微积分的发展简史

微积分的发展简史
微积分的发展简史

定积分的发展史.docx

定积分的发展史 起源 定积分的概念起源于求平面图形的面积和其他一些实际问题。定积分的思想在古代数学家的工作中,就已经有了萌芽。比如古希腊时期阿基米德在公 元前 240 年左右,就曾用求和的方法计算过抛物线弓形及其他图形的面积。 公元 263 年我国刘徽提出的割圆术,也是同一思想。在历史上,积分观念的 形成比微分要早。但是直到牛顿和莱布尼茨的工作出现之前( 17 世纪下半叶),有关定积分的种种结果还是孤立零散的,比较完整的定积分理论还未能形成, 直到牛顿 -- 莱布尼茨公式建立以后,计算问题得以解决,定积分才迅速建立 发展起来。 未来的重大进展,在微积分才开始出现,直到16 世纪。此时的卡瓦列利与 他的indivisibles方法,并通过费尔马工作,开始卡瓦列利计算度N = 9×N的积分奠定现代微积分的基础,卡瓦列利的正交公式。17世纪初巴罗提 供的第一个证明微积分基本定理。 牛顿和莱布尼茨 在一体化的重大进展是在 17 世纪独立发现的牛顿 ?? 和莱布尼茨的微积分 基本定理。定理演示了一个整合和分化之间的连接。这方面,分化比较容易 地结合起来,可以利用来计算积分。特别是微积分基本定理,允许一个要解决 的问题更广泛的类。同等重要的是,牛顿和莱布尼茨开发全面的数学

框架。由于名称的微积分,它允许精确的分析在连续域的功能。这个框架最终成为现代微积分符号积分是直接从莱布尼茨的工作。 正式积分 定积分概念的理论基础是极限。 人类得到比较明晰的极限概念,花了大约 2000 年的时间。在牛顿和莱布尼茨的时代,极限概念仍不明确。因此牛顿和莱布尼茨建立的微积分的理论基础还不十分牢靠,有些概念还比较模糊,由此引起了数学界甚至哲学界长达一个半世纪的争论,并引发了“第二次数学危机”。经过十八、十九世纪 一大批数学家的努力,特别是柯西首先成功地建立了极限理论,魏尔斯特拉斯进一步给出了现在通用的极限的定义,极限概念才完全确立,微积分才有 了坚实的基础,也才有了我们今天在教材中所见到的微积分。现代教科书 中有关定积分的定义是由黎曼给出的。 术语和符号 艾萨克牛顿以上的变量使用一个小竖线表示一体化,或放置在一个盒子里的变量,竖线是很容易混淆。或牛顿用来指示分化和方块符号打印机难以重现,所以这些符号没有被广泛采用。 1675 年戈特弗里德莱布尼茨改编的积分符号,∫,从字母S(“总结”或“总”)。 ∫符号表示的整合 ; A和 B 的下限和上限,分别一体化,定义域的融合 ; f是积,x 在区间 [a ,b] 上的变化进行评估;

微积分发展简史

微积分发展简史 一、微积分的创立 微积分中的极限、穷竭思想可以追溯到两千五百年前的古希腊文明,著名的毕达哥拉斯学派,经过了漫长时期的酝酿,到了17世纪,在工业革命的刺激下,终于通过牛顿(Newton)和莱布尼兹(Leibniz)的首创脱颖而出了。 大约从15世纪初开始的文艺复兴时期起,工业、农业、航海事业与上古贸易的大规模发展,刺激着自然科学蓬勃发展,到了17世纪开始进入综合突破的阶段,而所有这些所面临的数学困难,最后汇总成四个核心问题,并最终导致微积分的产生。这四个问题是: 1.运动中速度、加速度与距离之间的虎丘问题,尤其是非匀速运动, 使瞬时变化率的研究成为必要; 2.曲线求切线的问题,例如要确定透镜曲面上的任一点的法线等; 3.有确定炮弹最大射程,到求行星轨道的近日点与远日点等问题提 出的求函数的极大值、极小值问题; 4.当然还有千百年来人们一直在研究如何计算长度、面积、体积与 重心等问题。 第一、二、三问题导致微分的概念,第四个问题导致积分的概念。微分与积分在17世纪之前还是比较朦胧的概念,而且是独立发展的。开普勒(Kepler)、伽利略(Galileo)、费马(Fermat)、笛卡尔(Descartes)、卡瓦列里(Cavalieri)等学者都做出了杰出贡献。 1669,巴罗(Barrow,牛顿的老师)发表《几何讲义》,首次以

几何的面貌,用语言表达了“求切线”和“求面积”是两个互逆的命题。这个比较接近于微积分基本定理。 牛顿和莱布尼兹生长在微积分诞生前的水到渠成的年代,这时巨人已经形成,牛顿和莱布尼兹之所以能完成微积分的创立大业,正事由于它们占到了前辈巨人们的肩膀上,才能居高临下,才能高瞻远瞩,终于或得了真理。可以这样说:微积分的产生是量变(先驱们的大量工作的积累)到质变(牛顿和莱布尼兹指出微分与积分是对矛盾)的过程,是当时历史条件(资本主义萌芽时期)下的必然产物。微积分基本定理的建立标志着微积分的诞生。 牛顿自1664年起开始研究微积分,钻研了伽利略、开普勒、瓦利斯(Wallis),尤其是笛卡尔的著作。1665年5月,牛顿发明“正流数术”(微分法);1666年5月,发明“饭流数术”(积分法)。1666年10月将此整理成文名为《流数简论》,此文虽未发表,却是历史上第一篇系统的微积分文献。将从古希腊依赖用无穷小的方法来解各种问题的特殊技巧统一为两类算法,正、反流数术,记微分与积分;并指出两者是互逆关系,即是一对矛盾。还应用已简历起来的统一算法,用来求曲线切线、曲率、拐点、曲线求长、求面积、求引力与引力中心等16类问题,现实了这中算法的普遍性、系统性以及强大威力。 莱布尼兹于1673年提出特征三角形(ds, dx, dy),认识到:求曲线的切线依赖于纵坐标的差值与横坐标的差值当这些差

