黄昆固体物理习题-第四章 能带理论

4.1 根据

状态简并微扰结果,求出与

相应的波

函数

,并说明它们的特性,说明它们都代表驻波,并比较

两个电子云分布说明能隙的来源(假设).2

ψ

*=

n

n V V 解:

,简并微扰波函数

带入上式,其中()n V k E E +=+

第四章习题参考解答

, 从上式得到,于是

得到

由教材可知, 及均为驻波。

电子波矢时,电子波的波长

恰好满足布拉格发射条件,这时电子波发生全反射,并与反射波形成驻波由于两驻波的电子分布不同,所以对应不同能量。

4.2写出一维近自由电子近似,第n个能带(n=1,2,3)中

简约波矢的零级波函数

解:一维近自由电子近似中,用简约波矢表示的波函数

( 为简约波矢)

代入得到

对于第一个能带

第n

个能带零级波函数:

简约波矢:则有

对于第二个能带:

对于第三个能带

4.3电子在周期场中的势能函数

且a=4b, 是常数。

(1)画出此势能曲线,并计算势能的平均值;

(2) 用近自由电子模型计算晶体的第一个和第二个带隙宽度。

解:由已知条件画出势能曲线

(1)势能曲线

势能的平均值为:

(2)带隙宽度

第一个带隙宽度

第二个带隙宽度

4.4 用紧束缚近似求出面心立方晶格和体心立方晶格s态原子能级相对应的能带函数

先求面心立方晶格s态原子能级相对应的能带E s(k )函数,利用公式:

解:

s原子态波函数具有球对称性,则:

取任选取一个格点为原点,最近邻格点有12个

代入能量公式

类似的表示共有12项,归并化简后,得到面心立方s态原子能级相对应的能带为:

对于体心立方格子,任选取一个格点为原点有8个最邻近格点,最近邻格点的位置为:

类似的表示共有8项,归并化简后得到体心立方s态原

子能级相对应的能带代入能量公式

()

01s ik k s

s E k J J e

ε-?=--∑ ()

()

1,n

ik k at n s

n n

k r e

r k N

φ?

?=

-∑ M 点的布洛赫波为:

()

()

1,m

ik k at m

s

m m

k r e

r k N

φ?

?=

-∑ 4.5 题略p582

在只考虑S 态电子的情下,由一维简单晶格的布洛赫波为:

解:S 态原子对应的能带函数

其中矩阵元

:

所以此时久期方程变为:

其中

由于原子波函数

满足薛氏方程:

晶体的哈密顿量写成H ,所以矩阵元

库仑积分

交叠积分由于晶体不同原子的电子波函数很少相互交迭,所以上式中只有当是相邻原子是相同原子时才不为零

(2)

解:(1)

= 4.6 题略

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答 黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3r 3 4π,Vc=a 3 ,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

固体物理习题解答

《固体物理学》习题解答 ( 仅供参考) 参加编辑学生 柯宏伟(第一章),李琴(第二章),王雯(第三章),陈志心(第四章),朱燕(第五章),肖骁(第六章),秦丽丽(第七章) 指导教师 黄新堂 华中师范大学物理科学与技术学院2003级

2006年6月 第一章 晶体结构 1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出 这两种结构的原胞与晶胞基矢,设晶格常数为a 。 解: 氯化钠与金刚石型结构都是复式格子。氯化钠的基元为一个Na +和一个Cl - 组成的正负离子对。金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。 由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为: 12 3()2()2()2a a a ? =+?? ?=+?? ?=+?? a j k a k i a i j 相应的晶胞基矢都为: ,,.a a a =?? =??=? a i b j c k 2. 六角密集结构可取四个原胞基矢 123,,a a a 与4a ,如图所示。试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的 晶面指数()h k l m 。 解: (1).对于13O A A '面,其在四个原胞基矢 上的截矩分别为:1,1,1 2 -,1。所以, 其晶面指数为()1121。

(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,1 2-,∞。 所以,其晶面指数为()1120。 (3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。所以,其晶面指数为()1100。 (4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。所以,其晶面指数为()0001。 3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的 比为: 简立方: 6 π ;六角密集:6;金刚石: 。 证明: 由于晶格常数为a ,所以: (1).构成简立方时,最大球半径为2 m a R = ,每个原胞中占有一个原子, 3 34326m a V a π π??∴== ??? 36 m V a π∴ = (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R ,每个晶胞中占有两个原子, 3 3 422348m V a π??∴=?= ? ??? 32m V a ∴ = (3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R ,每个晶胞占有4个原子, 3 3 444346 m V a a π??∴=?= ? ???

