液压马达选择

液压马达选择
液压马达选择

如何选择液压马达

为设计新系统选择液压马达,或者为现有系统中的液压马达寻找替代产品事,除了要考虑功率(扭矩、转速)要求之外,还要考虑其它一些因素。在许多情况下,借鉴以往使用经验(即在类似使用条件下,选用哪些马达成功了,选择哪些马达失败了)事初选马达的一条捷径。当没有已往使用经验可借鉴时,必须考虑以下因素:

1、工作负载循环

2、油液类型

3、最小流量和最大流量

4、压力范围

5、系统类型:开式系统或闭式系统

6、环境温度、系统工作温度和冷却系统

7、油泵类型:齿轮泵、柱塞泵或叶片泵

8、过载保护:靠近液压马达的安全阀

9、速度超越载荷保护

10、径向载荷和轴向载荷

工作负载循环和速度超越载荷保护式常被忽视的两个重要因素。当发生速度超越载荷条件时,马达处于油泵工况,这时马达联动轴所承受的扭矩可能达到正常工作情况下的两倍。若忽视了上述情况,会导致马达损坏。

工作负载循环时系统匹配时要考虑的另一个非常重要因素。如果要求马达长时间满负荷工作,又要有令人满意的使用寿命,这时产品样本给出的扭矩和转速指标仅能达到使用要求还不够,必须选择性能指标高出一挡的系列产品。同样,如果马达工作频繁程度很低,可以选择样本给出性能指标偏低的那个系列产品。用液压马达驱动铰盘就是一个例证,绞盘制造厂选用White RS系列马达,尽管实际工作参数超出了样本给出的性能参数,单仍然能正常工作。由于马达使用频繁程度很低,而且每一次工作持续时间又很短,因此无论性能还是寿命均能令人满意。这样选出的马达明显减小购置费用。

当马达排量和扭矩出于两可的情况,工作载荷循环、压力和流量成为选择最适合给定工作条件的液压马达的决定因素。

怀特马达的最低转速是多少?

通常马达在10r/min或更低的转速下运行时,可能会出现爬行和运转不平稳现象。由于HB、DR和DT三个系列的马达在小流量时内部泄漏的变化非常小,因此对马达低速平稳性要求较高的场合,怀特公司推荐使用上述三个系列的马达。同事还推荐选用排量尽可能最大的马达,以便增加通过马达的流量。对马达低速性能有利的条件:1)载荷恒定2)马达出口节流或者施加0.25MPa的背压3)在工作温度下最小粘度达到160 SUS (34.5 cSt)。

为保证良好的低速工作性。建议用户在实际工作条件下对被选择的马达进行试验验证。

多少个马达可串联在一个使用?

原则上,只要第一个马达入口处可能出现的最高压力,不超过串联油路中额定压力最低的马达的允许连续工作压力值,在系统中可串联的马达数量不限。为了使串联运行的马达工作得最好,推荐采用HB、DR和DT系列得马达,并且要外接泄漏油管路。

小流量应用须知

怀特马达得重要特点是,具有良好得低速特性。若使用得当,某些怀特马达能够在低于2r/min的转速下平稳工作,不发生爬行。在用于小于3L/min的小流量的情况下,我们推荐采用HB、DR或DT系列马达。由于这几个系列马达配油盘的特殊设计,使其小流量下的泄漏量恒定,从而优化了马达的低速特性。

在给定转速下,尽可能选择排量较大的马达,可以使通过马达的流量最大,所需压差最小。选择较大排量的马达时,可使由于载荷变化引起的转速变化最小。利用节流阀或单向阀给马达施加背压,可使马达旋转更平滑。

计算公式和单位换算

1、马达计算公式

转速n=Q*1000/q 式中转速n(r/min)

流量Q=n*q/1000 流量Q(L/min)

扭矩T=p*q/6.28 排量q(ML/r)

压力P=T*6.28/q 扭矩T(N·m)

压力p(MPa)

2、驱动计算公式

车速v=n*R/2.65 式中车速v(km/h)

车轮转速n=v*2.65/R 转速n(r/min)

估算马达所需驱动力矩车轮滚动半径R(m)T=F*0.6*R/(i*0.85)传动箱减速比i

车轮承载F(N)

车轮附着系数0.6

传动箱机械效率0.85

3、功率计算公式

功率P=p*Q/60 式中功率P(KW)

功率P=T*n/9554 压力p(MPa)

流量Q(L/min)

扭矩T(N·m)

液压油的分类及用途

液压油的分类及用途 英国倍尔润石油化学有限责任公司 随着我国液压技术的迅速发展,液压油日益精细与成熟。液压油在液压系统中担负着能量传递、转换和控制,同时,它还起着系统的润滑、防锈、防腐、冷却等作用。因此,液压油质量高低、选用恰当与否直接影响着液压系统的工作效率和液压设备的使用寿命。为了满足现代液压设备的发展及其使用条件的严格要求,液压油已由原来的抗氧防锈型发展为高压抗磨型。 液压油的种类繁多,分类方法各异,长期以来,习惯以用途进行分类,也有根据油品类型、化学组分或可燃性分类的。这些分类方法只反映了油品的挣注,但缺乏系统性,也难以了解油品间的相互关系和发展。 1982年ISO提出了《润滑剂、工业润滑油和有关产品---第四部分H组》分类,即ISO 6743/4一1982,该系统分类较全面地反映了液压油间的相互关系及其发展。 GB 7631.2一87等效采用ⅠS0 6743/4的规定。液压油采用统一的命名方式,其一般形式如下: 类别品种数字 L Hv 22 其中:L--类别(润滑剂及有关产品,GB7631.1) HV--品种(低温抗磨) 22--牌号(粘度级,GB3141) 液压油的粘度牌号由GB 3141做出了规定,等效采用ISO的粘度分类法,以40’C运动粘度的中心值来划分牌号。 在GB/T7631.2一87分类中的HH、HL、HM、HR、HⅤ、HG液压油均属矿油型液压油,这类油的品种多,使用量约占液压油总量的85%以上,汽车与工程机械液压系统常用的液压油也多属这类。 以下分别介绍其规格、性能及其应用。 l.HH液压油 按GB 7631.2一87分类,HH液压油是一种不含任何添加剂的矿物油。这种油虽己列入分类之中,但在液压系统中己不使用。因为这种油安定性差、易起泡,在液压设备中使用寿命短。 2.HL液压油(也称通用型机床工业用润滑油) l)规格HL液压油是由精制深度较高的中性基础油,加抗氧和防锈添加剂制成的。HL液压油按40C运动粘度可分为15、 22、32、46、68、100六个牌号。 2)用途 HL液压油主要用于对润滑油无特殊要求,环境温度在O’C以上的各类机床的轴承箱、齿轮箱、低压循环系统或类似机械设备循环系统的润滑。它的使用时间比机械油可延长一倍以上。该产品具有较好的橡胶密封适应性,其最高使用温度为80’C。 3)质量要求 (l)适宜的粘度和良好的粘温性能。要求油的粘度受温度变化的影响小,即温度变化不致影响液压系统的正常工作。 (2)具有良好的防锈性、抗氧化安定性。 (3)其有较理想的空气释放值、抗泡性、分水性和橡胶密封适应性。 4)使用注意事项 (l)使用前要彻底清洗原液压油箱,清除剩油、废油及沉淀物等,避兔与其他油品混用。