微积分发展史

微积分发展史 摘要:本文将介绍微积分的由来以及发展过程以及他对于人类发展的重大意义。并且在文章中也会对微积分的一些基本内容和理论等进行说明和归纳 关键词:微积分,微分,积分,建立 一、微积分学的建立 微积分在如今的数学领域中占到了非常重要的地位,并且作为 一门学科,微积分是研究函数的微分、积分以及有关概念和应 用的数学分支。它的起源可以追溯到其诞生的2000多年前, 比如,古代的人用方砌圆,我国庄子的“一尺之棰,日取其半,万世不竭”,魏晋时刘徽的“割圆术”等等,都涉及到了以“直”代“曲” 的极限观念,属于微积分的朴素思想,阿基米德更可称为时微 积分学的先驱,他不仅成功地将“穷竭法”应用于求像抛物线弓 形那样复杂地曲边形地面积中,而且在求积时应用了各种微积 分学地思想。但微积分思想真正形成是在十七世纪,由牛顿总 结和发展了前人的工作,几乎同时建立了微积分的方法和理论 微积分的起源。牛顿是从物理角度建立了微积分的思想,而德 国数学家莱布尼兹从几何角度出发,独立地创立了微积分 (1675-1676)。这两位数学家总结出处理各种有关问题地一般 方法,并揭示出微分学和积分学之间的本质联系。两人各自建

立了微积分学基本定理,并给出微积分的概念、法则、公式及 其符号。这位日后的微积分学的进一步发展奠定了坚实而重要 的基础。微积分的创立,极大地推动了数学地发展,过去很多 初等数学束手无策地问题,通过运用微积分,往往引刃而解。 使得微积分学地创立成为数学发展地一个里程碑式的事件。二、微积分建立的重要意义 恩格斯曾经说过:“在一切理论成就中,未必再有什么像十七世 纪下半叶微积分的发现那样被看作人类精神的最高胜利了。如 果在某个地方我们看到人类精神的纯粹的和惟一的功绩,那就 正是在这里。”在微积分建立之前,人类基本还处于农耕文明时 期。但在微积分建立之后它为创立许多新的学科提供了源泉。 可以说微积分的建立是人类头脑最伟大的创造之一,是人类智 慧的结晶,它极大地推动了科学地进步,并且对社会也有深远 的影响。有了微积分,就有了工业革命,它是世界近代科学的 开端,同时也摧毁了笼罩在天体上的神秘主义、迷信和神学, 对社会产生了极大的影响,使人们进入了现代化的社会。这一 切都表面了微积分学的产生是人类历史上的一次空前飞跃。三、微积分理论的基本介绍和归纳 微积分学是微分学和积分学的总称。微积分学基本定理指出, 求不定积分与求导函数是互为逆运算的过程,而把上下限代入 不定积分即得到积分值,微分则是倒数值与自变量增量的乘积。 作为一种数学的思想微分就是“无限细分”,而积分就是“无限求

对《微积分的概念发展史》见解

对《微积分的概念发展史》见解 微积分和数学分析是人类智力的伟大成就之一,其地位介于自然和人文科学之间,成为高等教育成果硕然的中介。微积分发展史和对微积分的研究就是人类智力的斗争和一步步发展的历史,这种延续了500多xl年的斗争历史,深深扎根于人类奋斗的许多方面,并且,只要人们像了解大自然那样去努力认识自己,它就还会继续发展下去。教师、学生和学者若想真正理解数学的力量和表现,就必须从历史的角度来理解这一领域发展至今的现状,以广阔的视野看待数学。 《微积分的概念发展史》这本书以时间为顺序,通过对古希腊乃至更久远时期、中世纪和17世纪关于微积分学构想的描述,剖析了一些阻碍微积分学发展进程的哲学与宗教观点,叙述了微分和积分两方面的发展,以及牛顿、莱布尼茨的伟大贡献。 数学是从古代巴比伦人及埃及人建立起一套数学知识,并以之作为进一步观察的基础的而开始,出现了泰勒斯(Thales),毕达哥拉斯学派(Pythagoras)以及柏拉图(Plato)等等对数学进行演绎的哲学家和数学家,他们认为数学是对终极永恒的现实以及自然和宇宙固有性质的研究,而不是逻辑的一个分支或者是科学技术的所运用的一种工具。 历史到达中世纪,经院派的观点十分盛行,他们认为宇宙“秩序井然”,易于理解。到了14世纪,世人非常清楚的意识到逍遥学派对运动和变化所持的定性观最好能被定量研究所取代。这种信念在萨库的尼古拉斯、开普勒和伽利略的思想中都有体现,在某种程度上也出现在莱昂纳多·达·芬奇的思想中。微积分起源于古希腊数学家在试图表达其关于直线的比率或是比例的直觉观点所遭遇的逻辑困境,他们认为数是离散的,按照数的观点,迷迷糊糊的认为直线是连续的,这样一来,便涉及到在逻辑上不够满意的无穷小的概念。但是,古希腊科学家的严密的思想却将无穷小的观念排除在几何证明之外,并代以穷竭法,这种方法可以避开无穷小的问题,但十分麻烦。不过,14世纪的经院派哲学家对变量展开的定量研究,这种方法很大程度上是辩证的,但是也借助图示。这些哲学和宗教的概念实际上对以后很多数学家的研究起到或多或少的作用或是影响,又好