固体物理第四章总结1

第四章总结成员及分工 1:一维晶格以及三维晶格的振动 2:晶格热容的量子理论 3:简谐近似和简谐坐标 4:晶格的状态方程和热膨胀 5:离子晶体的长波近似 4-1 一维晶格以及三维晶格的振动一、知识脉络

二、重点 1.格波的概念和“格波”解的物理意义 (1)定义:晶格原子在平衡位置附近作振动时,将以前进波的形式在晶体中传播,这种波称为格波。 (2)物理意义:一个格波解表示所有原子同时做频率为ω的振动,不同原子之间有位相差。相邻原子之间的位相差为aq 。 (3) q 的取值范围:-(π/a)

2.一维单原子链的色散关系 22241[1cos ]sin ()2aq aq m m ββω= -= 把 ω 与q 之间的关系称为色散关系(disperse relation),也称为振动频谱或振动谱。 3.一维单原子链的运动方程 相邻原子之间的相互作用 βδδ-≈-=d dv F a d v d ???? ??=22δβ 第n 个原子的运动方程 11() (2) n n n n i t naq nq m Ae ωμβμμμμ?? +--=+-= 4.一维双原子链中两种原子的运动方程及其解 (1)运动方程( equation) )2(2221212n n n n M μμμβμ---=+++? ? )2(2221212n n n n M μμμβμ---=+++? ? (2)方程的解(solution) ])2([2q na t i n Ae -=ωμ ])12([12aq n t i n Be +-+=ωμ 5.声学波与光学波的概念与物理意义 (1)声学波与光学波的定义 }]sin )(41[1{2 /122 2aq M m mM mM M m +-++=+β ω }]sin ) (41[1{2/122 2aq M m mM mM M m +--+=-β ω ω+对应的格波称为光学波(optic wave )或光学支(optic branch) ;ω-对应的格 波称为声学波(acoustic wave)或声学支(acoustic branch ) (2)两种格波的振幅比 aq m A B cos 222 ββω-- =??? ??++ aq m A B cos 222 ββω-- =??? ??-- (3)ω+ 与ω- 都是q 的周期函数 )()(q a q --=+ωπ ω )()(q a q ++=+ωπ ω

黄昆固体物理课后习题答案5

第五章 第五章 晶体中电子能带理论 思考题 1. 1. 将布洛赫函数中的调制因子)(r k u 展成付里叶级数, 对于近自由电子, 当电子波矢远离和在布里渊区边界上两种情况下, 此级数有何特点? 在紧束缚模型下, 此级数又有什么特点? [解答] 由布洛赫定理可知, 晶体中电子的波函数 )()(r r k.r k i k u e =ψ, 对比本教科书(5.1)和(5.39)式可得 )(r k u = r K K .)(1 m i m m e a N ∑Ω . 对于近自由电子, 当电子波矢远离布里渊区边界时, 它的行为与自由电子近似, )(r k u 近似一常数. 因此, )(r k u 的展开式中, 除了)0(a 外, 其它项可忽略. 当电子波矢落在与倒格矢K n 正交的布里渊区边界时, 与布里渊区边界平行的晶面族对布洛赫波产生了强烈的反射, )(r k u 展开式中, 除了)0(a 和)(n a K 两项外, 其它项可忽略. 在紧束缚模型下, 电子在格点R n 附近的几率)(r k ψ2大, 偏离格点R n 的几率)(r k ψ2小. 对于这样的波函数, 其付里叶级数的展式包含若干项. 也就是说, 紧束缚模型下的布洛赫波函数要由若干个平面波来构造.. 2. 2. 布洛赫函数满足 )(n R r +ψ=)(r n k.R ψi e , 何以见得上式中k 具有波矢的意义? [解答] 人们总可以把布洛赫函数)(r ψ展成付里叶级数 r K k'h K k r ).()'()(h i h e a +∑+=ψ, 其中k ’是电子的波矢. 将)(r ψ代入 )(n R r +ψ=)(r n k.R ψi e , 得到 n k'.R i e =n k.R i e . 其中利用了πp n h 2.=R K (p 是整数), 由上式可知, k =k ’, 即k 具有波矢的意义. 3. 3. 波矢空间与倒格空间有何关系? 为什么说波矢空间内的状态点是准连续的? [解答] 波矢空间与倒格空间处于统一空间, 倒格空间的基矢分别为321 b b b 、、 , 而波矢空间的基矢分别为32N N / / /321b b b 、、 1N , N 1、N 2、N 3分别是沿正格子基矢321 a a a 、、方向晶体的原胞数目. 倒格空间中一个倒格点对应的体积为 *321) (Ω=??b b b ,

固体物理答案 第4章

4.1根据k a π =± 状态简并微扰结果。求出与E +,E -对应的本征态波函数ψ+,ψ-,说 明它们都代表驻波,并比较两个电子云的分布(即2 ψ),说明能隙的来源。假设*n n V V =。 解: 简并微扰态:a a a b π πψψ ψ- =+ (1) 代入运动方程有:0*10 1()0 ()0 a a E E a V b V a E E b ππ-?-+=??+-=?? (2) *11V V =,且00 a a E E ππ -=。 方程(2)有条件为: 0* 10 10a a E E V V E ππ - -= 2 2 01_0a E E V π??-= ???, 故1a E E V π±=±。 利用归一化条件:2 2 1a b +=, 将E +代入(2)式得:a b =-= ; 将E -代入(2)式得:a b ==; 所以