液压马达的工作原理

液压马达工作原理 一、液压马达的特点及分类 液压马达是把液体的压力能转换为机械能的装置,从原理上讲,液压泵可以作液压马达用,液压马达也可作液压泵用。但事实上同类型的液压泵和液压马达虽然在结构上相似,但由于两者的工作情况不同,使得两者在结构上也有某些差异。例如: 1.液压马达一般需要正反转,所以在内部结构上应具有对称性,而液压泵一般是单方向旋转的,没有这一要求。 2.为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口的尺寸大。而液压马达低压腔的压力稍高于大气压力,所以没有上述要求。 3.液压马达要求能在很宽的转速范围内正常工作,因此,应采用液动轴承或静压轴承。因为当马达速度很低时,若采用动压轴承,就不易形成润滑滑膜。 4.叶片泵依靠叶片跟转子一起高速旋转而产生的离心力使叶片始终贴紧定子的内表面,起封油作用,形成工作容积。若将其当马达用,必须在液压马达的叶片根部装上弹簧,以保证叶片始终贴紧定子内表面,以便马达能正常起动。 5.液压泵在结构上需保证具有自吸能力,而液压马达就没有这一要求。 6.液压马达必须具有较大的起动扭矩。所谓起动扭矩,就是马达由静止状态起动时,马达轴上所能输出的扭矩,该扭矩通常大于在同一工作压差时处于运行状态下的扭矩,所以,为了使起动扭矩尽可能接近工作状态下的扭矩,要求马达扭矩的脉动小,内部摩擦小。 由于液压马达与液压泵具有上述不同的特点,使得很多类型的液压马达和液压泵不能互逆使用。 液压马达按其额定转速分为高速和低速两大类,额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。 高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。它们的主要特点是转速较高、转动惯量小,便于启动和制动,调速和换向的灵敏度高。通常高速液压马达的输出转矩不大(仅几十牛·米到几百牛·米),所以又称为高速小转矩液压马达。 高速液压马达的基本型式是径向柱塞式,例如单作用曲轴连杆式、液压平衡式和多作用内曲线式等。此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式。低速液压马达的主要特点是排量大、体积大、转速低(有时可达每分种几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大(可达几千牛顿·米到几万牛顿·米),所以又称为低速大转矩液压马达。 液压马达也可按其结构类型来分,可以分为齿轮式、叶片式、柱塞式和其他型式。 二、液压马达的性能参数 液压马达的性能参数很多。下面是液压马达的主要性能参数: 1.排量、流量和容积效率习惯上将马达的轴每转一周,按几何尺寸计算所进入的液体容积,称为马达的排量V,有时称之为几何排量、理论排量,即不考虑泄漏损失时的排量。 液压马达的排量表示出其工作容腔的大小,它是一个重要的参数。因为液压马达在工作中输出的转矩大小是由负载转矩决定的。但是,推动同样大小的负载,工作容腔大的马达的压力要低于工作容腔小的马达的压力,所以说工作容腔的大小是液压马达工作能力的主要标志,也就是说,排量的大小是液压马达工作能力的重要标志。 根据液压动力元件的工作原理可知,马达转速n、理论流量q i与排量V之间具有下列关系

液压泵液压缸液压马达的型号及参数以及

液压、气动 一、液压传动 1、理解:液压传动是以流体为工作介质进行能量传递的传动方式。 2、组成原件 1、把机械能变换为液体(主要是油)能量(主要是压力能)的液压泵 2 、调节、控制压力能的液压控制阀 3、把压力能转换为机械能的液压执行器(液压马达、液压缸、液压摆动马达) 4 、传递压力能和液体本身调整所必需的液压辅件 液压系统的形式 3、部分元件规格及参数 衡力,磨损严重,泄漏较大。 叶片泵:分为双作用叶片泵和单作用叶片泵。这种泵流量均匀、运转平稳、噪音小、作压力和容积效率比齿轮泵高、结构比齿轮泵复杂。 柱塞泵:容积效率高、泄漏小、可在高压下工作、大多用於大功率液压系统;但结构复杂,材料和加工精度要求高、价格贵、对油的清洁度要求高。 一般在齿轮泵和叶片泵不能满足要求时才用柱塞泵。还有一些其他形式的液压泵,如螺杆泵等,

但应用不如上述3种普遍。 适用工况和应用举例

【KCB/2CY型齿轮油泵】工作原理: 2CY、KCB齿轮式输油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵内的整个工作腔分两个独立的部分。A为入吸腔,B为排出腔。泵运转时主动齿轮带动被动齿轮旋转,当齿化从啮合到脱开时在吸入侧(A)就形成局部真空,液体被吸入。被吸入的液体充满齿轮的各个齿谷而带到排出侧(B),齿轮进入啮合时液体被挤出,形成高压液体并经泵的排出口排出泵外。 KCB/2Y型齿轮油泵型号参数和安装尺寸如下: 【KCB/2CY型齿轮油泵】性能参数:

