淀粉的水解有两种途径

淀粉的水解有两种途径
淀粉的水解有两种途径

淀粉的水解有两种途径,即水解途径和磷酸解途径。淀粉水解时每切断一个糖苷键吸收一分子水,主要的水解酶有a-淀粉酶和β-淀粉酶。淀粉磷酸解作用使磷酸根和产物葡萄糖结合在一起产生磷酸葡萄糖,主要的酶为淀粉磷酸化酶。

a-淀粉酶又叫淀粉内切酶,能随机催比水解直链和支链淀粉上的a-1,4-糖苷键,产生的低聚糖进一步由a-淀粉酶水解,直至产生葡萄糖和麦芽糖:

植物中a-淀粉酶具有许多同工酶。例如用等电聚焦电泳发现萌发的小麦种子存在20多种不同等电点的同工酶。a-淀粉酶不能水解支链淀粉分支上的a-1,6-糖苷键。因此,a-淀粉酶水解支链淀粉的结果会产主葡萄糖、麦芽糖和带分支链的极限糊精:

脱支酶可以水解极限糊精上的a-1,6-糖苷键产生低聚葡萄糖,后者再由a-淀粉酶进一步水解产生葡萄糖和麦芽糖:

β-淀粉酶又称淀粉外切酶。该酶可以催化水解淀粉链上的。a-1,4-糖苷键,但只能从淀粉链上的非还原端逐个麦芽糖进行水解。β-淀粉酶不能水解支链a-1,6-糖苷键,因此在水解支链淀粉时有极限糊精存在:

由a和β-淀粉酶产生的麦芽糖,经a-葡萄糖苷酶水解产生两个分子的葡萄糖。a-葡萄糖苷酶也可以水解一些低分子量的麦芽低聚糖。

淀粉磷酸化酶在直链或支链淀粉的非还原端开始逐个切割淀粉链上的a-1,4-糖苷键,产生葡萄糖-l-磷酸:

直链淀粉可以被淀粉磷酸化酶完全水解,而支链淀粉则剩下带分支的极限糊精,这些极限糊精进一步由脱支酶和a一葡萄糖昔酶水解成葡萄糖。值得注意的是,淀粉磷酸化酶既可以催化淀粉的降解,又可催化淀粉的合成。不过,在植物淀粉粒内,淀粉磷酸化酶的主要功能是催化淀粉的降解。

淀粉磷酸化酶和a-淀粉酶一样,广泛存在于植物中。但目前很难判a-和β-淀粉酶中哪一种酶在淀粉降解中更为重要。不过,有理论认为非水溶性的淀粉粒只有经过a-淀粉酶的初步水解后,β-淀粉酶和淀粉磷酸化酶才能起作用。(如图)显示了这些酶在支链淀粉链上的作用位点。

禾谷类种子萌发后淀粉的降解主要由a-和β-淀粉酶进行水解,而淀粉磷酸化酶的作用不大。但在其他种类植物种子以及所有植物的叶片和其他组织中,淀粉的降解可能由几种酶的协同作用。例如叶绿体中淀粉的降解可能存在下列步

骤;(1)淀粉粒被水解成可溶性的葡聚糖;(2)a可溶性葡聚糖在淀粉磷酸化酶和脱支酶的作用下产生葡萄糖-1-磷酸;(2)b可溶性葡聚糖继续水解;(3)磷酸己糖和葡萄糖进一步转比为丙糖磷酸(磷酸二羟丙酮和甘油醛-3-磷酸);(4)丙糖磷酸由磷酸载体转运到细胞质中。到达细胞质中的磷酸丙糖再组装成磷酸六碳糖或直接进入糖酵解途径。

玉米淀粉生产工艺流程图 原料玉米 ↓ 净化→杂质 ↓ 硫磺→制酸→浸泡→稀玉米浆→浓缩→玉米浆 ↓ 破碎→胚芽→洗涤→脱水→干燥→榨油 ↓ 精磨 ↓ 筛洗→渣皮→脱水→干燥→粉碎→纤维粉 ↓ 分离→浓缩→脱水→干燥→蛋白粉 ↓ 清水→淀粉洗涤 ↓ 精制淀粉乳→制糖、变性淀粉等 ↓ 脱水 ↓ 干燥 ↓ 淀粉成品 ↓ 计量包装 主要设备 1.提升机1台 2.清理筛1台 3.除石槽2台(自制) 4.亚硫酸罐1个(自制) 5.硫磺吸收塔 2 座 6.浸泡罐6个(自制) 7.重力筛2台 8.破碎磨2台 9.针磨1台 10.胚芽旋流器2台 11.胚芽筛1台 12.压力曲筛7 台

13.洗涤槽1套(自制) 14.分离机2台 15.洗涤旋流器一套 16.汽浮槽2台(自制) 17.螺旋挤干机2台 18.管束干燥机3台 19.板框压滤机4台 20.沉淀罐4个 21.地池1个 22.刮刀离心机1台 23.气流干燥机组1套 24.原浆罐浓浆罐洗涤水罐各一个 25.各种泵、管道、阀门 玉米:水分%(m/m)≤14%杂质率%≤2%淀粉含量%(m/m)≥70% 淀粉:65-68% 胚芽6-8% 纤维粉8-10% 蛋白粉 4.5-6% 一吨玉米可生产酒精0.3-0.32 吨吨淀粉可生产麦芽糖浆1.15吨采用传统的玉米湿磨法(即用亚硫酸水溶液逆流浸泡玉米提取可溶性成分得玉米浸泡水,齿磨破碎、旋流分离提取玉米胚芽,筛分去渣,碟片分离机与旋流分离器组合使用分离去除蛋白)闭路循环生产工艺生产玉米淀粉,从而保证工艺的可靠性。同时充分利用工艺过程水,达到节省用水的目的。 玉米淀粉是以玉米为原料,经过原粮清理,浸泡,破碎,精磨,分离,淀粉精致,脱水,烘干,计量包装,成品。生产的过程中同步分离出胚芽,纤维粉,玉米蛋白粉及玉米浆。这些副产品还要分别经过分离,洗涤,脱水,烘干到计量包装。最终完成整套的生产过程。玉米淀粉生产线是一套连续的流水作业。玉米浆还可以和玉米纤维粉混合制成喷浆纤维,是做饲料的很好原料。 吨淀粉用水5吨左右电180度左右煤200公斤左右