微积分学习方法

《微积分》学习方法 来源:东财网院 很多同学都会认为,数学是一门比较难学的学科,有那么多的定义、公式、定理,还有图像以及各种曲线等等,总是让人头疼。所以同学们在接触微积分之前,可能就已经对它产生了心理恐惧,甚至是排斥心理。而事实并非如此,之所以会这样是因为你还没有掌握正确的学习方法。 首先,大家应该大致翻一下教科书,或者是看看目录和前言,了解学习这么课程所需具备的基础知识是什么。从第一章的内容中,大家可以了解到,微积分的起点是中学里的函数概念和解析几何。所以,如果以往的知识不牢固,或是没有接触过,那么最好找来中学的教科书复习一下。接下来,大家就接触到了极限,数列的极限以及函数的极限。大家可能会发现,极限的定义很难看懂。那是不是就能以此为借口,停顿在这里呢?当然不能,我们可以先把这个问题放一下,继续向下。实际上,极限的概念是很直观的,理解其思想即可,看不懂定义并不影响下面的学习。 接下来的部分就较为重要了,而且不能跳过。导数的概念其实也很简单,就是一个量关于另一个量的变化率。下面可能牵扯到很多导数的公式和运算技巧,很少有人会马上记住,这也不要紧,可以在平时的练习中慢慢掌握。可能有些同学喜欢解题,喜欢推导和运算,这固然是好事,但不要过度的沉浸在题海中。接触到微分,大家会发现,它和导数没有实质性的区别,只是在表达方式上有所不同,这是需要大家分清楚地。 下一个难点就是积分了。积分的数学定义可能较难理解,那么可以从图形下手,可以充分发挥想象力:为了求得曲线所围的面积,用无数小梯形去无限逼近,这也就是极限的思想。其实积分的本质就是极限。理解它的本质后,运算技巧可以暂放一下,在考试前可以集中解决运算技巧的问题。 对于多数同学来说,微积分的后半部分会更难些。对于无穷级数,同学们还是重在理解思想。多元函数微积分比前面的一元函数稍微复杂了些,但是基本的思路是一样的。最后一个难点,就是关于微分方程了。首先,要理解微分方程的有关概念以及微分方程的解,这样才能对微分方程有所识别。其次,对各种类型的微分方程,都要抓住其特征的本质,领会每一道例题中解题的方法和含义。 在学习数学的过程中,前后的连贯性较为重要,所以要注意知识点之间的衔接。但也不排除个别的情况,比如前文中说到的极限和级数。事实上很多人的亲身经历也证明了,微积分并不可怕,关键看你肯不肯下功夫。相信在大家的努力和老师的帮助下,微积分的难关是可以攻克的。 微 积 分》 的 学 习 方 法 读书好比走路。不知道去那里干什么,走起路来也没 劲儿。读书也是这样,没有目的,读起书来也没兴趣。 走路也得有方法,方法对走起路来才省劲儿。读书也 是这样,方法得当才能收到好效果。学生在校期间, 读书当然应以教科书为主,但是大学生与中小学生不

微积分发展史

微积分发展史 微积分在数学发展史上可以认为是一个伟大的成就,由于微积分的创立不仅解决了当时的一些重要的科学问题,而且由此产生了数学的一些重要分支,如微分方程、无穷级数、微分几何、变分法、复变函数等。这个伟大的成就当然首先应该归功于牛顿(Newton)和莱布尼茨(Leibniz),但是在他们创立微积分之前,微积分问题至少被17世纪十几个大数学家和几十个小数学家探索过,得出了一些有价值的结论,且具有很大启发性。牛顿和莱布尼茨是在前人的基础上将微积分发展到了高峰。 17世纪遇到了哪些问题呢?主要有四类问题。第一类是速度和加速度问题。17世纪遇到的速度和加速度问题大都是变量问题,即变速与变加速。这与17世纪以前所遇到的大量常速问题所不同,如何求速度与加速度成为当时科学家们所关心的问题。第二类是切线问题。17世纪光学是一门重要的学科,例如透镜如何设计,这涉及切线与法线。切线问题在17世纪以前虽也解决过,但只限于圆锥曲线,而切线的定义是只与曲线接触一点的直线,这种情况不能适应17世纪所遇到的复杂的曲线的切线问题,另外物体运动时在它轨迹上的运动方向也涉及切线。第三类是最大值和最小值问题。炮弹的最大射程如何求,行星运行时离开太阳的最远和最近距离如何求,都是17世纪迫切要解决的。第四类是求曲线的长、曲线围成的面积和曲面围成的体积、物体的重心、引力等。这些问题在17世纪之前个别地解决过,但必须有较好的技巧,且方法缺乏一般性。 尝试解决这四类问题在牛顿、莱布尼茨之前已经有过不少经验,罗贝瓦尔(Roberval)从炮弹的水平速度与垂直速度构成矩形的对角线出发,认为这条对角线就是炮弹的轨迹切线。牛顿的老师巴罗(Barrow),也给出了求切线的方法。17世纪开普勒(Kepler)证明了所有内接于球的,具有正方形底的正平行四面体中立方体的容积最大。当越来越接近最大体积时,相应尺寸的变化对体积的变化越来越小(就是我们现在所说的极值处的导数为0)。费马(Fermat)在1629年已经找到与现在求最大值和最小值的方法实质相同的方法。卡瓦列利(Cavalieri)在他老师伽利略(Galileo)和开普勒的影响下,并在他老师的敦促下,考查了微积分,并且获得n为正整数时的积分公式(1639年) 1634年罗贝瓦尔求出了旋轮线x=R(t-s in t),y=R(1-c os t)一个拱下的面积。他还求出了正弦曲线一个拱下的面积及它绕底旋转的体积。一些图形的重心也计算出来了。格利哥利(Gregory)在1647年算出了 以上都是一些具体的结果,在原则性的问题上,如微积分的主要特征——积分与微分互逆,也早为人们所遇到。托里拆利(Torricelli)通过特殊的例子看到了变化率问题本质上是面积问题的反问题。费马同样也在特殊的例子中知道了面积与导数的关系。格利哥利1668年证明了切线问题是面积问题的逆问题。巴罗也看到了这种关系,但他们不是没有看到其普遍意义或一般性,就是没引起重视和看到其重要性。17世纪的前三分之二的时间内,微积分的工作被困拢在一些细节问题里,作用不大的细微末节的推理使数学家们精疲力竭了。

