初中数学竞赛辅导材料(专题)240页 强烈推荐

初中数学竞赛辅导材料(专题)240页 强烈推荐
初中数学竞赛辅导材料(专题)240页 强烈推荐

竞赛讲座(01)-奇数和偶数

整数中,能被2整除的数是偶数,反之是奇数,偶数可用2k表示,奇数可用2k+1

表示,这里k是整数.

关于奇数和偶数,有下面的性质:

(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;

(2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数;

(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数;

(4)若a、b为整数,则a+b与a-b有相同的奇数偶;

(5)n个奇数的乘积是奇数,n个偶数的乘积是2n的倍数;顺式中有一个是偶数,则乘积是偶数.

以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜.

1.代数式中的奇偶问题

例1(第2届“华罗庚金杯”决赛题)下列每个算式中,最少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数?

□+□=□,□-□=□,

□×□=□□÷□=□.

解因为加法和减法算式中至少各有一个偶数,乘法和除法算式中至少各有二个偶数,故这12个整数中至少有六个偶数.

例2 (第1届“祖冲之杯”数学邀请赛)已知n是偶数,m是奇数,方程组

是整数,那么

(A)p、q都是偶数. (B)p、q都是奇数.

(C)p是偶数,q是奇数(D)p是奇数,q是偶数

分析由于1988y是偶数,由第一方程知p=x=n+1988y,所以p是偶数,将其代入第二方程中,于是11x也为偶数,从而27y=m-11x为奇数,所以是y=q奇数,应选(C)

例3 在1,2,3…,1992前面任意添上一个正号和负号,它们的代数和是奇数还是偶数.

分析因为两个整数之和与这两个整数之差的奇偶性相同,所以在题设数字前面都添

上正号和负号不改变其奇偶性,而1+2+3+…+1992==996×1993为偶数于是题设的代数和应为偶数.

2.与整除有关的问题

例4(首届“华罗庚金杯”决赛题)70个数排成一行,除了两头的两个数以外,每个数的3倍都恰好等于它两边两个数的和,这一行最左边的几个数是这样的:0,1,3,8,21,….问最右边的一个数被6除余几?

解设70个数依次为a1,a2,a3据题意有

a1=0, 偶

a2=1 奇

a3=3a2-a1, 奇

a4=3a3-a2, 偶

a5=3a4-a3, 奇

a6=3a5-a4, 奇

………………

由此可知:

当n被3除余1时,a n是偶数;

当n被3除余0时,或余2时,a n是奇数,显然a70是3k+1型偶数,所以k必须是奇数,令k=2n+1,则

a70=3k+1=3(2n+1)+1=6n+4.

解设十位数,五个奇数位数字之和为a,五个偶数位之和为b(10≤a≤35,10≤b≤35),则a+b=45,又十位数能被11整除,则a-b应为0,11,22(为什么?).由于a+b与a-b有相同的奇偶性,因此a-b=11即a=28,b=17.

要排最大的十位数,妨先排出前四位数9876,由于偶数位五个数字之和是17,现在8+6=14,偶数位其它三个数字之和只能是17-14=3,这三个数字只能是2,1,0.

故所求的十位数是9876524130.

例6(1990年日本高考数学试题)设a、b是自然数,且有关系式

123456789=(11111+a)(11111-b),①

证明a-b是4的倍数.

证明由①式可知

11111(a-b)=ab+4×617 ②

∵a>0,b>0,∴a-b>0

首先,易知a-b是偶数,否则11111(a-b)是奇数,从而知ab是奇数,进而知a、b都是奇数,可知(11111+a)及(11111-b)都为偶数,这与式①矛盾

其次,从a-b是偶数,根据②可知ab是偶数,进而易知a、b皆为偶数,从而ab+4×617是4的倍数,由②知a-b是4的倍数.

3.图表中奇与偶

例7(第10届全俄中学生数学竞赛试题)在3×3的正方格(a)和(b)中,每格填“+”或“-”的符号,然后每次将表中任一行或一列的各格全部变化试问重复若干次这样的“变号”程序后,能否从一张表变化为另一张表.

解按题设程序,这是不可能做到的,考察下面填法:

在黑板所示的2×2的正方形表格中,按题设程序“变号”,“+”号或者不变,或者变成两个.

表(a)中小正方形有四个“+”号,实施变号步骤后,“+”的个数仍是偶数;但表(b)中小正方形“+”号的个数仍是奇数,故它不能从一个变化到另一个.

显然,小正方形互变无法实现,3×3的大正方形的互变,更无法实现.

例8(第36届美国中学生数学竞赛试题)将奇正数1,3,5,7…排成五列,按右表的格式排下去,1985所在的那列,从左数起是第几列?(此处无表)

解由表格可知,每行有四个正奇数,而1985=4×496+1,因此1985是第497行的第一个数,又奇数行的第一个数位于第二列,偶数行的第一个数位于第四列,所以从左数起,1985在第二列.

例9 如图3-1,设线段AB的两个端点中,一个是红点,一个是绿点,在线段中插入n 个分点,把AB分成n+1个不重叠的小线段,如果这些小线段的两个端点一个为红点而另一个为绿点的话,则称它为标准线段.

证明不论分点如何选取,标准线段的条路总是奇数.

分析n个分点的位置无关紧要,感兴趣的只是红点还是绿点,现用A、B分别表示红、绿点;

不难看出:分点每改变一次字母就得到一条标准线段,并且从A点开始,每连续改变两次又回到A,现在最后一个字母是B,故共改变了奇数次,所以标准线段的条数必

为奇数.

4.有趣的应用题

例10(第2届“从小爱数学”赛题)图3-2是某一个浅湖泊的平面图,图中所有曲线都是湖岸.

(1)如果P点在岸上,那么A点在岸上还是在水中?

(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.如果有一点B,他脱鞋垢次数与穿鞋的次数和是个奇数,那么B点是在岸上还是在水中?说明理由.

解(1)连结AP,显然与曲线的交点数是个奇数,因而A点必在水中.

(2)从水中经过一次陆地到水中,脱鞋与穿鞋的次数和为2,由于A点在水中,氢不管怎样走,走在水中时,脱鞋、穿鞋的次数的和总是偶数,可见B点必在岸上.

例11 书店有单价为10分,15分,25分,40分的四种贺年片,小华花了几张一元钱,正好买了30张,其中某两种各5张,另两种各10张,问小华买贺年片花去多少钱?

分析设买的贺年片分别为a、b、c、d(张),用去k张1元的人民币,依题意有

10a+15b+25c+40d=100k,(k为正整数)

即2a+3b+5c+8d=20k

显然b、c有相同的奇偶性.

若同为偶数,b-c=10 和a=b=5,不是整数;

若同为奇数,b=c=5和a=d=10,k=7.