高考化学一轮复习每日一题淀粉水解程度的判断及 水解产物的检验 Prepared on 22 November 2020

淀粉水解程度的判断及水解产物的检验 高考频度:★★★☆☆难易程度:★★☆☆☆ 典例在线 某学生设计了如下三个实验方案,探究用化学方法检验淀粉的水解情况。 方案甲:淀粉液水解液中和液溶液不变蓝 结论:淀粉完全水解 方案乙:淀粉液水解液无银镜现象 结论:淀粉完全没有水解 方案丙:淀粉液水解液中和液有银镜现象 结论:淀粉已经水解 试从实验操作、结论两个方面对上述三种方案进行评价,其中正确的是,理由是,有错误的是,理由是。 【参考答案】方案丙在碱性条件下发生了银镜反应,说明生成了葡萄糖,证明淀粉已经水解方案甲和方案乙方案甲中要验证水解液中是否还含有淀粉,应直接取水解液加碘水,而不能在加入NaOH溶液后再加碘水,因为碘水能与NaOH溶液发生反应;方案乙中在酸性条件下,生成的葡萄糖不能与银氨溶液发生银镜反应 【试题解析】本题疑难点是对淀粉水解程度的判断。方案甲中要验证水解液中是否还含有淀粉,应直接取水解液加碘水,而不能在加入NaOH溶液后再加碘水,因为碘水能与NaOH溶液发生反应,故方案甲的结论不正确;方案乙想要通过检验有无葡萄糖来证明淀粉是否水解,但忽略了反应条件,水解是在酸性条件下发生的,而银镜反应需在碱性条件下发生,实验设计中缺少关键环节——加碱中和水解液,故其实验现象不能作为评判依据,方案乙的结论也不正确;方案丙通过NaOH溶液中和水解液,然

后利用银氨溶液检验葡萄糖,说明淀粉已经水解,该方案严谨、完整,方案丙的结论正确。. 【点拨】验证淀粉的水解产物时,首先要加入NaOH溶液至碱性,再进行实验。要验证水解液中是否还含有淀粉,应直接取水解后的混合液加碘水。 解题必备 淀粉水解程度的判断 淀粉在催化剂(如稀H 2SO 4 )的作用下能够发生一系列水解反应,最终产物为葡萄 糖。淀粉遇碘变蓝,但不能被新制的Cu(OH) 2 (或银氨溶液)氧化;葡萄糖能被新制的 Cu(OH) 2 (或银氨溶液)氧化,但遇碘不变蓝。利用这一性质可判断淀粉是否水解以及水解是否彻底,其方法是: 1.在“水解后的溶液”中加入碘水,若溶液不变蓝,则证明淀粉完全水解。 2.在“水解后的溶液”中加入碘水,若溶液变蓝,另取“水解后的溶液”加 NaOH溶液调节溶液呈碱性后,再加入新制的Cu(OH) 2 ,加热3~5 min,(1)若出现砖红色沉淀,则证明淀粉部分水解; (2)若不出现砖红色沉淀,则证明淀粉未水解。 1.将淀粉水解,并用新制Cu(OH) 2 悬浊液检验其水解产物的实验中,要进行的主要操 作有:①加热;②滴入稀硫酸;③加入新制Cu(OH) 2 悬浊液;④加入足量的氢氧化钠溶液。以上操作步骤的先后顺序排列正确的是 A.①②③④①B.②①③④① C.②④①③①D.②①④③①

玉米淀粉生产技术 玉米是从玉蜀黍穗上剥离下的玉米粒, 玉米粒含水分12-16%、淀粉70- 7 2%、蛋白质8 — 11%、脂肪4 — 6%、灰分1.2 — 1.6%、纤维5 — 7%。玉米淀粉用途很广,既可用于食品工 业,也能用于造纸、纺织、化工、医药等部门。 以玉米为原料制造淀粉的方法很多,基本工艺流程如下: 玉米一>清理一>浸泡一>粗碎一 >胚的分离一>磨碎一>分离纤维一>分离蛋白质—>清洗一>离心分离一>干燥一>淀粉。? 具体生产流程如下: (1) 清理 清除玉米原粮中的杂质,通常用筛选、风选、比重分选等。 (2) 浸泡 玉米子粒坚硬,有胚,需经浸泡工序处理后,才能进行破碎。玉米通过浸泡,第一,可 浄化 二氧址碣亚硫毀一浸泡>浸泡水—菲汀(玉米架卜) 破碎胚芽併 胚芽分离洗涤 研磨 ?干燥"榨油 玉米油 稀蛋白-质?闻 + 液縮 干燥… 蛋白粉卩玉米淀紺- 硫谶 燃晓 玉米 *杂挪

软化子粒,增加皮层和胚的韧性。因为玉米在浸泡过程中大量吸收水分,使子粒软化,降低结构强度,有利于胚乳的破碎,从而节约动力消耗,降低生产成本。另外胚和皮层的吸水量大大超过胚乳,增强了胚和皮层的韧性,不易破裂。浸泡良好的玉米,如用手指压挤,胚即可脱落。第二,水分通过胚和皮层向胚乳内部渗透,溶出水溶性物质。这些物质被溶解出来后,有利于以后的分离操作。第三,在浸泡过程中,使粘附在玉米表面上的泥沙脱落。能借助玉米与杂质在水中的沉降速度不同,有效地分离各种轻重杂质,把玉米清洗干净,有利于玉米的破碎和提取淀粉。浸泡玉米的方法,目前普遍用管道将几只或几十只金属罐连接起来,用水泵使浸泡水在各罐之间循环流动,进行逆流浸泡,浸泡水中通常加二氧化硫,以分散和破坏玉米子粒细胞中蛋白质网状组织,促使淀粉游离出来,同时还能抑制微生物的繁殖活动,但是二氧化硫的浓度最高不得超过0.4%,否则酸性过大,会降低淀粉的粘度。温度对二氧化硫的浸泡作用具有重要影响,提高浸泡水温度,能促进二氧化硫的浸泡效果。但温度过高,会使淀粉糊化,造成不良后果,一般以50—55C为宜。浸泡时间的长短对浸泡作用有密切关系。浸泡时间短,蛋白质网状组织不能分散和破坏,淀粉颗粒不能游离出来。一般需要浸泡48 小时以上。浸泡条件:浸泡水的二氧化硫浓度为0.15%一0.2%,pH 值为3.5。在浸泡过程中,二氧化硫被玉米吸收,浓度逐渐降低,最后 放出的浸泡水含二氧化硫约为0.01%一0.02%,pH 值为3.9—4.1。浸泡水温度为50—55C,浸泡时间为40—60小时。浸泡条件应根据玉米的品质决定。通常储存较久的老玉米和硬质玉米,要求二氧化硫浓度较高,温度也较高,浸泡时间较长。玉米经过浸泡以后,水分应在40%以上。 (3) 粗碎 粗碎目的主要是将浸泡后的玉米粒破碎成10块以上的小块,以便将胚分离出来。玉米粗碎大都使用盘式破碎机。粗碎分两次进行。第一次把玉米粒破碎到4—6块,进行胚的分离;第二次再破碎到10块以上,使胚全部脱落。 (4) 胚的分离 目前国内用来分离胚的设备主要是分离槽。分离槽是一个U 形的木制或铸铁制的长槽,槽内装有刮板、溢流口和搅拌器。将粗碎后的玉米碎粒与波美9 度( 相当于比重1.06) 的淀粉乳混合,从分离槽的一端引入,缓缓地流向另一端。胚的比重小,飘浮在液面上,被移动的刮板从液面上刮向溢流口。碎粒胚乳较重,沉向槽底,经转速较慢(约6转/分)的横式搅拌器推向另一端的底部出口,排出槽外,从而达到分离胚的目的。

