世界概率几乎为零的离奇死亡事件【略重口,不喜勿入】[转]

世界概率几乎为零的离奇死亡事件【略重口,不喜勿入】[转]
世界概率几乎为零的离奇死亡事件【略重口,不喜勿入】[转]

世界概率几乎为零的离奇死亡事件【略重口,不喜勿入】[转]

古往今来,世界上有许多各种离奇死亡事件,或许有时候他们只是单纯的运气不好而已。下面我们就盘点了全球最“倒霉”的人,他们的离奇的死亡事件绝对让人唏嘘不已。美女阳台约会不幸坍塌坠亡

美国《纽约每日新闻》2013年8月1日报道,美国一名女子在家与男友首次约会时,遭遇阳台护栏突然坍塌的事故,导致她从17层坠楼,当场身亡。该女子名叫詹妮弗,今年35岁,是纽约曼哈顿一家公司的广告总监,家住第一大道57号。事发时,詹妮弗坐在自家阳台的护栏上,边抽烟边和男友聊天。突然,栏杆垮塌,她不幸从17层坠落到地面上。她旁边的男友吓得目瞪口呆,随即乘电梯下楼,看到地面上女友血肉模糊的尸体,当场情绪失控。他说,这是他和女友的第一次约会,发生这样的事,让人实在难以接受。

男子熟睡中被牛砸死

2013年7月10日,巴西一名45岁的男子若昂·马里亚·德苏扎在熟睡中被一头从天而降的牛砸穿房顶击中,送至医院后不治身亡。该男子住在巴西东南部米纳斯吉拉斯州卡拉廷加镇,他家房子依山而建。10日清晨,一头大约1.5吨重的牛突然从德苏扎家房子的石棉瓦屋顶坠落,砸中熟睡的德苏扎,睡在床另一侧的妻子莱妮幸免。当地警方说,这头牛据

信从附近农场溜出来,爬到德苏扎家后面的山上,惨剧随后发生。米纳斯吉拉斯州警方说,他们已经启动调查,正在查找牛的主人。后者可能面临过失杀人罪指控。

男童被墓碑砸死

2012年7月5日,美国一个名叫卡尔森·迪·切尼的四岁儿童,当他与家人一起参观坐落于美国犹他州的格伦伍德墓园时,一块高6英尺(约183厘米)、厚4英寸(约102厘米)、超过百英镑重的墓碑忽然倒下,将在墓碑前合影留念的小切尼砸死。当时切尼的父亲正在给一同前往的小朋友和亲戚照相,切尼紧紧抓住墓碑基石,藏在墓碑后面,此时衔接墓碑的金属受损导致墓碑倒下。救援人员将墓碑搬开,做了能做的一切救援措施,但仍无法挽救他的生命。男孩头部、胸部以及腹部受到重击。男孩的祖母说,切尼正准备上幼儿园,他喜欢骑自行车,热爱生活。据悉,该墓碑已有上百年历史,于19世纪建造。

男子活吃蟑螂被呕吐物呛死

2012年11月,美国佛罗里达州布劳沃德县验尸官办公室公布了今年参加吃活蟑螂大赛后死亡的男子死因,他是被自己的呕吐物呛死的。2012年10月,约30名选手参加了佛罗里达州一家爬虫商店举办的吃活蟑螂大赛,奖品为一条蟒蛇。32岁男子爱德华·阿奇博尔德赢得了这场比赛,然而不久后他就开始呕吐,倒在商店门口,随后在附近一所医院被宣布

死亡。验尸报告称,阿奇博尔德的死因是“吸入胃内容物导致窒息”。也就是说,他是被自己呕吐出的蟑螂碎片呛死的。山顶求婚遭雷劈

2010年6月,美国田纳西州诺克斯维尔市30岁男子理查德·巴特勒和25岁女友贝莎妮·洛特到北卡罗来纳山区远足,他同时计划给女友一个惊喜,那就是等他们爬到山顶后,他将掏出一枚戒指向贝莎妮正式求婚。可是令理查德做梦也没想到的是,他的浪漫求婚计划竟会变成一场噩梦和悲剧。当他们到达山顶时,天空突然暴雨倾盆、雷电大作,最后一道闪电竟不偏不倚击中他俩,贝莎妮甚至还没来得及听到他开口求婚,就被闪电“闪电般”地夺走了性命。而理查德也遭遇了三级烧伤,悲痛欲绝的他怎样都无法接受女友在他即将求婚时被闪电劈死的事实。

炫耀宠物蟒蛇被活活缠死

2010年6月19日,家住在美国内布拉斯加的34岁男子克里·伯恩在家中被宠物蟒蛇绕颈扼死,这条蟒蛇有9英尺长(约2.75米),25磅重,伯恩死前曾经向朋友炫耀自己的蟒蛇。事发时,这条蟒蛇慢慢绕过伯恩的肩膀,然后是他的脖子,最后猛力收紧,不再放开,随后朋友立即报了警。警方称他们到达时,伯恩已经倒地,蟒蛇仍紧紧绕着他的脖子。警察和医护人员费了几个小时才把蟒蛇拿开。事后这条肇事的蟒蛇被警方放进笼子,并带回警局。

被宠物狗“开车”撞死

2013年1月17日,美国佛罗里达州一对老年夫妇开车回家,车门打开后爱犬突然跳进汽车驾驶室并踩上了油门,随后汽车启动撞倒男主人并从他身上轧过,男主人当场死亡。68岁的坎贝尔和56岁的妻子福特纳家住坎墩蒙特镇。本周一,夫妻俩开车抵达住宅后,坎贝尔提前下车去开车库大门,福特纳倒车准备入库。可当福特纳打开车门查看丈夫的位置时,他们家的大狗突然跳进车内并踩上了油门。福特纳阻止不及,那辆1995年雪佛莱厢式车就撞倒坎贝尔并从他身上轧过,坎贝尔当场死亡。

