已知诸葛亮想出计谋的概率为0.85,三个臭皮匠甲、乙、丙各自想出计谋的概率各为 0.6、0.5、0.4.问这三个臭皮匠能胜过诸葛亮吗? 创设适当的问题情境,引发学生思考,激起他们的好奇心和求知欲,从而调动他们学习 的积极性和主动性。 四、通过趣味性问题创设情境,激发兴趣.

数学史和数学文化

《数学史与数学文化》 班级:网营14-1班 姓名:毕倩榕 学号: 云南财经大学中华职业学院 数学史和数学文化 数学可能是中国所有上学的人爱恨交加的科目了吧,一方面苦于数学的枯燥和难懂,另一方面又应用于各个方面,可以说对它的感情很复杂了。而数学史和数学文化这门课却讲了不少数学史中有意思数学家和他们的故事以及数学文化,数学俨然给人一种活泼感,就好像是一个印象中“严肃刻板”的人,做出了一系列生动幽默的动作,发生了一连串的故事;而数学文化就像是人类其他形式的文化一样,它活跃在人类历史进程中,推进了人类的进步。 数学是美的,数学美把就是把数学溶入语言之中,人们自然会联想到令人心驰神往的优美而和谐的黄金分割;各种有趣的数字比如说:完全数、水仙花数、亲和数、黑洞数等等;雄伟壮丽的科学宫殿的欧几里得平面几何;数学皇冠上的明珠?哥德巴赫猜想。 数学美可以分为形式美和内在美。? 数学中的公式、定理、图形等所呈现出来的简单、整齐以及对称的美是形式美的体现。数学中有字符美和构图美还有对称美,数学中的对称美反映的是自然界的和谐性,在几何形体中,最典型的就是轴对称图形。数学中的简洁美,数学具有形式简洁、有序、规整和高度统一的特点,许多纷繁复杂的现象,可以归纳为简单的数学公式。? 数学的内在美有数学的和谐美,数量的和谐,空间的协调是构成数学美的重要因素。数学中的严谨美,严谨美是数学独特的内在美,我们通常用?滴水不漏?来形容数学。它表现在数学推理的严密,数学定义准确揭示概念的本质属性,数学结构系统的协调完备等等。总之,数学美的魅力是诱人的,数学美的力量是巨大的,数学美的思想是神奇的,数学是一个五彩缤纷的美的世界。 数学是好玩的,在北京举行国际数学家大会期间,91岁高龄的数学大师陈省身先生为少年儿童题词,写下了“数学好玩”4个大字。数是一切事物的参与者,数学当然就无所不在了。在很多有趣的活动中,数学是幕后的策划者,是游戏规则的制定者。玩七巧

世界数学发展史

第一节数学发展的主要阶段 2009-10-12 10:05:28 来源:中外数学网浏览:7次 乔治·萨顿曾说过:“科学史是人类认识自然的经验的历史回顾。”数学史是数学发展历史的回顾,它研究数学产生发展的历史过程,探求其发展的规律。研究数学史,可以通过历史留下的丰富材料,了解数学何时兴旺发达,何时停滞衰退,从中总结经验教训,以利于数学更进一步的发展。关于数学发展史的分期,一般来说,可以按照数学本身由低级到高级分阶段进行,也就是分成四个本质不同的发展时期,每一新时期的开始都以卓越的科学成就作标志,这些成就确定了数学向本质上崭新的状态过渡.这里我们主要介绍世界数学史的发展。 一、数学的萌芽时期 这一时期大体上从远古到公元前六世纪.根据目前考古学的成果,可以追溯到几十万年以前.这一时期可以分为两段,一是史前时期,从几十万年前到公元前大约五千年;二是从公元前五千年到公元前六世纪. 数学萌芽时期的特点,是人类在长期的生产实践中,逐步形成了数的概念,并初步掌握了数的运算方法,积累了一些数学知识.由于土地丈量和天文观测的需要,几何知识初步兴起,但是这些知识是片断和零碎的,缺乏逻辑因素,基本上看不到命题的证明.这个时期的数学还未形成演绎的科学. 这一时期对数学的发展作出贡献的主要是中国、埃及、巴比伦和印度.从很久以前的年代起,我们中华民族勤劳的祖先就已经懂得数和形的概念了. 在漫长的萌芽时期中,数学迈出了十分重要的一步,形成了最初的数学概念,如自然数、分数;最简单的几何图形,如正方形、矩形、三角形、圆形等.一些简单的数学计算知识也开始产生了,如数的符号、记数方法、计算方法等等.中小学数学中关于算术和几何的最简单的概念,就是在这个时期的日常生活实践基础上形成的. 总之,这一时期是最初的数学知识积累时期,是数学发展过程中的渐变阶段. 二、初等数学时期 从公元前六世纪到公元十七世纪初,是数学发展的第二个时期,通常称为常量数学或初等数学时期.这一时期也可以分成两段,一是初等数学的开创时代,二是初等数学的交流和发展时代. 1.初等数学的开创时代. 这一时代主要是希腊数学.从泰勒斯(Thales,公元前636—前546)到公元641年亚历山大图书馆被焚,前后延续千余年之久,一般把它划分为以下几个阶段: (1)爱奥尼亚阶段(公元前600—前480年); (2)雅典阶段(公元前480—前330年); (3)希腊化阶段(公元前330—前200年); (4)罗马阶段(公元前200—公元600年). 爱奥尼亚阶段的主要代表有米利都学派、毕达哥拉斯(Pythagoras,公元前572—前497)学派和巧辩学派.在这个阶段上数学取得了极为重要的成就,其中有:开始了命题的逻辑证明,发现了不可通约量,提出了几何作图的三大难题——三等分任意角、倍立方和化圆为方,并且试图用“穷竭法”去解决化圆为方的问题.所有这些成就,对数学后来的发展产生了深远的影响. 雅典阶段的主要代表有柏拉图(Plato,公元前427—前347)学派、亚里斯多德(Aristotle,公元前384—前322)的吕园学派、埃利亚学派和原子学派.他们在数学上取得的成果,十分令人赞叹,如柏拉图强调几何对培养逻辑思维能力的重要作用;亚里斯多德建立了形式逻辑,并且把它作为证明的工具.所有这些成就把数学向前推进了一大步. 上述两个阶段称为古典时期.这一时期的数学发展,在希腊化阶段上开花结果,取得了