第一章 微积分的发展历史简介

第一章 微积分的发展历史简介 1.1微积分的概念 微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。 基本定义 设函数0)(=x f 在],[b a 上有解,在],[b a 中任意插入若干个分点 n n x x x x x a <<<<<=-1210 把区间],[b a 分成n 个小区间 ].,[],,[],,[12110n n x x x x x x - 在每个小区间],[1i i x x -上任取一点)(1i i x i x i <<-ζζ,作函数值)(i f ζ与小区间长度的乘积x i f ?)(ζ并作出和如果不论对],[b a 怎样分法,也不论在小区间上的点i ζ怎样取法,只要当区间的长度趋于零时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数)(x f 在区间[a,b]上的定积分记作K 。 微积分的基本概念和内容包括微分学和积分学。 微分学的主要内容包括:极限理论、导数、微分等。 积分学的主要内容包括:定积分、不定积分等。 一元微分定义 设函数)(x f y =)在某区间内有定义,0x 及x x ?+0在此区间内。如果函数的增量)()(00x f x x f y -?+=?可表示为 0ox x A y +?=?(其中A 是不依赖于x ?的常数),而x o ?是比x ?高阶的无穷小,那么称函数)(x f 在点0x 是可微的,且x A ?称作函数在点0x 相应于自变量增量x ?的微分,记作dy ,即x A dy ?= 通常把自变量x 的增量x ?称为自变量的微分,记作dx ,即x dx ?=。于是函数)(x f y =的微分又可记作dx x f dy )('=。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。 几何意义 设x ?是曲线)(x f y =上的点M 的在横坐标上的增量,y ?是曲线在点M 对

微积分发展简史

微积分发展简史 参与人员 院系:数学科学学院 专业: 信息与计算科学 年级:2011级 日期:2012年六月一日 目录 学号 姓名 20114500 李海洲 20114502 吴亚锋 20113917 卢任之 20113919 郭 越 20111738 王心影 20114975 哈森其其格

1 中文摘要 (Ⅰ) 2 abstract (Ⅱ) 3微积分简介 (1) 4产生背景 (2) 5 酝酿时期 (3) 6发展历程 (4) (1)牛顿的微积分 (4) (2)莱布尼茨的微积分 (5) (3)柯西与魏尔斯特拉斯的贡献 (6) (4)外国其他科学家的贡献 (7) (5)中国数学家的思想 (8) 7微积分创建的历史意义 (9) 8微积分的应用与新分支的形成 (10) 9参考文献 (11) 中文摘要:

本文以对微积分的发展有突出贡献的一些数学家为切入点,简略的介绍了微积分学的产生背景、发展过程以及其产生的重大历史意义。 关键词: 微积分;发展史;微分;积分;极限;牛顿;莱布尼茨

English Abstract : In this paper, some mathematicians of outstanding contributions to the development of calculus as a starting point, briefly introduced the calculus background, development process and its major historical significance. Key Words : Calculus;History of the development;Differential;Integral;Limit;Newton;Leibniz

关于微积分学习的感受

学习微积分的感想和建议 班级:国际商务一班姓名:沈识宇学号:171400151 对于学习方面,以前我总觉得数学一直处于主心骨的位置,它是我从小的梦想、我的骄傲。可是自从大学以来的第一个学期,微积分却着实让我们倍受打击。成绩的不再拔尖,沉痛的打击了我的自信心。但是,通过和老师交流,与同学讨论,让我明白强中自有强中手, 而自己,并不是笨,只是有些方面自己做的不够,只要深切的去思考自己的学习方法,自己依旧有很大的进步空间。 首先我们觉得大学里的学习课后巩固很重要,光靠一周两次大课的学习,远远不够。并且,课上老师可能会因为进度问题而降得很快,很多时候我们会跟不上老师的速度,这时, 如果课后不再看老师局的例题,课上的疑问会永远得不到解答。在此情况下谈想进步是不可能的,然而课后的巩固应该从两方面着手,一方面是教学大纲上要求必须掌握的内容,这些是 考试必考内容,或许看似很简单的内容,确实解题目的最基本的基础。秋季学期的期末考,正是由于自己对基本知识忽略,在一些很简单的题目丢了分,惨痛的教训给了我们深刻的教 训,夯实基础知识,才能为考试打下良好的基础。 另一方面。是自己认为在内容掌握上的盲点和误区,这些事最容易忘记的,也是熟练度最差的。而考试不会因为这是自己认为的难点就会不考,所以认真钻研这些题目便可为自己在分数上的突破起决定性作用。

同时,复习一定要有耐心,要持之以恒。学习上最大的忌讳便是三天打鱼两天晒网,这 样的学习不会有任何收获。知识既然学习了,我们就要好好消化,不能让它成为太脑中的累赘。周期性的复习才不会使大脑一片空白,一周一次或两周一次,可以根据自己的记忆力而 定,以适合自己的为基准便可以。 复习的时候,第一,便是要克服浮躁的毛病,静心看课本。考试题目几乎都是从课本知识中发散来的,所以,复习中必须要看课本,反复看,细节很重要,特别是不被重视的基本概念和定理。力争课后复习参考题每题都过关。第二,是要制定好复习计划,针对自身情况 分配好时间,各个击破。第三,要理清知识结构网络图,从上学期到现在,我们已经学了极限、连续不连续、导数、定积分、不定积分等知识内容,然后根据知识结构网络图区发散、联想基础概念和基本定理和每个知识点的应用计算题,对本章节的内容有个清晰的思 路,这样就可以在整体上把我书本知识。从整体上把握书本知识有利于我们对于试卷中的一些基本的题目有一个宏观的把握。对于试卷中的问答题,可以从多角度去理解和把握,这样就能做到回答问题的严密性。第四,将课上老师所讲授的典型例题及做题过程中遇到的难题还有易错的题归纳整理,分析。数学中,我们很容易遇到同一个问题有不同方法的解决方法。第五,最好多看看往年真题,针对出现频率较高的题型,适当做些有针对性的模拟试题。对于自己认为薄弱的环节更要加强钻研,与同学和老师多交流,更要勇于舍弃那些偏题、怪题。