淀粉水解程度的判断及水解产物的检验 高考频度:★★★☆☆难易程度:★★☆☆☆ 典例在线 某学生设计了如下三个实验方案,探究用化学方法检验淀粉的水解情况。 方案甲:淀粉液水解液中和液溶液不变蓝 结论:淀粉完全水解 方案乙:淀粉液水解液无银镜现象 结论:淀粉完全没有水解 方案丙:淀粉液水解液中和液有银镜现象 结论:淀粉已经水解 试从实验操作、结论两个方面对上述三种方案进行评价,其中正确的是,理由是,有错误的是,理由是。 【参考答案】方案丙在碱性条件下发生了银镜反应,说明生成了葡萄糖,证明淀粉已经水解方案甲和方案乙方案甲中要验证水解液中是否还含有淀粉,应直接取水解液加碘水,而不能在加入NaOH溶液后再加碘水,因为碘水能与NaOH溶液发生反应;方案乙中在酸性条件下,生成的葡萄糖不能与银氨溶液发生银镜反应 【试题解析】本题疑难点是对淀粉水解程度的判断。方案甲中要验证水解液中是否还含有淀粉,应直接取水解液加碘水,而不能在加入NaOH溶液后再加碘水,因为碘水能与NaOH溶液发生反应,故方案甲的结论不正确;方案乙想要通过检验有无葡萄糖来证明淀粉是否水解,但忽略了反应条件,水解是在酸性条件下发生的,而银镜反应需在碱性条件下发生,实验设计中缺少关键环节——加碱中和水解液,故其实验现象不能作为评判依据,方案乙的结论也不正确;方案丙通过NaOH溶液中和水解液,然后利用银氨溶液检验葡萄糖,说明淀粉已经水解,该方案严谨、完整,方案丙的结论正确。. 【点拨】验证淀粉的水解产物时,首先要加入NaOH溶液至碱性,再进行实验。要验证水解液中是否还含有淀粉,应直接取水解后的混合液加碘水。 解题必备 淀粉水解程度的判断 淀粉在催化剂(如稀H2SO4)的作用下能够发生一系列水解反应,最终产物为葡萄糖。淀粉遇碘变蓝,但不能被新制的Cu(OH)2(或银氨溶液)氧化;葡萄糖能被新制的Cu(OH)2(或银氨溶液)氧化,但遇碘不变蓝。

食品中淀粉的测定-酸 水解法

淀粉的测定----酸水解法 【内容摘要】样品经乙醚除去脂肪,乙醇除去可溶性糖类后,用酸水解淀粉为葡萄糖,按还原糖测定方法测定还原糖含量,再折算为淀粉含量。 淀粉的测定 淀粉是由多个葡萄糖缩合而成的多糖,测定淀粉的方法有酸水解法、酶水解法和旋光法等。 酸水解法 此法操作简单,但选择性和准确性不够高。适用于淀粉含量较高,而半纤维素和多缩戊糖等其他多糖含量较少的样品。对富含半纤维素、多缩戊糖及果胶质的样品,因水解时它们也被水解为木糖、阿拉伯糖等还原糖,测定结果会偏高。 1.原理 样品经乙醚除去脂肪,乙醇除去可溶性糖类后,用酸水解淀粉为葡萄糖,按还原糖测定方法测定还原糖含量,再折算为淀粉含量。 2.仪器 ①回流冷凝管。 ②水浴锅。 ③高速组织捣碎机。 ④回流装置。 3.试剂

①乙醚。 ②85%乙醇。 ③6 tool·L叫盐酸溶液。 ④10 tool·L叫氢氧化钠。 ⑤2.5 tool·L-i氢氧化钠。 ⑥甲基红指示剂:称取2 g甲基红,用乙醇溶解稀释至100 mL。 ⑦精密pH试纸。 ⑧20%中性醋酸铅溶液。 ⑨lO%硫酸钠溶液。其余试剂同“还原糖的测定”中高锰酸钾法或直接滴定法中的试剂。 4.测定步骤 ①样品提取 a·粮食、豆类、糕点、饼干、代乳粉等较干燥、易研细的样品:称取2.O~5.0 g(含淀粉0.5 g左右)磨碎过40目筛的样品,置于铺有慢速滤纸的漏斗中,用30 mL乙醚分三次洗去样品中的脂肪,再用150 mL 85%乙醇分数次洗涤残渣以除去可溶性糖类。以100 mL水把漏斗中残渣全部转移至250 mL锥形瓶中。 b-蔬菜、水果、粉皮、凉粉等水分较多,不易研细、分散的样品:先按1:1加水在组织捣碎机中捣成匀浆(蔬菜、水果需先洗净、晾干,取可食部分)。称取5~10 g(含淀粉0.5 g左右)匀浆于250 mL锥形瓶中,加30 mL乙

实验一淀粉酸水解制糖与还原糖的测定 一、试验目的 ①掌握酸法制糖的工艺与方法; ②掌握还原糖的测定方法。 二、酸水解制糖原理 在淀粉酸水解过程中,有如下三种反应: 在水解过程中,淀粉的颗粒结构被破坏,α-(1, 4)-糖苷键及α-(1, 6)-糖苷键在酸的催化下被切断,示踪同位素原子O18研究证明,H+先与H2O结合生成H3O+,H3O+能与糖苷键的氧原子结合生成不稳定化合物Ⅰ,随后C1-O键断裂生成C1正碳离子Ⅱ,H2O与具有正电荷的C1结合,再使C1失去H+,完成糖苷键的水解过程。 三、实验仪器 7230型分光光度计、水浴锅或电炉、100mL量筒、100mL或50mL容量瓶9个、10mL与2mL移液管各1支、250mL烧杯、250mL锥形瓶2个、布氏漏斗、真空泵、牛皮纸。 四、实验试剂 淀粉(化学纯)、3, 5-二硝基水杨酸(化学纯)、1%硫酸、氢氧化钠(分析纯)、酒石酸钾钠、苯酚(化学纯)、亚硫酸钠(Na2SO3)、葡萄糖(分析纯)、无水酒精、粉末CaCO3。 ①配制DNS(3,5-二硝基水杨酸)试剂:取7.5克3,5-二硝基水杨酸,14.0 g氢氧化钠,充分溶解于1000mL蒸馏水中。再加入酒石酸钾钠216.0克,苯酚(在50℃水浴中融化)5mL,亚硫酸钠6.0克,完全溶解后盛于棕色瓶中。 ②葡萄糖标准溶液(1g/L):准确称取干燥衡重的葡萄糖1g,加1mL 1%硫酸(防止微生物生长),以蒸馏水定容至1000mL。 ③1%硫酸;④碘-碘化钾溶液 四、实验步骤 (一)葡萄糖标准曲线的制定