【KCB/2CY型齿轮油泵】安装尺寸图:KCB18.3~83.3与2CY1.1~5安装尺寸图 电动机 KCB200~960与2CY8~150安装尺寸图

液压马达

液压马达 QJM系列径向柱塞式低速大扭矩液压马达,是可与各种油泵,阀以及液压福建配套组成液压传动装置。该型马达重量轻,体积小,调速范围大,可有级变量,机械制动器可自动起闭,低速稳定性能好,工作可靠,耐冲击,效率高,寿命长等系列优点。 标准型:1QJM001-0.063 1QJM001-0.08 1QJM01-0.10 1QJM002-0.2 1QJM01-0.1 1QJM01-0.16 1QJM01-0.2 1QJM02-0.32 1QJM02-0.4 1QJMA1-0.4 1QJMA1-0.63 1QJM11-0.32 1QJM11-0. 5 1QJM11-0.63 1QJM12-1.0 1QJM12-1.25 1QJM21-0.4 1QJM21-0.5 1QJM21-0.63 1QJM2 1-0.8 1QJM21-1.0 1QJM21-1.25 1QJM21-1. 6 1QJM32-0.63 1QJM32-0.8 1QJM32-1.0 1QJM32-1.25 1QJM32-2.0 1QJM32-2.5 1QJM32-3.2 1QJM32-4.0 1QJM42-2.0 1QJM42- 2.5 1QJM42-3.2 1QJM42-4.0 1QJM42-4.5 1QJM52-2.5 1QJM52-3.2 1QJM52-4.0 1QJM52-5.0 1QJM52-6.3 1QJM62-4.0 1QJM62-6.3 1QJM62-8 1QJM62-10 S型内控式带制动器:1QJM11-0.32S 1QJM11-0.40S 2QJM11-0.40S 1QJM11-0.5S 1QJM11-0.63 S 2QJM11-0.63S 1QJM21-0.4S 1QJM21-0.5S 1QJM21-0.63S 1QJM21-0.8S 1QJM21-1.0 S 1QJM21-1.25S 1QJM21-1.6S 2QJM21-0.4S 2QJM21-0.5S 2QJM21-0.63S 2QJM21-0.8 S 2QJM21-1.0S 2QJM21-1.25S 2QJM21-1.6S 1QJM32-0.63S 1QJM32-0.8S 1QJM32-1.0 S 1QJM32-1.25S 1QJM32-0.63S2 1QJM32-0.8S2 1QJM32-1.0S2 1QJM32-1.25S2 1QJM3 2-2.0S2 1QJM32-2.5S2 1QJM32-3.2S2 1QJM32-4.0S2 2QJM32-0.63S2 2QJM32-0.8S2 2QJ M32-1.0S2 2QJM32-1.25S2 2QJM32-2.0S2 2QJM32-2.5S2 2QJM32-3.2S2 2QJM32-4.0S 2 1QJM42-2.0S 1QJM42-2.5S 1QJM42-3.2S 1QJM42-4.0S 1QJM42-4.5S 1QJM52-2. 5S 1QJM52-3.2S 1QJM52-4.0S 1QJM52-4.5S 1QJM52-2.5S 1QJM52-3.2S 1QJM52-5.0S 1Q JM52-4.0S 1QJM52-6.3S 2QJM32-0.63S 2QJM32-0.8S 2QJM32-1.0S 2QJM32-1.25S 2Q JM32-2.0S 2QJM32-2.5S 2QJM32-3.2S 2QJM32-4.0S 2QJM42-2.0S 2QJM42-2.5S 2QJ M42-3.2S 2QJM42-4.0S 2QJM42-4.5S 2QJM52-2.5S 2QJM52-3.2S 2QJM52-4.0S 2Q JM52-4.5S 2QJM52-2.5S 2QJM52-3.2S 2QJM52-5.0S 2QJM52-4.0S 2QJM52-6.3S Se型外控式带制动器液压马达 1QJM12-0.8Se 1QJM12-1.0Se 1QJM12-1.25Se 1QJM21-0.32Se 1QJM21-0.4Se 1QJM21-0.5 Se 1QJM21-0.63Se 1QJM21-0.8 Se 1QJM21-1.0 Se 1QJM21-1.25Se 1QJM21-1.6Se 1QJM32 -0.63 Se 1QJM32-0.8Se 1QJM32-1.0Se 1QJM32-1.25 Se 1QJM32-2.0Se 1QJM32-2.5Se 1QJM32-3.2Se 1QJM32-4.0Se 1QJM42-2.0Se 1QJM42-2.5Se 1QJM42-3.2Se 1QJM42-4.0 Se 1QJM42-4.5Se 1QJM52-2.5Se 1QJM52-3.2Se 1QJM52-4.0Se 1QJM52-5.0Se 1QJ M52-6.3Se2QJM12-0.8Se 2QJM12-1.0Se 2QJM12-1.25Se 2QJM21-0.32Se 2QJM21-0.4Se 2QJM 21-0.5 Se 2QJM21-0.63Se 2QJM21-0.8 Se 2QJM21-1.0 Se 2QJM21-1.25Se 2QJM21-1.6Se 2QJM32 -0.63 Se 2QJM32-0.8Se 2QJM32-1.0Se 2QJM32-1.25 Se 2QJM32-2.0Se 2QJM32-2.5Se

液压油型号

12机电3班何永锋121203010 液压油 (一) 液压油的分类与牌号划分: 液压油的种类繁多,分类方法各异,长期以来,习惯以用途进行分类,也有根据油品类型、化学组分或可燃性分类的。这些分类方法只反映了油品的挣注,但缺乏系统性,也难以了解油品间的相互关系和发展。 1982年ISO提出了《润滑剂、工业润滑油和有关产品---第四部分H组》分类,即ISO 6743/4一1982,该系统分类较全面地反映了液压油间的相互关系及其发展。 GB 7631.2一87等效采用ⅠS0 6743/4的规定。液压油采用统一的命名方式,其一般形式如下: 类—品种数字 L Hv 22 其中:L--类别(润滑剂及有关产品,GB7631.1) HV--品种(低温抗磨) 22--牌号(粘度级,GB3141) 液压油的粘度牌号由GB 3141做出了规定,等效采用ISO的粘度分类法,以40'C 运动粘度的中心值来划分牌号。 (二) 液压油的规格、性能及应用: 在GB/T7631.2一87分类中的HH、HL、HM、HR、HⅤ、HG液压油均属矿油型液压油,这类油的品种多,使用量约占液压油总量的85%以上,汽车与工程机械液压系统常用的液压油也多属这类。 以下分别介绍其规格、性能及其应用。 l.HH液压油 按GB 7631.2一87分类,HH液压油是一种不含任何添加剂的矿物油。这种油虽己列入分类之中,但在液压系统中己不使用。因为这种油安定性差、易起泡,在液压设备中使用寿命短。 2.HL液压油(也称通用型机床工业用润滑油) l)规格 HL液压油是由精制深度较高的中性基础油,加抗氧和防锈添加剂制成的。HL液压油按40C运动粘度可分为15、 22、32、46、68、100六个牌号。 2)用途 HL液压油主要用于对润滑油无特殊要求,环境温度在O’C以上的各类机床的轴承箱、齿轮箱、低压循环系统或类似机械设备循环系统的润滑。它的使用时间比机械油可延长一倍以上。该产品具有较好的橡胶密封适应性,其最高使用温度为80’C。

