(完整版)数学高职高考专题复习__不等式问题

(完整版)数学高职高考专题复习__不等式问题
(完整版)数学高职高考专题复习__不等式问题

高职高考不等式问题专题复习

一、不等式基础题

1、不等式x 2+1>2x 的解集是 ( )

A.{x|x ≠1,x ∈R}

B.{x|x >1,x ∈R}

C.{x|x ≠-1 ,x ∈R }

D. {x|x ≠0,x ∈R}

2、不等式|x+3|>5的解集为 ( )

A.{x|x >2|}

B.{x|x <-8或x >2}

C.{x|x >0}

D.{x|x >3}

3、二次不等式x 2 -3x+2<0的解集为 ( )

A.{x ︱x ≠0}

B.{x ︱1

C.{x ︱-1

D. {x ︱x>0}

4.已知a>b ,那么11>a b

的充要条件是 ( ) A.a 2+b 2≠0 B.a>0 C.b<0 D.ab<0

5、若a ≥b ,c ∈R ,则 ( )

A.a 2≥b 2

B.∣ac ∣≥∣bc ∣

C.ac 2≥bc 2

D. a - 3≥b - 3

6、下列命题中,正确的是 ( )

A.若a >b ,则ac 2>bc 2

B.若

22c b c a >,则a>b C.若a>b ,则b

a 11< D.若a>

b ,c>d ,则ac>bd 7、如果a>0,b>0,那么必有 ( ) A.a b a b ->22 B.a b a b -≥22 C.a b a b -<22 D.a b a b -≤22

8、对任意a ,b ,c∈R +,都有 ( ) A.3>++c a b c a b B.3<++c a b c a b C.3≥++c a b c a b D.3≤++c a b c a b

9、对任意x∈R,都有 ( )

A.(x-3)2>(x-2)(x-4)

B.x 2

>2(X+1) C.2432->--x x x )( D.11122>++x x 10、已知0

A.2x>x 2>x

B.2x>x>x 2

C. x 2>2x>x

D.x > x 2 >2x

11、若不等式2x 2-bx+a<0的解集为{x ︱1

A.5

B.6

C.10

D.12

12、不等式12

3>+-x x 的解集是 ( ) A.{x∣x<-2} B.{x∣x<-2或x>3} C.{x∣x>-2} D.{x∣-2

13、不等式lgx+lg(2x-1)<1的解集是 ( ) A.}252{<<-x x B.}250{<

1{>x x 14、不等式︱x+2︱+︱x-1︱<4的解集是 ( )

A.}{12<<-x x

B.}23{<

x x C. }2325{<<-x x D. }25{->x x 15、已知a 是实数,不等式2x 2-12x+a≤0的解集是区间[1,5],那么不等式a x 2-12x+2≤0

的解集是 ( ) A.]1,51

[ B.[-5,-1] C.[-5,5] D.[-1,1]

16、不等式(1+x )(1-︱x ︱)>0的解集是 ( )

A.{x∣-1

B.{x∣x<1}

C.{x∣x <-1或x<1}

D.{x∣x<1且x≠-1}

17、若不等式0)6(2<-+x m x 的解集为{}23<<-x x ,则m=( )

A .2

B .-2

C .-1

D .1

18、函数1

22+=x x y 的值域为区间( ) A .[-2,2] B .(-2,2) C .[-1,1] D .(-1,1)

19、如果a>b ,ab=1,则b

a b a -+2

2的取值范围为区间( ) A .),22[∞+ B .),6

17[∞+ C .),3(∞+ D .),2(∞+

17、不等式︱3x -5︱<8的解集是____ ____.

18、不等式|5x+3|>2的解集是_____ ___.

19、不等式|3-2x|-7≤0的解集是____ _______.