②将各溶量瓶溶液混匀,在水浴锅或电炉上沸水浴5分钟,取出后立即用冷水冷却至室温,并加水定容,摇匀。 ③于550nm 处用分光光计测定吸光度A 值,以葡萄糖浓度为横坐标,吸光度为纵坐标,绘制葡萄糖标准曲线。 (二)还原糖的制备与测定 ①淀粉酸水解工艺 取淀粉5~10g ,加入250mL 锥形瓶,按照固液比1∶10加入1%硫酸,用牛皮纸封好口,在121~125℃水解30min ,取出1、2滴置于白瓷板上,加1滴碘-碘化钾溶液直到不呈蓝色,即为水解终点。冷却,然后用粉末CaCO 3中和至pH 值4.5~5.0,减压过滤,得到含葡萄糖的样品溶液,测定其体积V 0。 ②还原糖的测定 平行取2.0mL 待测样品2份(含糖量为0.2~2.0g/L ),加入100mL 或50mL 容量瓶中,再加入3mL DNS 试剂,沸水浴5min ,冷却至室温后,加水定容摇匀,于550nm 处用分光光计测量吸光度A ,根据标准葡萄糖液所得数据建立的标准曲线,测算待测试样的平均还原糖浓度,计算淀粉的转化率。 ③淀粉的转化率计算 0V (L)(mg/L) = 100%(g)100086% 1.11 ?????原糖液体积原糖液葡萄糖含量淀粉转化率投入淀粉量 注:使用此公式时,应注意测定过程中的稀释倍数

马铃薯淀粉生产工艺及马铃薯淀粉设备介绍 关键词:马铃薯淀粉设备马铃薯加工设备土豆淀粉2018.8.2 一、原材料概况: 马铃薯块茎呈鹅卵石状,不同品种,其块茎数量及粗细差异很大。马铃薯块茎含淀粉量高,而含蛋白质、脂肪少,淀粉含量为15~25%。马铃薯淀粉的一些独特性能是其它淀粉无法代替的,所以广泛应用于食品工业。 二、工艺流程: 马铃薯-水力输送-清洗输送-二级清洗-清洗去石提升-粉碎、分离(曲网挤压型制粉机)-除砂-浓缩精制-真空脱水-气流干燥-成品包装 三、工艺介绍:下面以固德威薯业机械的马铃薯淀粉生产工艺流程及设备为例做简单介绍: 1、清洗工艺及设备 主要是清除物料外表皮层沾带的泥沙, 并洗除去物料块根的表皮,去石清洗机是要去除物料中的硬质杂。对作为生产淀粉的原料进行清洗, 是保证淀粉质量的基础,清洗的越净,淀粉的质量

就越好。输送是将物料传递至下一工序,往往输送的同时也有清洗功能。常用的输送、清洗、去石设备有:水力流槽、螺旋清洗机、斜鼠笼式清洗机、浆叶式清洗机、去石上料清洗机、(平)鼠笼式清洗机、转筒式清洗机、刮板输送机等。根据土壤和物料特性可选择其中的一些进行组合,达到清洗净度高,输送方便的要求。 2、原料粉碎及设备 粉碎的目的就是破坏物料的组织结构,使微小的淀粉颗粒能够顺利地从块根中解体分离出来。粉碎的要求在于: 1. 尽可能的使物料的细胞破裂,释放出更多的游离淀粉颗粒; 2. 易于分离。并不希望皮渣过细,皮渣过细不利于淀粉与其他成份分离,又增加了分离细渣的难度。固得威薯业国内外领先的分拣式粉碎。经第一级刨丝粉碎后的物料立即进行过滤,减小阻滞性,不符合要求的物料才进行第二次粉碎,达到要求不再粉碎,从而使细度均匀,降低动力,并且粉碎细度具有可控性,可根据物料性质不同进行调整,是目前淀粉加工中理想的粉碎方式。 3、筛分工艺及设备 淀粉提取,也称为浆渣分离或分离,是淀粉加工中的关键环节,直接影响到淀粉提取率和淀粉质量。粉碎后的物料是细小的纤维,体积大于淀粉颗粒,膨胀系数也大于淀粉颗粒,比重又轻于淀粉颗粒, 将粉碎后的物料,以水为介质,使淀粉和纤维分离开来。固得威薯业采用充分淘洗--无压渗滤—挤压依次多级循环的工艺(国家专利).充分淘洗使淀粉从纤维上游离出来;无压渗滤使浆水通过筛网孔而细渣留在网上;挤干使纤维中含的淀粉浆水进一步滤出,可以用较小的动力和快捷过程完成淀粉的提取。 4、洗涤工艺及设备 淀粉的洗涤和浓缩是依靠淀粉旋流器来完成的,旋流器分为浓缩旋流器和洗涤精制旋流器。通过筛分以后的淀粉浆先经过浓缩旋流器,底流进入洗涤精制旋流器,最后达到产品质量要求。

湿法玉米淀粉的生产工艺及设备 一.工艺流程及工艺参数 1.玉米贮存与净化 原料玉米(要求成熟的玉米,不能用高温干燥过热的玉米)经地秤计量后卸入玉米料斗,经输送机、斗式提升机进入原料贮仓,经振动筛选、除石、磁选等工序净化,计量后去净化玉米仓。由玉米仓出来的玉米用水力或机械输送去浸泡系统。水力输送速度为0.9—1.2m/s,玉米和输送水的比例为1:2.5—3。温度为35℃—40℃,经脱水筛,脱除的水回头作输送水用,湿玉米进入浸泡罐。 2.玉米浸泡 玉米的浸泡是在亚硫酸水溶液中逆流进行的。一般采用半连续流程。浸泡罐8—12个,浸泡过程中玉米留在罐内静止,用泵将浸泡液在罐内一边自身循环一边向前一级罐内输送,始终保持新的亚硫酸溶液与浸泡时间最长(即将结束浸泡)的玉米接触,而新入罐的玉米与即将排出的浸泡液接触,从而保持最佳的浸泡效果。浸泡温度(50±20)℃,浸泡时的亚硫酸浓度为0.2%—0.25%,浸泡时间60—70h。完成浸泡的浸泡液即稀玉米浆含干物质7%—9%,pH3.9—4.1,送到蒸发工序浓缩成含干物质40%以上的玉米浆。浸泡终了的玉米含水40%—46%,含可溶物不大于2.5%,用手能挤裂,胚芽完整挤出。其酸度为对100kg干物质用0.1mol/L氢氧化钠标准液中和,用量不超过70mL。 3.玉米的破碎 浸泡后的玉米由湿玉米输送泵经除石器进入湿玉米贮斗,再进入头道凸齿磨,将玉米破碎成4—6瓣,含整形玉米量不超过1%,并分出75%—85%的胚芽,同时释放出20%—25的淀粉。破碎后的玉米用胚芽泵送至胚芽一次旋液分离器,分离器顶部流出的胚芽去洗涤系统,底流物经曲筛滤去浆料,筛上物进入二道凸齿磨,玉米被破碎为10—12瓣。在此浆料中不应含有整粒玉米,处于结合状态的胚芽不超过0.3%。经二次破碎的浆料经胚芽泵送二次旋液分离器;顶流物与经头道磨破碎和曲筛分出的浆料混合一起,进入一次胚芽分离器,底流浆料送入细磨工序。进入一次旋流分离器的淀粉悬浮液浓度为7—9Bé,压力为0.45—0.55MPa。进入二次旋流分离器的淀粉浆料浓度为7—9 Bé,压力为0.45—0.55MPa,胚芽分离过程的物料温度不低于35℃。 4.细磨 经二次旋流分离器分离出胚芽后的稀浆料通过压力曲筛,筛下物为粗淀粉乳,淀粉乳与细磨后分离出的粗淀粉浆液汇合后进入淀粉分离工序;筛上物进入冲击磨(针磨)进行细磨,以最大限度地使与纤维联结的淀粉游离出来。经磨碎后的浆料中,联结淀粉不大于10%。细磨后的浆料进入纤维洗涤槽。 5.纤维的分离、洗涤、干燥 细磨后的浆料进入纤维洗涤槽,在此与以后洗涤纤维的洗涤水一起用泵送到第一级压力曲筛。筛下分离出粗淀粉乳,筛上物再经5级或6级压力曲筛逆流洗涤,洗涤工艺水从最后一级筛前加入,通过筛面,携带着洗涤下来的游离淀粉逐级向前移动,直到第一级筛前洗涤槽中,与细磨后的浆料合并,共同进入第一级压力曲筛,分出粗淀粉乳。该乳与细磨前筛分出的粗淀粉乳汇合,进入淀粉分离工序。筛面上的纤维、皮渣与洗涤水逆流而行,从第一筛向以后各筛移动,经几次洗涤筛分洗涤后,从最后一级曲筛筛面排出,然后经螺旋挤压机脱水送纤维饲料工序。 细磨后浆料浓度为13—17Bè,压力曲筛进料压力0.25—0.3MPa,洗涤用工艺水温度45℃,可溶物不超过1.5%,纤维洗涤用水量210—230L/100kg绝干玉米,洗涤后物