(推荐)液压油的分类

液压油的分类 液压油 一、液压油的分类与命名 液压油的分类方法过去主要有以下几种: 按液压油用途分类:航空液压油、舰船液压油、数控机床液压油,特种液压油等。 按使用温度范围分类:普通、高温、低温液压油,宽温范围液压油。 按液压油的组成分类:无添加剂型、防锈抗氧型、抗磨型、高粘度指数液压油型等。 按使用特性分类:易燃、难燃、环保型等。 按使用压力分类:普通、高压液压油等。 按添加剂类型分类:无灰、有灰,锌型、无锌、低锌、高锌液压油等。 1982年国际标准化组织ISO发布了液压系统分类标准ISO 6743.4-82,1987年我国等效采用ISO标准制定了润滑剂和有关产品(L类)的分类——第2部分H组(液压系统)的分类标准GB 7631.2-87,1999年ISO出台了新的液压油分类标准ISO 6743.4-1999,与1982年版本相比增加了四种环保型液压液,删除了两种对环境有害的难燃液压油。开发生物降解型液压油,保护环境,是顺应社会发展的需要。我国目前正等效ISO 6743.4-1999对原标准GB 76312-87进行修订。增加环境可接受的液压液HETG、HEPG、HEES、HEPR 四种,取消对身体有害的难燃液压HFDS和HFDT两种。 液压液的分类GB/T 7631.2—87

注: 1) 每个品种的基础液的最小含量应不少70%; 2)这类液体也可以满足HE品种规定的生物降解性和毒性要求。 根据其应用场合分为流体静压系统用油和流体动力系统用油,流体静压系统用油包括四部分:矿油型和合成烃型液压油(HH、HL、HM、HR、HV、HS);环境可接受的液压液(HETG、HEPC、HEES、HEPR);液压导

液压马达分类与原理

创作编号: BG7531400019813488897SX 创作者:别如克* 液压马达分类与原理 (一)液压马达分类 (二)齿轮马达的工作原理 图2-12为外啮合齿轮马达的工作原理图。图中I为输出扭矩的齿轮,B为空转齿轮,当高压油输入马达高压腔时,处于高压腔的所有齿轮均受到压力油的作用(如中箭头所示,凡是齿轮两侧面受力平衡的部分均未画出),其中互相啮合的两个齿的齿面,只有一部分处于高压腔。设啮合点c到两个齿轮齿根的距离分别为阿a和b,由于a 和b均小于齿高h,因此两个齿轮上就各作用一个使它们产生转矩的作用力pB(h—a)和pB(h—b)。这里p代表输入油压力,B代表齿宽。在这两个力的作用下,两个齿轮按图示方向旋转,由扭矩输出轴输出扭矩。随着齿轮的旋转,油液被带到低压腔排出。 图2-12 啮合齿轮马达的工作原理图 齿轮马达的结构与齿轮泵相似,但是内于马达的使用要求与泵不同,二者是有区别的。例如;为适应正反转要求,马达内部结构以及进出油道都具有对称性,并且有单独的泄漏油管,将轴承部分泄漏的油液引到壳体外面去,而不能向泵那样由内部引入低压腔。这是因为马达低压腔油液是由齿轮挤出来的,所以低压腔压力稍高于大气压。若将泄漏油液由马达内部引到低压腔,则所有与泄漏油道相连部分均承受回油压力,而使轴端密封容易损坏。 (三)叶片马达的工作原理 图2-13为叶片马达的工作原理图。当压力为p的油液从进油口进入叶片1和叶片3之间时,叶片2因两面均受液压油的作用,所以不产生转矩。叶片1和叶片3的一侧作用高压油,另一侧作用低压油.并且叶片3伸出的面积大于叶片1伸出的面积,因此使转子产生顺时针方向的转矩。同样,当压力油进入叶片5和叶片7之间时,叶片

液压油型号和工作原理详解

液压油型号及工作原理详解 一、什么是液压油 液压油(hydraulic fluid):是一种润滑油,用作液压传动系统中的工作介质。此外,还具有润滑、冷 却和防锈作用。通常由深度精制的石油润滑油基础油或合成润滑油(见合成润滑油脂)加入抗磨和抗氧 剂等石油产品添加剂调制而成。广泛用于机床、矿山工程机械、农业机械、铸锻机械、交通运输机械、 航空、航天等方面。 二、液压油用途 液压油是液体静力系统中最重要的要素,在液压系统设计、完成和试车中必须像对待机器元件那样给予 重视。液压油也是位于发动机润滑油之后的第二个最重要的润滑油剂类型,约占润滑剂总耗量的15%。 液压传动与液压油的要求 目前,液压传动技术已经成为我们日常生活的一部分。我们很难找到不用液压系统进行操作的机器和飞 行器。液压元件制造厂商向几乎所有工业部门提供液压系统,其中包括农用和建筑机械部门、输送机技 术部门、食品和包装工业、木材加工和工具机工业、造船、采矿和钢铁工业、航空和航天工业、医药工 业、环境技术工业和化学品工业等。 三、液压油的命名分类方法 液压油的种类繁多,分类方法各异,长期以来,习惯以用途进行分类,也有根据油品类型、化学组分或 可燃性分类的。这些分类方法只反映了油品的性质,但缺乏系统性,也难以了解油品间的相互关系和发 展。 1982年ISO提出了《润滑剂、工业润滑油和有关产品---第四部分H组》分类,即ISO 6743/4一1982,该系 统分类较全面地反映了液压油间的相互关系及其发展。 四、液压油滤芯 材质:不锈钢编织网、烧结网、铁编制网、滤料:玻纤滤纸、化纤滤纸、木浆滤纸 特点:由单层或多层金属网与滤料制成,层数与构成丝网的目数根据不同的使用条件与用途而定, 同心率高、承受压力大、直度好,不锈钢材质,不带任何毛刺,保证使用寿命长。

