求概率的三种方法

求概率的三种方法
求概率的三种方法

求概率的方法

在新课标实施以来,中考数学试题中加大了统计与概率部分的考察,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,常用的方法有:列举法、列表法、画树状图法,这三种方法应该熟练掌握,先就有关问题加以分析. 一、列举法 例1:(05济南)如图1所示,准备了三张大小相同的纸片,其中两张纸片上各画一个半径相等的半圆,另一张纸片上画一个正方形.将这三张纸片放在一个盒子里摇匀,随机地抽取两张纸片,若可以拼成一个圆形(取出的两张纸片都画有半圆形)则甲方赢;若可以拼成一个

蘑菇形(取出的一张纸片画有半圆、一张画有正方形)则乙方赢.你认

为这个游戏对双方是公平的吗?若不是,有利于谁? .

分析:这个游戏不公平,因为抽取两张纸片,所有机会均等的结果为:半圆半圆,半圆正方形,正方形半圆,正方形正方形.所以取出的两张纸片都画有半圆形的概率为4

1

. 取出的一张纸片画有半圆、一张画有正方形的概率为

2

142=,因为二者概率不等,所以游戏不公平. 说明: 本题采用了一种较为有趣的试题背景,重在考查学生对概率模型的理解、以及对不确定事件发生概率值的计算.本题用列举方法,也可以用画树状图,列表法. 二、画树状图法 例2:(06临安市)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为12

(1)试求袋中蓝球的个数.

(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.

解析:⑴设蓝球个数为x 个,则由题意得

21

122=

++x , 1=x

答:蓝球有1个. (2)树状图如下:

∴ 两次摸到都是白球的概率 =

6

1

122=. 说明:解有关的概率问题首先弄清:①需要关注的是发生哪个或哪些结果.②无论哪种都是机会均等的,要对实践的分析得出概率通常用列表或画树状图来写出事件发生的结果,这样便于确定相关的概率. 本题是考查用树状图来求概率的方法,这种方法比较直观,把所有可能的结果都一一罗

图1 黄白2蓝白2白1蓝黄白1蓝黄白2

列出来,便于计算结果. 三、列表法 例3:(06晋江市)如图2,是由转盘和箭头组成的两个装置,装置A 、B 的转盘分别被平均分成三部分,装置A 上的数字是3、6、8;装置B 上的数字是4、5、7;这两个装置除了表面数字不同外,其他构造均相同,小东和小明分别同时转动A 、B 两个转盘(一人转一个),如果我们规定箭头停留在较大数字的一方获胜(如:若A 、B 两个转盘的箭头分别停在6、4上,则小东获胜,若箭头恰好停在分界线上,则重新转一次),请用树状图或列表加以分析说明这个游戏公平吗? 解析:(方法一)画树状图:

由上图可知,所有等可能的结果共有9种,小东获胜的概率为95,小明获胜的概率为9

4

,所以游戏不公平.

由上表可知,所有等可能结果共有9种,小东获胜的概率为

95,小明获胜的概率为9

4

,所以游戏不公平.

说明:用树状图法或列表法列举出的结果一目了然,当事件要经过多次步骤(三步以上)完成时,用这两种方法求事件的概率很有效.

3 4 5 7 4 5 8 4 6 5 7 7 开始 小明 胜 小明 胜 小明 胜 小东 胜 小东 胜 小明 胜 小东 胜 小东 胜 小东 胜 B

A

图2

苏教版九年级上册数学[等可能条件下的概率--知识点整理及重点题型梳理]

