数学发展史
数学的发展历史
数学的发展历史一、古代数学的萌芽数学的历史可以追溯到公元前1800年的古巴比伦,那时候出现了一些代数问题和几何问题。
他们使用类似于解谜游戏的方法来解决问题,这些解题方法在那个时代已经很先进了。
在公元前600年左右,古希腊的毕达哥拉斯学派开创了完整的数学理论,这阶段被认为是古代数学的黄金时代。
他们发现了自然数、几何元素和研究了三角形的一些基本理论。
二、欧几里得与数学元素欧几里得是古希腊的数学家、几何学家,他发表了著名的《几何原本》一书,成为了古代希腊数学理论的代表。
欧几里得的《几何原本》对许多几何概念和证明进行了全面的系统总结,成为了数学教育中的经典教材。
三、中世纪的数学沉寂中世纪的欧洲数学长期受到罗马帝国的灭亡和各种教会的禁忌的影响而停滞不前。
然而,在伊斯兰世界,穆斯林数学家保留下了希腊的数学遗产,发展出了乘法表和代数学,同时也为十进制数学系统提供了发展思路,这大大促进了基础数学的发展。
四、文艺复兴与数学的繁荣在文艺复兴时期,欧洲兴起的人文主义和启蒙思想极大地推动了数学的发展。
意大利数学家费拉利和巴西科等人提出了大量的代数方法和解决方案,而德国数学家克拉默在线性代数和矩阵理论上的突破对现代数学的发展产生了深刻的影响。
五、科技革命与数学的重要角色随着科技的飞跃,数学的应用价值也越来越受到重视。
数学提供了解决数值计算问题和控制系统问题的数学方法,使得机械、电子和计算机技术得到了迅速的发展。
现代数学的很多理论和方法都是为了解决这些工程和科学问题而发展起来的。
六、现代数学的哲学与未来现代数学不仅让人们更好的理解世界,更开启了理解科学和宇宙的新的宏观和微观层次。
随着技术的飞速发展,数学的应用也不断得到了创新和拓展,预示着数学将在未来担任越来越重要的角色,成为推动人类进步的重要力量。
数学史的历史
古印度人在算术和代数方 面取得了重要成就,如阿 拉伯数字的推广和应用。
古代数学的应用
01
古代数学的应用主要涉及日常生活、工程建筑、天文学等领域 。
02
例如,古埃及人使用数学方法进行土地测量和建筑结构设计,
古希腊人使用几何学进行天文观测和预测。
古代中国的数学在算术和代数方面取得了重大成就,广泛应用
03
VS
代数几何在数学中扮演着重要的角色 ,它与代数、分析、拓扑等其他数学 分支有着密切的联系,为解决复杂数 学问题提供了新的思路和方法。
分析学
分析学是数学中研究函数的性质和行 为的分支,主要包括实分析、复分析 和泛函分析等方向。
分析学在数学中占据着核心地位,它 为微积分、微分方程、积分方程、实 变函数、调和分析等领域提供了理论 基础。
数学史的历史
汇报人:
202X-12-25
• 数学的起源 • 中世纪数学的发展 • 近现代数学的发展 • 现代数学的分支
01
数学的起源
数学的起源
数学起源于人类早期的生产和生活实践,如计数、测量、图形等。
最早的数学概念可以追溯到公元前5000年左右的古埃及和苏美尔文明,他们开始使 用简单的数学工具和方法进行测量和计算。
概率论与数理统计在数学中扮演着重 要的角色,它为统计学、金融学、物 理学等领域提供了理论基础和工具支 持。
微分几何
微分几何是研究曲线、曲面等几何对象在微小尺度下的性质和行为的数学分支。
微分几何在数学中具有广泛的应用,它与代数几何、分析学、拓扑学等领域有着密切的联系,为解决数学问题提供了重要的 工具和方法。
阿拉伯数学家在几何学方面也有重要 贡献,他们研究了平面几何和立体几 何,并发展了一些重要的几何定理和 公式。
数学发展史
陈垦佑 东盟学院 200905002736
古希腊数学家
• 阿基米德
• 阿基米德(公元前287年— 公元前212年),古希腊哲 学家、数学家、物理学家。 出生于西西里岛的叙拉古。 阿基米德到过亚历山大里亚, 据说他住在亚历山大里亚时 期发明了阿基米德式螺旋抽 水机。后来阿基米德成为兼 数学家与力学家的伟大学者, 并且享有“力学之父”的美 称。阿基米德流传于世的数 学著作有10余种,多为希腊 文手稿。
古希腊数学
• 古希腊在数学史中占有不 可分割的地位。古希腊人 十分重视数学和逻辑。希 腊数学的发展历史可以分 为三个时期。第一期从伊 奥尼亚学派到柏拉图学派 为止,约为公元前七世纪 中叶到公元前三世纪;第 二期是亚历山大前期,从 欧几里得起到公元前146 年,希腊陷于罗马为止; 第三期是亚历山大后期, 是罗马人统治下的时期, 结束于641年亚历山大被 阿拉伯人占领。
阿拉伯数字
• 阿拉伯数字的历史
•
公元3世纪,印度的一位科学家巴格达发明了阿拉
ቤተ መጻሕፍቲ ባይዱ
伯数字。
•
最古的计数目大概至多到3,为了要设想“4”这个
数字,就必须把2和2加起来,5是2加2加1,3这个数字
是2加1得来的,大概较晚才出现了用手写的五指表示5
这个数字和用双手的十指表示10这个数字。这个原则实
际也是数学计算的基础。罗马的计数只有到Ⅴ(即5)
古代中国数学
• 古代数学萌芽 中国古代数学的萌芽原始公社末期,私有制和货物交换产生以后,
数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的
符号。到原始公社末期,已开始用文字符号取代结绳记事了。
• 古代数学体系形成 秦汉是封建社会的上升时期,经济和文化均得到迅速发展。
数学发展史大全(到2008年)