例12 一个矩形展览厅被纵横垂直相交的墙壁隔成若干行、若干列的小矩形展览室,每相邻两室间都有若干方形门或圆形门相通,仅在进出展览厅的出入口处有若干门与厅外相通,试证明:任何一个参观者选择任何路线任意参观若干个展览室(可重复)之后回到厅外,他经过的方形门的次数与圆形门的次数(重复经过的重复计算)之差总是偶数.

证明给出入口处展览室记“+”号,凡与“+”相邻的展览室记“-”号,凡与“-”号相邻的展览室都记“+”号,如此则相邻两室的“+”、“-”号都不同.

一参观者从出入口处的“+”号室进入厅内,走过若干个展览室又回到入口处的“+”号室,他的路线是+-+-…+-+-,即从“+”号室起到“+”号室止,中间“-”、“+”号室为n+1(重复经过的重复计算),即共走了2n+1室,于是参观者从厅外进去参观后又回到厅外共走过了2n+2个门(包括进出出入口门各1次).设其经过的方形门的次数是r次,经过圆形门的次数是s,则s+r=2n+2为偶数,故r-s也为偶数,所以命题结论成立.

例13 有一无穷小数A=0.a1a2a3…a n a n+1a n+2…其中a i(i=1,2)是数字,并且a1是奇数,a2是偶数,a3等于a1+a2的个位数…,a n+2是a n+a n+1(n=1,2…,)的个位数,证明A是有理数.

证明为证明A是有理数,只要证明A是循环小数即可,由题意知无穷小数A的每一个数字是由这个数字的前面的两位数字决定的,若某两个数字ab重复出现了,即0.…ab…ab…此小数就开始循环.

而无穷小数A的各位数字有如下的奇偶性规律:

A=0.奇偶奇奇偶奇奇偶奇……

又a是奇数可取1,3,5,7,9;

b是偶数可取0,2,4,6,8.

所以非负有序实数对一共只有25个是不相同的,在构成A的前25个奇偶数组中,至少出现两组是完全相同的,这就证得A是一循环小数,即A是有理数.

练习一

1.填空题

(1)有四个互不相等的自然数,最大数与最小数的差等于4,最大数与最小数的积是一个奇数,而这四个数的和是最小的两位奇数,那么这四个数的乘积是______.

(2)有五个连续偶数,已知第三个数比第一个数与第五个数和的多18,这五个偶数之和是____.

(3)能否把1993部电话中的每一部与其它5部电话相连结?

答____.

2.选择题

(1)设a、b都是整数,下列命题正确的个数是()

①若a+5b是偶数,则a-3b是偶数;

②若a+5b是偶数,则a-3b是奇数;

③若a+5b是奇数,则a-3b是奇数;

④若a+5b是奇数,则a-3b是偶数.

(A)1 (B)2 (C)3 (D)4

(2)若n是大于1的整数,则的值().

(A)一定是偶数(B)必然是非零偶数

(C)是偶数但不是2 (D)可以是偶数,也可以是奇数

(3)已知关于x的二次三项式ax2+bx+c(a、b、c为整数),如果当x=0与x=1时,二次三项式的值都是奇数,那么a()

(A)不能确定奇数还是偶数(B)必然是非零偶数

(C)必然是奇数(D)必然是零

3.(1986年宿州竞赛题)试证明11986+91986+81986+61986是一个偶数.

4.请用0到9十个不同的数字组成一个能被11整除的最小十位数.

5.有n 个整数,共积为n,和为零,求证:数n能被4整除

6.在一个凸n边形内,任意给出有限个点,在这些点之间以及这些点与凸n边形顶点之间,用线段连续起来,要使这些线段互不相交,而且把原凸n边形分为只朋角形的小块,试证这种小三我有形的个数与n有相同的奇偶性.

7.(1983年福建竞赛题)一个四位数是奇数,它的首位数字泪地其余各位数字,而第二位数字大于其它各位数字,第三位数字等于首末两位数字的和的两倍,求这四位数.

8.(1909年匈牙利竞赛题)试证:3n+1能被2或22整除,而不能被2的更高次幂整除.

9.(全俄15届中学生数学竞赛题)在1,2,3…,1989之间填上“+”或“-”号,求和式可以得到最小的非负数是多少?

练习参考答案

1.(1)30.(最小两位奇数是11,最大数与最小数同为奇数)

(2)180.设第一个偶数为x,则后面四个衣次为x+2,x+4,x+6,x+8.

(3)不能.

2.B.B.A

3.11986是奇数1,91986的个位数字是奇数1,而81986,61986都是偶数,故最后为偶数.

4.仿例51203465879.

5.设a1,a2,…,an满足题设即a1+a2+…+an=0①

a1·a2……an=n②。假如n为奇数,由②,所有ai皆为奇数,但奇数个奇数之和为奇数,故这时①不成立,可见n只能为偶数.由于n为偶数,由②知ai中必有一个偶数,由①知ai中必有另一个偶数.于是ai中必有两个偶数,因而由②知n必能被4整除.

6.设小三角形的个数为k,则k个小三角形共有3k条边,减去n边形的n条边及重复计算的边数扣共有(3k+n)条线段,显然只有当k与n有相同的奇偶性时,

(3k-n)才是整数.

7.设这个四位数是由于1≤a<d,d是奇数所以d≥3于是c=2(a+d)

≥8,即c=8或c=9.因c是偶数,所以c=8,由此得a=1,d=3.又因b>c,所以b=9因此该数为1983.

8.当n为奇数时,考虑(4-1)n+1的展开式;当n为偶数时,考虑(2+1)n+1的展开式.

9.除995外,可将1,2,…,1989所有数分为994对:(1,1989)(2,1988)…(994,996)每对数中两个数的奇偶性相同,所以在每对数前无论放置“+”,“-”号,运算结果只能是偶数.而995为奇数,所以数1,2,…,1989的总值是奇数,于是所求的最小非负数不小于1,数1可用下列方式求得:

1=1+(2-3-4+5)+(6-7-8+9)+…+(1986-1987-1988+1989).

竞赛讲座(02)-整数的整除性

1.整数的整除性的有关概念、性质

(1)整除的定义:对于两个整数a、d(d≠0),若存在一个整数p,使得

成立,则称d整除a,或a被d整除,记作d|a。

若d不能整除a,则记作d a,如2|6,4 6。

(2)性质

1)若b|a,则b|(-a),且对任意的非零整数m有bm|am

2)若a|b,b|a,则|a|=|b|;

3)若b|a,c|b,则c|a

4)若b|ac,而(a,b)=1((a,b)=1表示a、b互质,则b|c;

5)若b|ac,而b为质数,则b|a,或b|c;

6)若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)

例1 (1987年北京初二数学竞赛题)x,y,z均为整数,若11|(7x+2y-5z),求证:11|(3x-7y+12z)。

证明∵4(3x-7y+12z)+3(7x+2y-5z)=11(3x-2y+3z)

而11|11(3x-2y+3z),

且11|(7x+2y-5z),

∴11|4(3x-7y+12z)

又(11,4)=1

∴11|(3x-7y+12z).