20 、不等式|6x -

21|≤2

3的解集是___ _______. 21、不等式x -4-3x )21(-4>0的解集是 . 22、不等式)4+3(log

二、不等式的简单应用

23、已知关于x 的不等式x 2-ax+a >0的解集为实数集R ,则a 的取值范围是 ( )

A.(0,4)

B.[2,+∞)

C.[0,2)

D.(-∞,0)∪(4,+∞) (98年成人) 24、函数)0>(+1=2

x x x y 的值域是区间 . 25、已知方程(k+1)x=3k -2的解大于1,那么常数k 的取值范围是数集{k ∣ }.

三、不等式解答题

26、解下列不等式:

(1)04)153)(6(>++-x

x x (2)22213>-x

(3)41

)21(5

522>++x x

(4)1)3lg()2lg(>--+x x

(5)∣5x -x 2∣>6

(6)342≥+x x

(7)4x -6x -2×9x <0

(8))43(log )2(log 4121+>+x x

(9)12

3

-

(10)222<--x x

(11))24(log )34(log 222->-+x x x (12)24

45≤+-x x

27、k 取什么值时,关于x 的方程(k -2)x 2-2x+1=0有:

(1)两个不相等的实数根; (2)两个相等的实数根; (3)没有实数根.

28、设实数a 使得方程x 2+(a -1)x+1=0有两个实根x 1,x 2.

(1) 求a 的取值范围;

(2) 当a 取何值时,

222111x x +取得最小值,并求出这个最小值.

附:参考答案(四)

1-16 ABBDC BBCAB CACCAD 17.}3131{<<-x x 18.}5

11{->-

161≤≤-x } 21.{x ︱x<-2} 22.{x ︱0-6} (2) {x ︱x>61} (3) {x ︱123-<<-x } (4) {x ︱3

32} (5) {x ︱x<-1或26}

(6) {x ︱x ≥-1} (7) {x ︱x>2log 3

2} (8) {x ︱-1

(10) {x ︱-23

28.(1) a ≤-1或a ≥3 (2) a= -1或3,最小值为2.

高中数学必修五基本不等式题型(精编)

高中数学必修五基本不等式题型(精编) 变 2.下列结论正确的是 ( ) A .若a b >,则ac bc > B .若a b >,则22a b > C .若a c b c +<+,0c <,则a b > D >a b > 3. 若m =(2a -1)(a +2),n =(a +2)(a -3),则m ,n 的大小关系正确的是 例2、解下列不等式 (1)2230x x --≥ (2)2280x x -++> (3) 405x x ->- (4)405 x x -≥- (5)112x ≥ (6)已知R a ∈,解关于x 的不等式()()01<--x x a .

变、若不等式02<--b ax x 的解集为{} 32<

例5、 1. 积为定值 (1)函数1y x x =+ (x >0)的最小值是 . (2)设2a >,12 p a a =+-的最大值是 . (3)函数1y x x =+ (x <0)的最小值是 . (4) 变、 (1 )2y = 的最小值是 . (2) . 2. 和为定值 (1) ,y=x(4-x) 的最大值是 . (2), 的最大值是 . 例6、“1”的妙用 1. 2.已知正数,x y 满足21x y +=,则 y x 11+的最小值为______

(完整版)高中数学不等式归纳讲解

第三章不等式 定义:用不等号将两个解析式连结起来所成的式子。 3-1 不等式的最基本性质 ①对称性:如果x>y,那么y<x;如果y<x,那么x>y; ②传递性:如果x>y,y>z;那么x>z; ③加法性质;如果x>y,而z为任意实数,那么x+z>y +z; ④乘法性质:如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(符号法则) 3-2 不等式的同解原理 ①不等式F(x)<G(x)与不等式G(x)>F(x)同解。

②如果不等式F (x ) < G (x )的定义域被解析式H ( x )的定义域所包含,那么不等式 F (x )<G (x )与不等式F (x )+H (x )<G (x )+H (x )同解。 ③如果不等式F (x )<G (x ) 的定义域被解析式H (x )的定义域所包含,并且H (x )>0,那么不等式F(x)<G (x )与不等式H (x )F (x )<H ( x )G (x ) 同解;如果H (x )<0,那么不等式F (x )<G (x )与不等式H (x)F (x )>H (x )G (x )同解。 ④不等式F (x )G (x )>0与不等式 0)x (G 0)x (F >>或0)x (G 0)x (F <<同解 不等式解集表示方式 F(x)>0的解集为x 大于大的或x 小于小的 F(x)<0的解集为x 大于小的或x 小于大的 3-3 重要不等式