00 00 ) ) a a a a ππ ππ ψψψ ψψψ + - - - =- =+ 又因为: i x a a i x a a π π π π ψ ψ - - = = 所以 sin() ) x a x a π ψ π ψ + - = = 即, ψψ +- 均表示驻波 2222 2,s i n x x co a a ππ ψψ -+ ???? ∝∝ ? ? ???? 电子云分布皆成周期性变化,二者差 2 π 位。相E a π ±零的能量相等,由于周期势场的微扰,触及间的排斥作用,能级分裂,在不同的触带之间发现带隙。 4.2 写出一维近自由电子近似,第几个能带() 1,2,3 n=简约波数 2 k a π =的0级波出数。补:一维迈自由电子近似的零级波出数可写为: ( )2 i mx ikx a k x e π ψ ?? ==? ? k为简约波矢,n为能带1 m n =- 2 k k m a π =+已知 ,0,1,2, 2 k m a π == 第一能带, ( ) 02 0,, 2 i x a x m k k a π π ψ ==== 第二能带 ( ) 3 02 23 1,, 22 i x a x m k a a a π πππ ψ- ==-=-= 第三能带 ( ) 5 2 25 1,, 22 i x a x m k a a a π πππ ψ- ==+==

黄昆版固体物理学课后问题详解解析汇报问题详解

《固体物理学》习题解答 黄昆 原著 汝琦改编 (志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3 r 3 4π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

《固体物理学》房晓勇主编教材-习题解答参考04第四章 晶体结构中的缺陷

第四章 晶格结构中的缺陷 4.1 试证明,由N 个原子组成的晶体,其肖托基缺陷数为 s B k T s n Ne μ?= 其中s μ是形成一个空位所需要的能量。 证明:设由N 个原子组成的晶体,其肖托基缺陷数为s n ,则其微观状态数为 !()!s ! s s N P N n n =? 由于s μ个空位的出现,熵的改变 []!ln ln ln ()ln()ln ()!! B s B B s s s s s s N S k P k k N N N n N n n n N n n Δ===????? 晶体的自由能变化为 []ln ()ln()ln s s s s B s s s F n T S n k T N N N n N n n n μμ=?Δ=?????s 要使晶体的自由能最小 B ()ln 0s s s s T n F u k T n N ?????Δ=+=??????????n 整理得 s B k T s s n e N n μ ?=? 在实际晶体中,由于, s n N <

固体物理答案

(1) 共价键结合的特点?共价结合为什么有“饱和性”和“方向性”? 饱和性和方向性 饱和性:由于共价键只能由为配对的电子形成,故一个原子能与其他原子形成共价键的数目是有限制的。N<4,有n 个共价键;n>=4,有(8-n )个共价键。其中n 为电子数目。方向性:一个院子与其他原子形成的各个共价键之间有确定的相对取向。 (2) 如何理解电负性可用电离能加亲和能来表征? 电离能:使原子失去一个电子所必须的能量其中A 为第一电离能,电离能可表征原子对价电子束缚的强弱;亲和势能:中性原子获得电子成为-1价离子时放出的能量,其中B 为释放的能量,也可以表明原子束缚价电子的能力,而电负性是用来表示原子得失电子能力的物理量。故电负性可用电离能加亲和势能来表征。 (3) 引入玻恩-卡门条件的理由是什么? 在求解原子运动方程是,将一维单原子晶格看做无限长来处理的。这样所有的原子的位置都是等价的,每个原子的振动形式都是一样的。而实际的晶体都是有限的,形成的键不是无穷长的,这样的链两头原子就不能用中间的原子的运动方程来描述。波恩—卡门条件解决上述困难。 (4) 温度一定,一个光学波的声子数目多呢,还是一个声学波的声子数目多? 对同一振动模式,温度高时的声子数目多呢,还是温度低的声子数目多? 温度一定,一个声学波的声子数目多。 对于同一个振动模式,温度高的声子数目多。 (5) 长声学格波能否导致离子晶体的宏观极化? 不能。长声学波代表的是原胞的运动,正负离子相对位移为零。 (6)晶格比热理论中德拜(Debye )模型在低温下与实验符合的很好,物理原因 是什么?爱因斯坦模型在低温下与实验存在偏差的根源是什么? 在甚低温下,不仅光学波得不到激发,而且声子能量较大的短声学波也未被激发,得到激发的只是声子能量较小的长声学格波。长声学格波即弹性波。德拜模型只考虑弹性波对热容德贡献。因此,在甚低温下,德拜模型与事实相符,自然与实验相符。 爱因斯坦模型过于简单,假设晶体中各原子都以相同的频率做振动,忽略了各格波对热容贡献的差异,按照爱因斯坦温度的定义可估计出爱因斯坦频率为光学支格波。在低温主要对热容贡献的是长声学支格波。 (7)试解释在晶体中的电子等效为经典粒子时,它的有效质量为什么有正、有负、无穷大值?带顶和带底的电子与晶格的作用各有什么特点? m F m m l +=* m F m v F m v F l ?+?=??* ])()[(1 ])()[(1电子给予晶格德外力给予电子德晶格给予电子德外力给予电子德-=+p p m p p m m ????=?* 当电子从外场获得的动量大于电子传递给晶格的动量时,有效质量为正; 当电子从外场获得的动量小于电子传递给晶格的动量时,有效质量为负; 当电子从外场获得的动量等于电子传递给晶格的动量时,有效质量为无穷。 (8)为什么温度升高,费米能级反而降低?体积膨胀时,费米能级的变化? 在温度升高时,费米面以内能量离约范围的能级上的电子被激发到之上约范围的能级。故费米球体积V 增大,又电子总数N 不变,则电子浓度减小,又,则费米半径变小,费米能级也减小。当体积膨胀时,V 增大,同理费米能级减小。 (9)什么是p 型、N 型半导体?试用能带结构解释。