高中数学情境教学案例简析

高中数学情境教学案例 情境教学,即构建一个以情境为基础,学生在学习中成为提出问题和解决问题的主体,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。“正弦定理”是全日制普通高级中学教科书(试验修订本)数学第一册(下)的教学内容之一,既是初中“解直角三角形”内容的直接延伸,也是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本次课的主要任务是引入并证明正弦定理,我们希望通过本课题探索情境教学在高中数学教学中的应用方法和效果。 一、教学设计 1、创设一个现实问题情境作为提出问题的背景; 2、启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决过渡性问题时需要使用正弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,将过渡性问题引伸成一般的数学问题:已知三角形的两条边和一边的对角,求另一边的对角及第三边。解决这两个问题需要先回答目标问题:在三角形中,两边与它们的对角之间有怎样的关系? 3、为了解决提出的目标问题,引导学生回到他们所熟悉的直角三角形中,得出目标问题在直角三角形中的解,从而形成猜想,然后引导学生对猜想进行验证。 二、教学过程 1、设置情境 利用投影展示:如图1,一条河的两岸平行,河宽d=1km,因上游突发洪水,在洪峰到来之前,急需将码头A处囤积的重要物资及人员用船转运到正对岸的码头B处或其下游1 km的码头C处。已知船在静水中的速度∣vl∣= 5 km∕h,水流速度∣v2∣=3 km∕h。 2、提出问题 师:为了确定转运方案,请同学们设身处地地考虑一下有关的问题,将各自的问题经小组(前后4人为一小组)汇总整理后交给我。

数学发展简史

数学发展简史 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

数学发展简史数学发展史大致可以分为四个阶段。 一、数学形成时期(——公元前 5 世纪) 建立自然数的概念,创造简单的计算法,认识简单的几何图形;算术与几何尚未分开。 二、常量数学时期(前 5 世纪——公元 17 世纪) 也称初等数学时期,形成了初等数学的主要分支:算术、几 何、代数、三角。该时期的基本成果,构成中学数学的主要内容。 1.古希腊(前 5 世纪——公元 17 世纪) 毕达哥拉斯——“万物皆数” 欧几里得——《几何原本》 阿基米德——面积、体积 阿波罗尼奥斯——《圆锥曲线论》

托勒密——三角学 丢番图——不定方程 2.东方(公元 2 世纪——15 世纪) 1)中国 西汉(前 2 世纪)——《周髀算经》、《九章算术》 魏晋南北朝(公元 3 世纪——5 世纪)——刘徽、祖冲之出入相补原理,割圆术,算π 宋元时期(公元 10 世纪——14 世纪)——宋元四大家杨辉、秦九韶、李冶、朱世杰 天元术、正负开方术——高次方程数值求解; 大衍总数术——一次同余式组求解 2)印度 现代记数法(公元 8 世纪)——印度数码、有 0;十进制

(后经阿拉伯传入欧洲,也称阿拉伯记数法) 数学与天文学交织在一起 阿耶波多——《阿耶波多历数书》(公元 499 年) 开创弧度制度量 婆罗摩笈多——《婆罗摩修正体系》、《肯特卡迪亚格》代数成就可贵 婆什迦罗——《莉拉沃蒂》、《算法本源》(12 世纪)算术、代数、组合学 3)阿拉伯国家(公元 8 世纪——15 世纪) 花粒子米——《代数学》曾长期作为欧洲的数学课本 “代数”一词,即起源于此;阿拉伯语原意是“还原”,即“移项”;此后,代数学的内容,主要是解方程。 阿布尔.维法

相关文档
最新文档