1679,德国数学家戈特弗里德。莱布尼兹最早使用只用 两个数的二进制算术。 1683,日本数学家关孝和首次将行列式引进数学。行列 式是由正方矩阵的元素所决定的数,用于解决联立方程 式及其它数学问题。 1706,威尔士数学家威廉。琼斯首先将符号π作为圆周 1717,英国天文学家亚伯拉罕。夏普交将圆周率的数值 计算到小数点后72位 1718,法国数学家亚伯拉罕。德。棣莫弗创作出《机会 论》,这是他的关于概率的第一本书。 1719,英国数学家布鲁克。泰勒验证了透视图中的消失 1743,法国数学家让。达朗贝尔因其著作《论动力学》 一书而建立数学动力学。三年后他提出复数理论。 1743,英国数学家托马斯。辛普森提出辛普森法则,计 算曲线围成的面积的系统方法。 1767,瑞士数学家莱昂哈德。欧拉发表著作《代数学完 整引论》,制定了代数规则。 1777,瑞士数学家莱昂哈德。欧拉将i引入数学概念, 成为-1的平方根。 1784,法国数学家阿德里安-玛丽。勒让德确定了勒让 德多项式,这个多项式的数学意义在于与物理学难题相 关的微分方程有了解决方法。 1796,德国物理学业家卡尔。高斯提出了直线或者曲线 与图形上的点的距离的最小二乘法。 1796,丹麦数学家卡斯帕尔。韦塞尔提出了用矢量表示 复数。 1806,瑞士科学家让。罗伯特。阿尔冈修改了阿尔冈图 表,用坐标平面里的点表示复数z=x+y,X轴表示实数部 分,Y轴表示虚拟部分 1815,英国学者彼得。罗杰修改了计算尺,增加了对数 坐标,极大简化了简洁和除法 1822,法国数学家约瑟夫。傅里叶提出傅里叶分析,用 正统函数和余弦函数分析连续函数 1824,德国天文学家、数家家弗里德里希。贝塞尔提出 了贝塞乐函数(最早是11817年提出的)。贝塞尔函数 形成一个无穷极函数,能解决天文和物理学方面的偏微 分方程的问题。 1827,德国物理学家卡尔。高斯发展了微分几何 1830,英国数学家乔治。皮考克在他的《代数论》中首 次提出了数字法则 1837,法国数学家、物理学家西蒙。泊松发现了泊松分 布曲线,一种在统计研究中非常重要的标准分布曲线 1843,爱尔兰数学家威廉。哈密顿修改了四元法,复数 第不能交替的。 1847,英国数学家奥古斯都。德。摩根提出了德。摩根 定律,为逻辑学奠定了基础 1851,法国数学家约瑟夫。刘维尔发表了著作,确认了 超越数的存在(不是代数概念里的数) 1854,英国数学家乔治。布尔引入了布尔代数概念 1854,德国数学家伯纳德。黎曼形成了非欧几德几何 学,后来这个理论又应用于相对论 1872,德国数学家理查德。戴德金发表了他的无理数理 1873,法国数学家查尔斯。赫密特证明了e(自然对数 的底数)是超级数(代数中无法用等式表现的无理数 1873,黄精数学家威廉。申克斯将π计算到小数点后
数学发展史
数学发展简史数学发展史大致可以分为四个阶段:一、数学起源时期二、初等数学时期三、近代数学时期四、现代数学时期一、数学起源时期(远古——公元前5世纪)这一时期:建立自然数的概念;认识简单的几何图形;算术与几何尚未分开。
数学起源于四个“河谷文明”地域:非洲的尼罗河;这个区域主要是埃及王国:采用10进制,只有加法。
埃及的主要数学贡献:定义了基本的四则运算,并推广到了分数;给出了求近似平方根的方法;他们的几何知识主要是平面图形和立体图形的求积法。
西亚的底格里斯河与幼发拉底河;这个区域主要是巴比伦:采用10进制,并发明了60进制。
巴比伦王国的主要数学贡献可以归结为以下三点:度量矩形,直角三角形和等腰三角形的面积,以及圆柱体等柱体的体积;计数上,没有“零”的概念;天文学上,总结出很多天文学周期,但绝对不是科学。
中南亚的印度河与恒河;东亚的黄河与长江在四个“河谷文明”地域,当对数的认识(计数)变得越来越明确时,人们感到有必要以某种方式来表达事物的这一属性,于是导致了记数。
人类现在主要采用十进制,与“人的手指共有十个”有关。
而记数也是伴随着计数的发展而发展的。
四个“河谷文明”地域的记数归纳如下:刻痕记数是人类最早的数学活动,考古发现有3万年前的狼骨上的刻痕。
古埃及的象形数字出现在约公元前3400年;巴比伦的楔形数字出现在约公元前2400年;中国的甲骨文数字出现在约公元前1600年。
古埃及的纸草书和羊皮书及巴比伦的泥板文书记载了早期数学的内容,年代可以追溯到公元前2000年,其中甚至有“整勾股数”及二次方程求解的记录。
二、初等数学时期(前6世纪——公元16世纪)这个时期也称常量数学时期,这期间逐渐形成了初等数学的主要分支:算术、几何、代数、三角。
该时期的基本成果,构成现在中学数学的主要内容。
这一时期又分为三个阶段:古希腊;东方;欧洲文艺复兴。
下面我们分别介绍:1.古希腊(前6世纪——公元6世纪)毕达哥拉斯——“万物皆数”欧几里得——几何《原本》阿基米德——面积、体积阿波罗尼奥斯——《圆锥曲线论》托勒密——三角学丢番图——不定方程2.东方(公元2世纪——15世纪)1)中国西汉(前2世纪)——《周髀算经》、《九章算术》魏晋南北朝(公元3世纪——5世纪)——刘徽、祖冲之:出入相补原理,割圆术,算术。
数学的发展历史
开创写下了不可磨灭的一章
阿基米德的墓碑上刻的图
此后是千余年的停滞
• 随着希腊科学的终结,在欧洲出现了科学萧条,数学 发展的中心移到了印度、中亚细亚和阿拉伯国 家.在这些地方从5世纪到15世纪的一千年中间, 数学主要由于计算的需要而发展.印度人发明了 现代记数法 后来传到阿拉伯,从发掘出的材料看, 中国是使用十进制最早的国家 ,引进了负数.