实验一淀粉的提取、显色和水解 一、实验目的与要求 1、熟悉淀粉的提取方法; 2、掌握淀粉遇碘显色的原理和方法; 3、进一步了解淀粉的性质和淀粉水解的原理和方法。 二、实验原理 淀粉广泛分布于植物界,谷类、果实、种子、块茎中含量丰富。工业用的淀粉主要从玉米、甘薯、马铃薯中提取。本实验以马铃薯、甘薯为原料,利用多糖和水生成胶体溶液的原理,采用过虑和沉降等方法提取淀粉。 淀粉与碘作用呈蓝色,是由于淀粉与碘作用形成了碘-淀粉的吸附性复合物,这种复合物是由于淀粉分子的每6个葡萄糖基形成的1个螺旋圈束缚1个碘分子,所以当受热或者淀粉被降解,都可以使淀粉螺旋圈伸展或者解体,失去淀粉对碘的束缚,因而蓝色消失。 淀粉在酸催化下加热,逐步水解成相对分子质量较小的低聚糖,最终水解成葡萄糖。 (C6H12O5)m→(C6H10O5) n→C12H22O11→C6H12O6 淀粉糊精麦芽糖葡萄糖 淀粉完全水解后,失去与碘的呈色能力,同时出现单糖的还原性,与班氏试剂反应,使Cu2+还原为红色或黄色的Cu2O。 三、材料、试剂与器材 材料:生马铃薯、甘薯、 研钵、纱布、漏斗、白瓷板、滤纸、烧杯、量筒、试管、试管夹、 仪器:水浴锅 试剂:1、乙醇 2、0.1%淀粉液 称取淀粉1g,加少量水,调匀,倾入沸水,边加边搅,并以热水稀释至1000ml,可加数滴甲苯防腐。 3、稀碘液

配制2%碘化钾溶液,加入适量碘,使溶液呈淡棕黄色即可。 4、10%NaOH溶液 称取NaOH10g,溶于蒸馏水中并稀释至100ml。 5、班氏试剂 溶解85g柠檬酸钠(Na3C6H3O7·11H2O)及50g无水碳酸钠于400ml水中,另溶8.5g硫酸铜于50ml热水中。将冷却后的硫酸铜溶液缓缓倾入柠檬酸钠-碳酸钠溶液中,该试剂可以长期使用,如果放置过久,出现沉淀,可以取用其上层清夜使用。 6、20%硫酸 量取蒸馏水78ml置于150ml烧杯中,加入浓硫酸20ml,混匀,冷却后贮于试剂瓶中。 7、10%碳酸钠溶液 称取无水碳酸钠10g溶于水并稀释至100ml。 四、操作步骤 1、淀粉的提取 生马铃薯(或甘薯)去皮,切碎,称50g,放入研钵中,加适量水,捣碎研磨,用四层纱布过滤,除去粗颗粒,滤液中的淀粉很快沉到底部,多次用水洗涤淀粉,然后抽滤,滤饼放在表面皿上,在空气中干燥即得淀粉。2、淀粉与碘的反应 取少量自制淀粉于白瓷板上,加1-3滴稀碘液,观察淀粉与碘液反应的颜色。 取试管一支,加入0.1%淀粉5ml,再加2滴稀碘液,摇匀后,观察颜色是否变化。将管内液体平均分成三份于三支试管中,并编号。 1号管在酒精灯上加热,观察颜色是否褪去,冷却后,再观察颜色变化。 2号管加入乙醇几滴,观察颜色变化,如无变化可多加几滴。 3号管加入10% NaOH溶液几滴,观察颜色变化。 3、淀粉的水解 在一个小烧杯内加自制的1%淀粉溶液50ml及20%硫酸1ml,于水浴锅中加热煮沸,每隔3min取出反应液2滴,置于白瓷板上做碘实验,待反应液不

玉米淀粉生产工艺 玉米淀粉生产工艺操作规程 编号: 版号: 编制日期 审核日期 批准日期

目录 一、清理工序 二、浸泡工序 三、玉米破碎与胚芽分离工序 四、精磨及纤维洗涤工序 五、淀粉与麸质分离工序 六、淀粉干燥工序 七、榨油工序 八、蛋白粉干燥工序 九、标志、包装、运输、贮存 十、附录:玉米淀粉生产工艺流程图 一、 清理工序 为了生产高质量的淀粉,必须对玉米原料进行清理,我们采用干法和湿法相结合的方法,使玉米能得到最大限度的净化。 1、清理工艺指标及参数 1)清理筛工艺参数 分离小杂效率≥65% 分离大杂效率≥90% 风选除杂率≥60%

筛孔不堵塞率≥80% 大杂中含粮≤3% 吸风道风速6—8M/S 碎玉米≤3% 小杂中含粮≤0.5% 清理后玉米含杂≤0.3 % 2)去石机工艺参数 砂石去除率≥90%砖瓦、炉渣、泥块去除率≥60%除去砂石中含粮粒数≤100粒/Kg 3)去石旋流器工艺参数 石子去除率≥95%石子中含粮粒数≤50粒/Kg 2、操作规程 1) 开机前应检查振动筛、提升机是否正常; 2) 漂浮槽放入工艺水并确定流量; 3) 然后开机均匀下料。 3、注意事项 1) 在运转中应及时清理去除物,以免发生堵塞现象; 2)

