课程设计混频器

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高频电子线路课程设计报告

院校专业______________

组员姓名______________

指导老师______________

课题名称______________

摘要

混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。特别是在超外差式接收机中,混频器应用较为广泛,如AM 广播接收机将已调幅信号535KHZ-一1605KHZ要变成为465KHZ中频信号,电视接收机将已调48.5M一870M 的图象信号要变成38MHZ的中频图象信号。移动通信中一次中频和二次中频等。在发射机中,为了提高发射频率的稳定度,采用多级式发射机。用一个频率较低石英晶体振荡器做为主振荡器,产生一个频率非常稳定的主振荡信号,然后经过频率的加、减、乘、除运算变换成射频,所以必须使用混频电路,又如电视差转机收发频道的转换,卫星通讯中上行、下行频率的变换等,都必须采用混频器。由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。

本文通过MC1496构成的混频器来对接收信号进行频率的转换,变成需要的中频信号.

要变成38MHZ的中频图象信号。移动通信中一次中频和二次中频等。在发射机中,为了提高发射频率的稳定度,采用多级式发射机。用一个频率较低石英晶体振荡器做为主振荡器,产生一个频率非常稳定的主振荡信号,然后经过频率的加、减、乘、除运算变换成射频,所以必须使用混频电路,又如电视差转机收发频道的转换,卫星通讯中上行、下行频率的变换等,都必须采用混频器。由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。

本文通过MC1496构成的混频器来对接收信号进行频率的转换,变成需要的中频信号.

目录

●摘要 (1)

●一.概述 (4)

●二. 方案分析 (5)

●三.单元电路的工作原理 (7)

●1.LC正弦波振荡器 (7)

●2.模拟乘法器电路 (8)

●3.选频﹑放大电路 (9)

●四.电路性能指标的测试 (11)

●五.课程设计体会 (13)

●参考文献 (14)

●附录Ⅰ总电路图 (16)

●附录Ⅱ元器件清单 (17)

一.概述

混频技术应用的相当广泛,混频器是超外差接收机中的关键部件。直放式接收机是高频小信号检波,工作频率变化范围大时,工作频率对高频通道的影响比较大(频率越高,放大量越低,反之频率低,增益高),而且对检波性能的影响也较大,灵敏度较低。采用超外差技术后,将接收信号混频到一固定中频,放大量基本不受接收频率的影响,这样,频段内信号的放大一致性好,灵敏度可以做得很高,选择性也较好。因为放大功能主要放在中放,因此可以用良好的滤波电路。采用超外差接收后,调整方便,放大量﹑选择性主要由中频部分决定,且中频较高频信号低,性能指标容易得到满足。混频器在一些发射设备中也是必不可少的。在频分多地址信号的合成、微波接力通信、卫星通信等系统中也有其重要地位。此外,混频器也是许多电子设备、测量仪器(如频率合成器、 频谱分析仪等)的重要组成部分。

混频器是频谱线性搬移电路,能够将输入的两路信号进行混频。具体原理框图如图1所示。

振荡器输出一频率为1f =10MHz 、幅值0.2V <m U 1<1V 的正弦波信号,此信号作为混频器的第一路输入信号;高频信号源输出一正弦波信号,2f =10MHz 、幅值m U 2=200mV ,此信号作为混频器的第二路信号,将这两路信号作为模拟乘法器的输入进行混频。选频放大电路则对混频后的信号进行选频、放大,最终输出2MHz 的正弦波信号。

图1 混频器原理框图

二. 方案分析

对于混频电路的分析,重点应掌握,一是混频电路的基本组成模型及主要技术特点,

二是混频电路的基本原理及混频跨导的计算方法,三是应用电路分析。

混频电路的基本组成模型及主要技术特点:

混频,工程上也称变频,是将信号的频率由一个数值变成另一个数值的过程,实质上也是频谱线性搬移过程,完成这种功能的电路就称为混频电路或变频电路。

混频电路的组成模型及频谱分析

图a是混频电路的组成模型,可以看出是由三部分基本单元电路组成。分别是相乘电

路、本级振荡电路和带通滤波器(也称选频网络)。当为接收机混频电路时,其中U

s

(t)是已

调高频信号。U

l (t)是等幅的余弦型信号,而输出则是U

i

(t)为中频信号。

混频电路的基本原理:

^ 图2中,U s (t)为输入信号,U c (t)为本振信号。U i (t)输出信号。

分析:当st sm s cos U (t)U ψ= 则(t)(t)U U (t)U c s p = = ct cm st sm cos U cos U ψψ = ct st cos cos Am ψψ 其中:cm sm U U Am =

对上式进行三角函数的变换则有

()t c st 1p cos cos Am t U ψψ=:)t]-(c s)t c [cos( Am 2

1s c ψψψψos ++

从上式可推出,U p (t)含有两个频率分量和为(ψc +ψS ),差为(ψC -ψS )。若选频网络是理想

上边带滤波器则输出为]t Amcos[

21(t)U s c i ψψ+=. 若选频网络是理想下边带滤波器则输出:

]t -Amcos[2

1(t)U s c i ψψ=.

工程上对于超外差式接收机而言,如广播电视接收机则有ψc >>ψS .往往混频器的选频网

络为下边带滤波器,则输出为差频信号,]t -Amcos[

21(t)U s c i ψψ=为接收机的中频信号。衡量混频工作性能重要指标是混频跨导。规定混频跨导的计算公式:混频跨导g :输出中频电流幅度偷入信号电压幅度。

该电路由LC 正弦波振荡器﹑高频信号源﹑模拟乘法器以及选频放大电路组成。LC 正弦波振荡器产生的10MHz 正弦波与高频信号源所产生的8MHz 正弦波通过模拟乘法器进行混频后产生双边带调幅信号,然后通过选频放大器选出有用的频率分量,即频率2MHz 的信号,对其进行放大输出,最终输出2MHz 的正弦波信号。混频器电路如图3所示。

相关文档
最新文档