的大小关系,平行线理论,三角形和多角形等积 面积相等 的条件,第一卷最 后两个命题是 毕达哥拉斯定理的正逆定理;
第二卷:几何与代数。讲如何把三角形变成等积的正方形;其中12、 13命题相当于余弦定理。
第三卷:本卷阐述圆,弦,切线,割线,圆心角,圆周角的一些定理。 第四卷:讨论圆内接和外切多边形的做法和性质; 第五卷:讨论比例理论,多数是继承自欧多克斯的比例理论,被认为 是"最重要的数学杰作之一" 第六卷:讲相似多边形理论,并以此阐述了比例的性质。 第五、第七、第八、第九、第十卷:讲述比例和算术的理论;第十 卷是篇幅最大的一卷,主要讨论无理量 与给定的量不可通约的量 ,其中第 一命题是极限思想的雏形。 第十一卷、十二、十三卷:最后讲述立体几何的内容.
学的内容,年代可以追溯到公元前2000年,其中甚至有“整勾 股数”及二次方程求解的记录。
莱茵德纸草书 1650 B.C.
莫斯科纸草书 vh(a2 abb2)
3
古巴比伦的“记事泥板”中关于 “整勾股数”的记载”
约公元前1000年
马其顿,1988年
20世纪在两河流域有约50万块泥版文 书出土,其中300多块与数学有关
秦九韶的《数书九章》 卷一“大衍总数术”
“贾宪三角”, 也称“杨辉三角”
数学的发展历史
数学的发展历史
数学的发展史大致可以分为四个时期分别是:第一时期是数学形成时期,第二时期是
常量数学时期,第三时期:变量数学时期,第四时期:现代数学时期。
其研究成果有李氏
恒定式、华氏定理、苏氏锥面。
第一时期:数学形成时期(远古—公元前六世纪),这是人类建立最基本的数学概念
的时期。
人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本、最
简单的几何形式,算术与几何还没有分开。
第二时期:初等数学时期、常量数学时期(公元前六世纪—公元十七世纪初)这个时
期的基本的、最简单的成果形成中学数学的主要内容,大约持续了两千年。
这个时期逐渐
构成了初等数学的主要分支:算数、几何、代数。
第三时期:变量数学时期(公元十七世纪初—十九世纪末)变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(calculus)
的创立。
第四时期:现代数学时期(十九世纪末已经开始),数学发展的现代阶段的开端,以
其所有的基础--------代数、几何、分析中的深刻变化为特征。
数学的发展史
数学对人类的重要性
)
就,出现了许多闻名世界的数学家,如刘徽、祖冲之、 王孝通、李冶、秦九韶、朱世杰等人。出现了许多专 门的数学著作,特别是《九章算术》的完成,标志着 我国的初等数学已形成了体系。这部书不但在中国数 学史上而且在世界数学史上都占有重要的地位,一直 受到中外数学史家的重视。我国传统数学在线性方程 组、同余式理论、有理数开方、开立方、高次方程数 值解法、高阶等差级数以及圆周率计算等方面,都长 期居世界领先地位。
这个时期的起点是笛卡尔的著作,他引
这个时期是科学技术
飞速发展的时期,不 断出现震撼世界的重 大创造与发明。二十 世纪的历史表明,数 学已经发生了空前巨 大的飞跃,其规模之 宏伟,影响之深远, 都远非前几个世纪可 比,目前发展处于不 断加速的趋势。
从历史上看,远在巴比伦、埃及时代,由于人类生活和劳动生产的需要积累了一系列 算术和几何的知识。经过希腊时代,将这些比较零散的知识上升为理论的系统。西方
3 、变量数学 入了变量的概念。这个时期中还创立了 一系列新领域:解析几何、微积分、概 时期(十七世 率论、射影几何和数论等。并且出现了 代数化的趋势。随着数学新分支的创立, 新的概念层出不穷,如无理数、虚数、 纪初到十九世 导数、积分等等。 十八世纪是数学蓬勃发展的时期。以微 纪末) 积分为基础发展出一门宽广的数学领
数学发展史简介43页
贝努利家族(Bernoulli 瑞士) 贝努利家族祖 孙四代出过11位数学家。在常微分方程、概率 论和偏微分方程等方面有很大贡献。
傅立叶(Fouries 1768-1830 法国) 将函数表 示成三角级数,形成了一种在数学和物理上有 普遍意义的方法,同时发展了函数的概念。
魏尔斯特拉斯(Weierstrass 1815-1897 德国) 以幂级数的观点写成了全部的复变解析函数论 并建立了分析中的一致收敛的概念。给出了处
处不可导的连续函数的例子
f(x) bncos(anx) n0
(其中a为奇数,b为小于1的正常数,ab 1 3 )
2
四、近代数学时期
问题,至19世纪,矛盾已积累到非解决不可的程 度。
19世纪,经过柯西和魏尔斯特拉斯等人的工作, 给微积分奠定了严格的理论基础,从而兴起了 一大批新的数学分支,如:级数论、函数论、 变分学、微分方程等。
主要代表人物
费尔马(Fermat 1601-1665 法国) 著有《平 面与立体轨迹引论》。主要思想:方程可以描述 曲线,并可以通过对方程的研究推断曲线的性质
拉格朗日(Lagrange 1736-1813 法国) 变分
学的奠基人之一。完成了牛顿以后的最伟大的 经典力学著作《分析力学》,建立了优美而和 谐的力学体系。