2.整除性问题的证明方法

(1) 利用数的整除性特征(见第二讲)

例2(1980年加拿大竞赛题)设72|的值。

解72=8×9,且(8,9)=1,所以只需讨论8、9都整除的值。

若8|,则8|,由除法可得b=2。

若9|,则9|(a+6+7+9+2),得a=3。

(2)利用连续整数之积的性质

①任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2整除。

②任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。

这个性质可以推广到任意个整数连续之积。

例3(1956年北京竞赛题)证明:对任何整数n都为整数,且用3除时余2。

证明

∵为连续二整数的积,必可被2整除.

∴对任何整数n均为整数,

∵为整数,即原式为整数.

又∵

2n、2n+1、2n+2为三个连续整数,其积必是3的倍数,而2与3互质,

∴是能被3整除的整数.

故被3除时余2.

例4 一整数a若不能被2和3整除,则a2+23必能被24整除.

证明∵a2+23=(a2-1)+24,只需证a2-1可以被24整除即可.

∵2 .∴a为奇数.设a=2k+1(k为整数),

则a2-1=(2k+1)2-1=4k2+4k=4k(k+1).

∵k、k+1为二个连续整数,故k(k+1)必能被2整除,

∴8|4k(k+1),即8|(a2-1).

又∵(a-1),a,(a+1)为三个连续整数,其积必被3整除,即3|a(a-1)(a+1)=a (a2-1),

∵3 a,∴3|(a2-1).3与8互质, ∴24|(a2-1),即a2+23能被24整除.

(3)利用整数的奇偶性

下面我们应用第三讲介绍的整数奇偶性的有关知识来解几个整数问题.

例5 求证:不存在这样的整数a、b、c、d使:

a·b·c·d-a=①

a·b·c·d-b=②

a·b·c·d-c=③

a·b·c·d-d=④

证明由①,a(bcd-1)=.

∵右端是奇数,∴左端a为奇数,bcd-1为奇数.

同理,由②、③、④知b、c、d必为奇数,那么bcd为奇数,bcd-1必为偶数,则a(bcd-1)必为偶数,与①式右端为奇数矛盾.所以命题得证.

例6 (1985年合肥初中数学竞赛题)设有n个实数x1,x2,…,x n,其中每一个不是+1

就是-1,

试证n是4的倍数.

证明设(i=1,2,…,n-1),

则y i不是+1就是-1,但y1+y2+…+y n=0,故其中+1与-1的个数相同,设为k,于是n=2k.又y1y2y3…y n=1,即(-1)k=1,故k为偶数,

∴n是4的倍数.

其他方法:

整数a整除整数b,即b含有因子a.这样,要证明a整除b,采用各种公式和变形手段从b中分解出因子a就成了一条极自然的思路.

例7 (美国第4届数学邀请赛题)使n3+100能被n+10整除的正整数n的最大值是多少?

解n3+100=(n+10)(n2-10n+100)-900.

若n+100能被n+10整除,则900也能被n+10整除.而且,当n+10的值为最大时,相应地n的值为最大.因为900的最大因子是900.所以,n+10=900,n=890.

例8 (上海1989年高二数学竞赛)设a、b、c为满足不等式1<a<b<c的整数,且(ab-1)(bc-1)(ca-1)能被abc整除,求所有可能数组(a,b,c).

解∵(ab-1)(bc-1)(ca-1)

=a2b2c2-abc(a+b+c)+ab+ac+bc-1,①

∵abc|(ab-1)(bc-1)(ca-1).

∴存在正整数k,使

ab+ac+bc-1=kabc, ②

k=<<<<

∴k=1.

若a≥3,此时

1=-<矛盾.

已知a>1. ∴只有a=2.

当a=2时,代入②中得2b+2c-1=bc,

即1=<

∴0<b<4,知b=3,从而易得c=5.

说明:在此例中通过对因数k的范围讨论,从而逐步确定a、b、c是一项重要解题技巧.

例9 (1987年全国初中联赛题)已知存在整数n,能使数被1987整除.求证数

都能被1987整除.

证明∵×××

(103n+),且能被1987整除,∴p能被1987整除.

同样,

q=()

故、102(n+1)、被除,余

数分别为1000,100,10,于是q表示式中括号内的数被除,余数为1987,它可被1987整除,所以括号内的数能被1987整除,即q能被1987整除.

练习二

1.选择题

(1)(1987年上海初中数学竞赛题)若数n=20·30·40·50·60·70·80·90·100·110·120·130,则不是n的因数的最小质数是().

(A)19 (B)17 (C)13 (D)非上述答案

(2)在整数0、1、2…、8、9中质数有x个,偶数有y个,完全平方数有z个,则

x+y+z等于().

(A)14 (B)13 (C)12 (D)11 (E)10

(3)可除尽311+518的最小整数是().

(A)2 (B)3 (C)5 (D)311+518(E)以上都不是

2.填空题

(1)(1973年加拿大数学竞赛题)把100000表示为两个整数的乘积,使其中没有一个是10的整倍数的表达式为__________.

(2) 一个自然数与3的和是5的倍数,与3的差是6的倍数,这样的自然数中最小的是_________.

(3) (1989年全国初中联赛题)在十进制中,各位数码是0或1,并且能被225整除的最小自然数是________.

3.求使为整数的最小自然数a的值.

4.(1971年加拿大数学竞赛题)证明:对一切整数n,n2+2n+12不是121的倍数.

5.(1984年韶关初二数学竞赛题)设是一个四位正整数,已知三位正整数与

246的和是一位正整数d的111倍,又是18的倍数.求出这个四位数,并写出推理运算过程.

6.(1954年苏联数学竞赛题)能否有正整数m、n满足方程m2+1954=n2.

7.证明:(1)133|(11n+2+12n+1),其中n为非负整数.

(2)若将(1)中的11改为任意一个正整数a,则(1)中的12,133将作何改动?证明改动后的结论.

8.(1986年全国初中数学竞赛题)设a、b、c是三个互不相等的正整数.求证:在

a3b-ab3,b3c-bc3,c3a-ca3三个数中,至少有一个能被10整除.

9.(1986年上海初中数学竞赛题)100个正整数之和为101101,则它们的最大公约数的最大可能值是多少?证明你的结论.

练习参考答案

1.B.B.A

2.(1)25·55.(2)27.

3.由2000a为一整数平方可推出a=5.