苏教版九年级上册数学 重难点突破 知识点梳理及重点题型巩固练习 等可能条件下的概率--知识讲解 【学习目标】 1.知道试验的结果具有等可能性的含义; 2.会求等可能条件下的概率; 3.能够运用列表法和树状图法计算简单事件发生的概率. 【要点梳理】 要点一、等可能性 一般地,设一个试验的所有可能发生的结果有n个,它们都是随机事件,每次试验有且只有其中的一个结果出现.如果每个结果出现的机会均等,那么我们说这n个事件的发生是等可能的,也称这个试验的结果具有等可能性. 要点二、等可能条件下的概率 1.等可能条件下的概率 一般地,如果一个试验有n个等可能的结果,当其中的m个结果之一出现时,事件A 发生,那么事件A发生的概率P(A)=m n (其中m是指事件A发生可能出现的结果数,n 是指所有等可能出现的结果数). 当一个随机事件在一次试验中的所有可能出现的结果是有限个,且具有等可能性时,只需列出一次试验可能出现的所有结果,就可以求出某个事件发生的概率. 2.等可能条件下的概率的求法 一般地,等可能性条件下的概率计算方法和步骤是: (1)列出所有可能的结果,并判定每个结果发生的可能性都相等; (2)确定所有可能发生的结果的个数n和其中出现所求事件的结果个数m; (3)计算所求事件发生的可能性:P(所求事件)=m n . 要点三、用列举法计算概率 常用的列举法有两种:列表法和画树状图法. 1.列表法 当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法. 列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法. 要点诠释: (1)列表法适用于各种情况出现的总次数不是很大时,求概率的问题; (2)列表法适用于涉及两步试验的随机事件发生的概率. 2.树状图 当一次试验要涉及3个或更多个因素时,为了不重不漏地列出所有可能的结果,通常采用树形图,也称树形图、树图.

概率发展中的经典例子

1.分赌本问题 A、B 二人赌博,各出注金a 元,每局个人获胜概率都是2/1,约定:谁先胜S 局,即赢得全部注金a 2元,现进行到A 胜1S 局、B 胜2S 局(1S 与2S 都小于S )时赌博因故停止,问此时注金a 2应如何分配给A 和B 才算公平?此问题文字上最早见于1494年帕西奥利的一本著作,是对6=S ,51=S 和22=S 的情况。 由于对“公平分配”一词的意义没有一个公认的正确理解,在早期文献中出现过关于此问题的种种不同的解法,如今看来都不正确。例如,帕西奥利本人提出按2:S S 1的比例分配。塔泰格利亚则在1556年怀疑找到一种数学解法的可能性,他认为这是一个应由法官来解决的问题,但他也提出了如下的解法:若2S S 1>,则A 取回自己下的注a ,并取走B 下的注的S S S 1/)(2-,这等于按)(:)(22S S S S S S 11+--+的比例瓜分注金。法雷斯泰尼在1603年根据某种理由,提出按)12(:)12(22S S S S S S 11+---+-的比例分配。卡丹诺在其1539年的著作中,通过较深的推理提出了一种解法:记1S S r -=1,22S S r -=。把注金按)1(22+r r :)1(11+r r 之比分给A 和B。他这个解法如今看来虽然仍不正确,但有一个重要之点,即他注意到起作用的是1S ,2S 与S 的差距,而不在其本身。 这个问题的症结在于:他关乎各人在当时状况下的期望值。从以上这些五花八门的解法,似乎可以认为,这些作者已多少意识到这一点,但未能明确期望与概率的关系。而此处有关的是:假定赌博继续进行下去,各人最终取胜的概率。循着这个想法问题很易解决:至多再赌121-+=r r r 局,即能分出胜负。为A 获胜,他在这r 局中至少须胜1r 局。因此按二项 分布,A 取胜的概率为 r r r i A i r p -=∑???? ??=21,而B 取胜的概率为1B A p p =-。注金按B A p p :之比分配给A 和B,因A ap 2和B ap 2是A、B 在当时状态下的期望值。这个解是巴斯噶 (B.Pascal,1623~1662)在1654年提出的。他用了两种方法,其一是递推公式法,其二是用“巴斯噶三角”(即杨辉三角)。1710年,蒙特姆特在一封信中给出了我们在前面写出的解法,且不必规定二人的获胜概率相同。后来他又把此问题推广到多个赌徒的情形。分赌本问题在概率史上起的作用,在于通过这个在当时来说较复杂的问题的探索,对数学期望及其与概率的关系,有了启示。有的解法,特别是巴斯噶的解法,使用或隐含了若干直到现在还广为使用的计算概率的工具。如组合法、递推公式、条件概率和全概率公式等。可以说,通过对这个问题的研究,概率计算从初期简单计数步入较为精细的阶段。 巴斯噶与费尔马(P.de Fermat,1601~1665)的名字,对学习过中学以上数学的人来说,想必不陌生。巴斯噶三角,在我国称杨辉三角,中学教科书中已有提及。至于费尔马,因其 “费尔马大定理”(不存在整数0,,,≠xyx z y x 和整数3≥n ,使n n n z y x =+)于近年得 到证明,名声更远播数学圈子之外。费尔马在数学上的名声主要因其数论方面的工作,其在概率史上占到一席地位,多少有些出乎偶然——由于他与巴斯噶在1654年7~10月间来往的7封信件,其中巴致费的有3封。 这几封信全是讨论具体的赌博问题。与前人一样,他们用计算等可能的有利与不利情况数,作为计算“机遇数”即概率的方法(他们没有使用概率这个名称。与前人相比,他们在方法的精细和复杂性方面大大前进了。他们广泛使用组合工具和递推公式,初等概率一些基本规律也都用上了。他们引进了赌博的值(value)的概念,值等于赌注乘以获胜概率。3年后,惠更斯改“值”为“期望”(expectation)这就是概率论的最重要概念之一——(数学)期望的形成和命名过程。前文已指出:此概念在更早的作者中已酝酿了一段时间。这些通信中讨论的一个重要问题之一是分赌本问题,还讨论了更复杂的输光问题:甲、乙二人各有赌本a 和b 元(a、b 为正整数),每局输赢1元,要计算各人输光的概率。这个问题拿现