柯西(Cauchy 1789-1857 法国) 历史上有名 的大分析家,在数学上的论文超过了700篇。最 大的贡献之一是在微积分中引进了严格的方法 柯西全集共27卷,其中极限定义至今沿用。
(3)已知函数求其最大值和最小值 (行星椭圆轨道的近日点和远日点;炮弹抛物 线轨道的最大射程和最高高度)
数学的发展历史
数学的发展历史数学是一门古老而又迷人的学科,它随着人类文明的进步而不断发展。
在人类的历史长河中,数学发展经历了多个重要的阶段和里程碑。
本文将回顾数学的发展历史,带您一起走进这个充满智慧的领域。
1. 古代数学的起源数学的起源可以追溯到公元前3000年左右的古巴比伦和古埃及。
在巴比伦,人们开始研究几何学,并应用它来解决土地测量和建筑等实际问题。
古埃及人则致力于测量、计数和记录财产。
他们发明了用于扩大数字量级的系统——埃及分数系统。
2. 古希腊数学的兴起古希腊是数学史上一个重要的里程碑。
在公元前6世纪,古希腊人开始对几何学和算术进行深入研究。
毕达哥拉斯提出了一系列关于直角三角形的理论,开创了几何学研究的先河。
欧几里得则在其巨著《几何原本》中,系统地整理了希腊前人的研究成果,成为几何学的标准教材,并对后世产生深远影响。
3. 中世纪的逐渐复兴在中世纪,数学的发展出现了滞缓的趋势,但仍有一些关键性的进展。
尤其是在伊斯兰文化的影响下,阿拉伯和波斯数学家的贡献不可忽视。
穆罕默德·本·穆萨等人为代数学的发展奠定了基础,并引入了许多重要的数学概念和技术。
4. 文艺复兴时期的数学大革命文艺复兴时期,欧洲大陆经历了一场思想解放的浪潮,数学领域也不例外。
这个时期的数学家对古希腊的数学遗产进行了翻新和扩展。
尼古拉斯·科佩尼库斯在代数学中引入了符号表示法,使得代数问题的处理更加灵活高效。
同时,数学的应用范围也被扩展到物理学和天文学等领域,为科学的进步做出了巨大贡献。
5. 近现代数学的突破18世纪和19世纪是数学领域的黄金时代。
数学家们在微积分、概率论、数论和几何学等方面取得了重大突破。
如牛顿和莱布尼茨共同发现了微积分,为物理学和工程学的发展提供了坚实的基础。
高斯则在数论和代数几何学方面做出了杰出的贡献,并推动了非欧几何学的发展。
6. 当代数学的拓展和应用随着科技的进步和人类对自然规律的深入理解,数学在当代的发展变得更加广泛和深入。
数学发展历史
数学史数学是一门古老的学科,它伴随着人类文明的产生而产生,至少有四、五千年的历史.但它不是某一个民族或某一个地区的产物,而是世界许多民族、诸多地区世世代代的产物,是人们在生产斗争和科学实践中逐渐形成和发展而成的。
数学的最初的概念和原理在远古时代就萌芽了,经过四千多年世界许多民族的共同努力,才发展到今天这样内容丰富、分支众多、应用广泛的庞大系统。
第一节发展历史一般认为,从远古到现在,数学经历了五个历史阶段.一、数学萌芽时期(公元6世纪以前)在人类历史上,这是原始社会和奴隶社会的初期。
这个时期数学的成就以巴比伦、埃及和中国的数学为代表。
古巴比伦是位于幼发拉底河和底格里斯河两河流域的一个文明古国。
巴比伦王国形成于约公元前19世纪,从出土的古巴比伦的泥板上的楔形文字中发现,古巴比伦人具有算术和代数方面的知识,建立了60进位制的记数系统,掌握了自然数的四则运算,广泛使用了分数,能进行平方、立方和简单的开平方、开立方运算.他们迈出了代数的第一步,能用一些特别的术语和符号代表未知数,能解特殊的几种一元一次、二元一次方程和一元二次方程,甚至某些三次、四次(可化为二次的)和个别指数方程,并且能够把它们应用于天文学和商业等实际问题中去。
几何方面掌握了简单平面图形的面积和简单立体体积的计算方法。
中国是最早使用十进位值制记数法的国家。
早在三千多年前的商代中期,在甲骨文中产生了一套十进制数字和记数法,最大的数字为三万.与此同时,殷人用十个天干和十二个地支组成六十甲子,用以记日、记月、记年。
用阴(——)、阳(一)符号构成八卦表示8种事物,后来发展为64卦。
春秋战国之际,筹算已普遍应用,其记数法是十进位值制。
数的概念从整数扩充到分数、负数,建立了数的四则运算的算术系统。
几何方面,4500年前就有测量工具规、矩、准、绳,有圆方平直的概念。
公元前1100年左右的商高知道“勾三股四弦五”的勾股定理.春秋末战国初的墨子在《墨经》中给出了一些数学定义,包含有许多算术、几何方面的知识和无穷、极限的概念。
数学发展史时间轴及事件
数学发展史时间轴及事件1.古埃及数学(公元前3000年-公元前1000年)数学在古埃及有着悠久的历史。
古埃及人发展出了一套完整的计数系统,以及用于计算和测量的一系列实用技术和工具。
例如,他们使用了“象形数字”来表达数值,同时发明了一种称为“祭坛测量的土地”的算法,用于计算矩形或金字塔的面积。
2.古希腊数学(公元前600年-公元500年)古希腊数学在西方数学史上占据了重要的地位。
在这个时期,出现了许多杰出的数学家,如毕达哥拉斯、欧几里得和阿基米德等。
他们为数学界的发展做出了巨大的贡献,如毕达哥拉斯提出了著名的勾股定理,欧几里得写下了著名的《几何原本》,阿基米德则发明了微积分的基本原理。