3-3-1 均值不等式 1、调和平均数: )a 1...a 1a 1(n H n 21n +++= 2、几何平均数: n 1 n 21n )a ...a a (G = 3、算术平均数: n )a a a (A n 21n +++= 4、平方平均数: n )a ...a a (Q 2n 2221n +++= 这四种平均数满足Hn ≤Gn ≤An ≤Qn a1、a2、… 、an ∈R +,当且仅当a1=a2= … =an 时取“=”号 3-3-1-1均值不等式的变形 (1)对正实数a,b ,有2ab b a 22≥+ (当且仅当a=b 时 取“=”号)

不等式选讲-2019年高考理科数学解读考纲

16 不等式选讲 选考内容 (二)不等式选讲 1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1). (2). (3)会利用绝对值的几何意义求解以下类型的不等式: . 2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明. (1)柯西不等式的向量形式: (2). (3). (此不等式通常称为平面三角不等式.) 3.会用参数配方法讨论柯西不等式的一般情形: 4.会用向量递归方法讨论排序不等式. 5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题. 6.会用数学归纳法证明伯努利不等式: 了解当n为大于1的实数时伯努利不等式也成立. 7.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值. 8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.

1.从考查题型来看,涉及本知识点的题目主要以选考的方式,在解答题中出现,考查解绝对值不等式、证明不等式等. 2.从考查内容来看,主要考查绝对值不等式的解法、不等式的证明,求最值问题等. 3.从考查热点来看,重点在于考查学生解不等式及利用不等式求解最值问题等,绝对值不等式与函数问题的综合是高考的趋势,值得关注. 考向一 绝对值不等式的求解 样题1 (2018新课标全国Ⅱ理科)设函数 . (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围. 样题2 (2018新课标全国Ⅲ理科)设函数 . (1)画出()y f x =的图象;

(2)当[)0x +∞∈,,,求a b +的最小值. 【解析】(1)()y f x =的图象如图所示.

高中数学不等式训练习题

不等式训练1 A 一、选择题(六个小题,每题5分,共30分) 1.若02522 >-+-x x ,则221442-++-x x x 等于( ) A .54-x B .3- C .3 D .x 45- 2.函数y =log 2 1(x +11+x +1) (x > 1)的最大值是 ( ) A .-2 B .2 C .-3 D .3 3.不等式x x --213≥1的解集是 ( ) A .{x| 43≤x ≤2} B .{x|4 3≤x <2} C .{x|x >2或x ≤43} D .{x|x <2} 4.设a >1>b >-1,则下列不等式中恒成立的是 ( ) A .b a 11< B . b a 11> C .a >b 2 D .a 2>2b 5.如果实数x,y 满足x 2+y 2=1,则(1-xy) (1+xy)有 ( ) A .最小值 21和最大值1 B .最大值1和最小值4 3 C .最小值43而无最大值 D .最大值1而无最小值 6.二次方程x 2+(a 2+1)x +a -2=0,有一个根比1大,另一个根比-1小, 则a 的取值范围是 ( ) A .-3<a <1 B .-2<a <0 C .-1<a <0 D .0<a <2 二、填空题(五个小题,每题6分,共30分) 1.不等式组? ??->-≥32x x 的负整数解是____________________。 2.一个两位数的个位数字比十位数字大2,若这个两位数小于30, 则这个两位数为____________________。 3.不等式0212<-+x x 的解集是__________________。 4.当=x ___________时,函数)2(22x x y -=有最_______值,其值是_________。 5.若f(n)=)(21)(,1)(,122N n n n n n n g n n ∈= --=-+?,用不等号 连结起来为____________.