男子“装死”意外身亡

2011年5月15日,一名澳大利亚男子玩“装死”游戏时,不慎坠楼身亡,游戏酿成悲剧。坠楼身亡的男子名叫阿克顿·比尔,今年20岁,15日早晨这名男青年和朋友在公寓楼7楼的阳台上玩“装死”游戏时,他一不小心从楼上摔下,随后被送往当地医院后死亡。警方反映:“在一些情况下,'装死’的活动是很安全无害的。但是有的人在公寓楼7楼的阳台、或者爬到交通信号灯顶端、或者趴在铁轨和大桥上装死并拍照,这种玩法无疑是极端危险的”。获悉比尔在“装死”时不幸死亡的消息后,许多网友都在“澳大利亚装死活动”网站留言,对他的死亡表示哀悼。

女子坐过山车意外坠落

2013年7月19日下午约6时30分时,一名女性游客乘坐位于德克萨斯州的“德州巨人”过山车时坠落身亡。当时正在排队等候的布朗说:“当车子下落时,(安全杆)松了,她直接翻滚下来。”其他目击者称,这名女游客和儿子一起坐上了过山车,她可能没有被正确地绑定在座椅上。出事后孩子们大喊着“我们要妈妈”,还有其他乘客哭泣着,游乐园立即关闭了过山车,并封锁出事地区周围园区。“德州巨人”过山车高达153英尺,可将游客送到14层楼的高度,并有79度的下降轨道,最多可搭载24名乘客。它于1990年开业,拥有世界上最陡木结构的过山车头衔,20年后又耗资1000万美元安装钢混合轨道,并在2011年六旗主题公园50周年庆时重新开放,它也是位居全球最惊险刺激的过山车之列。男友被女友一屁股坐死

2010年2月24日,在美国俄亥俄州克利夫兰市,对一起荒谬杀人案的最终审判在当地引起激烈争议。原来当事人米娅·南丁哈姆在去年8月和男友米卡尔·米德尔斯通·贝争吵时,一气之下竟然一屁股把他坐死,法庭判处米娅缓刑3年和100个小时的社会服务,米娅也当庭被释放。现年30多岁的米娅几年前和男友米卡尔同居,两人一同抚养3个孩子。米娅高1.75米重136公斤,米卡尔比较瘦弱,身高1.78米体重只有54.4公斤,平日里两人还经常为生活琐事争吵不休,但一直以来两人感情还算不错,去年8月,同样的争吵

再次发生,这一回米娅不知为什么特别生气,看着坐在沙发上的男友米卡尔,一怒之下她把身子移到男友面前,使劲一屁股坐下去。然而等米娅起身的时候,她再也听不见男友嘀嘀咕咕的声音了,因为他已经断气了。

男子睡觉时压死女友

2011年12月13日,英国沃辛市一名男子在女友家的沙发上睡觉时,不慎压在女友的脸上,导致后者窒息死亡。该男子名叫罗伯特·特里格),现年47岁。死者名叫苏珊·尼克尔森,52岁,她和特里格经常在家中的沙发上睡觉。不过这一次,当体重83公斤的特里格醒来的时候,51公斤重的苏珊却没有了呼吸。睡觉时特里格不小心翻身躺在了尼克尔森的脸上,15秒钟后她就窒息身亡。尸检结果也表明,尼克尔森死于意外。法医说:“毫无疑问,特里格睡在了尼克尔森的脸上,这就是导致她死亡的原因。”

概率经典测试题及答案

概率经典测试题及答案 一、选择题 1.下列说法正确的是 () A.要调查现在人们在数学化时代的生活方式,宜采用普查方式 B.一组数据3,4,4,6,8,5的中位数是4 C.必然事件的概率是100%,随机事件的概率大于0而小于1 D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定 【答案】C 【解析】 【分析】 直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案. 【详解】 A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误; B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误; C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确; D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误; 故选:C. 【点睛】 此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键. 2.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是() A.2 3 B. 1 2 C. 1 3 D. 1 4 【答案】C 【解析】 【分析】 【详解】 用数组(X,Y)中的X表示征征选择的社团,Y表示舟舟选择的社团.A,B,C分别表示航模、彩绘、泥塑三个社团, 于是可得到(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共9中不同的选择结果,而征征和舟舟选到同一社团的只有(A,A),(B,B),(C,C)三种, 所以,所求概率为31 93 ,故选C.

随机事件的概率知识点总结

随机事件的概率 一、事件 1.在条件S下,一定会发生的事件,叫做相对于条件S的必然事件. 2.在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件. 3.在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件. 二、概率和频率 1.用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据. 2.在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现 的次数n A为事件A出现的频数,称事件A出现的比例f n(A)=n A n 为事件A出现的频率. 3.对于给定的随机事件A,由于事件A发生的频率f n(A)随着试验次数的增加稳定于概率P(A),因此可以用频率f n(A)来估计概率P(A). 三、事件的关系与运算

四、概率的几个基本性质 1.概率的取值范围:0≤P(A)≤1. 2.必然事件的概率P(E)=1. 3.不可能事件的概率P(F)=0. 4.概率的加法公式: 如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B). 5.对立事件的概率: 若事件A与事件B互为对立事件,则A∪B为必然事件.P(A∪B)=1,P(A)=1-P(B). 1.掷一枚均匀的硬币两次,事件M:一次正面朝上,一次反面朝上;事件N:至少一次正面朝上.则下列结果正确的是( ) A.P(M)=1 3 P(N)= 1 2 B.P(M)=1 2 P(N)= 1 2 C.P(M)=1 3 P(N)= 3 4 D.P(M)=1 2 P(N)= 3 4 解析:选D 由条件知事件M包含:(正、反)、(反、正).事件N包含:(正、正)、(正、反)、(反、正). 故P(M)=1 2 ,P(N)= 3 4 . 2.(2012·)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( ) A.至少有一个红球与都是红球 B.至少有一个红球与都是白球 C.至少有一个红球与至少有一个白球 D.恰有一个红球与恰有二个红球 解析:选D A中的两个事件不互斥,B中两事件互斥且对立,C中的两个事件不互斥,D