4.反证法.若是121的倍数,设n2+2n+12=121k(n+1)2=11(11k-1).∵11是素数且除尽(+1)2,

∴11除尽n+1112除尽(n+1)2或11|11k-1,不可能.

5.由是d的111倍,可能是198,309,420,531,642,753;又是18的倍数,∴只能是198.而198+246=444,∴d=4,是1984.

7.(1)11n+2+122n+1=121×11n+12×144n=121×11n+12×11n-12×11n+12×144n=…=133×11n+12×(144n-11n).第一项可被133整除.又144-11|144n-11n,∴133|11n+2+122n+1.

(2)11改为a.12改为a+1,133改为a(a+1)+1.改动后命题为a(a+1)+1|an+2+(a+1)2n+1,可仿上证明.

8.∵a3b-ab3=ab(a2-b2);同理有b(b2-c2);ca(c2-a2).若a

、b、c中有偶数或均为奇数,以上三数总能被2整除.又∵在a、b、c中若有一个是5的倍数,则题中结论必成立.若均不能被5整除,则a2,b2,c2个位数只能是1,4,6,9,从而a2-b2,b2-c2,c2-a2的个位数是从1,4,6,9中,任取三个两两之差,其中必有0或±5,故题中三式表示的数至少有一个被5整除,又2、5互质.

9.设100个正整数为a1,a2,…,a100,最大公约数为d,并令

则a1+a2+…+a100=d(a1′+a2′+…+a′100)=101101=101×1001,故知a1′,a2′,a′100不可能都是1,从而a′1+a′2+…+a′100≥1×99+2=101,d≤1001;若取a1=a2=a99=1001,a100=2002,则满足a1+a2+…+a100=1001×101=101101,且d=1001,故d的最大可能值为1001

竞赛讲座(03)--同余式与不定方程

同余式和不定方程是数论中古老而富有魅力的内容.考虑数学竞赛的需要,下面介绍有关的基本内容.

1. 同余式及其应用

定义:设a、b、m为整数(m>0),若a和b被m除得的余数相同,则称a和b对模m同余.记为或

一切整数n可以按照某个自然数m作为除数的余数进行分类,即n=pm+r(r=0,1,…,m-1),恰好m个数类.于是同余的概念可理解为,若对n1、n2,有n1=q1m+r,n2=q2m+r,那么n1、n2

对模m的同余,即它们用m除所得的余数相等.

利用整数的剩余类表示,可以证明同余式的下述简单性质:

(1) 若,则m|(b-a).反过来,若m|(b-a),则;

(2) 如果a=km+b(k为整数),则;

(3) 每个整数恰与0,1,…,m-1,这m个整数中的某一个对模m同余;

(4) 同余关系是一种等价关系:

①反身性;

②对称性,则,反之亦然.

③传递性,,则;

(5)如果,,则

①;

②特别地

应用同余式的上述性质,可以解决许多有关整数的问题.

例1(1898年匈牙利奥林匹克竞赛题)求使2n+1能被3整除的一切自然数n. 解∵∴

则2n+1

∴当n为奇数时,2n+1能被3整除;

当n为偶数时,2n+1不能被3整除.

例2 求2999最后两位数码.

解考虑用100除2999所得的余数.

初中数学竞赛常用解题方法(代数)

初中数学竞赛常用解题方法(代数) 一、 配方法 例1练习:若2 ()4()()0x z x y y z ----=,试求x+z 与y 的关系。 二、 非负数法 例21 ()2 x y z =++. 三、 构造法 (1)构造多项式 例3、三个整数a 、b 、c 的和是6 的倍数.,那么它们的立方和被6除,得到的余数是( ) (A) 0 (B) 2 (C) 3 (D) 不确定的 (2)构造有理化因式 例4、 已知(2002x y =. 则2 2 346658x xy y x y ----+=___ ___。 (3)构造对偶式 例5、 已知αβ、是方程2 10x x --= 的两根,则4 3αβ+的值是___ ___。 (4)构造递推式 例6、 实数a 、b 、x 、y 满足3ax by +=,2 2 7ax by +=,3 3 16ax by +=,4 4 42ax by +=.求5 5 ax by +的值___ ___。 (5)构造几何图形 例7、(构造对称图形)已知a 、b 是正数,且a + b = 2. 求u =___ ___。 练习:(构造矩形)若a ,b 形的三条边的长,那么这个三角形的面积等于___________。 四、 合成法 例8、若12345,,,x x x x x 和满足方程组

123451234512345123451234520212 224248296 x x x x x x x x x x x x x x x x x x x x x x x x x ++++=++++=++++=++++=++++= 确定4532x x +的值。 五、 比较法(差值比较法、比值比较法、恒等比较法) 例9、71427和19的积被7除,余数是几? 练习:设0a b c >>>,求证:222a b c b c c a a b a b c a b c +++>. 六、 因式分解法(提取公因式法、公式法、十字相乘法) 1221()(...)n n n n n n a b a b a a b ab b -----=-++++ 1221()(...)n n n n n n a b a b a a b ab b ----+=+-+-+ 例10、设n 是整数,证明数3 231 22 M n n n =++为整数,且它是3的倍数。 练习:证明993 991993 991+能被1984整除。 七、 换元法(用新的变量代换原来的变量) 例11、解方程2 9(87)(43)(1)2 x x x +++= 练习:解方程 11 (1) 11 (1x) x =. 八、 过度参数法(常用于列方程解应用题) 例12、一商人进货价便宜8%,售价保持不变,那么他的利润(按进货价而定)可由目前的 %x 增加到(10)%x +,x 等于多少? 九、 判别式法(24b ac ?=-判定一元二次方程20ax bx c ++=的根的性质) 例13、求使2224 33 x x A x x -+=-+为整数的一切实数x. 练习:已知,,x y z 是实数,且 2 2 2 212 x y z a x y z a ++=++=

全国初中数学竞赛辅导(八年级)教学案全集第26讲 含参数的一元二次方程的整数根问题

全国初中数学竞赛辅导(八年级)教学案全集第二十六讲含参数的一元二次方程的整数根问题 对于一元二次方程ax2+bx+c=0(a≠0)的实根情况,可以用判别式Δ=b2-4ac来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.本讲结合例题来讲解一些主要的方法. 例1 m是什么整数时,方程 (m2-1)x2-6(3m-1)x+72=0 有两个不相等的正整数根. 解法1首先,m2-1≠0,m≠±1.Δ=36(m-3)2>0,所以m≠3.用求根公式可得 由于x1,x2是正整数,所以 m-1=1,2,3,6,m+1=1,2,3,4,6,12, 解得m=2.这时x1=6,x2=4. 解法2首先,m2-1≠0,m≠±1.设两个不相等的正整数根为x1,x2,则由根与系数的关系知 所以m2-1=2,3,4,6,8,9,12,18,24,36,72,即 m2=3,4,5,7,9,10,13,19,25,37,73, 只有m2=4,9,25才有可能,即m=±2,±3,±5. 经检验,只有m=2时方程才有两个不同的正整数根. 说明一般来说,可以先把方程的根求出来(如果比较容易求的话),然后利用整数的性质以及整除性理论,就比较容易求解问题,解法1就是