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

高中数学解不等式方法+练习题

不等式 要求层次 重难点 一元二次不等式 C 解一元二次不等式 (一) 知识容 1.含有一个未知数,且未知数的最高次数为2的整式不等式,叫做一元二次不等式. 一元二次不等式的解集,一元二次方程的根及二次函数图象之间的关系如下表(以0a >为例): 有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决.其方法大致有:①用一元二次方程根的判别式,②参数大于最大值或小于最小值,③变更主元利用函数与方程的思想求解. 判别式 24b ac ?=- 0?> 0?= 0?< 二次函数 2y ax bx c =++ (0)a >的图象 一元二次方程 2 0ax bx c ++= (0)a ≠的根 有两相异实根 12,x x = 242b b ac a -±- 12()x x < 有两相等实根 122b x x a ==- 没有实根 一元二次不等式的解集 2 0ax bx c ++> (0)a > {1 x x x < 或}2x x > {R x x ∈,且 2b x a ?≠- ?? 实数集R 20ax bx c ++< (0)a > {}1 2x x x x << ? ? 例题精讲 高考要求 板块一:解一元二次不等式 解不等式

(二)主要方法 1.解一元二次不等式通常先将不等式化为20ax bx c ++>或20 (0)ax bx c a ++<>的形式,然后求出对应方程的根(若有根的话),再写出不等式的解:大于0时两根之外,小于0时两根之间; 2.分式不等式主要是转化为等价的一元一次、一元二次或者高次不等式来处理; 3.高次不等式主要利用“序轴标根法”解. (三)典例分析: 1.二次不等式与分式不等式求解 【例1】 不等式 1 12 x x ->+的解集是 . 【变式】 不等式2230x x --+≤的解集为( ) A .{|31}x x x -或≥≤ B .{|13}x x -≤≤ C .{|31}x x -≤≤ D .{|31}x x x -或≤≥ 【变式】 不等式 25 2(1)x x +-≥的解集是( ) A .132? ?-??? ? , B .132??-????, C .(]11132??????U ,, D .(]11132?? -???? U ,, 2.含绝对值的不等式问题 【例2】 已知n *∈N ,则不等式 220.011 n n -<+的解集为( ) A .{}|199n n n *∈N ≥, B .{}|200n n n *∈N ≥, C .{}|201n n n *∈N ≥, D .{}|202n n n *∈N ≥, 【例3】 不等式 1 11 x x +<-的解集为( ) A .{}{}|01|1x x x x <<>U B .{}|01x x << C .{}|10x x -<< D .{}|0x x < 【变式】 关于x 的不等式2121x x a a -+-++≤的解集为空集,则实数a 的取值围是 _. 【例4】 若不等式1 21x a x + -+≥对一切非零实数x 均成立,则实数a 的最大值是_________. 【例5】 若不等式34x b -<的解集中的整数有且仅有123,,,则b 的取值围为 . 3.含参数不等式问题 【例6】 若关于x 的不等式22840x x a --->在14x <<有解,则实数a 的取值围是( ) A .4a <- B .4a >- C .12a >- D .12a <- 【变式】 ⑴已知0a <,则不等式22230x ax a -->的解集为 . ⑵若不等式897x +<和不等式220ax bx +->的解集相同,则a b -=______.

高考数学《不等式选讲》专项复习

高考数学《不等式选讲》专项复习 一、考纲解读 1.了解绝对值的几何意义,会利用绝对值的定义解不等式,利用绝对值不等式证明不等式和求最值. 2.了解柯西不等式及其几何意义,会用它来证明不等式和求最位. 3.了解基本不等式,会用它来证明不等式和求最值. 4.会用综合法、分析法、反证法及数学归纳法证明不等式. 二、命题趋势探究 本节内容为新课标新增内容,是高考选考内容.题型以含绝对值的不等式的解法和证明为重要考点,不等式的应用为次重要考点,不等式证明放在一般位置,难度为中档. 三、知识点精讲 (一).不等式的性质 1.同向合成 (1), >>?>; a b b c a c (2),c >>?+>+; a b d a c b d (3)0,c0 >>>>?>. a b d ac bd (合成后为必要条件) 2.同解变形 >?+>+; (1)a b a c b c (2)0,0, >?>>?<<; a b c ac bc c ac bc