避免送料系统缺水。 二、 浸泡工序 为了使玉米适合淀粉生产加工的需要,必须通过浸泡软化玉米,降低籽粒机械强度,分散玉米胚体内的蛋白质网削弱保持淀粉的联结健,浸出玉米可溶性物质,抑制有害微生物活动和清洗玉米,以达到加工 顺利进行的目的。 1、 浸泡工艺指标及参数 1) H2SO3浓度0.25—0.35% 2)一般玉米浸泡温度50±2℃ 3) 干燥霉变玉米浸泡温度50—55℃ 4)稀玉米浆浓度≥2.5Bé,SO2<0.03% 5)浸后玉米酸度≤70ml (0.1N.NaOH溶液滴定100克玉米干物) 6)浸泡时间48—72小时 7)浸后玉米水份42—45% 8)浸后玉米可溶物2—3% 9)浸玉米用手指挤开,手感较软。 2、 操作规程

行业(工业)清洁生产 一、行业现状 1、发展现状: 1、国家对玉米深加工行业的宏观调控政策,使玉米淀粉产业 的增速开始放缓。国内玉米淀粉产业的发展,自1978年改革开放到2008年,三十年间,发展速度一直维持在20%-25%的 速度增长。2006年对玉米淀粉行业的投资热情更是达到了顶峰时期。2006年玉米淀粉专业委员会对国内玉米淀粉行业开展了规模最大的一次调研。在走访十个国内主要玉米深加工省份的 企业中,60%左右的企业都在以各自不同的优势加快自身的发 展建设。也就在06年底和07年,国家出台了一系列的宏观调 控政策。在国家宏观政策调控下,2008年玉米淀粉比2007年只增长了10.8%,2009年比2008年增长了12%。玉米淀粉加 工业出现增速放缓、平稳发展态势。 2、2010年玉米淀粉行业已摆脱金融危机的影响,呈现生产、 销售旺盛状态。2008年在全球金融危机的影响下,行业规模企业保持了较高的开工率,为行业渡过金融危机阶段的困难时 期和行业的发展做出了贡献。使得08年玉米淀粉产量比07年 仍有10%以上的增长。09年下半年,行业开始恢复性增长。 进入2010年以来,在玉米涨价的形势下,玉米淀粉加工业不 仅迅速摆脱了金融危机的影响,而且生产和销售都处于比较旺 盛的状态,利润和税收有了恢复性的增长。

3、未来淀粉行业发展总体趋势,应该保持稳定、持续、健康 的发展态势,这是淀粉加工业发展形势的主流。在未来的行业发展中,企业可根据所在区域的市场需求、区域环境优势等 情况,通过优化自身的产品结构,加强环保治理措施、降低产 品生产成本,提供产品综合收率。使企业向资源节约型、环境 友好型方向发展。同时,国家还鼓励和支持行业具有一定生产 规模、市场前景看好、发展潜力大的玉米深加工企业,通过联 合、兼并和重组的形式,发展大型企业集团,提高产业的集中 度和核心竞争力。因此,我国淀粉深加工企业在未来的发展中,将保持稳定、持续、健康的发展态势,为行业的发展做出贡献。 2、存在的问题分析 1、国家对淀粉深加工行业的宏观调控政策,使淀粉产业的增速开始放缓。 国内淀粉产业的发展,自1978年改革开放到2008年,三十年间,发展速度一直维持在20%-25%的速度增长。2006年对淀粉行业的投资热情更是达到了顶峰时期。2006年淀粉专业委员会对国内淀粉行业开展了规模最大的一次调研。在走访十个国内主要淀粉深加工省份的企业中,60%左右的企业都在以各自不同的优势加快自身的发展建设。也就在06年底和07年,国家出台了一系列的宏观调控政策。

潍坊职业学院教案案首 基本课题:实验十二食品中淀粉分解菌的检验 教学目的与要求: 掌握淀粉分解菌检验的操作技术和检验的意义。 教学的重点、难点: 做到无菌操作,难点是能否判断淀粉与碘变蓝的颜色和消失的变化。对教材的处理和意见: 先讲解,然后让学生独立完成计数操作的过程。 课后作业: 计算公式: 每平板平均菌落数*5*稀释倍数 个菌落/克食品= 25克 课后体会:

实验十二食品中淀粉分解菌的检验 一、实验原理 食品在生产、加工、贮运和销售过程中常常受到各种微生物的污染。许多淀粉质食品,受到某些真菌和细菌的污染,产生淀粉酶水解淀粉质原料,不仅造成食品形态发生变化和变质,而且因其产生毒素,食用后引起食物中毒。因此加强食品淀粉分解菌的检查,在食品卫生学上具有重要意义。 二、实验器材 1.灭菌平板、玻璃涂棒、灭菌吸管(或灭菌注射器)、电炉、酒精灯、灭菌研钵、 高压锅、试管、三角瓶的灭菌水230 mL(带玻璃珠)、天平(灭菌纸片)、被 检样品(约250 g)、灭菌镊子或勺子等。 2.淀粉琼脂培养基:可溶性淀粉10 g、琼脂10 g、蛋白胨2.5 g、NaCI 2.5 g、 水500mL、pH7.0 、121℃灭菌30min。 3.碘液:碘1g、KI 2g , 蒸馏水300 mL。 三、操作步骤 (一)样品处理及培养 1、要检查的食品作代表性采样。用无菌工具采集检样约250 g(全班用)(装于灭菌的容器内送检。 2、以无菌操作称取检样25 g(大块的须剪碎)放入225 mL的灭菌水的三角瓶内,充分振摇作成1:10的稀释液(根据污染轻重稀释成不同倍数)。 3、制备平板:将加热溶化冷至约50℃的淀粉琼脂培养基摇均匀,注入灭菌的平板3套(每组),每个约15 mL,冷却凝固后备用。 4、用1 mL灭菌吸管或灭菌注射器吸取稀释检样上层液0.2 mL分别加入上述平板内,用无菌涂棒涂布均匀。室温培养30min后于30℃的培养箱中倒置培养2-3天。(二)检查 取出平板,观察菌落生长情况。滴加碘液数滴旋转平板,使碘液铺满平板,含有淀粉的平板遇碘液即现蓝色。如能分解淀粉的菌落,其菌落周围因淀粉水解出现无色(碘液颜色的)透明圈,透明圈的大小,标志着该菌水解淀粉能力的大小。