固体物理第四章

Chapter 4 能带理论(energy band theory ) 一、简要回答下列问题(answer the following questions ) 1、波矢空间与倒格子空间有何关系?为什么说波矢空间内的状态点是准连续的? [答]波矢空间与倒格子空间处于统一空间,倒格子空间的基矢分别为321,,b b b ,而波矢空间的基矢分别为321332211,,;/,/,/N N N N N N b b b 分别是沿正格子基矢321,,a a a 方向晶体的原胞数目。 倒格空间中一个倒格点对应的体积为 *)(321Ω=??b b b 波矢空间中一个波矢点对应的体积为 N N N N *)(3 32 21 1Ω= ??b b b 即波矢空间中一个波矢点对应的体积, 是倒格空间中一个倒格点对应的体积的1/N 。由于N 是晶体的原胞数目,数目巨大,所以一个波矢点对应的体积与一个倒格点对应的体积相比是极其微小的。也就是说,波矢点在倒格子空间是极其稠密的。因此,在波矢空间内作求和处理时,可以把波矢空间的状态点看成是准连续的。 2、在布里渊区边界上电子的能带有何特点? [答]电子的能带依赖波矢的方向,在任一方向上,在布里渊区的边界上,近自由电子的能带一般会出现禁带。若电子所处的边界与倒格矢G h 正交,边界是G h 的中垂面,则禁带的宽度Eg=2|Vn|,Vn 是周期势场的付里叶级数的系数。 不论何种电子,在布里渊区的边界上,其等能面在垂直于在布里渊区的边界上的斜率为零,即电子的等能面与布里渊区的边界正交。 3、带顶和带底的电子与晶格的作用各有什么特点? [答]能带顶部是能带的极大值的位置,所以 022 ??k E ,晶格对电子作正功,有效质量大于零。 4、单电子理论是怎样将多体问题简化为周期场中的单电子问题的? [答]单电子理论是在经过几步近似之后,将多体问题转化为单电子问题,以单电子在周

黄昆固体物理课后习题答案1

第一章 第一章 晶体的结构 思 考 题 1. 1. 以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中的原子数之比. [解答] 设原子的半径为R , 体心立方晶胞的空间对角线为4R , 晶胞的边长为3/4R , 晶胞的体积为() 3 3/4R , 一个晶胞包含两个原子, 一个原子占的体积为() 2/3/43 R ,单位体积 晶体中的原子数为() 3 3 /4/2R ; 面心立方晶胞的边长为2/4R , 晶胞的体积为 () 3 2/4R , 一个晶胞包含四个原子, 一个原子占的体积为() 4/2 /43 R , 单位体积晶体 中的原子数为() 3 2 /4/4R . 因此, 同体积的体心和面心立方晶体中的原子数之比为 2/323 ???? ? ?=0.272. 2. 2. 解理面是面指数低的晶面还是指数高的晶面?为什么? [解答] 晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大. 因为面间距大的晶面族的指数低, 所以解理面是面指数低的晶面. 3. 3. 基矢为=1a i a , =2a aj , =3a () k j i ++2 a 的晶体为何种结构? 若 =3a () k j +2 a +i 2 3a , 又为何种结构? 为什么? [解答] 有已知条件, 可计算出晶体的原胞的体积 23 321a = ??=a a a Ω. 由原胞的体积推断, 晶体结构为体心立方. 按照本章习题14, 我们可以构造新的矢量 =-=13a a u 2a ()k j i ++-, =-=23a a v 2a ()k j i +-, =-+=321a a a w 2 a ()k j i -+ . w v u ,,对应体心立方结构. 根据14题可以验证, w v u ,,满足选作基矢的充分条件.可见基 矢为=1a i a , =2a aj , =3a () k j i ++2a 的晶体为体心立方结构. 若