初中数学概率技巧及练习题附答案

初中数学概率技巧及练习题附答案 一、选择题 1.下列事件是必然事件的是() A.打开电视机正在播放动画片B.投掷一枚质地均匀的硬币100次,正面向上的次数为50 C.车辆在下个路口将会遇到红灯D.在平面上任意画一个三角形,其内角和是180? 【答案】D 【解析】 【分析】 直接利用随机事件以及必然事件的定义分别判断得出答案. 【详解】 A、打开电视机正在插放动画片为随机事件,故此选项错误; B、投掷一枚质地均匀的硬币100次,正面向上的次数为50为随机事件,故此选项错误; C、“车辆在下个路口将会遇到红灯”为随机事件,故此选项错误; D、在平面上任意画一个三角形,其内角和是180°为必然事件,故此选项正确. 故选:D. 【点睛】 此题考查随机事件以及必然事件,正确把握相关定义是解题关键. 2.将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是() A.1 36 B. 1 6 C. 1 12 D. 1 3 【答案】A 【解析】 【分析】 本题是一个由三步才能完成的事件,共有6×6×6=216种结果,每种结果出现的机会相同,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6种情况,即可求出a,b,c正好是直角三角形三边长的概率. 【详解】 P(a,b,c正好是直角三角形三边长)= 61 21636 = 故选:A 【点睛】 本题考查概率的求法,概率等于所求情况数与总情况数之比.本题属于基础题,也是常考题型.

概率统计试卷及答案

概率统计试卷 A 一、填空题(共5 小题,每题 3 分,共计15分) 1、设P(A) =a , P(B) = , P(A B ) = ,若事件A 与B 互不相容,则 a = . 2、设在一次试验中,事件A 发生的概率为p ,现进行n 次重复试验,则事件A 至少发生一次的概率为 . 3、已知P(A ) = , P(B) = , P(AB ) = ,则P(|B A B )= . 4、设随机变量X 的分布函数为 0,0,()sin ,0, 21.2x F x A x x x ππ????则A = . 5、设随机变量X ~(1)π,则P{ 2 ()X E X =}= . 二、选择题(共5 小题,每题3 分,共计15分) 1、设P(A|B) = P(B|A)=14, 2()3P A = , 则( )一定成立. (A) A 与B 独立,且 2 ()5P A B = . (B) A 与B 独立,且()()P A P B =. (C) A 与B 不独立,且 7 ()12P A B = . (D) A 与B 不独立, 且(|)(|)P A B P A B =. 2、下列函数中,( )可以作为连续型随机变量的概率密度. (A) 3sin ,,()20x x f x ππ?≤≤?=???其它. (B) 3sin ,,()20x x g x ππ? -≤≤? =? ??其它. (C) 3s ,,()20co x x x ππ??≤≤?=???其它. (D) 31s ,,()20co x x h x ππ? -≤≤? =? ??其它. 3、设X 为一随机变量,若D(10X ) =10,则D(X ) = ( ). (A) 1 10. (B) 1. (C) 10. (D) 100. 4、设随机变量X 服从正态分布2 (1,2)N ,12100,,X X X 是来自X 的样本,X 为样本均值,已知~(0,1)Y aX b N =+,则有( ). (A) 11,55a b == . (B) 5,5a b ==.

北师大版高中数学必修三第二课时随机事件的频率与概率教案(精品教学设计)

第二课时随机事件的频率与概率 一、教学目标:1.理解随机事件在大量重复试验的情况下,它的发生呈现的规律性;2.掌握概率的统计定义及概率的性质. 二、教学重点:随机事件的概念及其概率.教学难点:随机事件的概念及其概率. 三、探究讨论法 四、教学过程 (一)、新课引入 1.观察下列日常生活中的事件发生与否,各有什么特点?(1)金属丝通电时,发热;(2)抛一块石头,下落;(3)在常温下,焊锡熔化;(4)在标准大气压下且温度低于00C时,冰融化;(5)掷一枚硬币,出现正面;(6)某人射击一次,中靶. 分析结果: (1)(2)是必然要发生的,(3)(4)不可能发生,(5)(6)可能发生也可能不发生 2.(1)“如果a>b,那么a-b>0”; (2)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”; (3)“某电话机在1分钟内收到2次呼叫”;

(4)“没有水份,种子能发芽”; 分析结果:(略) 3.男女出生率 一般人或许认为:生男生女的可能性是相等的,因而推测出男婴和女婴的出生数的比因当是1:1,可事实并非如此.公元1814年,法国数学家拉普拉斯(Laplace 1794---1827)在他的新作《概率的哲学探讨》一书中,记载了一下有趣的统计.他根据伦敦,彼得堡,柏林和全法国的统计资料,得出了几乎完全一致的男婴和女婴出生数的比值是22:21,即在全体出生婴儿中,男婴占51.2%,女婴占48.8%.可奇怪的是,当他统计1745---1784整整四十年间巴黎男婴出生率时,却得到了另一个比是25:24,男婴占51.02%,与前者相差0.14%.对于这千分之一点四的微小差异!拉普拉斯对此感到困惑不解,他深信自然规律,他觉得这千分之一点四的后面,一定有深刻的因素.于是,他深入进行调查研究,终于发现:当时巴黎人”重男轻女”,又抛弃女婴的陋俗,以至于歪曲了出生率的真相,经过修正,巴黎的男女婴的出生比率依然是22:21. 4.π中数字出现的稳定性(法格逊猜想) 在π的数值式中,各个数码出现的概率应当均为1/10.随着计算机的发展,人们对π的前一百万位小数中各数码出现的频率进行了统计,得到的结果与法格逊猜想非常吻合.