微积分的起源与发展

微积分的起源与发展 主要内容: 一、微积分为什么会产生 二、中国古代数学对微积分创立的贡献 三、对微积分理论有重要影响的重要科学家 四、微积分的现代发展 一、微积分为什么会产生 微积分是微分学和积分学的统称,它的萌芽、发生与发展经历了漫长的时期。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所着的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。 到了十七世纪,哥伦布发现新大陆,哥白尼创立日心说,伽利略出版《力学对话》,开普勒发现行星运动规律--航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,这些问题也就成了促使微积分产生的因素,微积分在这样的条件下诞生是必然的。归结起来,大约有四种主要类型的问题: 第一类是研究运动的时候直接出现的,也就是求即时速度的问题。 已知物体移动的距离表为时间的函数的公式,求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表为时间的函数的公式,求速度和距离。 困难在于:十七世纪所涉及的速度和加速度每时每刻都在变化。例如,计算瞬时速度,就不能象计算平均速度那样,用运动的时间去除移动的距离,因为在给定的瞬刻,移动的距离和所用的时间都是0,而0 / 0 是无意义的。但根据物理学,每个运动的物体在它运动的每一时刻必有速度,是不容怀疑的。 第二类问题是求曲线的切线的问题。 这个问题的重要性来源于好几个方面:纯几何问题、光学中研究光线通过透镜的通道问题、运动物体在它的轨迹上任意一点处的运动方向问题等。 困难在于:曲线的“切线”的定义本身就是一个没有解决的问题。 古希腊人把圆锥曲线的切线定义为“与曲线只接触于一点而且位于曲线的一边的直线”。这个定义对于十七世纪所用的较复杂的曲线已经不适应了。 第三类问题是求函数的最大值和最小值问题。 十七世纪初期,伽利略断定,在真空中以45°角发射炮弹时,射程最大。研究行星运动也涉及最大最小值问题。 困难在于:原有的初等计算方法已不适于解决研究中出现的问题。但新的方法尚无眉目。

学习微积分的心得体会

学习微积分的心得体会 微积分学习心得 学号11120472 姓名吴心怡班级七班学号11120471 姓名吴亚男班级七班时间,如同轨道上疾驰的列车,匆匆行驶,不留一点痕迹的我们的寒假就这样over掉了了。恍惚之间,我们就要开始正式上课了。我们依稀还记得,放假前,老师们说让好好复习,来学校不久便是冬季学期的期末考试了,可是,嘿嘿~~自己却不得不承认有很大一部分的时间是被荒废了的。但早早来学校,我们好好静下心来思考了一下学习的经验和方法。突然有了要好好学习的冲动,可能以前真的是我们对学习不够上心的缘故吧。 对于学习方面,以前我总觉得数学一直处于主心骨的位置,它是我从小的梦想、我的骄傲。可是自从大学以来的第一个学期,微积分却着实让我们倍受打击。成绩的不再拔尖,沉痛的打击了我的自信心。但是,通过和老师交流,与同学讨论,让我明白强中自有强中手,而自己,并不是笨,只是有些方面自己做的不够,只要深切去思考自己的学习方法,自己依旧有很大的进步空间。 首先我们觉得大学里的学习课后巩固很重要,光靠一周两次大课的学习,远远不够。并且,课上老师可能会因为进度问题而降得很快,很多时候我们会跟不上老师的速度,这时,如果课后不再看老师局的

例题,课上的疑问会永远得不到解答。在此情况下谈想进步是不可能的。 然而课后的巩固应该从两方面着手,一方面是教学大纲上要求必须掌握的内容,这些是考试必考内容,或许看似很简单的内容,确实解题目的最基本的基础。秋季学期的期末考正是由于自己对基本知识忽略,在一些很简单的题目丢了分,惨痛的教训给了哦我们深刻的教训,夯实基础知识,才能维纳最重要的考试打下良好的基础。 另一方面。是自己认为在内容掌握上的盲点和误区,这些事最容易忘记的,也是应用熟练程度最差的。而考试不会因为这是自己认为的难点就会不考,所以认真钻研这些题目便可为自己在分数上的突破起决定性作用。 同时,复习一定要有耐心,要持之以恒。学习上最大的忌讳便是三天打鱼两天晒网,这样的学习不会有任何收获。知识既然学习了,我们就要好好消化,不 能让它成为大脑中的脂肪。周期性的复习才不会使大脑一片空白,一周一次或两周一次,可以根据自己的记忆力而定,以适合自己的为基准便可以。

微积分发展简史

微积分发展简史 微积分是17世纪发现的最具威力的数学工具,是人类思维最珍贵的成果. 正如美国当代数学家柯朗所说:“这是一门撼人心灵的智力奋斗结晶,这种奋斗已经历了两千五百年之久,它深深地扎根于人类活动的许多领域,并且只要人们认识自己和认识自然的努力一日不止,这种奋斗就将继续不已.” 恩格斯也对微积分的发现予以高度评价,认为这是“人类精神的最高胜利.” 一、微积分思想萌芽 微积分的思想萌芽,部分可以追溯到古代. 在古代希腊、中国和印度数学家的著作中,已不乏有朴素的极限思想,即无穷小过程计算特别形状的面积、体积和曲线长的例子. 在中国,公元前5世纪,战国时期名家的代表作《庄子 天下篇》中记载了惠施的一段话:“一尺之锤,日取其半,万事不竭”,是我国较早出现的极限思想. 但把极限思想运用于实践解决实际问题的典范却是魏晋时期的数学家刘徽. 他的“割圆术”开创了圆周率研究的新纪元. 刘徽首先考虑圆内接正六边形面积,接着是正十二边形面积,然后依次边数加倍,则正多边形面积愈来愈接近圆面积. 正如他说的:“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体无所失矣.”按照这种思想,计算到圆内接正192边形面积,则得圆周率的近似值为3.14. 大约两个世纪后,南北朝时期的著名科学家祖冲之(公元429-500年)祖恒父子推进和发展了刘徽的数学思想,首先算出了圆周率介于“与3.1415927之间,这是我国古代最伟大的成就之一. 其次明确提出了下面的原理:“幂势既同,则积不容异.”我们称之为“祖氏原理”,在西方称为“卡瓦利原理”,应用该原理成功地解决了刘徽未能解决的球体积问题. 欧洲古希腊时期也有极限思想,并用极限方法解决了许多实际问题. 较为重要的当数安提芬的“穷竭法”. 他在研究化圆为方问题时,提出用圆内接正多边形的面积穷竭圆面积,从而求出圆面积. 但他的方法却没有被数学家接受. 后来,安提芬的穷竭法在欧多克斯那里得到补充和完善. 之后,阿基米德借助于穷竭法解决了一系列几何图形的面积、体积计算问题. 他的方法通常被称为“平衡法”,实质上是一种原始的积分法. 他将需要求积的量分成许多微小单元,再利用另一组容易计算总和的微小单元来进行比较. 但他的两组微小单元的比较是借助于力学上的杠杆平衡原理来实现的. 平衡法体现了近代积分法的基本思想,是定积分概念的雏形. 与积分学相比,微分学研究的例子相对少多了. 刺激微分学发展的主要科学问题是求曲线的切线、瞬时变化率以及求函数的极大极小值等问题. 阿基米德、阿波罗尼奥斯等均曾作过尝试,但他们都是基于静态的观点. 古代与中世纪的中国学者在天文历法研究中也曾涉及到天体运动的不均匀性及有关的极大、极小值问题,但多以惯用的数值手段(即有限差分)