黄昆固体物理试题及答案

山东大学试题专用纸 物理系-----年级----班 课程名称: 固体物理 共1页 学号: 姓名: 一. 填空(20分, 每题2分) 1.对晶格常数为a 的SC 晶体,与正格矢R =a i +2a j +2a k 正交的倒格子晶面族的面指数为( ), 其面间距为( ). 2.典型离子晶体的体积为V , 最近邻两离子的距离为R , 晶体的格波数目为( ), 长光学波的( )波会引起离子晶体宏观上的极化. 3. 金刚石晶体的结合类型是典型的( )晶体, 它有( )支格波. 4. 当电子遭受到某一晶面族的强烈反射时, 电子平行于晶面族的平均速度( )零, 电子波矢的末端处在( )边界上. 5. 两种不同金属接触后, 费米能级高的带( )电. 对导电有贡献的是 ( )的电子. 二. (25分) 1. 证明立方晶系的晶列[hkl ]与晶面族(hkl )正交. 2. 设晶格常数为a , 求立方晶系密勒指数为(hkl )的晶面族的面间距. 三. (25分) 设质量为m 的同种原子组成的一维双原子分子链, 分子内部的力系数为β1, 分子间相邻原子的力系数为β2, 分子的两原子的间距为d , 晶格常数为a , 1. 列出原子运动方程. 2. 求出格波的振动谱ω(q ). 四. (30分) 对于晶格常数为a 的SC 晶体 1. 以紧束缚近似求非简并s 态电子的能带. 2. 画出第一布里渊区[110]方向的能带曲线, 求出带宽. 3.当电子的波矢k =a πi +a π j 时,求导致电子产生布拉格反射的晶面族的面指数. (试题随答卷上交)

答案: 一. 填空(20分, 每题2分) 1.对晶格常数为a 的SC 晶体,与正格矢R =a i +2a j +2a k 正交的倒格子晶面族 的面指数为( 122 ), 其面间距为( a 32π ). 2.典型离子晶体的体积为V , 最近邻两离子的距离为R , 晶体的格波数 目为( 3 3R V ), 长光学波的( 纵 )波会引起离子晶体宏观上的极化. 3. 金刚石晶体的结合类型是典型的(共价结合)晶体, 它有( 6 )支格波. 4. 当电子遭受到某一晶面族的强烈反射时, 电子平行于晶面族的平均速度(不为 )零, 电子波矢的末端处在(布里渊区)边界上. 5. 两种不同金属接触后, 费米能级高的带(正)电.对导电有贡献的是 (费米面附近)的电子. 二. (25分) 1.设d 为晶面族()hkl 的面间距为, n 为单位法矢量, 根据晶面族的定义, 晶面族()hkl 将c b a 、、分别截为l k h 、、 等份, 即 a =?n a cos (a ,n )==a cos (a ,n )=hd , b =?n b cos (b ,n )= a cos (b ,n ) =kd , c =?n c cos (c ,n )= a cos (c ,n ) =ld . 于是有 n =a d h i +a d k j +a d l k =a d (h i +k j +l k ). (1) 其中, i 、j 、k 分别为平行于c b a 、、三个坐标轴的单位矢量. 而晶列 []hkl 的方向矢量为 =R ha i +ka j +la k =a (h i +k j +l k ). (2) 由(1)、(2)两式得 n =2a d R , 即n 与R 平行. 因此晶列[]hkl 与晶面()hkl 正交. 2. 立方晶系密勒指数为(hkl )的晶面族的面间距 22222222l k h a a l a k a h d hkl hkl ++= ++==k j i K πππππ 三. (25分) 1.

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答 黄昆原著韩汝琦改编 (陈志远解答,仅供参考) 第一章晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n和小球体积V所得到的小球总 体积nV与晶体原胞体积Vc之比,即:晶体原胞的空间利用率, (1)对于简立方结构:(见教材P2图1-1) a=2r, 4 V= 3 r3, Vc=a3,n=1 4 3 4 3 r r 二x 3 3 0.52 3 a 8r3 6 (2)对于体心立方:晶胞的体对角线BG= , 3a 4r n=2, Vc=a3 4 3 F) n=4, Vc=a3 (22r)3 (4 )对于六角密排:a=2r晶胞面积:S=6 S ABO nV Vc 0.68 (3 )对于面心立方:晶胞面对角线BC= , 2a 4r, a 2 ., 2r 0.74 晶胞的体积: V=S C V 3 2a324.2r3 n=1212 - 2 - 6 2 3=6个 24 2r3 0.74 (5 )对于金刚石结构,晶胞的体对角线BG=3a 4 2r 8r .3 n=8, Vc=a3