第2章-简单事件的概率单元测试(含答案)-

( 第2章简单事件的概率单元测试 一、选择题 1.如图1,将五张分别印有北京2008年奥运会吉祥物“贝贝、晶晶、欢欢、迎迎、妮妮” 的卡片(卡片的形状、大小一样,质地相同)放入盒中,从中随机地抽取一张卡片印有“欢欢”的概率为() A.1 2 B. 1 3 C. 1 4 D. 1 5 图1 图2 图3 2.有5张写有数字的卡片(如图2甲所示),它们的背面都相同,现将它们背面朝上(如图2乙所示),从中翻开任意一张是数字2的概率() | A.1 5 B. 2 5 C. 2 3 D. 1 2 3.随机掷两枚硬币,落地后全部正面朝上的概率是() A.1 B.1 2 C. 1 3 D. 1 4 4.在抛掷一枚硬币的实验中,某小组做了1000?次实验,?最后出现正面的频率为%,此时出现正面的频数为() A.496 B.500 C.516 D.不能确定 5.下列说法错误 ..的是() A.同时抛两枚普通正方体骰子,点数都是4的概率为1 6 B.不可能事件发生机会为0

: C.买一张彩票会中奖是可能事件 D.一件事发生机会为%,这件事就有可能发生 6.某校九年级(1)班50名学生中有20名团员,他们都积极报名参加义乌市“文明劝导活动”.根据要求,该班从团员中随机抽取1名参加,则该班团员京京被抽到的概率是() A.1121 (502520) B C D 7.现有4种物质:①HCl;②NaOH;③HO;④NaCl.?任取两种混合能发生化学变化的概率为() A.1 4 B. 1 2 C. 1 3 D. 1 6 8.一个均匀的立方体的六个面上分别标有数字1,2,3,4,5,6,如图3是这个立方体的表面展开图.抛掷这个立方体,则朝上一面的数恰好等于朝下一面的数的的概率是() A.1 6 B. 1 3 C. 1 2 D. 2 3 - 9.小王的衣柜里有两件上衣,一件红色,一件黄色;还有三条裤子,分别是:白色,蓝色和黄色,任意取出一件上衣和一条裤子,正好都是黄色的概率为() A.5 6 B. 1 6 C. 1 3 D. 1 5 10.随机掷一枚均匀的硬币两次,落地后至少有一次正面朝上的概率是() A.3 4 B. 2 3 C. 1 2 D. 1 4 二、填空题 11.一个口袋中有4个白球,5个红球,6个黄球,每个球除颜色外都相同,搅匀后随机从袋中摸出一个球,这个球是白球的概率是_______. 12.小明与父母从广州乘火车回梅州参加叶帅纪念馆,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是______. 13.一个小组里有4名女同学,6名男同学,从中任选两人去参加一个晚会,选出的两人

概率统计试卷A及答案

2010―2011―2概率统计试题及答案 一、选择题(每题3分,共30分) 1.已知4 1)()()(= ==C P B P A P ,161)()(==BC P AC P ,0)(=AB P 求事件C B A ,,全不发生的概率______. 31) (A 83)(B 157)(C 5 2 )(D 2.设A 、B 、C 为3个事件.运算关系C B A 表示事件______. (A ) A 、B 、C 至少有一个发生 (B ) A 、B 、C 中不多于—个发生 (C ) A ,B ,C 不多于两个发生 (D ) A ,月,C 中至少有两个发生 3.设X 的分布律为),2,1(2}{ ===k k X P k λ,则=λ__________. 0)(>λA 的任意实数 3)(=λB 3 1 )(= λC 1)(=λD 4.设X 为一个连续型随机变量,其概率密度函数为)(x f ,则)(x f 必满足______. (A ) 1)(0≤≤x f (B ) 单调不减 (C ) 1)(=? ∞+∞ -dx x f (D ) 1)(lim =+∞ →x f x 5.对正态总体的数学期望μ进行假设检验,如果在显著性水平α=0.05下接受 00:μμ=H ,那么在显著性水平 α=0.01下,下列结论正确的是______. (A ) 必接受0H (B )可能接受也可能拒绝0H (C ) 必拒绝0H (D )不接受,也不拒绝0H 6.设随机变量X 和Y 服从相同的正态分布)1,0(N ,以下结论成立的是______. (A ) 对任意正整数k ,有)()(k k Y E X E = (B ) Y X +服从正态分布)2,0(N (C ) 随机变量),(Y X 服从二维正态分布

随机事件及其概率教案(精)

<随机事件及其概率>教案 (一)教学目标: 1、知识目标: 使学生掌握必然事件,不可能事件,随机事件的概念及概率的统计定义,并了解实际生活中的随机现象,能用概率的知识初步解释这些现象 2、能力目标: 通过自主探究,动手实践的方法使学生理解相关概念,使学生学会主动探究问题,自主实践,分析问题,总结问题。 3、德育目标: 1.培养学生的辩证唯物主义观点. 2.增强学生的科学意识 (二)教学重点与难点: 重点:理解概率统计定义。 难点:认识频率与概率之间的联系与区别。 (三)教学过程: 一、引入新课: 试验1:扔钥匙,钥匙下落。 试验2:掷色子,数字几朝上。 讨论:下列事件能否发生? (1)“导体通电时,发热”---------------必然发生(2)“抛一石块,下 落”---------------必然发生 (3)“在常温下,铁熔化” -------------不可能发生 (4)“某人射击一次,中靶” -----可能发生也可能不发生(5)“掷一枚硬币,国徽朝上” -----可能发生也可能不发生(6)“在标准大气压下且温度低于0℃时,冰融化” ---不可能发生思考: 1、“结果”是否发生与“一定条件”有无直接关系? 2、按事件发生的结果,事件可以如何来分类? 二、新授: (一)随机事件: 定义1、在一定条件下必然要发生的事件叫必然事件。 定义2、在一定条件下不可能发生的事件叫不可能事件。 定义3、在一定条件下可能发生也可能不发生的事件叫随机事件。 例1、指出下列事件是必然事件,不可能事件,还是随机事件: (1)扬中明年1月1日刮西北风; x (2)当x是实数时,20 (3)手电筒的电池没电,灯泡发亮; (4)一个电影院某天的上座率超过50%。 (5)从分别标有1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到4号签。讨论:各举一个你生活或学习中的必然事件、不可能事件、随机事件的例子 做一做:(投币实验)抛掷一枚硬币,观察它落地时哪一面朝上?(两人一组) 1.你的结果和其他同学一致吗?为什么会出现这样的情况? 2.重复试验10次并记录结果(正面朝上的次数)。(一人试验,一人记录)