8液压马达的工作原理

河北机电职业技术学院备课记录No9-1 序号9 日期200811.10 班级数控0402 课题§3.1第一节液压马达 §3.2第二节液压缸 重点与难点重点: 1.液压马达的工作原理 难点: 2.液压缸的类型和特点 教师魏志强2008 年11月1日 一引入 复习:(5分钟) 1.单作用叶片泵工作原理 2.限压式变量叶片泵工作原理 二正课 第三章液压执行元件 第一节液压马达 一、液压马达的特点及分类 液压马达是把液体的压力能转换为机械能的装置,从原理上讲,液压泵可以作液压马达用,液压马达也可作液压泵用。但事实上同类型的液压泵和液压马达虽然在结构上相似,但由于两者的工作情况不同,使得两者在结构上也有某些差异。例如: 1.液压马达一般需要正反转,所以在内部结构上应具有对称性,而液压泵一般是单方向旋转的,没有这一要求。 2.为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口的尺寸大。而液压马达低压腔的压力稍高于大气压力,所以没有上述要求。 3.液压马达要求能在很宽的转速范围内正常工作,因此,应采用液动轴承或静压轴承。因为当马达速度很低时,若采用动压轴承,就不易形成润滑滑膜。 4.叶片泵依靠叶片跟转子一起高速旋转而产生的离心力使叶片始终贴紧定子的内表面,起封油作用,形成工作容积。若将其当马达用,必须在液压马达的叶片根部装上弹簧,以保证叶片始终贴紧定子内表面,以便马达能正常起动。 5.液压泵在结构上需保证具有自吸能力,而液压马达就没有这一要求。 6.液压马达必须具有较大的起动扭矩。所谓起动扭矩,就是马达由静止状态起动时,马达轴上所能输出的扭矩,该扭矩通常大于在同一工作压差时处于运行状态下的扭矩,所以,为了使起动扭矩尽可能接近工作状态下的扭矩,要求马达扭矩的脉动小,内部摩擦小。 由于液压马达与液压泵具有上述不同的特点,使得很多类型的液压马达和液压泵不能互逆使用。 液压马达按其额定转速分为高速和低速两大类,额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。 高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。它们的主要特点是转速较高、转动惯量小,便于启动和制动,调速和换向的灵敏度高。通常高速液压马达的输出

如何选择液压马达

如何选择液压马达 为设计新系统选择液压马达,或者为现有系统中的液压马达寻找替代产品事,除了要考虑功率(扭矩、转速)要求之外,还要考虑其它一些因素。在许多情况下,借鉴以往使用经验(即在类似使用条件下,选用哪些马达成功了,选择哪些马达失败了)事初选马达的一条捷径。当没有已往使用经验可借鉴时,必须考虑以下因素: 1、工作负载循环 2、油液类型 3、最小流量和最大流量 4、压力范围 5、系统类型:开式系统或闭式系统 6、环境温度、系统工作温度和冷却系统 7、油泵类型:齿轮泵、柱塞泵或叶片泵 8、过载保护:靠近液压马达的安全阀 9、速度超越载荷保护 10、径向载荷和轴向载荷 工作负载循环和速度超越载荷保护式常被忽视的两个重要因素。当发生速度超越载荷条件时,马达处于油泵工况,这时马达联动轴所承受的扭矩可能达到正常工作情况下的两倍。若忽视了上述情况,会导致马达损坏。 工作负载循环时系统匹配时要考虑的另一个非常重要因素。如果要求马达长时间满负荷工作,又要有令人满意的使用寿命,这时产品样本给出的扭矩和转速指标仅能达到使用要求还不够,必须选择性能指标高出一挡的系列产品。同样,如果马达工作频繁程度很低,可以选择样本给出性能指标偏低的那个系列产品。用液压马达驱动铰盘就是一个例证,绞盘制造厂选用White RS系列马达,尽管实际工作参数超出了样本给出的性能参数,单仍然能正常工作。由于马达使用频繁程度很低,而且每一次工作持续时间又很短,因此无论性能还是寿命均能令人满意。这样选出的马达明显减小购置费用。 当马达排量和扭矩出于两可的情况,工作载荷循环、压力和流量成为选择最适合给定工作条件的液压马达的决定因素。 怀特马达的最低转速是多少? 通常马达在10r/min或更低的转速下运行时,可能会出现爬行和运转不平稳现象。由于HB、DR和DT三个系列的马达在小流量时内部泄漏的变化非常小,因此对马达低速平稳性要求较高的场合,怀特公司推荐使用上述三个系列的马达。同事还推荐选用排量尽可能最大的马达,以便增加通过马达的流量。对马达低速性能有利的条件:1)载荷恒定2)马达出口节流或者施加0.25MPa的背压3)在工作温度下最小粘度达到160 SUS (34.5 cSt)。 为保证良好的低速工作性。建议用户在实际工作条件下对被选择的马达进行试验验证。

第一节_液压缸得分类及特点

第四章液压缸 液压缸时液压系统的执行元件,它将液体的压力能转化为机械能输出。液压缸结构简单、工作可靠、制造容易、在机械上的布置方便,应用很广。 随着液压技术的深入普及和应用领域的日益扩大,对液压缸的性能、构造、使用范围、制造精度、外观、材料等都不断提出新的要求,因此推动液压缸的不断发展与进步,其总的发展趋势为:高压化、小型化、轻量化、耐腐蚀和新颖结构复合化。 §4—1 液压缸分类及特点 一.液压缸的分类 液压缸种类较多,分类方式亦较多。通常按结构特点、动作特点、也压力的作用特点、安装支承形式、额定工作压力、工作介质等进行分类。 1.按主要运动部件的结构特点分(图4-1-1) 图4-1-1 (1)活塞式液压缸主要运动部件通常由活塞和活塞杆两部分组成,并通过螺纹或卡键等连接方式将两者连接在一起。这是液压缸最为常见的结构型式 (2)柱塞式液压缸主要运动部件由一个从原理上说可以为一个直径不变的圆柱形零件。当然为示液压缸能够正常的工作,直径上海市油变化的,但是这种液压缸的运动部分与缸孔是不接触的,因而对缸孔内壁的精度要求较低,特别适合大行程的场合。 (3)伸缩套筒式液压缸主要运动部件由多根可相对运动的套筒组成,在索回不工作时所占空间较小,伸出工作时行程较大。 还有齿条式、钢索式和蠕动式等形式 2.按额定工作压力分 (1)中低压液压缸额定压力在8MPa以下的液压缸称为中低压液压缸。 (2)中高压液压缸额定压力在8MPa以上,16MPa以下的液压缸,常称为中高压液压缸。 (3)高压和超高压液压缸额定压力在16MPa以上的液压缸称为高压液压缸。额定压力大于31.5MPa的液压缸,常称为超高压液压缸。 3.按安装支承形式分可分为轴线固定式(图4-1-1)和轴线摆动式(图4-1-2)两大类。也有分为脚架类安装液压缸;法兰类安装液压缸;耳轴、耳环类液压缸三种安装结构。 4.按密封件的工作寿命分 (1)普通型液压缸密封件的工作寿命为运行300——500km。 (2)较长寿命型液压缸密封件的工作寿命为运行700——1300km。