所以,面心立方的倒格子是体心立方。 r a a, r 於i r j r k) (2 )体心立方的正格子基矢(固体物理学原胞基矢) r a r r r a2刖j k) r a丿r r a3 2(i j k) 8 3r38 3r3 83 3 ___ r 3,3 0.34 1.2、试证:六方密排堆积结构中C(8)1/21.633 a 3 证明:在六角密堆积结构中,第一层硬球A、B、0的中心联线形成一个边长a=2r的正三角形,第二层硬球N位于球ABO所围间隙的正上方并与这三个球相切,于是: NA=NB=N0=a=2R. 即图中NABO构成一个正四面体。… 1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。 a i 2(j k) 证明:(1 )面心立方的正格子基矢(固体物理学原胞基矢)a2 a ' a(i k) 由倒格子基矢的定义: a3) b1 2 同理可得: a3 a ' 2(i j) (a2 a3) b2 a a 0, r r r 2, 2 i , j, k 3 a a a r r a a _ J0, 一—,a2 a3 I0, — 2 2 4 2 2 a a a a J J0 0 2 2 2 2 a2 r r r 7「j k) k) k) 2 1—(i a jr a k) 即面心立方的倒格子基矢与体心立方的正格基矢相k)

固体物理第4章 固体电子论 2011 参考答案

第四章 固体电子论 参考答案 1. 导出二维自由电子气的能态密度。 解: 二维情形,自由电子的能量是: 2 2 2 22 ()() 22x y k E k k m m = = +k 2πL x x k n = , 2πL y y k n = 在/k = 到d k k +区间: 22 2 2 2 d 2d 2π(2π) 2π πS L m L Z kdk dE =? = ?= k 那么:2d ()d Z Sg E E = 其中:22 ()πm g E =

2. 若二维电子气的面密度为n s ,证明它的化学势为: 2π()ln exp 1s B B n T k T m k T μ???? =-?? ????? 解:由前一题已经求得能态密度: 22 ()πm g E = 电子气体的化学势μ由下式决定: ()()2 2 2 E-/E-/0 1d ()d πe 1 e 1 B B k T k T L m E N g E L E μμ∞∞= =++? ? 令()/B E k T x μ-≡,并注意到: 2 s N n L = ()1 2 /1d πB x B s k T k T m n e x μ-∞-= +? () 2 /d π1B x B x x k T k Tm e e e μ∞ -= +? 2 /ln π1 B x B x k T k T m e e μ∞ -= + ()/2 ln 1πB k T B k T m e μ= + 那么可以求出μ:

2π()ln exp 1s B B n T k T m k T μ???? =-?? ????? 证毕。 3. He 3是费米子,液体He 3 在绝对零度附近的密度为0.081 g /cm 3 。计算它的费米能E F 和费米温度T F 。 解:He 3 的数密度: N N M N n V M V M m ρ ρ= =?=? = 其中m 是单个He 3 粒子的质量。 ()1 1 23 2 3 3π3πF k n m ρ??== ??? 可得: 2 2 22 322/3 3π(3) 22F E n m m m ρπ??= = ??? 代入数据,可以算得: E F =6.8x 10-16 erg = 4.3x 10-4 eV .

《固体物理学》基础知识训练题及其参考标准答案

《固体物理》基础知识训练题及其参考答案 说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。 第一章 作业1: 1.固体物理的研究对象有那些? 答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。 2.晶体和非晶体原子排列各有什么特点? 答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。 3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点?试画图说明。有那些单质晶体分别属于以上三类。 答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。 面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。常见的面心立方晶体有:Cu, Ag, Au, Al等。 六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。常见的六角密排晶体有:Be,Mg,Zn,Cd等。 4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。 答:NaCl:先将两套相同的面心立方晶格,并让它们重合,然后,将一 套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格; 金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格; Cscl::先将组成两套相同的简单立方,并让它们重合,然后将一套晶 格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。 ZnS:类似于金刚石。