(3)11 000a b b a >>? >>?>>. (变形后为充要条件) 3.作差比较法 0,0a b a b a b a b >?>->-<<;0,||,a x a x a x a >>?>><-或 (2)22||||a b a b >?> (3)||||x a x b c +++<零点分段讨论 (三).基本不等式 (1)222a b ab +>(当且仅当等号成立条件为a b =) (2)0,0, 2 a b a b +>>≥a b =) ; 0,0,0, 3 a b c a b c ++>>>≥a b c ==时等号成立) (3)柯西不等式 22222()()()a b c d ac bd ++≥+(当且仅当ad bc =时取等号) ①几何意义:||ad bc ??+≤a b a b ||||||≤②推广:22222 2 212 121122()()()n n n n a a a b b b a b a b a b +++++ +≥++ +.当且仅当向量 12(,,,)n a a a a =与向量12(,,,)n b b b b =共线时等号成立.

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

高考数学复习+不等式选讲大题-(文)

专题十五不等式选讲大题 (一)命题特点和预测: 分析近8年全国新课标1不等式选讲大题,发现8年8考,主要考查绝对值不等式的解法(出现频率太高了,应当高度重视)、不等式恒成立或有解求参数的范围,考查利用不等式的性质、基本不等式、绝对值不等式性质求最值或证明不等式,难度为基础题.2019年不等式选讲大题仍将主要考查绝对值不等式的解法(出现频率太高了,应当高度重视)、不等式恒成立或有解求参数的范围,考查利用不等式的性质、基本不等式、绝对值不等式性质求最值或证明不等式,难度为基础题. (二)历年试题比较: . 时,求不等式 时不等式成立,求的取值范围. 已知函数, 的解集; 的解集包含

已知函数 ?并说明文由 ( )≤ 【解析与点睛】 (2018年)【解析】(1)当时,,即 故不等式的解集为. (2)当时成立等价于当时成立.若,则当时;

若,的解集为,所以,故. 综上,的取值范围为. (2017年)【解析】 x>时,①式化为,从而. 当1 【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题. (2016年)【解析】(I) y=的图像如图所示. f ) (x

(II )由)(x f 的表达式及图像,当1)(=x f 时,可得1=x 或3=x ; 当1)(-=x f 时,可得3 1 = x 或5=x , 故1)(>x f 的解集为{} 31<x f 的解集为 . 【名师点睛】不等式选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写成集合的形式. 以△ABC 的面积为22 (1)3 a +. 由题设得 22 (1)3 a +>6,解得2a >.

高中数学不等式练习题

1、设恒成立的c的取值范围是 A.B.C.D. 2、设,且(其中),则M的取值范围是A.B.C.D. 3、若实数、满足,则的取值范围是 A.B.C.D. 4、已知,,,则的最小值是() (A)(B)4(C)(D) 5、若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是 (A)(B)(C)(D) 6、已知,若在上恒成立,则实数的取值范围是()

A.B.C.D. 7、已知正实数满足,则的最小值为。 8、如图,目标函数可行域为四边形(含边界),若是该目标函数的最优解,则的取值范围是() (A)(B)(C)(D) 的最大值与最小值之和为 9、函数,当时,恒成立,则 D. 10、已知正数满足,则的最小值为 A.3B.C.4D. 11、二次函数轴两个交点的横坐标分别为。(1)证明:;(2)证明:; (3)若满足不等式的取值范围。 12、设满足约束条件,若目标函数的最大值为10,则的最小值为.