3.中世纪欧洲数学(公元500年-1500年)在中世纪欧洲,数学得到了进一步的发展。
在这个时期,出现了许多修道士和学者,如奥尔本修道士和尼科马科斯等。
他们对数学进行了深入的研究,并在代数、几何和三角学等领域取得了一些重要成果。
同时,中世纪欧洲的数学教育也变得日益重要,一些大学纷纷开设数学课程。
4.文艺复兴时期数学(公元1500年-1700年)在文艺复兴时期,数学经历了巨大的变革和发展。
人们重新审视古希腊数学,并在此基础上进行创新。
代数学逐渐成为数学的主流,同时平面几何和立体几何也得到了极大的发展。
一些重要的数学思想和方法开始形成,如极限、导数和微积分等。
在这个时期,一些重要的数学家如雷科德、韦达和牛顿等为数学界的发展做出了巨大贡献。
雷科德在其著作《大术》中系统地阐述了代数符号和算术方法,韦达则发展出了符号代数,为现代代数奠定了基础。
牛顿则在微积分和物理学等领域做出了杰出的贡献。
5.近现代数学(公元1800年至今)近现代数学的发展可以说是日新月异。
在19世纪,数学家们开始研究更抽象的问题,如数论、抽象代数和拓扑学等。
同时,概率论和统计学也得到了迅速的发展。
20世纪初,数学开始与物理学、工程学等领域紧密联系,出现了许多应用数学分支,如量子力学、计算机科学、经济学等。
数学发展历史
数学史数学是一门古老的学科,它伴有着人类文明的产生而产生,至少有四、五千年的历史.但它不是某一个民族或者某一个地区的产物,而是世界许多民族、诸多地区世世代代的产物,是人们在生产斗争和科学实践中逐渐形成和发展而成的。
数学的最初的概念和原理在远古时代就萌芽了,经过四千多年世界许多民族的共同努力,才发展到今天这样内容丰富、分支众多、应用广泛的庞大系统。
第一节发展历史普通认为,从远古到现在,数学经历了五个历史阶段.一、数学萌芽时期(公元 6 世纪以前)在人类历史上,这是原始社会和奴隶社会的初期。
这个时期数学的成就以巴比伦、埃及和中国的数学为代表。
古巴比伦是位于幼发拉底河和底格里斯河两河流域的一个文明古国。
巴比伦王国形成于约公元前 19 世纪,从出土的古巴比伦的泥板上的楔形文字中发现,古巴比伦人具有算术和代数方面的知识,建立了60 进位制的记数系统,掌握了自然数的四则运算,广泛使用了分数,能进行平方、立方和简单的开平方、开立方运算.他们迈出了代数的第一步,能用一些特别的术语和符号代表未知数,能解特殊的几种一元一次、二元一次方程和一元二次方程,甚至某些三次、四次(可化为二次的)和个别指数方程,并且能够把它们应用于天文学和商业等实际问题中去。
几何方面掌握了简单平面图形的面积和简单立体体积的计算方法。
中国是最早使用十进位值制记数法的国家。
早在三千多年前的商代中期,在甲骨文中产生了一套十进制数字和记数法,最大的数字为三万.与此同时,殷人用十个天干和十二个地支组成六十甲子,用以记日、记月、记年。
用阴 (——)、阳(一)符号构成八卦表示 8 种事物,后来发展为 64 卦。
春秋战国之际,筹算已普遍应用,其记数法是十进位值制。
数的概念从整数扩充到分数、负数,建立了数的四则运算的算术系统。
几何方面,4500 年前就有测量工具规、矩、准、绳,有圆方平直的概念。
公元前 1100 年摆布的商高知道“勾三股四弦五”的勾股定理.春秋末战国初的墨子在《墨经》中给出了一些数学定义,包含有许多算术、几何方面的知识和无穷、极限的概念。
数学发展的历史介绍
引言概述:数学作为一门古老而且普遍存在的学科,在人类文明发展的过程中扮演着重要的角色。
数学的发展历史可以追溯到古代文明,并随着时间的推移逐渐演化和发展。
本文将介绍数学的历史发展,从古代数学的起源开始,逐步展开正文,分五大点来阐述数学的进展与演化。
正文内容:一、古代数学的起源1.原始数学:人类最早的数学思想主要是基于实际需求的,主要应用于计数和测量。
2.古代数学的典范:古埃及的几何学和古代巴比伦的代数学。
3.古希腊数学的诞生:毕达哥拉斯定理和欧几里得的几何学。
二、中世纪数学的发展1.印度数学的传播:阿拉伯数学家将印度数字系统和代数学引入欧洲。
2.贝克勒尔学派:贝克勒尔、纳西尔丁·图西和奥马尔·海亚姆等数学家对代数和几何学作出了重要贡献。
3.罗益席尔皮和方程的大发现:罗益席尔皮在解决高次方程时提出了新的解法。
三、现代数学的崛起1.十七世纪的数学革命:笛卡尔几何学的诞生和数学分析的发展。
2.牛顿和莱布尼茨的微积分学:微积分的发明进一步推动了数学的进步。
3.概率论与统计学的兴起:贝努利家族和拉普拉斯等人对概率论和统计学的贡献。
四、数学的现代化与应用1.抽象代数学的兴起:伽罗华和埃尔米特等人将代数学从具体问题中抽象出来。
2.黎曼几何学:黎曼将几何学从平面拓展到曲面,为现代几何学奠定了基础。
3.数学与信息科学的结合:在计算机科学和密码学领域,数学的应用越来越广泛。
五、当代数学的发展1.数学的交叉学科:数学与物理学、工程学等学科的交叉研究成为当代数学的一个重要方向。
2.数学的开放性问题:著名的费马猜想和黎曼猜想等问题一直未能得到证明。
3.数学的计算机辅助研究:计算机技术的进步使得数学研究更加高效和精确。