这样做的.有时候也可以利用韦达定理,得到两个整数,再利用整除性质求解,解法2就是如此,这些都是最自然的做法. 例2 已知关于x的方程 a2x2-(3a2-8a)x+2a2-13a+15=0 (其中a是非负整数)至少有一个整数根,求a的值. 分析“至少有一个整数根”应分两种情况:一是两个都是整数根,另一种是一个是整数根,一个不是整数根.我们也可以像上题一样,把它的两个根解出来. 解因为a≠0,所以 所以 所以只要a是3或5的约数即可,即a=1,3,5. 例3设m是不为零的整数,关于x的二次方程 mx2-(m-1)x+1=0 有有理根,求m的值. 解一个整系数的一元二次方程有有理根,那么它的判别式一定是完全平方数.令 Δ=(m-1)2-4m=n2, 其中n是非负整数,于是 m2-6m+1=n2,

初中数学竞赛专题辅导因式分解一

因式分解 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4) =-2x n-1y n[(x2n)2-2x2n y2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 (4)原式=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5)

初中数学竞赛辅导讲义全

专业资料 初中数学竞赛辅导讲义(初三) 第一讲 分式的运算 [知识点击] 1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。 2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。 3、 分式运算:实质就是分式的通分与约分。 [例题选讲] 例1.化简 2312++x x + 6512++x x + 12 712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + ) 4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 4 1+x =) 4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

专业资料 解:易知:z y x + = y z x + = x z y + =k 则?? ???=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1 例3.设 1 2+-mx x x =1,求 12242+-x m x x 的值。 解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x 1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=1 21-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2 +1整除,求a的值。 解:

初中数学竞赛专题培训(4):代数式的化简与求值

初中数学竞赛专题培训第四讲分式的化简与求值 分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值. 例1 化简分式: 分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多. =[(2a+1)-(a-3)-(3a+2)+(2a-2)] 说明本题的关键是正确地将假分式写成整式与真分式之和的形式. 例2 求分式 当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b), 可将分式分步通分,每一步只通分左边两项. 例3 若abc=1 ,求 分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法. 解法1 因为abc=1,所以a,b,c都不为零. 解法2 因为abc=1,所以a≠0,b≠0,c≠0. 例4 化简分式:

分析与解 三个分式一齐通分运算量大,可先将每个分式的分 母分解因式,然后再化简. 说明 互消掉的一对相反数,这种化简的方法叫“拆项相消”法, 它是分式化简中常用的技巧. 例5 化简计算(式中a ,b ,c 两两不相等): 似的,对于这个分式,显然分母可以分解因式为(a -b)(a -c),而分子又恰好凑成(a -b)+(a -c),因此有下面的解法. 解 说明 本例也是采取“拆项相消”法,所不同的是利用 例6 已知:x+y+z=3a(a ≠0,且x ,y ,z 不全相等),求 分析 本题字母多,分式复杂.若把条件写成 (x -a)+(y -a)+(z -a)=0,那么题目只与x -a ,y -a ,z -a 有关,为简化计算,可用换元法求解. 解 令x -a=u ,y -a=v ,z -a=w ,则分式变为 u 2+v 2+w 2 +2(uv+vw+wu)=0. 由于x ,y ,z 不全相等,所以u ,v ,w 不全为零,所以u 2 +v 2 +w 2 ≠0,从而有 说明 从本例中可以看出,换元法可以减少字母个数,使运算 过程简化. 例7 化简分式: 适当变形,化简分式后再计算求值. (x -4)2 =3,即x 2 -8x+13=0. 原式分子=(x 4 -8x 3 +13x 2 )+(2x 3 -16x 2 +26x)+(x 2 -8x+13)+10 =x 2 (x 2 -8x+13)+2x(x 2 -8x+13)+(x 2 -8x+13)+10

初中数学竞赛专题选讲-配方法(含答案)

初中数学竞赛专题[配方法] 一、内容提要 1. 配方:这里指的是在代数式恒等变形中,把二次三项式a 2 ±2ab+b 2 写成完全平方式 (a ±b )2. 有时需要在代数式中添项、折项、分组才能写成完全平方式. 常用的有以下三种: ①由a 2 +b 2 配上2ab , ②由 2 ab 配上a 2 +b 2 , ③由a 2 ±2ab 配上b 2 . 2. 运用配方法解题,初中阶段主要有: ① 用完全平方式来因式分解 例如:把x 4 +4 因式分解. 原式=x 4 +4+4x 2 -4x 2 =(x 2 +2)2 -4x 2 =…… 这是由a 2 +b 2配上2ab. ② 二次根式化简常用公式:a a =2,这就需要把被开方数 写成完全平方式. 例如:化简6 25-. 我们把5-2 6写成 2-232+3 =2)2(-232+2)3( =( 2-3) 2 . 这是由2 ab 配上a 2 +b 2 .

③ 求代数式的最大或最小值,方法之一是运用实数的平方是非负数,零就是最小值.即∵a 2 ≥0, ∴当a=0时, a 2 的值为0是最小值. 例如:求代数式a 2 +2a -2 的最值. ∵a 2 +2a -2= a 2 +2a+1-3=(a+1)2 -3 当a=-1时, a 2 +2a -2有最小值-3. 这是由a 2 ±2ab 配上b 2 ④ 有一类方程的解是运用几个非负数的和等于零,则每一个非负数都是零,有时就需要配方. 例如::求方程x 2 +y 2 +2x-4y+5=0 的解x, y. 解:方程x 2 +y 2 +2x-4y+1+4=0. 配方的可化为 (x+1)2 +(y -2)2 =0. 要使等式成立,必须且只需? ??=-=+0201y x . 解得 ???=-=2 1 y x 此外在解二次方程中应用根的判别式,或在证明等式、不等式时,也常要有配方的知识和技巧.

南开中学初中数学竞赛辅导资料

初中数学竞赛辅导资料 第一讲数的整除 一、容提要: 如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除. 能被7整除的数的特征: ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。 如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征: ①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 二、例题 例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。 求x,y 解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x 解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8

当末两位4x能被4整除时,x=0,4,8 ∴x=8 例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234, 但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。 练习一 1、分解质因数:(写成质因数为底的幂的连乘积) ①756②1859 ③1287 ④3276 ⑤10101 ⑥10296 987能被3整除,那么 a=_______________ 2、若四位数a x能被11整除,那么x=__________ 3、若五位数1234 35m能被25整除 4、当m=_________时,5 9610能被7整除 5、当n=__________时,n 6、能被11整除的最小五位数是________,最大五位数是_________ 7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。 8、8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972 中,能被下列各数整除的有(填上编号): 6________,8__________,9_________,11__________ 9、从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除 但不是5的倍数的共______个。 10、由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3 整除的数共有几个?为什么?