13、已知对任意实数x,二次函数f(x)=ax2+bx+c恒非负,且a

高中数学基本不等式的解法十例

高中数学基本不等式问题求解十例 一、基本不等式的基础形式 1.222a b ab +≥,其中,a b R ∈,当且仅当a b =时等号成立。 2 .a b +≥[),0,a b ∈+∞,当且仅当a b =时等号成立。 3 .常考不等式:2 222 1122a b a b ab ++??≥≥≥ ???+ ,其中(),0,a b ∈+∞,当且仅当a b =时等号成立。 二、常见问题及其处理办法 问题1:基本不等式与最值 解题思路: (1)积定和最小:若ab 是定值,那么当且仅当a b =时,( )min a b +=。其中 [),0,a b ∈+∞ (2)和定积最大:若a b +是定值,那么当且仅当a b =时,()2 max 2a b ab +?? = ??? ,其中,a b R ∈。 例题1:若实数,a b 满足221a b +=,则a b +的最大值是 . 解析:很明显,和为定,根据和定积最大法则可得 : 1a b ==-时取等号。

变式:函数1(0,1)x y a a a -=>≠的图象恒过定点A ,若点在直线1mx ny +=上,则mn 的最大值为______。 解析:由题意可得函数图像恒过定点()1,1A ,将点()1,1A 代入直线方程1mx ny +=中 可得1m n +=,明显,和为定,根据和定积最大法则可得:且仅当12 m n ==时取等号。 例题2:已知函数()2 122 x x f x +=+ ,则()f x 取最小值时对应的x 的值为__________. 解析: 且仅当2 1212 x x x +=?=-时取等号。 变式:已知2x >-,则12 x x ++的最小值为 。 解析:由题意可得()120,212 x x x +>+?=+,明显,积为定,根据和定积最大法则 1 22112 x x x x +=?+= ?=-+时取 例题3:若对任意x >0,x x 2+3x +1 ≤a 恒成立,则a 的取值范围是________. 解析:分式形式的不等式,可以考虑采用常数 分离的方法。 解法1:

高中数学解不等式解答

第二讲 解不等式(一) 一、知识梳理 (一)考点目标定位 高考中解不等式主要涉及到一元一次不等式(组)、一元二次不等式(组)、分式不等式(组)、绝对值不等式(组)、指数不等式(组)、对数不等式(组)、三角不等式(组)以及含参数的不等式等。其中尤以一元二次不等式、分式不等式、对数不等式、三角不等式为热门。 解不等式在高考中的题型主要是在综合题中作为解题的一个步骤有所涉及,在填空题中和集合结合为简单题型。 (二)复习方略指南 熟悉各种不等式的解题方法,特别是要注意分式不等式、对数不等式和三角不等式的定义域情况以及一元二次不等式的判别式情况。 二、知识回顾 1、不等式|2x 2-1|≤1的解集为 {x |-1≤x ≤1} 2、已知全集U R =,集合{}240M x x =-≤,则U M e= {} ()()+∞-∞--<>,22,22 或或x x x 3、不等式09 311421 2≥-x x 的解集为______(,3][2,)-∞-+∞_________ 4、不等式3 2-+x x x )(<0的解集为 ()(),20,3-∞- 5、不等式()210ax ab x b +++>的解集为{}12x x <<,则a b +=___- 23或-3____. 解析:∵ax 2+(ab +1)x +b >0的解集为{x |1<x <2}, ∴???? ?????==+-<.2310a b a ab a ,,解得?????-=-=121b a ,或???-=-=.21b a , ∴a +b =-23或-3. 6、不等式||52||1 x x ->-+的解集是 (1)(1-???,, . 三、典型例题 例1、解不等式:()R a x a ax ∈+<+2 1 解:原不等式化为()112-<-a x a 当1,1+<>a x a 有时; 当11+>-x x 解一:原不等式可化为??????<<-?∈<<-?∈-<-222223022x R x x R x x

2018年高考数学考试大纲解读专题16不等式选讲理版含答案

专题16 不等式选讲 选考内容 (二)不等式选讲 1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1) a b a b . (2)a b a c c b . (3)会利用绝对值的几何意义求解以下类型的不等式: ; ;ax b c ax b c x a x b c . 2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明 . (1)柯西不等式的向量形式: ||||||.(2) 22222()(+)()a b c d ac bd . (3)222222121223231313()()()()()()x x y y x x y y x x y y . (此不等式通常称为平面三角不等式.) 3.会用参数配方法讨论柯西不等式的一般情形: 4.会用向量递归方法讨论排序不等式. 5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明 一些简单问题. 6.会用数学归纳法证明伯努利不等式: 了解当n 为大于1的实数时伯努利不等式也成立 . 7.会用上述不等式证明一些简单问题 .能够利用平均值不等式、 柯西不等式求一些特定函数的极值. 8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.