32#抗磨液压油安全技术说明

抗磨液压油安全技术说明书 1.化学品及企业标识 化学产品中文名称抗磨液压油L-HM32 使用液压油 制造商/供货商 2.危险性概述 中国分类产品质量符合GB11118.1标准 健康危害在正常使用条件下无特定的危险。过久或重复暴露可引起皮 炎。使用过的油可能含有害杂质。 症状及征像在正常使用情况下,预计不会引起严重影响。 安全危害未被评为可燃物,但会燃烧。 环境危害没有划分为危害环境类。 3.成分/组成信息 配方组份 配方说明是高度提炼的矿物油和添加剂组成混合物。根据IP346,这 一高精炼的矿物油含有<3%(w/w)DMSO萃取物。 4.急救措施 一般信息在正常条件下使用不应会成为健康危险源。 吸入晕眩或反胃不太可能出现,如果发生了,将患者移到有新鲜 空气的地方。若症状持续则要求求助医生。 接触皮肤脱去污染衣物。用水冲洗暴露的部位,并用肥皂进行清洗。 如刺激持续,请求医。在使用高压设备时,有可能造成本品 注入皮下,如发生此种情况,请立即送往医院治疗,不要等 待,以免症状恶化。 接触眼睛用大量的水冲洗眼睛。如刺激持续,求医。 吞食不要催吐,用水漱口并就医。 医生须知对症治疗。吸入肺中可导致化学性肺炎。长期或反复暴露可

能造成皮炎。高压注入伤害需要立即进行外科处理和/或类 固醇类治疗,以降低组织伤害和机能丧失。 5.消防措施 使所有非急救人员撤离火区。 特定的危险燃烧可能形成在空气中的固体和液体微粒及气体的复杂的 混合物,包括一氧化碳,氧化硫及未能识别的有机及无机的 化合物。 适当的灭火介质泡沫及干化学粉末、二氧化碳;沙或泥土仅宜用于小规模火 灾。 不适用的灭火物切勿喷水。考虑到环境原因,应该避免卤化物灭火器。 消防人员保护设备合适的保护装置包括在密封空间内接近起火点时必需配 戴的呼吸装置。 有害燃烧产物不适用。 6.泄漏应急处理 避免接触溢出或释放出来的材料。关于个人防护设备的选择指南,参见此说明书第8项。关于处置信息,请参阅第13项。 保护措施避免沾及皮肤及眼睛。PVC、氯丁或丁腈橡胶手套。橡胶长 筒安全靴、PVCA上衣和裤子。如可能飞溅,戴上安全眼镜或 全面罩。 清除方法溢出后,地面非常光滑。为避免事故,应立即清洁。 用沙、泥土或其它可用来栏堵的材料设置障碍,以防止扩散。 直接回收液体或存放于吸收剂中。用粘土、沙或其它适当的 吸附材料来吸收残余物,然后予以适当的弃置。 7.操作处置与储存 一般预防措施若存在吸入蒸汽、喷雾或烟雾的危险,请使用局部排气通风 系统。为防起火,应适当地处置任何受其污染的拭抹布料或 清洗材料。将本资料单所含的信息包括进本地情况风险评估 中,将有助于为本品的搬运、储存及弃置制订有效的控制系 统。 搬运避免长期或持续与皮肤接触。 避开吸入其蒸汽和(或)烟雾。 装卸桶装产品时,应穿保护鞋,并使用恰当的装卸工具。 储存密闭容器,放在凉爽、通风良好的地方,使用适当加注标签 及可封闭的容器。储存温度:长期储存(3个月以上)-15~

液压马达作业

液压马达作业 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

(4.15)第三次(液压马达)作业及答案 一、填空: 1、液压马达是将输入的液压能转换为旋转运动的机械能。 2、马达是执行元件,输入的是压力油,输出的是力和力矩。 二、选择: 1、高速液压马达其额定转速在( D)r/min以上。 A、200 B、300 C、400 D、500 2、低速液压马达其额定转速在(B)r/min以下。 A、100 B、500 C、400 D、300 3、在叶片马达中,叶片的安置方向为(C)。 A、前倾 B、后倾 C、径向 三、判断: 1、液压马达是将输入的压力能转换为旋转运动的机械能(√) 2、液压马达和液压泵在结构上基本相同,二者在工作原理上是可逆的。 (√) 3、液压马达和液压泵一般是可以通用的。( ×) 4、齿轮液压马达中齿轮的齿数一般选得较少。(×) 5、液压马达与液压泵从能量转换观点上看是互逆的,因此所有的液压泵均可以 用来做马达使用。(×) 四、简述: 1.如何改变液压马达转子的方向?改变液压马达的进出油的方向。 2、按工作特性,液压马达可分为哪两大类?高速和低速液压马达 3、从能量的观点来看,液压泵和液压马达有什么区别和联系从结构上来看,液 压泵和液压马达又有什么区别和联系 答:从能量的观点来看,液压泵是将驱动电机的机械能转换成液压系统中的油液压力能,是液压传动系统的动力元件;而液压马达是将输入的压力能转换为机械能,输出扭矩和转速,是液压传动系统的执行元件。它们都是能量转换装置。 从结构上来看,它们基本相同,都是靠密封容积的变化来工作的。 2