黄昆固体物理总复习

Q02_02_001 ? Ц ?? ? ?? ? ???? ? ? 喚???? ??? ? ????ρ??喌 ?? ? ? 喌?ν? ?? ?喌??? ?? ?? π???щ?? ? ? ?ρ ? 喌 ? ?? ?喛 Ц ? 喚??? ????? 喌 ?? Ц?喛 ? ? 喚? ? ?? ? ? ? 喌 ? ? ? ? 喌 ε 喈Ц喉? ? ???? ?Ц? ? ??? π??? ?? ?喌? π ?? ???喌??? ? π ?倇喌 ??ρ??? ?? ?喌??? ? ? ???? ? ?? ? 喚 ? ?? ?8?喌 ? ??? ?? ?? ?? ?ν????? ?? ?? ? ? ?喌? щ? ?? ??? ? ???? ??ρ???? ??Q02_03_001?? 喟 ???? ? ?? ? ?? ?? 喌?? 喌 ?? Д? ?喌 Д?? 喌? Д??? Q02_03_002?? ?℃?? ? 喟 ク??テ? ? ?? Д????? ∑ В? ∑喌 ? ?? ?????喌 1??∑ 2?????∑? ?テ? ? ?? ??喚3 4)(1512)/(D D V T R T C 4 4S ā?? ?3? ?℃?? ?喌 ?? 喌? ? ? 喌 ?∑ ∑?? ????Q02_03_003?? ?℃??? ? 喟 ク??テ? ? ?? ν N ? ? ?喌 ?? ? Д? ???Z 0 ??テ? ? ? ?倇 喚āā? ?喍? ??? B V Nk C 3#? ? ? 喚T k B B V B e T k Nk C 0 20)(3Z Z == āā ? ? ??喌? 侻? ?さ?3 AT C V ? ? ?ε ∑??? ? Q02_04_001 ? ??ク?? ? ? ???? ? 喛

《固体物理》第四章习题

1,什么是超晶格和布洛赫振荡? 答:超晶格是用两种晶格匹配很好的半导体材料A和B交替生长所得到的长周期半导体人工晶格结构。 晶体电子在稳恒电场F作用下的运动,是在实空间局域的周期往复的振荡,成为布洛赫振荡。 2,简述和比较三维、二维和一维电子体系的能态密度。 答:在量子阱中,由于电子沿量子阱生长方向的运动受到约束,则会形成一系列离散的量子能级。量子能级间的能量差与量子阱宽度w的平方成反比 三维电子体系的态密度和E的?次方成正比,而二维电子体系的态密度是与能量无关的常数。 3,简述量子阱的量子约束Stark效应。 答:垂直于界面的电场对量子阱光吸收的效应更为明显,激子的吸收峰向低能方向移动,激子峰的形状在一定电场强度下仍保持不变,这一效应甚至在室温下也能观察到,称为量子约束Stark效应。 4,简述半导体量子点的量子尺寸效应。 答:随着量子点尺寸的减小,吸收边蓝移:另一方面,在光学非均匀介质中,,将产生光的散射现象,散射光的波长与入射光相同的,称为瑞利散射,散射光的波长和入射光不同的,称为拉曼散射或联合散射。 5,什么是纳米科技? 答:1纳米是一米的十亿分之一,微粒尺度在1~100nm尺度的大于原子团簇的微粒,称为纳米微粒,以1~100nm尺度的物质为研究对象的新科技,称为纳米科技。 6,什么是库仑阻塞效应? 答:在一个纳米颗粒充入一个电子所需的能量为E=e2/2C,e为一个电子的电量,C为一个纳米颗粒的电容,颗粒越小,电容C越小,能量E就越大,E称为库仑阻塞能,是前一个电子对后一个电子的库仑排斥能。当纳米颗粒足够小时,一个纳米颗粒就只能容纳一个电子,一个纳米颗粒被一个电子占领,就阻塞了其他电子的进入,即库仑阻塞效应。 7,简述纳米材料的特性。 答:纳米材料与纳米固体具有一些特殊性质,可归纳为以下几个基本效应 (1)小尺寸效应:纳米尺寸的颗粒与块材料具有很多不同的性质 (2)表面与界面效应:纳米材料中处于表面的原子比例很大,有大量悬挂键,大大增强了纳米微粒的活性,很容易与其他院子结合 (3)量子尺寸效应:当微粒的尺寸减小到纳米量级,纳米微粒和纳米固体的光学性质、电学性质等均与由尺寸决定的量子性质有关。 (4)库仑阻塞效应:在一个纳米颗粒充入一个电子所需的能量为E=e2/2C,e为一个电子的电量,C为一个纳米颗粒的电容,颗粒越小,电容C越小,能量E就越大,E称为库仑阻塞能,是前一个电子对后一个电子的库仑排斥能。当纳米颗粒足够小时,一个纳米颗粒就只能容纳一个电子,一个纳米颗粒被一个电子占领,就阻塞了其他电子的进入,即库仑阻塞效应.