1.从考查题型来看,涉及本知识点的题目主要以选考的方式,在解答题中出现,考查解绝对值不等式、证明不等式等. 2.从考查内容来看,主要考查绝对值不等式的解法、不等式的证明,求最值问题等 . 3.从考查热点来看,重点在于考查学生解不等式及利用不等式求解最值问题等,绝对值不等式与函数问题的综合是高考的趋势,值得关注. 考向一 绝对值不等式的求解样题1 (2017新课标全国Ⅰ理科)已知函数 2–4()x ax f x ,11()x x g x ||||. (1)当a =1时,求不等式 ()()f x g x 的解集;(2)若不等式()()f x g x 的解集包含[–1,1],求a 的取值范围. 所以a 的取值范围为[1,1]. 【名师点睛】零点分段法是解答绝对值不等式问题常用的方法, 也可以将绝对值函数转化为分段函数,借助图象解题.

(完整)高中数学不等式习题及详细答案

第三章 不等式 一、选择题 1.已知x ≥2 5 ,则f (x )=4-25+4-2x x x 有( ). A .最大值45 B .最小值4 5 C .最大值1 D .最小值1 2.若x >0,y >0,则221+)(y x +221 +)(x y 的最小值是( ). A .3 B . 2 7 C .4 D . 2 9 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b + ab 1≥22 B .(a +b )( a 1+b 1 )≥4 C 22 ≥a +b D . b a ab +2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式x x f x f ) ()(--<0 的解集为( ). A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞) D .(-1,0)∪(0,1) 5.当0<x <2 π时,函数f (x )=x x x 2sin sin 8+2cos +12的最小值为( ). A .2 B .32 C .4 D .34 6.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18 B .6 C .23 D .243 7.若不等式组?? ? ??4≤ 34 ≥ 30 ≥ y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ). A . 7 3 B . 37 C . 43 D . 34 8.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为

高考数学之基本不等式

基本不等式 基础梳理 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R ); (4)a 2+b 22≥????a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a + b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 22 ab ≤????a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥????a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们.

三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 双基自测 1.(人教A 版教材习题改编)函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 解析 ∵x >0,∴y =x +1x ≥2, 当且仅当x =1时取等号. 答案 C 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1x 2+1≥1,其中正确的个数是( ). A .0 B .1 C .2 D .3 解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1 -1≥2-1=1. 答案 B 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.12 B .1 C .2 D .4 解析 ∵a >0,b >0,a +2b =2, ∴a +2b =2≥22ab ,即ab ≤12 . 答案 A 4.(2011·重庆)若函数f (x )=x +1x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2 +2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2 (x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 答案 C 5.已知t >0,则函数y =t 2-4t +1t 的最小值为________. 解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,当且仅当t =1时取等号. 答案 -2

(完整)高中数学不等式练习题

高中数学不等式练习题 一.选择题(共16小题) 1.若a>b>0,且ab=1,则下列不等式成立的是() A.a+<<log2(a+b))B.<log2(a+b)<a+ C.a+<log2(a+b)<D.log2(a+b))<a+< 2.设x、y、z为正数,且2x=3y=5z,则() A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 3.若x,y满足,则x+2y的最大值为() A.1 B.3 C.5 D.9 4.设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.9 5.已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.6 6.设x,y满足约束条件,则z=x+y的最大值为() A.0 B.1 C.2 D.3 7.设x,y满足约束条件则z=x﹣y的取值范围是()A.[﹣3,0]B.[﹣3,2]C.[0,2]D.[0,3] 8.已知变量x,y满足约束条件,则z=x﹣y的最小值为()A.﹣3 B.0 C.D.3