简单事件的概率练习题

、选择题 1.下列事件是必然事件的是( A. 随机抛掷一枚均匀的硬币,落地后正面一定朝上 B. 打开电视体育频道,正在播放 NBA 求赛 拿出一支笔芯,则拿出黑色笔芯的概率是( A.- 3 3.同时抛掷两枚质地均匀的骰子,骰子的六个面分别刻有1到6的点数,朝上的 B. 从一个装有2个白球和1个红球的袋子中任取一球, C. 抛一枚硬币,出现正面的概率 D. 任意写一个整数,它能被2整除的概率 6. 一个均匀的立方体六个面上分别标有数 1,2,3, 这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等 1 于朝下一面上的数的-的概率是() 2 B.- 3 C.射击运动员射击一次,命中十环 D. 若a 是实数,则|a 0 2.盒子里有3支红色笔芯,2支黑色笔芯, 每支笔芯除颜色外均相同?从中任意 面的点数中,一个点数能被另一个点数整除的概率是 A. — B. 3 C. 口 18 4 18 4. 在一张边长为4cm 的正方形纸上做扎针随机试验, 形阴影区域,贝U 针头扎在阴影区域内的概率为 () 1 1 A. B. - C. D. - 16 4 16 4 5. 甲、乙两名同学在一次用频率去估计概率的试验中 23 36 纸上有一个半径为1cm 的圆 D. 统计了某一结果出现的频率,绘出的统计图如图所示, 则符合这一结果的试验可能是( A.掷一枚正六面体的骰子,出现1点的概率 取到红球的概率 D.- 3 C.- 2 4,5,6?右图是 4

7. 甲、乙、丙、丁四名运动员参加 4X 100米接力赛,甲必须为第一接力棒或第 四接棒的运动员,那么这四名运动员在比赛过程的接棒顺序有( ) A . 3 种 B . 4 种 C . 6 种 D . 12 种 8. 一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( 15 9. 在6件产品中,有2件次品,任取两件都是次品的概率是() A 、1 B 丄 C 、丄 D 、丄 5 6 行 15 10. 在拼图游戏中,从图中的四张纸片中,任取两张纸片,能拼成“小房子” (如 图所示)的概率等于( ) A. 1 B . L C . 1 D . 2 2 3 3 二、填空题 11. 一个瓷罐中装有1枚白色围棋棋子,1枚黑色棋子,现从罐中有返回地摸棋 子两次,摸到两个白子的概率为 ____________ ,先摸到白子,再摸到黑子的概率 为 . 12. 如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若 指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止) ,两个指 针所指区域的数字和为偶数的概率是 —— 13. 小明与小亮在一起做游戏时需要确定作游戏的先后顺序, 他们约定用“锤子、 剪刀、布”的方式确定,请问在一个回合中两个人都出“布”的概率是 — 14. 晓芳抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概 率为 _______ . 15. 在一副去掉大、小王的扑克牌中任取一张,则 P (抽到黑桃K )等于 _______ P (抽到9)等于 . 16. 单项选择题是数学试题的重要组成部分,当你遇到不会做的题目时,如果你 随便选一个答案(假设每个题目有4个选项),那么你答对的概率为 ______________ A. B. C. D. 15

随机事件及其概率(知识点总结)Word版

随机事件及其概率 一、随机事件 1、必然事件 在一定条件下,必然会发生的事件叫作必然事件. 2、不可能事件 在一定条件下,一定不会发生的事件叫作不可能事件. 3、随机事件 在一定条件下,可能发生,也可能不发生的事件叫作随机事件,一般用大写字母A,B,C来表示随机事件. 4、确定事件 必然事件和不可能事件统称为相对于随机事件的确定事件. 5、试验 为了探索随机现象发生的规律,就要对随机现象进行观察或模拟,这种观察或模拟的过程就叫作试验. 【注】(1)在一定条件下,某种现象可能发生,也可能不发生,事先并不能判断将出现哪种结果,这种现象就叫作随机现象. 应当注意的是,随机现象绝不是杂乱无章的现象,这里的“随机”有两方面意思:①这种现象的结果不确定,发生之前不能预言;②这种现象的结果带有偶然性. 虽然随机现象的结果不确定,带有某种偶然性,但是这种现象的各种可能结果在数量上具有一定的稳定性和规律性,我们称这种规律性为统计规律性. 统计和概率就是从量的侧面去研究和揭示随机现象的这种规律性,从而实现随机性和确定性之间矛盾的统一.

(2)必然事件与不可能事件反映的是在一定条件下的确定性现象,而随机事件反映的则是在一定条件下的随机现象. (3)随机试验满足的条件:可以在相同条件下重复进行;所有结果都是明确可知的,但不止一个;每一次试验的结果是可能结果中的一个,但不确定是哪一个. 随机事件也可以简称为事件,但有时为了叙述的简洁性,也可能包含不可能事件和必然事件. 二、基本事件空间 1、基本事件 在试验中不能再分的最简单的随机事件,而其他事件都可以用它们进行描述,这样的事件称为基本事件. 2、基本事件空间 所有基本事件构成的集合称为基本事件空间,常用大写字母Ω来表示,Ω中的每一个元素都是一个基本事件,并且Ω中包含了所有的基本事件. 【注】基本事件是试验中所有可能发生的结果的最小单位,它不能再分,其他的事件都可以用这些基本事件来表示;在写一个试验的基本事件空间时,应注意每个基本事件是否与顺序有关系;基本事件空间包含了所有的基本事件,在写时应注意不重复、不遗漏. 三、频率与概率 1、频数与频率 在相同条件S 下进行了n 次试验,观察某一事件A 是否出现,则称在n 次试验中事件A 出现的次数A n 为事件A 出现的频数;事件A 出现的比例()A n n f A n =为事件A 出现的频率.