微积分的历史发展顺序与理论发展顺序的区别

微积分的理论展开顺序与历史展开顺序的联系与区别 在本学期,我们学习了数学史,这门课让我对我们所学的数学知识有了更深度认识。尤其在微分学的知识上,我知道了微积分的理论展开顺序与历史展开顺序是有联系与区别的。对此,我将浅谈一下我的认识。 一、微积分的历史展开顺序 1.微积分的创立 解析几何是代数与几何相结合的产物,它将变量引进了数学,使运动与变化的定量表述成为可能,从而为微积分的创立搭起了舞台。微积分的思想萌芽,特别是积分学,部分可以追溯到古代。我们已经知道,面积和体积的计算自古以来一直是数学家们感兴趣的课题,在古希腊、中国和印度数学家们的著述中,不乏用无限小过程计算特殊形状的面积、体积和曲线长的例子。 在古代,刘徽撰写的《九章算术·商功》中提到:“斜解立方,得两壍堵。斜解壍堵,其一为阳马,一为鳖臑。阳马居二,鳖臑居一,不易之率也。合两鳖臑三而一,验之以棊,其形露矣。”他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。祖冲之父子总结了魏晋时期著名数学家刘徽的有关工作,提出"幂势既同则积不容异",即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖暅公理(或刘祖原理)。祖暅应用这个原理,解决了刘徽尚未解决的球体积公式。卡瓦列利运用祖暅原理求得了许多平面图形的面积和立体图形的体积,是现行中学立体几何教材求几何体积的基本雏形。 在现代,1638年伽利略《关于两门新科学的对话》中,他建立了自由落体定律、动量定律等,为动力学奠定了基础;他认识到弹道的抛物线性质,并断言炮弹的最大射程应在发射角为45°时达到,等待。伽利略本人竭力倡导自然科学的数学化,他的著作激起了人们对他所确立的动力学概念与定律作精确的数学表述的巨大热情。德国天文学家、数学家开普勒在1615年发表《测量酒桶的新立体几何》论述了圆锥曲线围绕其所在平面上某直线旋转而成的立体体积的积分法。他的方法要旨是用无数个同维无限小元素之和来确定曲变形的面积及旋转体的体积。解析几何的创始人笛卡儿和费马,都是将坐标方法引进微分学问题研究的前锋。笛卡儿在《几何学》中提出了求切线的所谓“圆法”,本质上是一种代数方法。就在同一年,费马在一份手稿中提出了求极大值与极小值的代数方法。1666年10月,牛顿著作了《流数简论》是历史上第一篇系统的微积分文献。但是《流数简论》在许多方面是不成熟的,牛顿经过研究后加以改正,最后牛顿微积分学说最早的公开表述出现在1687年出现的力学著作《自然哲学的数学原理》。 2.微积分的发展 微积分的创立,被誉为“人类精神的最高胜利”。在18世纪,微积分进一步深入发展,这种发展与广泛的应用紧密交织在一起,刺激和推动了许多数学新分支的产生,从而形成了“分析”这样一个在观念和方法上都具有鲜明特点的数学领域。在数学史上,18世纪可以说是分析的时代,也是向现代数学过渡的重要时期。 在从17世纪到18世纪的过渡时期,雅各布伯努利和约翰伯努利推广了莱布尼茨的学说。18世纪微积分最重大的进步是由欧拉作出的,他在1748年出版的《无限小分析引论》以及他随后发表的《微分学》和《积分学》是微积分史上里程碑式的著作。这三部著作包含了欧拉本人在分析领域的

[2018年最新整理]微积分发展历程(二)