总结:数学发展的历史演化是一段源远流长的故事。
从原始数学到古代数学的起源,再到中世纪数学的发展,数学以其独特的逻辑和思维方式为人类文明进程提供了重要的支撑。
现代数学的崛起与应用为科学技术的发展和社会进步提供了坚实的基础。
数学的发展历史
数学的发展历史数学,作为一门学科,经历了漫长的发展历程。
古希腊的毕达哥拉斯学派、我国古代的算学、近代的微积分学、现代的数理逻辑等都是数学史上的重要篇章,本文将从古希腊开始,简要介绍数学发展的历史。
一、古希腊时期古希腊是古代文明的重要代表之一,也是古代数学的重要中心之一。
毕达哥拉斯学派是古希腊时期的一个著名学派,他们强调数学的重要性,并对数学的基础做出了一些贡献。
古希腊时期数学的发展主要包括以下几个方面:(一)几何学古希腊时期,几何学得到了很好的发展。
欧几里德是古希腊时期最著名的数学家之一,他根据早期希腊的几何学知识,写出了一本名为《几何原本》的巨著。
这本书主要讲述了平面几何学和立体几何学的基本理论,被誉为几何学的圣经。
欧几里德的贡献包括从公理出发发展了平面几何学,建立了如今所使用的公理体系;他对于数学的分类,也影响至今;他提出几何的递推法以及对于平面坐标系的基础建立,都是几何学中不可或缺的重要概念。
(二)代数学古希腊时期,代数学也有了一定的发展。
毕达哥拉斯学派被认为是代数学的创始学派,他们强调数的本质和有理数的存在,提出了数的概念,并且探讨了数的基本性质,以此为基础开展了整体学和方程学研究。
我们可以说,毕达哥拉斯理论的提出,为后世的数字理论提供了丰富的内容。
(三)三角学古希腊时期,三角学的基本概念已经形成并有了一定的应用。
科学家提高了三角函数的性质、以及在图形学、建筑学、天文学、地图制作等领域的实际应用。
二、中世纪中世纪,数学的发展相对缓慢,离开了古代数学之光辉,但也有一些重要的成果和贡献。
主要集中于阿拉伯数学、欧洲的代数学和三角学。
(一)阿拉伯数学阿拉伯人是拜占庭帝国的扩张者,他们将一些古希腊的数学文献翻译为阿拉伯文,在中世纪的欧陆得以广泛传播。
并且他们开展了数学的研究,特别是代数学和三角学,做出了重要的贡献。
阿拉伯人发明了一种新的计算方法“阿拉伯数字”,即我们今天所了解的数字。
阿拉伯人的贡献之一是开展了三角函数的研究、这又为后来的微积分学提供了良好的基础。
简述数学发展史
简述数学发展史数学作为一门古老而又重要的学科,其发展历程可以追溯到古代文明的起源。
从最早的数数、计算到如今的高等数学和抽象代数,数学一直在不断演变和发展。
本文将以简述数学发展史为主题,介绍数学的起源、发展和重要里程碑。
一、古代数学的起源古代数学的起源可以追溯到古埃及、巴比伦和古印度等文明。
这些文明发展了一些基本的数学概念和计算方法。
比如,古埃及人通过观察天象来制定了一套365天的日历,巴比伦人发展了一种复杂的计算方法来解决土地测量和商业交易中的问题,古印度人则发展了一套用符号表示数的系统。
二、古希腊数学的发展古希腊是数学发展史上的重要里程碑。
在古希腊,数学开始从实用的计算方法转向了理论研究。
毕达哥拉斯学派提出了著名的毕达哥拉斯定理,开启了几何学的研究。
欧几里德则系统地总结和整理了古希腊数学的成果,编写了《几何原本》,成为后世数学教材的基石。
古希腊数学的理论研究为后来的数学发展打下了基础。
三、中世纪数学的发展中世纪是数学发展的一个相对停滞的时期,主要受到宗教和哲学的影响。
然而,中世纪的阿拉伯数学家却保留了古希腊数学的传统,并且在代数学和三角学方面有了重要的贡献。
他们引入了阿拉伯数字和十进制计数法,将古希腊的几何学和印度的代数学相结合,为后来的数学发展奠定了基础。
四、文艺复兴时期的数学革新文艺复兴时期是数学发展的一个重要阶段。
在这个时期,数学开始成为一门独立的学科,并且与现实生活的应用相结合。
伽利略和笛卡尔等科学家的贡献使得数学与物理学和天文学等自然科学产生了密切的联系。
同时,数学的符号表示也得到了进一步的发展,如笛卡尔坐标系的引入使得几何学和代数学的联系更加紧密。
五、近现代数学的发展近现代数学的发展是以数学的严格化和形式化为特点的。
19世纪,数学开始从几何学和代数学中分离出来,成为一门独立的学科。
数学家们开始研究更加抽象和普遍的概念,如集合论和数理逻辑。
同时,微积分的发展也为现代科学和工程学的发展提供了强大的工具。
数学的发展历史是怎么样的
数学的发展历史是怎么样的1.古代数学阶段这一时期又可以认为是"数学起源与早期发展时期",人类建立最基本的数学概念。
古代数学是指17世纪以前,主要是古希腊时期建立的欧几里得几何学,古代中国、古印度和古巴比伦时期建立的算术,欧洲文艺复兴时期发展起来的代数方程等,古代数学也称为初等数学。
一般来说,我们国家中小学数学知识属于初等数学范畴。
相对于以后时期的变量数学,初等数学又称为常量数学。
古希腊时期的数学与古希腊文化繁荣的时代一致,从公元前6世纪开始,到公元前3世纪前后,由最伟大的古代几何学家欧几里得、阿基米德、阿波罗尼奥斯推向顶峰,最辉煌的著作是欧几里得的《几何原本》。
尽管这部书是两千多年以前写成的,但是它的一般内容和表述的特征,却与近代长期通用的几何教科书非常接近。