概率经典测试题及解析

概率经典测试题及解析 一、选择题 1.在2015-2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是() A.易建联罚球投篮2次,一定全部命中 B.易建联罚球投篮2次,不一定全部命中 C.易建联罚球投篮1次,命中的可能性较大 D.易建联罚球投篮1次,不命中的可能性较小 【答案】A 【解析】 【分析】 根据概率的意义对各选项分析判断后利用排除法求解. 【详解】 解:A、易建联罚球投篮2次,不一定全部命中,故本选项错误; B、易建联罚球投篮2次,不一定全部命中,故本选项正确; C、∵易建联罚球投篮的命中率大约是82.3%, ∴易建联罚球投篮1次,命中的可能性较大,故本选项正确; D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确. 故选:A. 【点睛】 本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生. 2.袋中有8个红球和若干个黑球,小强从袋中任意摸出一球,记下颜色后又放回袋中,摇匀后又摸出一球,再记下颜色,做了50次,共有16次摸出红球,据此估计袋中有黑球()个. A.15 B.17 C.16 D.18 【答案】B 【解析】 【分析】 根据共摸球50次,其中16次摸到红球,则摸到红球与摸到黑球的次数之比为8: 17,由此可估计口袋中红球和黑球个数之比为8: 17;即可计算出黑球数. 【详解】 ∵共摸了50次,其中16次摸到红球,∴有34次摸到黑球,∴摸到红球与摸到黑球的次 数之比为8: 17,∴口袋中红球和黑球个数之比为8: 17,∴黑球的个数8÷ 8 17 = 17(个),故答 案选B. 【点睛】 本题主要考查的是通过样本去估计总体,只需将样本"成比例地放大”为总体是解本题的关键.

概率统计试卷答案

一、填空题 1.已知()0.8,()0.5,P A P A B ==且事件A 与B 相互独立,则()P B = 0.375 . 2.若二维随机变量),(Y X 的联合概率分布为 18 .012.012.008.01 11 1 b a X Y --,且X 与Y 相互 独立,则=a 0.2 ;=b 0.3 . 3.已知随机变量~(0,2)X U ,则2()[()] D X E X = 13 . 4.已知正常男性成人血液中,每毫升白细胞平均数是7300,均方差是700。设X 表示每毫升白细胞数,利用切比雪夫不等式估计{52009400}P X <<89 ≥ . 5.设123,,X X X 是总体X 的样本,11231?()4X aX X μ =++,21231?()6 bX X X μ=++是总体均值的两个无偏估计,则a = 2 ,b = 4 . 二、单项选择题 1.甲、乙、丙三人独立地译一密码,他们每人译出密码的概率分别是0.5,0.6,0.7, 则密码被译出的概率为 ( A ) A. 0.94 B. 0.92 C. 0.95 D. 0.90 2.某人打靶的命中率为0.8,现独立射击5次,则5次中有2次命中的概率为( D ) A. 20.8 B. 230.80.2? C. 22 0.85 ? D. 22350.80.2C ?? 3.设随机变量Y X 和独立同分布,则),,(~2σμN X ( B ) A. )2,2(~22σμN X B. )5,(~22σμN Y X - C. )3,3(~22σμN Y X + D. )5,3(~22σμN Y X - 4.对于任意两个随机变量X 和Y ,若()()()E XY E X E Y =?,则( B ). A. ()()()D XY D X D Y =? B.()()()D X Y D X D Y +=+ C.X 和Y 独立 D.X 和Y 不独立 5.设 ()2~,X N μσ,其中μ已知,2σ未知,123 ,,X X X 为其样本, 下列各项不是 统计量的是( A ).

随机事件的频率与概率

随机事件的频率与概率 1.随机事件的频率 随机事件的频数与频率:在相同的条件下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例n n A f A n )(为事件A 出现的频率. 2.随机事件的概率 一般来说,随机事件A 在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A 发生的频率会逐渐稳定在区间[0,1]中的某个常数上,这个常数可以用来度量事件A 发生的可能性的大小,称为事件A 的概率,记作P(A). 3.频率与概率的区别和联系 (1) 频率本身是随机的,在试验前不能确定.做同样次数的重复试验得到事件的频率会不同. (2) 概率是一个确定的数,与每次试验无关.是用来度量事件发生可能性大小的量. (3) 频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率. 例1.某射击运动员在同一条件下进行练习,结果如下表所示: (1)计算表中击中10环的各个频率; (2)这名运动员射击一次,击中10环的概率是多少? 分析:(1)分清m ,n 的值,用公式n m 计算; (2)观察各频率是否与某一常数接近,且在它附近摆动. 解:(1)

(2)从上表可以看出,这名运动员击中10环的频率在0.9附近波动,且射击次数越多,频率越接近0.9,故可以估计,这名运动员射击一次,击中10环的概率约为0.9. 点评:在相同条件下,随着试验次数的增加,随机事件发生的频率会在某个常数附近摆动并趋于稳定,我们就可以用这个常数来刻画该随机事件发生的可能性的大小,而将频率作为其近似值.从中要进一步体会频率与概率的定义及它们的区别与联系.如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可以将事件A 发生的频率 n m 作为事件A 发生的概率的近似值,即P(A)≈n m . 例2.为了估计水库中的鱼的尾数,可以使用以下方法: 先从水库中捕出一定数量的鱼,例如2000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾,试根据上述数据,估计水库内鱼的尾数. 分析:用样本估计总体. 解:设水库中鱼的尾数为n,n 是未知的,现在要估计n 的值,将n 的估计值 记作n ?. 假定每尾鱼被捕的可能性是相等的,从库中任捕一尾鱼,设事件A 为“带有记号的鱼”,易知P(A)=n 2000. 第二次从水库中捕出500尾鱼,其中带有记号的鱼有40尾,即事件A 发生的频数n A =40,由概率的统计定义知50040)(≈ A P . 所以500 402000≈n .