微积分发展历程(二) 微积分学的诞生 随着时代的发展,实践中提出了越来越多的数学问题,待数学家们加以解决,如曲线切线问题、最值问题、力学中速度问题、变力做功问题……初等数学方法对此越来越无能为力,需要的是新的数学思想、新的数学工具。不少数学家为此做了不懈努力,如笛卡尔、费马、巴罗……并取得了一定成绩,正是站在这些巨人的肩膀上,牛顿、莱布尼兹以无穷思想为据,成功运用无限过程的运算,创立了微积分学。这新发现、新方法的重要性使当时的知识界深感震惊,因而出现了一门崭新的数学分支:数学分析。这一学科的创立在数学发展史上翻开了崭新一页,谱写了光辉动人的乐章。 1)微积分的发展 无限小算法的推广,在英国和欧洲大陆国家是循着不同的路线进行的。 不列颠的数学家们在剑桥、牛津、伦敦和爱丁堡等著名的大学里教授和研究牛顿的流数术,他们中的优秀代表有泰勒(B.Taylor )、麦克劳林(C.Maclaurin )、棣莫弗(A.de Moivre )、斯特林(J.Stirling )等。泰勒(1685_1731)做过英国皇家学会秘书。他在1715年出版的《正的和反的增量方法》一书中,陈述了他早在1712年就已获得的著名定理()2 3 ....22..112123v v v x z v x x x x z z z ∴+=++++其中v 为独立变量z 的增量,.x 和. z 为流数。泰勒假定z 随时间均匀变化,故.z 为常数,从而上述公式相当于现代形式的“泰勒公式”: ()()()()2 2!h f x h f x hf x f x '''+=+++。 泰勒公式使任意单变量函数展为幂级数成为可能,是微积分进一步发展的有力武器。但泰勒对该定理的证明很不严谨,也没有考虑级数的收敛性。 泰勒公式在x=0时的特殊情形后来被爱丁堡大学教授麦克劳林重新得到,现代微积分教科书中一直把x=0时的泰勒级数称为“麦克劳林级数”。麦克劳林(1698_1746)是牛顿微积分学说的竭力维护者,他在这方面的代表性著作《流数论》,以纯熟却难读的几何语言论证流数方法,试图从“若干无例外的原则”出发严密推演牛顿的流数论,这是使微各分形式化的努力,但因囿于几何传统而并不成功。《流数论》中还包括有麦克劳林关于旋转可耻椭球体的引力定理,证明了两个共焦点的椭球体对其轴或赤道上一个质点的引力与它们的体积成正比。 麦克劳林之后,英国数学陷入了长期停滞的状态。微积分发明权的争论滋长了不列颠数学家的民族保守情绪,使他们不能摆脱牛顿微积分学说中弱点的束缚。与此相对照,在英吉利海峡的另一边,新分析却在莱布尼茨的后继者们的推动下蓬勃发展起来。 2)积分技术与椭圆积分 18世纪数学家们以高度的技巧,将牛顿和莱布尼茨的无限小算法施行到各类不同的函数上,不仅发展了微积分本身,而且作出了许多影响深远的新发现。在这方面,积分技术的推进尤为明显。 当18世纪的数学家考虑无理函数的积分时,他们就在自己面前打开了一片新天地,因为他们发现许多这样的积分不能用已知的初等函数来表示。例如雅各布?伯努利在求双纽线

论述微积分发展简史

论述微积分发展简史1 一、微积分的萌芽 微积分的思想萌芽可以追溯到古代,早在希腊时期,人类已经开始讨论无穷、极限以及无穷分割等概念。这些都是微积分的中心思想;虽然这些讨论从现代的观点看有很多漏洞,有时现代人甚至觉得这些讨论的论証和结论都很荒谬,但无可否认,这些讨论是人类发展微积分的第一步。 公元前五世纪,希腊的德谟克利特提出原子论:他认為宇宙万物是由极细的原子构成。在中国,《庄子.天下篇》中所言的一尺之捶,日取其半,万世不竭,亦指零是无穷小量。这些都是最早期人类对无穷、极限等概念的原始的描述。 二、微积分的创立 微积分的产生一般分为三个阶段:极限概念;求积的无限小方法;积分与微积分的互逆关系。最后一个阶段是由牛顿、莱布尼茨完成的。前两个阶段的工作,欧洲的大批数学家一直追溯到希腊的阿基米德都做出了各自的贡献。 中世纪时期,欧洲科学发展停滞不前,人类对无穷、极限和积分等观念的想法都没有甚麼突破。中世纪以后,欧洲数学和科学急速发展,微积分的观念也於此时趋於成熟。在积分方面,一六一五年,开普勒把酒桶看作一个由无数圆薄片积累而成的物件,从而求出其体积。而伽利略的学生卡瓦列里即认为一条线由无穷多个点构成;一个面由无穷多条线构成;一个立体由无穷多个面构成。这些想法都是积分法的前驱。 在微分方面,十七世纪人类也有很大的突破。费马在一封给罗贝瓦的信中,提及计算函数的极大值和极小值的步骤,而这实际上已相当於现代微分学中所用,设函数导数為零,然后求出函数极点的方法。另外,巴罗亦已经懂得透过「微分三角形」(相当於以dx、dy、ds為边的三角形)求出切线的方程,这和现今微分学中用导数求切线的方法是一样的。由此可见,人类在十七世纪已经掌握了微分的要领。 英国著名数学家、物理学家牛顿从研究物理问题出发创立了微积分(1665—1666),牛顿称之为“流数术理论”.牛顿的“流数术”中,有三个重要的概念:流动量、流动率、瞬.牛顿的流数术以力学中的点的连续运动为原型,把随时问连续变化的量而产生的一个连续变化的变量,即以时间为独立变数的函数(生长中的量)称为流动量,流动率是流动量的变化速度,即变化率(生长率),称为导数牛顿专论微积分的著作有两部,第一部正式的、系统的论述流数术的重要著作是《流数术和无穷级数》,于1671年写成,在1736年才正式出版.另一部著作是《曲线求积论》,于1676—1691年写成,在1704年出版. 德国数学家莱布尼兹从儿何角度出发独立地创立了微积分(1675—1676).莱布尼兹当时把微积分称为“无穷小算法”.他的微积分符号的使用最初体现在1675年的手稿中.1684年他在《教师学报》杂志上发表了微分法的论文《一种求极大值、极小值和切线的新方法,它也适用于无理量,以及这种新方法的奇妙类型的计算》.这是历史上最早发表的关于微积分的文章.1686年他在该杂志上又发表了最早的积分法的论文《潜在的几何与不可分量和无限的分析》。在数学史上,关于微积分创立的优先权问题发生了一场激烈的争论,英国皇家学会为此成立了专门的评判委员会.经过长时间的调查,裁定牛顿与莱布尼兹分别独立地创立了微积分. 三、微积分的发展