简单事件的概率

2.1简单事件的概率 教学目标: 1、在具体情境中进一步了解概率的意义. 2、进一步运用列举法(包括列表、画树状图)计算简单事件的概率教学重点:运用列举法(包括列表、画树状图)计算简单事件的概率. 教学难点:运用列举法(包括列表、画树状图)计算简单事件的概率. 教学过程 一、回顾和思考: 在数学中,我们把事件发生的可能性的大小称为事件发生的概率. 问:运用公式P(A)=m n 求简单事件发生的概率,在确定各种可能结果发生的可能性 相同的基础上,关键是求什么? 关键是求事件所有可能的结果总数n和其中事件A发生的可能的结果m(m≤n) 二、热身训练: 北京08奥运会吉祥物是“贝贝、晶晶、欢欢、迎迎、妮妮”.现将三张分别印有“欢欢、迎迎、妮妮”这三个吉祥物图案的卡片(卡片的形状大小一样,质地相同)放入盒子. (1)小玲从盒子中任取一张,取到印有“欢欢”图案的卡片的概率是多少? (2)小玲从盒子中取出一张卡片,记下名字后放回,再从盒子中取出第二张卡片,记下名字.用列表或画树状图列出小玲取到的卡片的所有情况,并求出小玲两次都取到印“欢欢”图案的卡片的概率. 三、新课教学: 1、例3.学校组织春游,安排给九年级3辆车,小明与小慧都可以从这3辆车中任选一辆搭乘.问小明与小慧同车的概率有多大? 问:你能用树状图表示本题中事件发生的不同结果吗?用列表法也试试吧 解:记这三辆车分别为甲、乙、丙,小明与小慧乘车的所有可能的结果列表如下: (各种结果发生的可能性相同) ∴P=3 9 = 1 3 . 答:小明与小慧同车的概率是1 3 . 2、书本34页课内练习2 3、例4.如图,转盘的白色扇形和红色扇形的圆心角分别为120°和240°.让转盘自由转动2次,求指针一次落在白色区域,另一次落在红色区域的概率. 问:1、转盘自由转动1次,指针落在白色区域、红色区域的可能性相同吗? 2、如何才能使转盘自由转动1次,指针落在各个扇形区域内的可能性都相同?