概率统计试卷4

备用数据:22 0.950.950.05(3) 2.3534,(3) 6.815,(3)0.352 t χχ=== 8413.0)1(=Φ ,7881.0)8.0(,9993.0)2.3(=Φ=Φ. 一、填空题(18分) 1、(4分)已知5.0)(=A P ,4.0)(=B P ,6.0)|(=B A P ,则)(AB P = , )(B A A P ?= . 2、(4分)设随机变量ξ服从二项分布),4(p B ,01p <<,已知)3()1(===ξξP P ,则 =p ,)2(=ξP = . 3、(6分)设随机变量X 服从参数为1的指数分布,随机变量Y 服从二项分布(2,0.5)B ,且 (,)0.5cov X Y =,则(3)E X Y -= ,(3)D X Y -= ,利用切比雪夫不等 式可得() ≥≤+-223Y X P . 4、(4分)设126,,X X X 相互独立且服从相同的分布,且1X 服从正态分布)9,0(N ,记 ()()22 2 123456 T a X X b X X X cX =+++++,其中,,a b c 为常数,且0≠abc ,当 a = , b = , c = 时,T 服从自由度为 的2χ分布. 二、(12分)甲、乙两人各自独立作同种试验,已知甲、乙两人试验成功的概率分别为0.6,0.8. (1) 求两人中只有一人试验成功的概率; (2) 在已知甲乙两人中至少有一人试验成功的情况下,求甲成功但乙未成功的概率。 三、(12分)设随机变量)4,1(~N ξ,)9,0(~N η,且ξ与η的相关系数2 1-=ξηρ. 记3 2 η ξ + =Z .求(1))(Z E ,)(Z D ;(2)),(Cov Z ξ. 四、(12分)假设二维随机变量(,)X Y 服从矩形 }10,20|),{(≤≤≤≤=y x y x G 上的均匀 分布. 记01X Y U X Y ≤?=? >?若若, 0212X Y V X Y ≤?=?>?若若, (1)求),(V U 的联合概率函数; (2)求概率)1(22≤+V U P . 五、(12分)设随机变量21ξξ与相互独立, 它们均服从标准正态分布.记 211ξξη+=,212ξξη-=.可以证明:(1η,2η)服从二维正态分布. (1) 分别求1η和2η的密度函数; (2) 求),(21ηη的联合密度函数; (3) 求概率() 22,2221≤≤-≤≤-ηηP . 六、(10分)某生产线上组装一件产品的所需时间X 服从指数分布,10)(=X E (单位:分钟),假设组装各件产品所需时间相互独立.用中心极限定理求组装100件产品所需时间在18小时至22小时之间的概率的近似值 七、(10分)设某种新型塑料的抗压力X 服从正态分布2 (,)N μσ,现对4个试验件做压力试 验,得到试验数据(单位:10MPa),并由此算出 4 4 21 1 32,268i i i i x x ====∑∑,分别求μ和σ的置 信水平0.90的双侧置信区间. 八、(14分)设n X X X ,,,21 是取自总体X 的简单随机样本,X 服从区间]8,8[θ+上的均匀分布,其中0>θ. θ未知. (1)求θ的极大似然估计θ?;(2)求θ的极大似然估计θ?的密度函数; (3)问:θ的极大似然估计θ?是否为θ的无偏估计?如果是的话,给出证明;如果不是的话,将其修正为θ的一个无偏估计.

高中数学随机事件的频率与概率

《随机事件的频率与概率》教案 一、[教学目标] 1、知识与技能:理解随机事件在大量重复试验的情况下,它的发生呈现的规律性;掌握概率的统计定义及概率的性质。 2、过程与方法目标:通过创设问题情境,引发学生思考、探究,在这个过程中体会学习条件概率的必要性,探寻解决问题的方法,培养学生分析问题、解决问题的能力。 3、情感态度价值观:在问题的解决过程中,学会探究、学会学习;体会数学的应用价值,发展学生学数学用数学的意识。 二、[教学重点] 随机事件的概念及其概率. 三、[教学难点] 随机事件的概念及其概率. 四、[教学方法] 探究讨论法。 五、[教学过程] (一)新课引入 1.观察下列日常生活中的事件发生与否,各有什么特点?(1)金属丝通电时,发热;(2)抛一块石头,下落;(3)在常温下,焊锡熔化;(4)在标准大气压下且温度低于00C时,冰融化;(5)掷一枚硬币,出现正面;(6)某人射击一次,中靶. 分析结果: (1)(2)是必然要发生的,(3)(4)不可能发生,(5)(6)可能发生也可能不发生 2.(1)“如果a>b,那么a-b>0”; (2)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;(3)“某电话机在1分钟内收到2次呼叫”; (4)“没有水份,种子能发芽”;

分析结果:(略) (二)探究新课 1.事件的定义: 随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件. 说明:三种事件都是在“一定条件下”发生的,当条件改变时,事件的性质也可以发生变化. 2.随机事件的概率: (1)实验:随机事件在一次试验中是否发生是不确定,但在大量重复的试验情况下,它的发生呈现出一定的规律性. 实验一:抛掷硬币试验结果表: m n) 抛掷次数(n)正面朝上次数(m)频率(/ 2048 1061 0.5181 4040 2048 0.5069 12000 6019 0.5016 24000 12012 0.5005 30000 14984 0.4996 72088 36124 0.5011 当抛掷次数很多时,出现正面的频率值是稳定的,接近于常数0.5,并在它附近摆动. 实验二:某批乒乓球产品质量检查结果表: 抽取球数n50 100 200 500 1000 2000 优等品数m45 92 194 470 954 1902 m n0.9 0.92 0.97 0.94 0.954 0.951 频率/ 当抽查的球数很多时,抽到优等品的频率接近于常数0.95,并在它附近摆动

《事件的概率》资料:随机事件的概率知识点总结

随机事件的概率知识点总结 事件的分类 1、确定事件 必然发生的事件:当A 是必然发生的事件时,P (A )=1 不可能发生的事件:当A 是不可能发生的事件时,P (A )=0 2、随机事件:当A 是可能发生的事件时,0<P (A )<1 概率的意义 一般地,在大量重复试验中,如果事件A 发生的频率m n 会稳定在某个常数p 附近 那么这个常数p 就叫做事件A 的概率。 概率的表示方法 一般地,事件用英文大写字母A ,B ,C ,…,表示事件A 的概率p ,可记为P (A )=P 概率的求解方法 1.利用频率估算法:大量重复试验中,事件A 发生的频率 m n 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(有些时候用计算出A发生的所有频率的平均值作为其概率). 2.狭义定义法:如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,考察事件A 包含其中的m 中结果,那么事件A 发生的概率为P (A )= n m 3.列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标. 特别注意放回去与不放回去的列表法的不同.如:一只箱子中有三张卡片,上面分别是数字1、2、3,第一抽出一张后再放回去再抽第二次,两次抽到数字为数字1和2或者2和1的概率是多少?若不放回去,两次抽到数字为数字1和2或者2和1的概率是多少? 放回去P (1和2)=9 2不放回去P (1和2)=62