9.若变量x,y满足约束条件,则目标函数z=﹣2x+y的最大值为()A.1 B.﹣1 C.﹣ D.﹣3 10.若a,b∈R,且ab>0,则+的最小值是() A.1 B.C.2 D.2 11.已知0<c<1,a>b>1,下列不等式成立的是() A.c a>c b B.a c<b c C.D.log a c>log b c 12.已知x>0,y>0,lg2x+lg8y=lg2,则的最小值是() A.2 B.2 C.4 D.2 13.设a>0,b>2,且a+b=3,则的最小值是() A.6 B.C.D. 14.已知x,y∈R,x2+y2+xy=315,则x2+y2﹣xy的最小值是() A.35 B.105 C.140 D.210 15.设正实数x,y满足x>,y>1,不等式+≥m恒成立,则m的最大值为() A.2 B.4 C.8 D.16 16.已知两正数x,y 满足x+y=1,则z=的最小值为()A.B.C.D. 二.解答题(共10小题) 17.已知不等式|2x﹣3|<x与不等式x2﹣mx+n<0的解集相同. (Ⅰ)求m﹣n; (Ⅱ)若a、b、c∈(0,1),且ab+bc+ac=m﹣n,求a+b+c的最小值. 18.已知不等式x2﹣2x﹣3<0的解集为A,不等式x2+x﹣6<0的解集为B.(1)求A∩B;

高三数学第二轮复习 不等式选讲

第2讲 不等式选讲 [考情考向分析] 本部分主要考查绝对值不等式的解法.求含绝对值的函数的值域及求含参数的绝对值不等式中参数的取值范围、不等式的证明等,结合集合的运算、函数的图象和性质、恒成立问题及基本不等式、绝对值不等式的应用成为命题的热点,主要考查基本运算能力与推理论证能力及数形结合思想、分类讨论思想. 热点一 含绝对值不等式的解法 含有绝对值的不等式的解法 (1)|f (x )|>a (a >0)?f (x )>a 或f (x )<-a . (2)|f (x )|0)?-a 1. (1)当a =2时,求不等式f (x )≥4-|x -4|的解集; (2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. 解 (1)当a =2时,f (x )+|x -4|=|x -2|+|x -4|=????? -2x +6,x ≤2,2,2

高中数学复习不等式知识点及主要题型_讲义含解答

不等式的基本知识 一、解不等式 1、一元二次不等式的解法 一元二次不等式()0002 2 ≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002 ≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42 -=?,则 不等式的解的各种情况如下表: 0>? 0=? 0a )的图象 c bx ax y ++=2 c bx ax y ++=2 c bx ax y ++=2 一元二次方程 ()的根 00 2 >=++a c bx ax 有两相异实根 )(,2121x x x x < 有两相等实根 a b x x 221- == 无实根 的解集)0(02>>++a c bx ax {}2 1 x x x x x ><或 ???? ??-≠a b x x 2 R 的解集 )0(02><++a c bx ax {}21 x x x x << ? ? 2、标根法:其步骤是: 1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正; 2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回; 3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。()()()如:x x x +--<11202 3

3、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。 ()()0() () 0()()0;0()0() ()f x g x f x f x f x g x g x g x g x ≥?>?>≥??≠? 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < 二、线性规划 1、用二元一次不等式(组)表示平面区域 二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2、二元一次不等式表示哪个平面区域的判断方法 由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点) 3、线性规划的有关概念: ①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件. ②线性目标函数: 关于x 、y 的一次式z =a x +b y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数. ③线性规划问题: 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解: 满足线性约束条件的解(x ,y )叫可行解. 由所有可行解组成的集合叫做可行域. 使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 4、求线性目标函数在线性约束条件下的最优解的步骤: 1)寻找线性约束条件,列出线性目标函数; 2)由二元一次不等式表示的平面区域做出可行域; 3)依据线性目标函数作参照直线a x +b y =0,在可行域内平移参照直线求目标函数的最优解

相关文档
最新文档