黄昆固体物理课后习题答案6

第六章 自由电子论和电子的输运性质 思 考 题 1.如何理解电子分布函数)(E f 的物理意义是: 能量为E 的一个量子态被电子所占据的平均几率 [解答] 金属中的价电子遵从费密-狄拉克统计分布, 温度为T 时, 分布在能级E 上的电子数目 1/)(+=-T k E E B F e g n , g 为简并度, 即能级E 包含的量子态数目. 显然, 电子分布函数 11 )(/)(+=-T k E E B F e E f 是温度T 时, 能级E 的一个量子态上平均分布的电子数. 因为一个量子态最多由一个电子所占据, 所以)(E f 的物理意义又可表述为: 能量为E 的一个量子态被电子所占据的平均几率. 2.绝对零度时, 价电子与晶格是否交换能量 [解答] 晶格的振动形成格波,价电子与晶格交换能量,实际是价电子与格波交换能量. 格波的能量子称为声子, 价电子与格波交换能量可视为价电子与声子交换能量. 频率为i ω的格波的声子数 11 /-=T k i B i e n ωη. 从上式可以看出, 绝对零度时, 任何频率的格波的声子全都消失. 因此, 绝对零度时, 价电子与晶格不再交换能量. 3.你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的 [解答] 自由电子论只考虑电子的动能. 在绝对零度时, 金属中的自由(价)电子, 分布在费密能级及其以下的能级上, 即分布在一个费密球内. 在常温下, 费密球内部离费密面远的状态全被电子占据, 这些电子从格波获取的能量不足以使其跃迁到费密面附近或以外的空状态上, 能够发生能态跃迁的仅是费密面附近的少数电子, 而绝大多数电子的能态不会改变. 也就是说, 常温下电子的平均动能与绝对零度时的平均动能一定十分相近. 4.晶体膨胀时, 费密能级如何变化 [解答] 费密能级 3/2220)3(2πn m E F η=, 其中n 是单位体积内的价电子数目. 晶体膨胀时, 体积变大, 电子数目不变, n 变小, 费密能级降低. 5.为什么温度升高, 费密能反而降低 [解答]

黄昆固体物理课后习题答案4

第四章 晶体的缺陷 思 考 题 1.设晶体只有弗仑克尔缺陷, 填隙原子的振动频率、空位附近原子的振动频率与无缺陷时原子的振动频率有什么差异? [解答] 正常格点的原子脱离晶格位置变成填隙原子, 同时原格点成为空位, 这种产生一个填隙原子将伴随产生一个空位的缺陷称为弗仑克尔缺陷. 填隙原子与相邻原子的距离要比正常格点原子间的距离小,填隙原子与相邻原子的力系数要比正常格点原子间的力系数大. 因为原子的振动频率与原子间力系数的开根近似成正比, 所以填隙原子的振动频率比正常格点原子的振动频率要高. 空位附近原子与空位另一边原子的距离, 比正常格点原子间的距离大得多, 它们之间的力系数比正常格点原子间的力系数小得多, 所以空位附近原子的振动频率比正常格点原子的振动频率要低. 2.热膨胀引起的晶体尺寸的相对变化量L L /?与X 射线衍射测定的晶格常数相对变化量a a /?存在差异, 是何原因? [解答] 肖特基缺陷指的是晶体内产生空位缺陷但不伴随出现填隙原子缺陷, 原空位处的原子跑到晶体表面层上去了. 也就是说, 肖特基缺陷将引起晶体体积的增大. 当温度不是太高时, 肖特基缺陷的数目要比弗仑克尔缺陷的数目大得多. X 射线衍射测定的晶格常数相对变化量a a /Δ, 只是热膨胀引起的晶格常数相对变化量. 但晶体尺寸的相对变化量L L /Δ不仅包括了热膨胀引起的晶格常数相对变化量, 也包括了肖特基缺陷引起的晶体体积的增大. 因此, 当温度不是太高时, 一般有关系式 L L Δ>a a Δ. 3.KCl 晶体生长时,在KCl 溶液中加入适量的CaCl 2溶液,生长的KCl 晶体的质量密度比理论值小,是何原因? [解答] 由于+2Ca 离子的半径(0.99o A )比+K 离子的半径(1.33o A )小得不是太多, 所以+2Ca 离子难以进入KCl 晶体的间隙位置, 而只能取代+K 占据+K 离子的位置. 但+2Ca 比+K 高一价, 为了保持电中性(最小能量的约束), 占据+K 离子的一个+2Ca 将引起相邻的一个+K 变成空位. 也就是说, 加入的CaCl 2越多, +K 空位就越多. 又因为Ca 的原子量(40.08) 与K 的原子量(39.102)相近, 所以在KCl 溶液中加入适量的CaCl 2溶液引起+K 空位, 将导 致KCl 晶体的质量密度比理论值小. 4.为什么形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量低? [解答] 形成一个肖特基缺陷时,晶体内留下一个空位,晶体表面多一个原子. 因此形成形成一个肖特基缺陷所需的能量, 可以看成晶体表面一个原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子的相互作用能的差值. 形成一个弗仑克尔缺陷时,晶体内留下一个空位,多一个填隙原子. 因此形成一个弗仑克尔缺陷所需的能量, 可以看成晶体内部一个填隙原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子相互作用能的差值. 填

相关文档
最新文档