行业(工业)清洁生产一、行业现状 1、发展现状: 1、国家对玉米深加工行业的宏观调控政策,使玉米淀粉产业的 增速开始放缓。国内玉米淀粉产业的发展,自1978 年改革开 放到2008 年,三十年间,发展速度一直维持在20%-25%的速度增长。2006 年对玉米淀粉行业的投资热情更是达到了顶峰时期。2006 年玉米淀粉专业委员会对国内玉米淀粉行业开展了规 模最大的一次调研。在走访十个国内主要玉米深加工省份的企 业中,60%左右的企业都在以各自不同的优势加快自身的发展建 设。也就在06 年底和07 年,国家出台了一系列的宏观调控政策。在国家宏观政策调控下,2008 年玉米淀粉比2007年只增长了10.8%,2009年比2008 年增长了12%。玉米淀粉加工业出现增速放缓、平稳发展态势。 2、2010 年玉米淀粉行业已摆脱金融危机的影响,呈现生产、销 售旺盛状态。2008 年在全球金融危机的影响下,行业规模企业保持了较高的开工率,为行业渡过金融危机阶段的困难时期和 行业的发展做出了贡献。使得08 年玉米淀粉产量比07 年仍有10%以上的增长。09 年下半年,行业开始恢复性增长。进入 2010 年以来,在玉米涨价的形势下,玉米淀粉加工业不仅迅速摆脱了金融危机的影响,而且生产和销售都处于比较旺盛的状

态,利润和税收有了恢复性的增长。 3、未来淀粉行业发展总体趋势,应该保持稳定、持续、健康 的发展态势,这是淀粉加工业发展形势的主流。在未来的行业 发展中,企业可根据所在区域的市场需求、区域环境优势等情 况,通过优化自身的产品结构,加强环保治理措施、降低产品生产成本,提供产品综合收率。使企业向资源节约型、环境友好型方向发展。同时,国家还鼓励和支持行业具有一定生产规模、市场前景看好、发展潜力大的玉米深加工企业,通过联合、兼并和重组的形式,发展大型企业集团,提高产业的集中度和核心竞争力。因此,我国淀粉深加工企业在未来的发展中,将保持稳定、持续、健康的发展态势,为行业的发展做出贡献。 2、存在的问题分析 1、国家对淀粉深加工行业的宏观调控政策,使淀粉产业的增速开始 放缓。 国内淀粉产业的发展,自1978 年改革开放到2008年,三十年间,发展速度一直维持在20%-25 %的速度增长。2006 年对淀粉行业的投资热情更是达到了顶峰时期。2006 年淀粉专业委员会对国内淀粉行业开展了规模最大的一次调研。在走访十个国内主要淀粉深加工省份的企业中,60%左右的企业都在以各自不同的优势加快自身的发展建设。也就在06年底和07 年,国家出台了一系列的宏观调控政策。

淀粉水解 编辑词条 摘要 淀粉水解 淀粉为高分子化合物,一定条件下可以水解方程式: (C6H10O5)n+nH2O————nC6H12O6 条件:稀硫酸,加热淀粉是一种重要的多糖,是一种相对分子量很大的天然高分子化合物。虽属糖类,但本身没有甜味,是一种白色粉末,不溶于冷水。在热水里淀粉颗粒会膨胀,有一部分淀粉溶解在水里,另一部分悬浮在水里,形成胶状淀粉糊。淀粉进入人体后,一部分淀粉收唾液所和淀粉酶的催化作用,发生水解反应,生成麦芽糖;余下的淀粉在小肠里胰脏分泌出的淀粉酶的作用下,继续进行水解,生成麦芽糖。麦芽糖在肠液中麦芽糖酶的催化下,水解为人体可吸收的葡萄糖,供人体组织的营养需要。 科学探究:设计实验方案,实验淀粉能不能水解,水解的条件和产物是什么?怎样判断淀粉是否水解了? 实验用品:淀粉、水、碘溶液、20%的硫酸、10%氢氧化钠、2%的硫酸铜、酒精灯、试管夹、试管等。 实验方法 1、在试管1中加入0.5g淀粉和4ml水,在试管2中加入0.5g淀粉和4ml 20%的硫酸溶液。分别加热试管3~4min。 2、把试管2中的一部分溶液倒入试管3中,留作下一步实验用。 3、向试管1和试管2中加入几滴碘溶液,观察现象。发现试管1的溶液呈蓝色(淀粉遇碘变成蓝色),试管2无明显现象。不同现象的原因是:淀粉在酸性条件并加热的条件下发生了水解反应。 4、向试管3中滴入10%的钜海 泻腿芤褐械牧蛩幔 讶芤旱鞒嗜跫钚裕 谷芤旱腜H值约为9~10。 5、另取一只试管4加入3ml氢氧化钠溶液,并向其中滴入4滴2%的硫酸铜溶液,立即有蓝色的氢氧红铜沉淀生成。再取试管3中的水解液1ml滴入,振荡混合均匀后,用酒精灯加热煮沸,溶液颜色常有蓝色——黄色——绿色(黄蓝两色混合)——红色等一系列变化。最终有红色沉淀生成。原因是氢氧化铜被还原生成红色难溶于水的氧化亚铜。 实验结论:淀粉在酸的催化作用下,能发生水解;淀粉的水解过程:先生成分子量较小的糊精(淀粉不完全水解的产物),糊精继续水解生成麦芽糖,最终水解产物是葡萄糖。注意事项:淀粉水解的中间产物糊精(有分子量较大的红糊精和分子量较小的白糊精),对碘反应的颜色变化是:紫色—棕色—黄色,若淀粉水解不彻底,也会有不同的颜色出现。问题思考:1、试管1为什么变成了蓝色?试管2为什么无明显现象?为什么?(试管1中的淀粉未水解,淀粉遇碘变成蓝色;试管2中淀粉在酸的催化作用下水解了,所以无明显现象;不同现象的原因是:淀粉在酸性条件并加热的条件下发生了水解反应。)2、如何验证淀粉没有还原性?(提示:不能发生银镜反应或者不能还原氢氧化铜)3、实验延伸

“淀粉水解”探究性实验教学案例 在“淀粉水解”的教学中,我改变过去教师演示,引导学生得出结论的教学模式,将实验探究模式引入课堂,通过假设、设计实验方案、实验、得出结论的过程,让学生体验科学研究的过程、感悟科学的方法、培养创新能力。 先用小麦芽滤液、稀释的唾液、淀粉酶溶液和多酶片溶液分别与淀粉进行实验,再用碘液对反应产物进行检验,均未检测到淀粉的存在,说明以上四种物质都含淀粉酶(提示:多酶片含淀粉酶、胃蛋白酶、胰淀粉酶)。这时我提出:“病人口服多酶片后,淀粉酶是否有效?酶的本质是蛋白质,淀粉酶是否被蛋白酶水解”的问题。 如何解决这个问题?学生们讨论开了。通过讨论,学生们逐渐统一了思想:要解决这个问题,必须知道“主要的消化场所胃和小肠里的消化酶及酸碱条件”【聚合思维,学生思维逐渐指向问题的实质】。这时学生思维活跃、提出了许多“可能”【发散思维、形成假设和猜想】,归纳起来有以下几点假设:①在胃内淀粉酶仍具有生物活性;②在胃内受胃酸影响,淀粉酶暂时失活,但淀粉并未分解,进入小肠仍具生活活性;③在胃内淀粉酶被胃蛋白酶水解而失活。 如何用科学的方法来设计研究方案验证这些假设?学生们分组讨论,由一个组的学生汇报,其他学生提出补充、质疑、评价,确定研究方向:①胃酸性条件(pH1.5一2.2)的模拟实验:多酶片中含淀粉酶和胃蛋白酶,只需控制适宜的pH 值(0. 04molL 1-?L mol 的盐酸加淀粉溶液稀释两倍,即可模拟胃酸条件);②小肠弱碱性条件(pH7~8)的模拟实验:用0.041-?L mol 的氢氧化钠溶液中和盐酸,控制溶液的pH 值接近8。制订实验方案 【“提出假设——设计方案——实验验证——得出结论”,科学方法的获得,在于平时的引导和实际的情景中感悟】。 上述实验验证,推翻了第一种假设和第二种假设。面对结果,许多学生迷惆了,他们原以为各组的实验结果应该一致【学生原有认知与事实现象发生冲突】。这时候,学生情绪高涨,自发地讨论开了【利用学生的心理佳境将科学探究引向深入】。通过讨论,学生的思路逐渐统一了:假设①胃酸导致淀粉酶发生化学变化;②在胃酸环境下,胃蛋白酶导致淀粉酶发生化学变化。新的实验方案又逐渐明朗起来。 方案四:①在淀粉酶中加入稀盐酸,15分钟后用碱中和,再加入淀粉液,37℃水浴5分钟,用碘液检验;②用碱液代替方案三中的盐酸重新实验。接着学生们分组实验、讨论,得出实验结论:①胃酸使淀粉酶暂时失活,胃蛋白酶是导致淀粉酶发生水解的根本原因;②酶的活性受酸碱度的影响。