古代希腊的数学家不但把当时已有的几何知识总结和表述为一种完整的体系,还发展了许多新的重要的几何结果。
例如,他们研究了圆锥曲线;证明了某些射影几何的定理;以天文学的需要为指南建立了球面几何;建立了初步的三角学,并计算出最初的正弦表;确定了许多复杂图形的面积和体积。
《九章算术》是中国古代最重要的数学著作,成书年代最迟在公元前1世纪,其中有些内容可以追溯到周代。
书中已给出了三元一次方程组的解法;同时在世界历史上第一次使用负数,叙述了对负数进行运算的规则;也给出了求平方根与立方根的方法。
魏晋南北朝时期的中国数学有了突出的发展,进入到"论证数学"的阶段,代表人物是刘徽和祖冲之。
公元3世纪的刘徽,是中国古代最杰出的数学家,他大量使用的"出入相补原理"是我国古代数学特有的推理论证方法。
三国时期的赵爽运用"面积的出入相补方法"证明了勾股定理,是世界数学史上对勾股定理最早的证明之一。
刘徽的另一重大贡献是发明了割圆术,并用割圆术计算圆周率π。
祖冲之是南北朝时期的一个小官,在历法和数学上都有重大贡献。
数学发展史
“算法家”与“算盘家”的比赛 韦达
三、近代数学时期
变量数学(公元17世纪——19 世纪初)
对运动和变化的研究成了自 然科学的中心→→变量、函数
1.笛卡尔的坐标系(1637年《几何学》)
2.牛顿和莱布尼兹的微积分(17世纪后半期)
3.微分方程、变分法、微分几何、复变函数、概率论 4.代数基本定理(1799年)
数学家庞加莱说:“若 想预见数学的将来,正确 的方法是研究它的历史和 现状” .
现代数学时期的结果,也成为高校数学、力学、 物理学等学科数学教学的内容,并被科技工作者所
使用。
希尔伯特, (D.Hilbert,David , 阿贝尔 (1802-1829 ) 伽罗瓦 柯西( (1811-1832) 1789-1857) 康托尔 (1845 ~1815-1897 1918) 魏尔斯特拉斯( ) 罗巴切夫斯基 波约尓 黎曼 1862~1943)
牛顿:Isaac Newton 笛卡尔 (R.Descartes,15961650)
莱布尼茨(Gottfriend Wilhelm Leibniz,1646-1716)
高斯(C.F.Gauss,17771855)
四、现代数学时期
(19世纪20年代—— ) 进一步划分为三个阶段: 现代数学酝酿阶段(1820——1870年); 现代数学形成阶段(1870——1950年); 现代数学繁荣阶段(1950——现在)。
一、数学起源时期
( 远古(4000年前) —— 公元前5世纪 )
这一时期:建立自然数的概念; 认识简单的几何图形;算术与 几何尚未分开。
数学起源于四个“河谷文明”地域
非洲的 尼罗河---埃及:几何的故乡 西亚的 底格里斯河与幼发拉底河---巴比伦:代 数的源头; 中南亚的 印度河与恒河---印度:阿拉伯数字的 诞生地 东亚的 黄河与长江----中国 文明程度的主要标志之一就是数学的萌芽
中国数学发展史
随着国家对基础学科的重视和投入的 增加,中国数学迎来了新的发展机遇 ,如数学中心的建设、国际合作项目 的增多等。
中国当代数学的展望与趋势
展望
未来,中国数学将继续保持稳定的发展态势,并有望在某些领域取得突破性进 展。
趋势
随着科技的不断进步和应用领域的拓展,数学与其他学科的交叉将更加广泛和 深入,如人工智能、金融工程等领域的数学应用将更加广泛和深入。
魏晋南北朝的数学发展
魏晋南北朝时期,数学得到了 进一步的发展,出现了刘徽、 祖冲之等杰出的数学家。
ቤተ መጻሕፍቲ ባይዱ
刘徽在《九章算术注》中提出 了“割圆术”,为圆周率的计 算奠定了基础。
祖冲之在刘徽的基础上,进一 步精确计算出圆周率在 3.1415926和3.1415927之间, 这一成果领先世界千年之久。
02
宋元时期的数学
中国数学发展史
目 录
• 古代数学 • 宋元时期的数学 • 明清时期的数学 • 近现代数学 • 当代数学
01
古代数学
数学起源与早期发展
01
数学起源于原始社会时期,随着生产的发展和度量 衡的迫切需要,数学开始萌芽。
02
早期数学主要应用于天文、历法、算术等领域,为 农业、手工业和商业的发展提供了基础。
感谢您的观看
THANKS
概率统计等,为国际数学界的发 展做出了重要贡献。
国际合作与交流
中国积极参与国际数学交流与合作, 与世界各国数学家共同推动数学学 科的发展。
国际认可
中国数学家多次获得国际数学大奖, 如菲尔兹奖、沃尔夫奖等,得到了 国际数学界的广泛认可。
中国当代数学的挑战与机遇
挑战
随着国际数学竞争的加剧,中国数学 面临着一系列挑战,如人才流失、学 术不端等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2ADD YOUR TITLE HERE
在童年时代,在小学学习 “算术”课程时,感到很难。例 如求解“鸡兔同笼”题 ,当时老 师讲的求解的方法,留下的印象 是感到很难,而且纳闷的是 :鸡 与兔为何要关在一个笼子里?既 然数得清有多少个头及多少只脚, 为何数不清有多少只 鸡与多少只 兔?