初中数学竞赛专题辅导--函数图像

初中数学竞赛专题选讲 函数的图象 一、内容提要 1. 函数的图象定义:在直角坐标系中,以自变量x 为横坐标和以它的函数y 的对应值为纵 坐标的点的集合,叫做函数y=f(x)的图象. 例如 一次函数y=kx+b (k,b 是常数,k ≠0)的图象是一条直线 ① l 上的任一点p 0(x 0,y 0) 的坐标,适合等式y=kx+b, 即y 0=kx ② 若y 1=kx 1+b ,则点p 1(x 1,y 1) 在直线l 上. 2. 方程的图象:我们把y=kx+b 看作是关于x, y 的 二元 一次方程kx -y+b=0, 那么直线l 就是以这个方程的解为坐标 的点的集合,我们把这条直线叫做二元一次方程的图象. 二元一次方程ax+by+c=0 (a,b,c 是常数,a ≠0,b ≠0) 叫做 直线方程. 一般地,在直角坐标系中,如果某曲线是以某二元方程的解为坐标的 点的集合,那么这曲线就叫做这个方程的图象. 例如: 二元二次方程y=ax 2+bx+c(a ≠0) (即二次函数)的图象是抛物线; 二元分式方程y= x k (k ≠0) (即反比例函数)的图象是双曲线. 3. 函数的图象能直观地反映自变量x 与函数y 的对应规律. 例如: ① 由图象的最高,最低点可看函数的最大,最小值; ② 由图象的上升,下降反映函数 y 是随x 的增大而增大(或减小); ③ 函数y=f(x)的图象在横轴的上方,下方或轴上,分别表示y>0,y<0,y=0. 图象所对应 的横坐标就是不等式f(x)>0,f(x)<0 的解集和方程f(x)=0的解. ④ 两个函数图象的交点坐标,就是这两个图象所表示的两个方程(即函数解析式)的公 共解.等等 4. 画函数图象一般是: ①应先确定自变量的取值范围. 要使代数式有意义,并使代数式所表示的实际问题有意义,还要注意是否连续,是否有界. ②一般用描点法,但对一次函数(二元一次方程)的图象,因它是直线(包括射线、线段),所以可采用两点法.线段一定要画出端点(包括临界点). ③对含有绝对值符号(或其他特殊符号)的解析式 ,应按定义对自变量分区讨论,写成几个解析式. 二、例题 例1. 右图是二次函数y=ax 2+bx+c (a ≠0), 试决定a, b, c 及b 2-4ac 的符号. 解:∵抛物线开口向下, ∴a<0. ∵对称轴在原点右边,∴x=- a b 2>0且a<0, ∴b>0. ∵抛物线与纵轴的交点在正半轴上, ∴截距c>0. ∵抛物线与横轴有两个交点, ∴b 2-4ac>0. 例2. 已知:抛物线f :y=-(x -2)2+5. 试写出把f 向左平行移动2个单位后,所得的曲线f 1的方程;以及f 关于x 轴对称的曲线f 2 的方程. 画出f 1和f 2的略图,并求:

初中数学竞赛辅导训练试题及答案

初中数学竞赛辅导练习题 1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( ) (A)bc ab >(B)c b b a +>+(C)c b b a ->-(D) c b c a > 2、如果方程()0012 >=++p px x 的两根之差是1,那么p 的值为( ) (A)2(B)4(C)3(D)5 3、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)18 4、已知0≠abc ,并且 p b a c a c b c b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四 5、如果不等式组? ??<-≥-080 9b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数 对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个 6、计算 的值是( )。(A )1(B )-1(C )2(D )- 2。 7、△ABC 的周长是24,M 是AB 的中点,MC =MA =5,则△ABC 的面积是( )。 (A )12;(B )16;(C )24;(D )30。 8、设 ,将一次函数 与 的图象画在同一平面直角坐标 系内,则有一组 的取值,使得下列4个图中的一个为正确的是( )。 9、如图,在等腰梯形ABCD 中,AB∥DC,AB =998,DC =1001,AD =1999,点P 在线 段AD 上,则满足条件∠BPC=90°的点P 的个数为( )。 (A )0;(B )1;(C )2;(D )不小于3的整数。 (A )0;(B )1;(C )2;(D )3。 二、填空题: 6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。 9、已知方程( ) 015132832 2 2 2 =+-+--a a x a a x a (其中a 是非负整数),至少有一个整数根,那么a =___________。 10、B 船在A 船的西偏北450处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是___________km 。 1.设15+=m ,那么m m 1 + 的整数部分是 . 2.在直角三角形ABC 中,两条直角边AB,AC 的长分别为1厘米,2厘米,那么直角

初中数学竞赛专题培训 -生活中的数学(2)

初中数学竞赛专题培训第三十讲生活中的数学(四)──买鱼的学问 鱼是人们喜欢吃的一种高蛋白食物,所以谁都希望买到物美价廉的鱼.假定现在商店里出售某种鱼以大小论价,大鱼A每斤1.5元,小鱼B每斤1元.如果大鱼的高度为13厘米,小鱼的高度为10厘米(图2-171),那么买哪种鱼更便宜呢? 有人可能觉得大鱼A和小鱼B高度之比为13∶10,差不了许多,而小鱼的价格却比大鱼便宜许多,因此,买小鱼比较合算.这种想法是合理的吗?我们还是用数学来加以分析吧! 在平面几何中,我们已经知道以下定理. 定理1 相似形周长的比等于相似比. 定理2 相似形面积的比等于相似比的平方. 例1 已知:△ABC∽△A′B′C′,并且AB=2c,BC=2a,AC=2b,A′B′=3c, B′C′=3a,A′C′=3b.求证:△ABC和△A′B′C′周长的比是2∶3(图2-172). 证△ABC的周长是 2a+2b+2c=2(a+b+c), △A′B′C′的周长是 3a+3b+3c=3(a+b+c), 所以△ABC和△A′B′C′的周长的比是 2(a+b+c)∶3(a+b+c)=2∶3. 例2 图2-173是两个相似矩形,如果它们的相似比是3∶4,求证:它们面积的比是32∶42. 证矩形ABCD的面积是3a·3b=32ab,矩形A′B′C′D′的面积是4a·4b=42ab,所以矩形ABCD和矩形A′B′C′D′的面积之比是 32ab∶42ab=32∶42. 从定理1和定理2,我们自然会想到:相似的两个立体的体积之比与它们的相似比有什么关系呢?为此,我们看下面的例子. 例3 图2-174是两个相似的长方体,它们的相似比为3∶5,求它们的体积之比. 解长方体(a)的体积是3a·3b·3c=33abc, 长方体(b)的体积是5a·5b·5c=53abc, 所以长方体(a)与长方体(b)的体积的比是 33abc∶53abc=33∶53 例4 图2-175是两个相似圆柱,它们的相似比为2∶3,求它们的体积之比. 解小圆柱的体积是 (2a)2π·2b=23a2bπ,大圆柱的体积是 (3a)2π·3b=33a2bπ,所以小圆柱与大圆柱的体积之比为23∶33. 定理3 相似形的体积之比,等于它的相似比的立方.