常微分方程的发展史

摘要:20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组).70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程. 从“求通解”到“求解定解问题”数学家们首先发现微分方程有无穷个解.常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数.偏微 分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定. 命方程的解含有的任意元素(即任意常数或任意函数)作尽可能的变化,人们就可能得到方程所有的解,于是数学家就把这种含有任意元 素的解称为“通解”.在很长一段时间里,人们致力于“求通解”. 关键词:常微分方程,发展,起源 正:常微分方程是由用微积分处理新问题而产生的,它主要经历了创立及解析理论阶段、定性理论阶段和深入发展阶段。17 世纪,牛顿,英国,1642-1727)和莱布尼兹,德国,1646-1716)发明了微积分,同时也开创了微分方程的研究最初,牛顿在他的著作《自然哲学的数学原理机(1687年)中,主要研究了微分方程在天文学中的应用,随后微积分在解决物理问题上逐步显示出了巨大的威力。但是,随着物理学提出日益复杂的问题,就需要更专门的技术,需要建立物理问题的数学模型,即建立反映该问题的微分方程。1690 年,雅可比·伯努利(Jakob Bernouli,瑞士,1654-1705)提出了等时间题和悬链线问题.这是探求微分方程解的早期工作。雅可比·伯努利自己解决了

前者。翌年,约翰伯努利(Johann Bernouli ,瑞士,1667-1748)、莱布尼兹和惠更斯(,荷兰,1629-1695)独立地解决了后者。 有了微分方程,紧接着就是解微分方程,并对所得的结果进行物理解释,从而预测物理过程的特定性质.所以求解就成为微分方程的核心,但求解的困难很大,一个看似很简单的微分方程也没有普遍适用的方法能使我们在所有的情况下得出它的解。因此,最初人们的注意力放在某些类型的微分方程的一般解法上。 1691 年,莱布尼兹给出了变量分离法。他还把一阶齐次方程使其变量分离。1694 年,他使用了常数变易法把一阶常微分方程化成积分。 1695 年,雅可比·伯努利给出著名的伯努利方程。莱布尼兹用变换,将其化为线性方程。约翰和雅可比给出了各自的解法,其本质上都是变量分离法。 1734 年,欧拉,瑞士,1707-1783)给出了恰当方程的定义。他与克莱罗. Clairaut,法国,1713-1765)各自找到了方程是恰当方程的条件,并发现:若方程是恰当的,则它是可积的。那么对非恰当方程如何求解呢1739 年克莱罗提出了积分因子的概念,欧拉确定了可采用积分因子的方程类属。这样,到 18 世纪 40 年代,一阶常微分方程的初等方法都已清楚了,与此相联系,通解与特解的问题也弄清楚了。

微积分的发展历史

微积分的产生——划时代的成就 . 1 微积分思想的萌芽 1.1 古希腊罗马——微分、积分思想的发源地 原子论朴素的微分和积分思想.古希腊的原子论者具有朴素的微分和积分思想,该学派的创始人是留基伯(Leucippcus of Miletus),代表人物则是百科全书式的学者德漠克利特(Democritus of Abdera).原子论者把宇宙间的万物看成由不可再分的原子构成,以及原子虽然不能再分但仍有内部结构的思想,表现在数学上就是对于表示有限的长度、面积和体积的量x ,进行了一次微分(dx)和二次微分(dx 2). 德漠克利特曾用原子论思想第一次算出圆锥和棱锥的体积分别等于和它们同底同高的圆柱和棱柱体积的三分之一. 极限法的早期形式穷竭法.为了计算曲边形的面积和体积,欧多克斯(Eudoxus of Cnidos )曾提出了一个计算方法,这个方法在17世纪时被人称为“穷竭法”.用现代的符号表示就是:如果对于任意的正整数n ,等式 k b a n n =(常数)成立,且当n →∞时,A a n →,B b n →,则有k B A =.他用这个方法证明了德漠克利特已得出的求圆锥和棱锥体积的公式.阿基米德(Archimedes)对穷竭法也作出了重要贡献,他在《圆的度量》、《论圆柱和球》、《抛物线求积》、《论螺线》等著作中,应用了穷竭法,并引用了近似现代微积分中的“大和”与“小和”概念.并且他用这种方法计算出了球的体积和表面积、抛物线弓形的面积以及一些旋转体的体积等数学问题. 芝诺的拟难.芝诺(Zero of Elea)是古希腊爱利亚学派的代表人,他虽然不是一个科学家,更谈不上是一位数学家,但他提出的四个拟难——二分法、阿基里斯追龟、飞箭、运动场,客观上把微积分中的离散和连续的对立统一惹人注目地摆了出来,对微积分发展有一定的影响.其中“二分法”和“阿基里斯追龟”涉及无穷运算问题,比如,收敛的无穷级数,虽有无穷多项,但其和仍为有限的;“飞箭”则是一个典型的导数问题,运动的物体在每一时刻不仅有速度,而且还有加速度等;“运动场”明显地同运动的两个相反的方向即正负概念有关. 1.2 阿拉伯和欧洲中世纪——无限和运动的研究 在整个中世纪,希腊文化遗产在某种程度上是由逐渐缩小的、以君士坦丁堡为中心的拜占庭帝国保存下来的.但是,在黑暗时代的几个世纪中,有效地利用这些遗产,并且最后把它们输送到西欧去的,却是地中海地区的阿拉伯政权. 代数和三角学的确立.从7世纪开始,阿拉伯帝国逐渐崛起,到8世纪,它已成为一个地跨亚、欧、非三洲,阿拉伯帝国在所辖的较大城市建立图书馆和天文馆,政府组织人力进行天文观测,编制星表,集中学者翻译和注释希腊罗马古典名著.正当欧洲处在黑暗时期,“阿拉伯数学”却成了这时期西方科学的代表.希腊罗马的古典名著正是通过“阿拉伯人”的工作才得以保存下来,这是阿拉伯人对人类文明的重要贡献之一.不仅如此,阿拉伯也是东西科学文化交流的桥梁,今天通行的“印度—阿拉伯数码”以及我国古代“四大发明”等,都是通过阿拉伯从东方传到西方去的,这为欧洲以后科学文化的复苏创造了重要条件.有继承才有发展,阿拉伯人在保留古希腊罗马文化和传统文化的同时,也有一定的发展和创造.代数和三角学的确立就是他们对数学所做出的贡献. 对无限和运动的研究.这一时期,除了“印度—阿拉伯数码”的逐渐普及,代数和三角

相关文档
最新文档