3ADD YOUR TITLE HERE
5ADD YOUR TITLE HERE
在中学“代数”的教材 中,一般着重讲二元或三元一次联 立方程组,所用的方法往往是消元法。但是,如果变元为 四个 或更多时,就得另想办法来建立起多元一次联立方程组的理论。
经过很多年的努力,矩 阵的想法产生了,这不但给出了多 元一次联立代数方程组的一般理论,而且由此建立起一门 新的 学科——“线性代数”。这是又一次“数学中真正的进展”, 由于“更有力的工具和更 简单的方法”即“矩阵”的发现,不 仅对多元一次联立代数方程组的理解更为清楚,更为深 刻,而 且由于有了统一处理的方法,就可以把个别地处理方程组的方 法“抛到一边”。
第一时期
数学形成时期,这是人类 建立最基本的数学概念的 时期。人类从数数开始逐 渐建立了自然数的概念, 简单的计算法,并认识了 最基本最简单的几何形式, 算数与几何还没有分开。
第三时期
变量数学时期。变量数学产生于17世纪,大体上 经历了两个决定性的重大步骤:第一步是解析几 何的产生;第二步是微积分,即高等数学中研究 函数的微分、积分以及有关概念和应用的数学分 支。它是数学的一个基础学科。内容主要包括极 限、微分学、积分学及其应用。微分学包括求导 数的运算,是一套关于变化率的理论。它使得函 数、速度、加速度和曲线的斜率等均可用一套通 用的符号进行讨论。积分学,包括求积分的运算, 为定义和计算面积、体积等提供一套通用的方法。
聪明的邻屠牵来了自己的1匹马,对他们说:“你们看,现在有12匹马了,老大得12匹的 1/2,就是6匹,老二得12匹的1/4就是3匹,老三得12匹的1/6就是2匹,还剩下一匹我照样牵 回家去!
数学是一项工具,特别适合于处理任何一类抽象概念,而且,它在这方面的作用是无止境
的。因此,一本论述新物理学的书,如果不是单纯的描述实验工作的,其本质上,必定是一本
数学书。
——狄拉克
THANK YOU
数学家华罗庚 文学家老舍
建筑大师梁思成 戏曲大师梅兰芳 四大“国宝” 罕见同框
ADD Y分O数U的R妙TI用TLE HERE
有一位阿拉伯老人,生前养有11匹马、他去世前立下遗嘱: 大儿子、二儿子、小儿子、 分别继承遗产的1/2,1/4,1/6.儿子们想来想去设法分: 他们所得到的都不是整数,即分别 为2/11,4/11,6/11.总 不 能把一 匹 马 割 成 几块 来 分吧?
第四时期
现代数学。现代数学时期,大致从 19世纪上期叶开始。数学发展的现 代阶段的开端,以其所有的基础-------代数、几何、分析中的深刻变化 为特征。
1ADD YOUR TITLE HERE
回顾一下我们从小开始学习数学的过程,就是在重复这个数学发展的过程。一些数学虽然后来 被更有力的工具和更简单的方法所产生的新的数学所替代了,即“低级”的被“高级 ”的所替代了, 但在人们一生学习数学的过程中,却不能只学习“高级”的,而完全不学习 “低级”的,完全省略 掉学习“低级”的过程。这是因为人们随着年龄的不断增长,学习与他的年龄与智力相当的数学才 是最佳选择。学习数学是一个循序渐进的过程,没有“低级” 的数学打好基础,很难理解与学习好 “高级”的数学。
数学发展史
16级会计2班 石瑶玥
第一时期
数学形成时期
第二时期
初等数学(常量 数学时期)
第三时期
变量数学时期
第四时期
现代数学时期
第二时期
初等数学。这个时期的基本的、最简单的成 果构成中学数学的主要内容。这个时期从公 元前5世纪开始,也许更早一些,直到17世 纪,大约持续了两千年。这个时期逐渐形成 了初等数学的主要分支:算数、几何、代数。
鸡兔同笼共35头94只脚,请问鸡有几只兔有几只?
3ADD YOUR TITLE HERE
鸡兔同笼共35头94只脚,请问鸡有几只兔有几只?
4ADD YOUR TITLE HERE
等到初中时学习了“代数”课程,才恍 然大悟,这不过是二元一次联立代数 方程组, 解方程组十分简单方便,这不仅可以用来解 “鸡兔同笼”,即使“鸭狗同室”的问 题一 样可以解。因此,“代数”显然比“算术” 来得“高级”,这的确是“更有力的工具 和 更简单的方法”,而这些工具和方法同时 会有助于理解已有的理论,并把“陈旧的、 复杂的 东西抛到一边”,也就是从“代数” 的角度来理解“算术”,可以理解得更深刻, 且可以把 “算术”中一些复杂的、处理个别 问题的方法抛到一边去。