全国初中数学竞赛辅导(八年级)教学案全集第21讲 分类与讨论

全国初中数学竞赛辅导(八年级)教学案全集 第二十一讲分类与讨论 分类在数学中是常见的,让我们先从一个简单的例子开始. 有四张卡片,它们上面各写有一个数字:1,9,9,8.从中取出若干张按任意次序排列起来得到一个数,这样的数中有多少个是质数? 因为按要求所得的数可能是一位数、二位数、三位数和四位数,我们分别给予讨论. 任取一张卡片,只能得3个数:1,8,9,其中没有质数;任取二张卡片,可得7个数:18,19,81,89,91,98,99,其中19,89两个是质数;任取三张卡片,可得12个数:189,198,819,891,918,981,199,919,991,899,989,998,其中199,919,991三个数是质数;取四张,所得的任一个四位数的数字和是27,因而是3的倍数,不是质数.综上所述,质数共有2+3=5个. 上面的解题方法称为分类讨论法.当我们要解决一个比较复杂的问题时,经常把所要讨论的对象分成若干类,然后逐类讨论,得出结论. 分类讨论法是一种很重要的数学方法.在分类中须注意题中所含的对象都必须在而且只在所分的一类中.分类讨论一般分为三个步骤,首先确定分类对象,即对谁实施分类.第二是对对象实施分类,即分哪几类,这里要特别注意,每次分类要按照同一标准,并做到不重复、不遗漏,有些复杂的问题,还要逐级分类.最后对讨论的结果进行综合,得出结论. 例1求方程 x2-│2x-1│-4=0 的实根. x2+2x-1-4=0,

x 2-2x +1-4=0, x 1=3,x 2=-1. 说明 在去绝对值时,常常要分类讨论. 例2 解方程x 2-[x]=2,其中[x]是不超过x 的最大整数. 解 由[x]的定义,可得 x ≥[x]=x 2-2, 所以 x 2-x -2≤0, 解此不等式得 -1≤x ≤2. 现把x 的取值范围分成4个小区间(分类)来进行求解. (1)当-1≤x ≤0时,原方程为 x 2-(-1)=2, 所以x=-1(因x=1不满足-1≤x <0). (2)当0≤x <1时,原方程为 x 2=2. (3)当1≤x <2时,原方程为 x 2-1=2, 所以 (4)当x=2时,满足原方程.

全国初中数学知识竞赛辅导方案(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改 全国初中数学知识竞赛辅导方案 王选民 为了在全国数学知识竞赛中取得优异成绩,将对学生辅导方案总结如下: 一、了解掌握优生的特点 一般我们选择参加竞赛的学生都是学优生,当我们与“优生”进行面谈时,应该清醒地认识到,他们能成为“优生”,是学生家长和老师共同教育的结果。尤其要看到这些“优生”的两重性:一方面,他们的行为习惯、学习习惯、学习成绩以及各种能力比一般学生在这个年龄容易出现的毛病外,也存在着他们作为老师的“好学生”、家长的“好孩子”所特有的一些毛病。 具体说来,“优生”一般具有以下特点: 1、思想比较纯正,行为举止较文明,自我控制的能力比较强,一般没有重大的违纪现象。 2、求知欲较旺盛,知识接受能力也较强,学习态度较端正,学习方法较科学,成绩较好。 3、长期担任学生干部,表达能力、组织能力以及其它工作能力都较强,在同学中容易形成威信。 4、课外涉及比较广泛,爱好全面,知识面较广。 5、由于智力状况比较好,课内学习较为轻松,因而容易自满,不求上进。 6、长期处于学生尖子的位置,比较骄傲自负,容易产生虚心。 7、有的“优生”之间容易产生互相嫉妒、勾心斗角的狭隘情绪和学习上的

不正当竞争。 8、从小就处在受表扬、获荣誉、被羡慕的顺境之中,因而他们对挫折的心理承受能力远不及一般普通学生。 以上几点,只是就一般“优生”的共性而,当然不一定每一个“优生”都是如此。 辅导优生的具体措施 1、创设能引导学优生主动参与的教育环境。 2、了解学生在兴趣、学习偏好、学习速度、学习准备以及动机等方面的情况。这些资料为教师制定活动和计划时的依据,也是“促进学生主动地、富有个性地学习的需要”。 3、为尖子设计学习方案。学优生学习新知识时,比其他学生花的时间少,他不需要很多的练习就已经理解新知识,因此,做的练习也少。让他们做那些已经理解的题目就很多难让学生体会到智力活动的乐趣。长此以往,反而可能在一定程度上降低学生对于智力生活的敏感性。教师应该备有不同层次介绍同一主题的资料,采用向学生布置分组作业的方法,从众多的方案和活动中选取与他们的知识、技能水平相当的项目,指定他们完成。 4、解决学优生心理问题:学优生在心理状态上,易产生骄气,居高临下,听不进半点批评,心理脆弱。在价值取向上,易产生唯我独尊,以自我为中心的个性倾向和价值取向,不把其他同学的感觉、好恶、需要放在一定的位置;在行为方式上,由于始终把自己当学优生,与一般同学不一样,束缚了自己,娱乐活动不愿参加,集体劳动怕吃苦。 针对这种状况,教学中应注意: 学优生学习成绩优异,但不能“一俊遮百丑”。在鼓励保持学习上的竞争姿态和上进好胜的同时,要创造条件和环境,磨练他们的意志,培养他们的创造能力,规范他们的行为意识。

初中数学竞赛辅导资料(1)

初中数学竟赛辅导资料(1) 数的整除(一) 甲内容提要: 如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除. ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。 如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征: ①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 乙例题 例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。 求x,y 解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2己知五位数x 1234能被12整除, 求X 解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+X 能被3整除时,x=2,5,8