4.树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率. 注意:求概率的一个重要技巧:求某一事件的概率较难时,可先求其余事件的概率或考虑其反面的概率再用1减——即正难则反易. 概率的实际意义 对随机事件发生的可能性的大小即计算其概率.一方面要评判一些游戏规则对参与游戏者是否公平,就是要看各事件发生概率.另一方面通过对概率的学习让我们更加理智的对待一些买彩票抽奖活动. (3,3) (3,2) (3,1) 3 (2,3)(2,2)(2,1)2(1,3)(1,2)(1,1)1第一次 结果3 2 1 第二次(3,2) (3,1) 3 (2,3) (2,1)2(1,3)(1,2) 1第一次 结果3 2 1第二次

第2章简单事件的概率期末专项练习

简单事件的概率期末专项练习 一.选择题(共10小题) 1.四张完全相同的卡片上,分别画有圆、平行四边形、等腰三角形、矩形,现从中随机抽取一张,恰好抽到轴对称图形的概率是() A.B.C.D.1 2.在一个不透明的口袋中,红色,黑色,白色的小球共有50个,除颜色外其它完全相同,乐乐通过多次摸球试验后发现,摸到红色球,黑色球的频率分别稳定在和,则口袋中白色球的个数可能为() A.20B.15C.10D.5 3.抛掷一枚质地均匀的硬币,“反面朝上”的概率为,那么抛掷一枚质地均匀的硬币100次,下列理解正确的是() A.每两次必有1次反面朝上 B.可能有50次反面朝上 C.必有50次反面朝上 D.不可能有100次反面朝上 4.计算机的“扫雷”游戏是在9×9个小方格的雷区中,随机地埋藏着10颗地雷,每个小方格最多能埋藏1颗地雷.若游戏时先踩中一个小方格,显示数字3,它表示与这个方格相邻的8个小方格中埋藏着3颗地雷.如图,是小明某次游戏时随机点开一个方块所显示的数字,小明接下来在数字“2”的周围随机点开一个方块,没有踩中地雷的概率为()

A.B.C.D. 5.小明在一次用频率去估计概率的实验中,统计了某一结果出现的频率,绘出的统计图如图所示,则最可能符合这一结果的实验是() A.掷一枚骰子,出现4点的概率 B.抛一枚硬币,出现反面的概率 C.任意写一个整数,它能被3整除的概率 D.从一副扑克中任取一张,取到“大王”的概率 6.从﹣2、﹣1、0、1、2这5个数中任取一个数,作为函数y=mx2﹣4x+2的m值(m为常数),则使函数图象与x轴有两个交点的概率是() A.B.C.D.1 7.2020年五一期间,某消费平台推出“购物满200元可参与抽奖”的活动,中一等奖的概率为,用科学记数法表示为() A.2×10﹣4B.5×10﹣5C.5×10﹣6D.2×10﹣5 8.关于随机事件A发生的频率与概率,下列说法正确的是() A.事件A发生的频率就是它发生的概率 B.在n次试验中,事件A发生了m次,则比值称为事件A发生的频率 C.事件A发生的频率与它发生的概率无关

昆明理工大学试卷概率统计b_历年试题

理工大学试卷(历年试题) 考试科目: 概率统计B(48学时) 考试日期: 命题教师: 2013年概率统计试题 一、填空题(每小题4分,共40分) 1.设A,B,C 为三个事件,则A,B,C 中至少有两个发生可表示为 。 2.已知1()4p A = ,1(|)2p A B =,1 (|)3 p B A =,则()p A B ?= 。 3.设事件A,B 互不相容,且1()2p A =,1 ()3p B =,则()p AB = 。 4.进行独立重复实验,设每次成功的概率为p ,失败的概率为1p -,将实验进行到出现一次成功为止,以X 表示实验次数,则()p X k == 。 5.已知随机变量X 服从参数2λ=的泊松分布,即(2)X P ,则 (0)p X == 。 6.已知随机变量(2,1)X N -,(2,1)Y N 且,X Y 相互独立,则2X Y -服从的分布 是 。 7.若随机变量X 满足()1,()2,E X D X =-=则2(31)E X -= 。 8.设12,X X 是来自于总体X 的样本,1121233X X μ= +,21211 22 X X μ=+为总体均值μ的无偏估计,则12,μμ中较有效的是 。 9.设12 ,,n X X X 为来自总体2(,)N μσ的一个样本,2σ已知,则 2 1 2 () n i i X X σ =-∑服从的分布是 , 2 1 2 ()n i i X μσ=-∑服从的分布是 。 10.设12,,n X X X 为来自总体2(,)N μσ的一个样本,2σ未知,则μ的1α-的置信区 间是为 。

一、 填空题(每小题4分,共40分) 1.AB BC AC 2. 13 3.12 4. ()p X k ==1(1)k p p -- 1,2, k = 5. 2e - 6.(6,5)N - 7. 8 8. 2μ 9. 22(1),()n n χχ- 10. 22(_ (1),(1))x n x n αα-- 二、(10分)某保险公司把被保险人分为三类:谨慎的、一般的、冒失的,统计资料表明,上述三种人在一年发生事故的概率依次为0.05,0.15和0.30。如果谨慎的占总的被保人数的20%,一般的占50%,冒失的占30%,(1)求某被保人在一年发生事故的概率;(2)若此人在一年发生事故,则他是谨慎的客户的概率是多少。 解. 设事件B 为 “被保险人在一年出了事故” 这一事件;事件123,,A A A 分别为“谨慎的、一般的、冒失的被保险人”,则根据全概率公式可得: 112233()(|)()(|)()(|)()P B p B A p A p B A p A p B A p A =++ 3分 =0.2×0.05+0.5×0.15+0.3×0.3=0.175 5分 111112233(|)() (|)(|)()(|)()(|)() p B A p A P A B p B A p A p B A p A p B A p A = ++ 8分 = 0.050.2 0.05710.175 ?= 10分 三、(10分)已知连续型随机变量X 有分布函数: ()arctan , F x A B x x =+-∞<<∞,试求 (1)系数,A B ;,(2) 求概率密度()f x ;(3) X 在区间(,)a b 取值的概率。

相关文档
最新文档