淀粉糖的生产工艺和种类 生产工艺有酸法、酶法、酸酶法三种,不同的工艺,其甜度、胶粘性、增稠性、保潮性、吸湿性、渗透压力、颜色稳定性、焦化性、还原性、发酵性是不同的,不管哪种工艺都是一个复杂的水解过程。淀粉水解过程存在三种主要反应:一是水解为葡萄糖;二是水解成葡萄糖后重新复合成异麦芽糖等复合糖;三是葡萄糖分解生成5-烃甲基糖醛及酸丙酸色素物质。 1.酸法水解。有盐酸、草酸,其中盐酸的水解淀粉能力高,但酸法水解缺乏专一性,同时产生复合反应,温度愈高,复合反应愈多,生成的有色物质多,颜色深,用酸量多,需中和碱量大,因之产生的灰分也多。 2.酶法水解。具有高度的专一性,副产物少,纯度高,糖色浅,因之减少了净化工序和净化剂的用量,与酸法相比,可以转化较高浓度的固形物,提高效率,减少损耗,降低成本,所得母液还可以利用,而且在常温常压下进行,设备工艺都比较简单。 3.酸酶法。投料资度18~20Bx°,为酸法的两倍,节省费用,缩短时间,DE值(糖化率)可达96%,纯度高,糖液色浅,容易结晶析出,用酸量少,仅为酸法的20%,产品质量高。 淀粉糖产品由于是淀粉水解而得,因此,淀粉水解的速度、水解的程度、液化、糖化、净化、结晶、淀粉原料、催化效率以及工艺设备性能等,均能影响淀粉糖液的质量。淀粉品种不同,化学结构不同,对液化亦有不同的影响。淀粉中的蛋白质、脂肪、灰分等杂质均能影响催化效率,降低酸的有效浓度,尤其是淀粉中的含氮物质对热稳定性有明显的影响。硫酸铵受热分解产生氮与羧甲基糠醛作用,能产生大量有色物质,迅速焦化。玉米中的植酸盐要消耗部分酸。总之不管什么液化方法,都存在不溶性淀粉颗粒,这种淀粉颗粒能与脂肪形成络合物,呈螺旋结构,不容易水解,降低了糖化率。

目录 1.引言 (2) 2.教材实验 (2) 3.实验探究问题 (3) 4.实验部分 (3) 4.1实验原理 (3) 4.1.1淀粉水解反应原理 (3) 4.1.2淀粉与碘显蓝色原理 (3) 4.1.3淀粉逐步水解成葡萄糖的过程 (3) 4.2实验探究仪器和药品 (3) 4.2.1实验仪器 (3) 4.2.2实验药品 (3) 4.3实验现象标准 (4) 5.影响淀粉水解效果的实验探究 (4) 5.1加热时间对淀粉水解效果影响实验探究 (4) 5.2 蒸馏水的量对淀粉水解效果影响实验探究 (5) 5.3温度对淀粉水解效果影响实验探究 (6) 5.4催化剂对淀粉水解效果影响实验探究 (6) 5.4.1H 2SO 4 对淀粉水解效果影响实验探究 (6) 5.4.2唾液淀粉酶对淀粉水解效果影响实验探究 (7) 5.5淀粉水解实验材料选择的实验探究 (8) 5.5.1土豆中淀粉水解实验 (8) 5.5.2糯米淀粉水解实验 (8) 6.实验探究结果与结论 (9) 6.1实验探究结果 (9) 6.2实验探究讨论 (9) 7.淀粉水解教学建议 (9) 致谢 (10) 参考文献 (10)

淀粉水解效果影响因素的实验探究 摘要:本文从温度、催化剂、水等几个方面探究淀粉水解效果的影响因素,并选用生活中的食材,探究是否能用生活中的食材代替可溶性淀粉运用到教学中。最后,得出淀粉水解实验的最佳条件,提出中学化学实验—淀粉水解的教学建议。 关键词:淀粉水解;影响因素;探究;教学建议 1.引言 淀粉是一种多糖,能看作葡萄糖的高聚体,植物体中存在较为多的一种有机物,淀粉的合成是植物贮存能量的形式。淀粉存在于植物的种子、根、茎等部位。淀粉可分为直链淀粉和支链淀粉。直链淀粉与支链淀粉相比,直链淀粉更易被人体吸收[1]。 普通高中课程标准实验教科书人教版《化学与生活》第一章生命的基础能源—糖类,其中有一个科学探究实验:淀粉水解。淀粉水解受到许多因素的影响,如:温度、淀粉酶、酸碱度、水等。 2.教材实验 (1)在试管1中加入0.5g淀粉和4mL水,在试管2中加入0.5g淀粉和4mL20%的 H 2SO 4 溶液,加热试管3-4分钟。 (2)用碱液中和2中的H 2 SO 4 溶液,把另一部分溶液倒入试管3中。(3)向试管1和试管2中加入几滴碘溶液,观察现象。 (4)向试管3中加入新制的银氨溶液,稍加热,观察现象。 3.实验探究问题 通过研读教材实验,不难发现教材中有许多问题并没有给学生详细的解释。例如:在一定温度下,水的用量多少是否影响水解效果?淀粉水解时所用的催化剂只能用酸吗?能用其他的催化剂吗?如:淀粉酶。淀粉水解最佳酸浓度是多少?淀粉水解时唾液淀粉酶用多少水解效果最佳?生活中常见的食材,如:土豆、玉米、大米、糯米等中都含有较为丰富的淀粉,可以应用这些食材做淀粉水解实验吗?本文就针对这几个问题进行探究。 4.实验部分 4.1实验原理 4.1.1淀粉水解反应原理

相关文档
最新文档