NHM系列液压马达选型要点

NHM系列液压马达选型要点 产品的主要特点 1、采用偏心轴及较低激振频率的五活塞结构,具有低噪音的特点; 2、启动扭矩大,低速稳定性好,能在很低的速度下平稳运转; 3、专利技术的平面补偿配油盘,可靠性好,泄漏少;活塞与柱塞套采用密封环密封,因而具有很高的容积效率; 4、曲轴与连杆间由滚柱支承,因而具有很高的机械效率; 5、旋转方向可逆,输出轴允许承受一定的径向和轴向外力; 6、具有较高的功率质量比,体积重量相对较小。 产品应用范围 产品可广泛应用于矿山建筑、工程机械、起重运输设备、重 型冶金机械、石油煤矿机械、船舶甲板机械、机床、塑料机械、 地质钻探设备、等各种机械的液压传动系统中。特别适用于注塑 机的螺杆驱动、提升绞盘、卷筒的驱动、各种回转机构的驱动、 履带和轮子行走机构的驱动等传动机械中。 结构原理 通压力油的柱塞缸受液压力的作用,在柱塞体上产生推力 P 。该推力通过连杆作用在曲轴中心,使输出轴旋转,同时配油 盘随着一起转动,当柱塞体所在位置到达下死点时,柱塞缸便由 配油盘接通回油口,柱塞便被曲轴往上推。此时,做功后的液压 油通过配油盘返回油箱。各柱塞体依次接通高低压力油,各柱塞 体对输出轴中心所产生的驱动力矩同向相加,使马达输出轴获得 连续而平稳的回转扭矩。当改变油流方向时,便可改变马达的旋 转方向。如将配油盘转 180 °装配也可以实现马达的反转。 设计中用到的几个计算公式 1、液压马达的实际输出扭矩: M=0.159(P1-P2)q·ηm( N.m ) 式中:P1、P2 ---------分别为液压马达的入口和出口压力( MPa ) q -------------- 液压马达的排量( ml/r ) ηm ------------ 液压马达机械效率 2 .液压马达输出功率 式中:n----------------- 液压马达转速( r/min ) Q------------------ 输入液压马达的流量( ml/min ) ηv -------------- 液压马达容积效率 3 .液压马达的转速:

液压油的分类及基本知识

液压油的分类及基本知识-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

液压油 一、液压油的分类与命名 液压油的分类方法过去主要有以下几种: 按用途分类:航空液压油、舰船液压油、数控机床液压油,特种液压油等。 按使用温度范围分类:普通、高温、低温液压油,宽温范围液压油。 按组成分类:无添加剂型、防锈抗氧型、抗磨型、高粘度指数液压油型等。 按使用特性分类:易燃、难燃、环保型等。 按使用压力分类:普通、高压液压油等。 按添加剂类型分类:无灰、有灰,锌型、无锌、低锌、高锌液压油等。 1982年国际标准化组织ISO发布了液压系统分类标准ISO ,1987年我国等效采用ISO标准制定了润滑剂和有关产品(L类)的分类——第2部分H组(液压系统)的分类标准GB ,1999年ISO出台了新的液压油分类标准ISO ,与1982年版本相比增加了四种环保型液压液,删除了两种对环境有害的难燃液压油。开发生物降解型液压油,保护环境,是顺应社会发展的需要。我国目前正等效ISO 对原标准GB 76312-87进行修订。增加环境可接受的液压液HETG、HEPG、HEES、HEPR四种,取消对身体有害的难燃压液HFDS和HFDT两种。新的液压油分类标准见下表。 液压液的分类GB/T —87

注:1) 每个品种的基础液的最小含量应不少70%; 2)这类液体也可以满足HE品种规定的生物降解性和毒性要求。 根据其应用场合分为流体静压系统用油和流体动力系统用油,流体静压系统用油包括四部分:矿油型和合成烃型液压油(HH、HL、HM、HR、HV、HS);环境可接受的液压液(HETG、HEPC、HEES、HEPR);液压导轨系统用油(HG);难燃液压液(HFAE、HFAS、HFB、HFC、HFDR、HFDU)共十七个品种。流体动力系统用油包括自动传动液(HA)和联轴节和转换器(HN)两部分共两个品种。 目前,在GB 矿物油型和合成烃型液压油产品标准中对液压油产品名称进行了统一的规范化的标记,标记示例:液压油L-HM46(优等品),其中“L”表示润滑剂类别,“HM”表示抗磨液压油,“46”表示粘度等级(按GB 3141-82规定),“优等品”表示产品质量符合GB 中所规定的质量等级的档次。在实际应用中,也可称作L-HM46液压油(优等品)。 二、液压油的品种与质量性能 国内矿物油型液压油的品种及质量特性按分类标准GB 分别归纳叙述如下:1、L-HH液压油 L-HH液压油是一种无剂的精制矿油,它比全损耗系统用油L-AN(机械油)质量高,这种油品虽列入分类中,但液压系统不宜使用,我国不设此类油品,也无产品标准。 2、L-HL液压油 L-HL液压油是由精制深度较高的中性油作为基础油,加入抗氧、防锈和抗泡添加剂制成,适用于机床等设备的低压润滑系统。HL液压油具有较好的抗氧化性、防锈性、抗乳化性和抗泡性等性能。使用表明,HL液压油可以减少机床部件的磨损,降低温升,防止锈蚀,延长油品使用寿命,换油期比机械油长达

液压马达参数计算

(1)液压马达参数计算 ①液压马达理论输出扭矩T : 12m D F T η??= 式中:1m η为传动机械效率,取95.01=m η 则:m N T ·76.26695.0052.05400=??= ②液压马达理论每转排油量q : m p T q ηπ?= 2 式中:p 为液压马达工作压力,Mpa p 8= m η为液压马达机械效率,取9.0=m η 则 r ml p T q m /2339 .0815976 .2662=??=?= ηπ 故液压马达实际输出转矩为:m N pq T m ·7.2669.02338159.02s =???== π η ③液压马达转速n : 摩擦轮处转速:n 1min /7.36104 .014.3602.0r d v =??== π 由于马达转速较高,因此选择减速器作为中间减速装置,选取减速器传动比6.5=i ,传动效率为90%。 则液压马达转速:n i n ?=1min /5.2057.366.5r =?= ④液压马达所需流量Q : v n q Q η1 ? ?= 式中:v η为容积效率,取9.0=v η 则m in /2.539 .01 5.205102331 3l n q Q v =? ??=? ?=-η ⑤液压马达输出功率P : 2.612.61m v c q p q p P ηηηη????=??= 式中:c η为减速器传动效率,9.0=c η