概率论与数理统计(1-3章重点梳理)

《概率论与数理统计》知识梳理 第一章随机事件和概率 (一)考试内容 随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验(二)考试要求 1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。 2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式。3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。 (三)知识点 一、关系与运算 1、样本空间 试验每一可能结果——样本点ω 所有样本点集合——样本空间Ω 2、随机事件 样本空间子集——随机事件(一般用大写A,B,C表示) Ω——必然事件Φ——不可能事件 【随机试验→(结果)→样本点→(集合化)→样本空间→(子集)→随机事件】 3、事件关系及运算 (1)事件间关系:包含,相等,互斥,对立,完备事件组,独立 ①包含 A B 事件A发生一定导致B发生【小推大】 ②相等 A B且B A A=B 【等价=相等】 ③互斥 AB=Φ A、B不能同时发生 ④对立 A、B在一次试验中必然发生且只能发生一个 ⑤完全事件组且(1≤i≠j≤n),称是一个完全事件组 (2)事件间运算(三种):并(和),交(积),逆(差) ①A、B和事件A∪B 或A+B A、B至少有一个发生 ②A、B积事件A∩B 或A B A、B同时发生

③A、B差事件 A发生且B不发生【即=A(1-B)】(※差事件可以转化积事件) 【小技巧:“∪”看成“+”,“∩”看成“”,“”化成乘积形式】 (3)运算四律:交换律,结合律,分配律,对偶律 ①交换律A∪B=B∪A A∩B=B∩A ②结合律A∪(B∪C)=(A∪B)∪C A∩(B∩C)=(A∩B)∩C ③分配律A∪(B∩C)=(A∪B)∩(A∪C) A∩(B∪C)=(A∩B)∪(A∩C) ④德摩根律(对偶律) 【小技巧:“∪”看成“+”,“∩”看成“”】 (4)关系运算10类(熟练掌握) 设A、B、C是三个随机事件 ①恰好A发生A ②A和B发生而C不发生A ③A、B、C全发生A B C ④A、B、C不全发生 ⑤A、B、C全不发生 ⑥A、B、C至少有一个发生A+B+C ⑦至少有两个事件发生AB+BC+CA ⑧至多有一个事件发生 ⑨恰有一个事件发生+ + ⑩恰有两个事件发生+ + 二、概率性质及两大基本概型和五大公式 1、概念 (1)概率——P(A) 满足三条公理 公理1(非负性)0≤P(A)≤1 公理2(规范性)P(Ω)=1 公理3(可列可加性)两两互斥,则P ()= (2)条件概率——P(B∣A)= P(AB)=P(A)P(B∣A)P(B)P(A∣B)

概率与数理统计典型例题

《概率与数理统计》 第一章 随机事件与概率 典型例题 一、利用概率的性质、事件间的关系和运算律进行求解 1.设,,A B C 为三个事件,且()0.9,()0.97P A B P A B C ==U U U ,则()________.P AB C -= 2.设,A B 为两个任意事件,证明:1|()()()|.4 P AB P A P B -≤ 二、古典概型与几何概型的概率计算 1.袋中有a 个红球,b 个白球,现从袋中每次任取一球,取后不放回,试求第k 次 取到红球的概率.(a a b +) 2.从数字1,2,,9L 中可重复地任取n 次,试求所取的n 个数的乘积能被10整除的 概率.(58419n n n n +--) 3.50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱,每个部件用3只铆钉,若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太 弱,从而成为不合格品,试求10个部件都是合格品的概率.(19591960 ) 4.掷n 颗骰子,求出现最大的点数为5的概率. 5.(配对问题)某人写了n 封信给不同的n 个人,并在n 个信封上写好了各人的地址,现在每个信封里随意地塞进一封信,试求至少有一封信放对了信封的概率. (01(1)! n k k k =-∑)