4能被4整除时,X=0,4,8 当末两位X ∴X=8 例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234, 但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。 丙练习 1分解质因数:(写成质因数为底的幂的連乘积) ①593②1859③1287④3276⑤10101⑥10296 987能被3整除,那么a=_______________ 2若四位数a 12X能被11整除,那么X=__________- 3若五位数34 35m能被25整除 4当m=_________时,5 9610能被7整除 5当n=__________时,n 6能被11整除的最小五位数是________,最大五位数是_________ 7能被4整除的最大四位数是____________,能被8整除的最小四位数是_________ 88个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152, ⑧70972中,能被下列各数整除的有(填上编号): 6________,8__________,9_________,11__________ 9从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除但不是5的倍数的共______个。 10由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3整除的数共有几个?为什么? 1234能被15整除,试求A的值。 11己知五位数A 12求能被9整除且各位数字都不相同的最小五位数。 13在十进制中,各位数码是0或1,并能被225整除的最小正整数是____(1989年全国初中联赛题)

初中数学竞赛专题培训

第一讲:因式分解(一) (1) 第二讲:因式分解(二) (4) 第三讲实数的若干性质和应用 (7) 第四讲分式的化简与求值 (10) 第五讲恒等式的证明 (13) 第六讲代数式的求值 (16) 第七讲根式及其运算 (19) 第八讲非负数 (23) 第九讲一元二次程 (27) 第十讲三角形的全等及其应用 (30) 第十一讲勾股定理与应用 (34) 第十二讲平行四边形 (37) 第十三讲梯形 (40) 第十四讲中位线及其应用 (43) 第十五讲相似三角形(一) (46) 第十六讲相似三角形(二) .......................................... 49 第十七讲* 集合与简易逻辑 (52) 第十八讲归纳与发现 (57) 第十九讲特殊化与一般化 (61) 第二十讲类比与联想 (65) 第二十一讲分类与讨论 (68) 第二十二讲面积问题与面积法 (72) 第二十三讲几不等式 (75) 第二十四讲* 整数的整除性 (79) 第二十五讲* 同余式 (82) 第二十六讲含参数的一元二次程的整数根问题 (85) 第二十七讲列程解应用问题中的量 (88) 第二十八讲怎样把实际问题化成数学问题 (92) 第二十九讲生活中的数学(三) ——镜子中的世界 (96) 第三十讲生活中的数学(四)──买鱼的学问 (99) 第一讲:因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决多数学问题的有力工具.因式分解法灵活,技巧性强,学习这些法与技巧,不仅是掌握因式分解容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-… -ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解(1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 w

初中数学竞赛专题选讲《完全平方数和完全平方式》

初中数学竞赛专题选讲 完全平方数和完全平方式 一、内容提要 一定义 1. 如果一个数恰好是某个有理数的平方,那么这个数叫做完全平方数. 例如0,1,0.36,25 4,121都是完全平方数. 在整数集合里,完全平方数,都是整数的平方. 2. 如果一个整式是另一个整式的平方,那么这个整式叫做完全平方式. 如果没有特别说明,完全平方式是在实数范围内研究的. 例如: 在有理数范围 m 2, (a+b -2)2, 4x 2-12x+9, 144都是完全平方式. 在实数范围 (a+3)2, x 2+22x+2, 3也都是完全平方式. 二. 整数集合里,完全平方数的性质和判定 1. 整数的平方的末位数字只能是0,1,4,5,6,9.所以凡是末位数字为2,3,7,8的整数必不是平方数. 2. 若n 是完全平方数,且能被质数p 整除, 则它也能被p 2整除.. 若整数m 能被q 整除,但不能被q 2整除, 则m 不是完全平方数. 例如:3402能被2整除,但不能被4整除,所以3402不是完全平方数. 又如:444能被3整除,但不能被9整除,所以444不是完全平方数. 三. 完全平方式的性质和判定 在实数范围内 如果 ax 2+bx+c (a ≠0)是完全平方式,则b 2-4ac=0且a>0; 如果 b 2-4ac=0且a>0;则ax 2+bx+c (a ≠0)是完全平方式. 在有理数范围内 当b 2-4ac=0且a 是有理数的平方时,ax 2+bx+c 是完全平方式. 四. 完全平方式和完全平方数的关系 1. 完全平方式(ax+b )2 中 当a, b 都是有理数时, x 取任何有理数,其值都是完全平方数; 当a, b 中有一个无理数时,则x 只有一些特殊值能使其值为完全平方数. 2. 某些代数式虽不是完全平方式,但当字母取特殊值时,其值可能是完全平方数. 例如: n 2+9, 当n=4时,其值是完全平方数. 所以,完全平方式和完全平方数,既有联系又有区别. 五. 完全平方数与一元二次方程的有理数根的关系 1. 在整系数方程ax 2+bx+c=0(a ≠0)中 ① 若b 2-4ac 是完全平方数,则方程有有理数根; ② 若方程有有理数根,则b 2-4ac 是完全平方数. 2. 在整系数方程x 2+px+q=0中 ① 若p 2-4q 是整数的平方,则方程有两个整数根; ② 若方程有两个整数根,则p 2-4q 是整数的平方.

【精品】全国初中数学竞赛辅导(初三分册全套

全国初中数学竞赛辅导(初三分册)全套

第一讲分式方程(组)的解法 分母中含有未知数的方程叫分式方程.解分式方程的基本思想是转化为整式方程求解,转化的基本方法是去分母、换元,但也要灵活运用,注意方程的特点进行有效的变形.变形时可能会扩大(或缩小)未知数的取值范围,故必须验根. 例1 解方程 解令y=x2+2x-8,那么原方程为 去分母得 y(y-15x)+(y+9x)(y-15x)+y(y+9x)=0, y2-4xy-45x2=0, (y+5x)(y-9x)=0, 所以 y=9x或y=-5x.

由y=9x得x2+2x-8=9x,即x2-7x-8=0,所以x1=-1,x2=8;由y=-5x,得x2+2x-8=-5x,即x2+7x-8=0,所以x3=-8,x4=1. 经检验,它们都是原方程的根. 例2 解方程 y2-18y+72=0, 所以 y1=6或y2=12. x2-2x+6=0.此方程无实数根. x2-8x+12=0,

所以 x1=2或x2=6. 经检验,x1=2,x2=6是原方程的实数根. 例3 解方程 分析与解我们注意到:各分式的分子的次数不低于分母的次数,故可考虑先用多项式除法化简分式.原方程可变为 整理得 去分母、整理得 x+9=0,x=-9. 经检验知,x=-9是原方程的根. 例4 解方程

分析与解方程中各项的分子与分母之差都是1,根据这一特点把每个分式化为整式和真分式之和,这样原方程即可化简.原方程化为 即 所以 ((x+6)(x+7)=(x+2)(x+3). 例5 解方程 分析与解注意到方程左边每个分式的分母中两个一次因式的差均为常数1,故可考虑把一个分式拆成两个分式之差的形式,用拆项相消进行化简.原方程变形为

初中数学竞赛专题辅导因式分解(一)

初中数学竞赛专题辅导因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

相关文档
最新文档