v η为液压马达容积效率,9.0=v η m η为液压马达机械效率,9.0=m η 则Kw q p q p P m v c 1.52 .619 .09.09.02.5382.612.61=????=????=??= ηηηη P >min P ,因此液压马达可使设备进行传动。 (2)液压马达型号的选择 在对液压马达进行选型时需要考虑转速范围、工作压力、运行扭矩、总效率、容积效率、滑差率以及安装等因素和条件。首先根据使用条件和要求确定马达的种类,并根据系统所需的转速和扭矩以及马达的持性曲线确定压力压力降、流量和总效率。然后确定其他管路配件和附件。 选取液压马达时还要注意以下问题: ①在系统转速和负载一定的前提下。选用小排量液压马达可使系统造价降低,但系统压力高,使用寿命短;选用大排量液压马达则使系统造价升高.但系统压力低,使用寿命长。至于使用大排量还是小排量液压马达需要综合考虑。 ②由于受液压马达承载能力的限制,不得同时采用最高压力和最高转速,同时还耍考虑液压马达输出轴承受径向负载和轴向负载的能力。 ③马达的起动力矩应大于负载力矩,一般起动力矩Mo=0.95M 。 综合以上分析,选用内啮合摆线式齿轮液压马达,其功率P=5Kw ,转矩T ≥266.7m N ?,工作转速min /206r n ≤,则液压马达型号为BM2-250,具体参数如表4-1。 表4-1

液压马达的发展历程现状以及趋势

液压马达的发展历程、现状以及趋势 车辆工程082班 殷丽娟 089054065 摘要:液压马达是液压传动中的一种执行元件。它的功能是把液体的压力能转换为机械能以驱动工作部件。它与液压泵的功能恰恰相反。液压马达在结构、分类和工作原理上与液压泵大致相同。有些液压泵也可直接用作为液压马达。液压马达可分为柱塞马达、齿轮马达和叶片马达。柱塞马达的种类较多,有轴向柱塞马达和径向柱塞马达。轴向柱塞马达大都属于高速马达,径向柱塞马达则多属低速马达。下图有轴向柱塞马达原理图。压力油通过配油盘进入缸体内,迫使柱塞从缸体中伸出,并沿斜盘滑动,使缸体与轴一同旋转而做功,回油通过配油盘的另一开口排出。齿轮马达和叶片马达属于高速马达,它们的惯性和输出扭矩很小,便于起动和反向,但在低速时速度不稳或效率显著降低。液压泵只是单向转动,而液压马达则能正反转,故齿轮马达的进出油口对称,而齿轮泵进口大而出口小。叶片马达的叶片在转子上径向排列;叶片泵的叶片则不是径向排列,而有一定倾角。液压马达是作连续回转运动并输出转矩的液压执行元件。 关键词:液压马达马达种类液压马达结构液压马达原理液压马达主要参数计算液压马达发展历程、现状以及发展趋势。 概述 从20世纪80年代以来,液压马达作为一种液压执行元件在国内外的发展较快,尤其是径向柱塞式低速大扭矩液压马达较之其它类型的液压马达,因为其具有的低速大扭矩和无需减速装置以及结构相对简单、工艺性良好和使用可靠的特点,在冶金机械、矿山机械、起重运输等多为使用。 液压马达习惯上是指输出旋转运动的,将液压泵提供的液压能转变为机械能的能量转换装置.

看下面的图片

液压马达亦称为油马达,主要应用于注塑机械、船舶、起扬机等。 高速马达和齿轮马达具有体积小、重量轻、结构简单、工艺性好、对油液的污染不敏感、耐冲击和惯性小等优点。缺点有扭矩脉动较大、效率较低、起动扭矩较小(仅为额定扭矩的60%——70%)和低速稳定性差等。

液压油缸型号大全

液压缸是将液压能转变为机械能的、做直线往复运动(或摆动运动)的液压执行元件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。液压缸输出力和活塞有效面积及其两边的压差成正比;液压缸基本上由缸筒和缸盖、活塞和活塞杆、密封装置、缓冲装置与排气装置组成。缓冲装置与排气装置视具体应用场合而定,其他装置则必不可少。 根据《2013-2017年中国液压油缸行业产销需求预测与转型升级分析报告》统计,2010年我国液压行业实现产值351.13亿元,同比增长33.29%。我国的液压工业经过近50年的发展,已具有相当生产实力和技术水平,可基本满足经济发展的一般需求,其中重大成套装备的配套率已达到60%以上。尤其是近10年来下游行业的快速成长,积极推动了液压行业的成长。油缸是我国液压产品中比较成熟的产品之一。行业保持多年快速增长,已经形成了较为成熟的供需链,具备了较大的市场规模。前瞻网数据显示,我国液压油缸行业销售收入由2005年的31亿元增长至2010年的近110亿元,5年复合增长率为28.83%。但是,和液压行业相同,油缸占全国工业总产值的比例仍较低,远低于国外发达国家水平。同时,我国具有市场需求旺盛、成本低等优势,预计未来将成为世界液压行业和油缸行业的重心。液压缸的结构形式多种多样,其分类方法也有多种:按运动方式可分为直线往复运动式和回转摆动式;按受液压力作用情况可分为单作用式、双作用式;按结构形式可分为活塞式、柱塞式、多级伸缩套筒式,

齿轮齿条式等;按安装形式可分为拉杆、耳环、底脚、铰轴等;按压力等级可分为16Mpa、25Mpa、31.5Mpa等。 先说它的最基本5个部件:缸筒和缸盖、活塞和活塞杆、密封装置、缓冲装置、排气装置。 每种缸的工作原理几乎都是相似的,拿一个手动千斤顶来说,千斤顶其实也就是个最简单的油缸了。通过手动增压秆(液压手动泵)使液压油经过一个单向阀进入油缸,这时进入油缸的液压油因为单项阀的原因不能再倒退回来,逼迫缸杆向上,然后在做工继续使液压油不断进入液压缸,就这样不断上上升,要降的时候就打开液压阀,使液压油回到油箱,这个是最简单的工作原理,其他的都是在这个基础上改进的,气缸跟油缸的原理基本相同。

相关文档
最新文档