6.在线段AD上任取两点,B C,在,B C处折断而得三条线段,求“这三条线段能构成三角形”的概率.(0.25) 7.从(0,1)中任取两个数,试求这两个数之和小于1,且其积小于 3 16 的概率. (13 ln3 416 +) 三、事件独立性 1.设事件A与B独立,且两个事件仅发生一个的概率都是 3 16 ,试求() P A. 2.甲、乙两人轮流投篮,甲先投,且甲每轮只投一次,而乙每轮可投两次,先投 中者为胜.已知甲、乙每次投篮的命中率分别为p和1 3 .(1)求甲取胜的概率; (2)p求何值时,甲、乙两人的胜负概率相同?( 95 ; 5414 p p p = + ) 四、条件概率与积事件概率的计算 1.已知10件产品中有2件次品,现从中取产品两次,每次取一件,去后不放回,求下列事件的概率:(1)两次均取到正品;(2)在第一次取到正品的条件下第二次取到正品;(3)第二次取到正品;(4)两次中恰有一次取到正品;(5)两次中 至少有一次取到正品.(28741644 ;;;; 45954545 ) 2.某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的数字不再重复,试求下列事件的概率:(1)拨号不超过3次而接通电话;(2)第3次拨号才接通电话.(0.3;0.1) 五、全概率公式和贝叶斯公式概型 1.假设有两箱同种零件:第一箱内装50件,其中10件为一等品;第二箱内装30件,其中18件为一等品,现从两箱中随意挑选出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回),试求:(1)先取出的零件是一等品的概率;(2)在先取出的零件是一等品的条件下,第二次取出的零件仍然是一等品 的概率.(2690 ; 51421 ) 2.有100个零件,其中90个一等品,10个二等品,随机地取2个,安装在一台设备上,若2个零件中有i个(0,1,2 i=)二等品,则该设备的使用寿命服从参

初中《简单事件的概率》知识点

概率的简单应用 一、可能性 1、必然事件:有些事件我们能确定它一定会发生,这些事件称为必然事件. 2、不可能事件:有些事件我们能肯定它一定不会发生,这些事件称为不可能事件. 3、确定事件:必然事件和不可能事件都是确定的。 4、不确定事件:有很多事件我们无法肯定它会不会发生,这些事件称为不确定事件。 5、一般来说,不确定事件发生的可能性是有大小的。 常见考法:判断哪些事件是必然事件,哪些是不可能事件 例1:下列说法错误.. 的是( ) A .同时抛两枚普通正方体骰子,点数都是4的概率为 16 B .不可能事件发生机会为0 C .买一张彩票会中奖是可能事件 D .一件事发生机会为0.1%,这件事就有可能发生 二、简单事件的概率 1、概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。 2、必然事件发生的概率为1,记作P (必然事件)=1,不可能事件发生的概率为0,记作P(不可能事件)=0,如果A 为不确定事件,那么0

高三数学概率专题复习:事件与概率条件概率古典概率几何概率

高考数学专题复习事件与概率专项突破真题精选汇编(理,分章节)及详细解答答案 第一部分 第十三章 概率与统计 第一节 事件与概率 一、选择题 1.(2008年广州模拟)下列说法: ①频率反映事件发生的频繁程度,概率反映事件发生的可能性大小; ②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率m n 就是事件的概率; ③百分率是频率,但不是概率; ④频率是不能脱离n 次的试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值; ⑤频率是概率的近似值,概率是概率的稳定值. 其中正确的是( ) A .①②③④ B .①④⑤ C .①②③④⑤ D .②③ 2.某班有3位同学分别做抛硬币试验20次,那么下面判断正确的是( ) A .3位同学都得到10次正面朝上,10次反面朝上 B .3位同学一共得到30次正面朝上,30次反面朝上 C .3位同学得到正面朝上的次数为10次的概率是相同的 D .3位同学中至少有一人得到10次正面朝上,10次反面朝上 3.同时掷3枚硬币,那么互为对立事件的是( ) A .至少有1枚正面和最多有1枚正面 B .最多1枚正面和恰有2枚正面 C .至多1枚正面和至少有2枚正面 D .至少有2枚正面和恰有1枚正面 4.从一篮鸡蛋中取1 个,如果其质量小于30克的概率是0.30,重量在[30,40]克的概率是0.50,那么重量不小于30克的概率是( ) A .0.30 B .0.50 C .0.80 D .0.70 5.(2009年福建)已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,

初中简单事件的概率知识点

概率的简 单应用 一、可能性 1、必然事件:有些事件我们能确定它一定会发生,这些事件称为必然事件. 2、不可能事件:有些事件我们能肯定它一定不会发生,这些事件称为不可能事件. 3、确定事件:必然事件和不可能事件都是确定的。 4、不确定事件:有很多事件我们无法肯定它会不会发生,这些事件称为不确定事件。 5、一般来说,不确定事件发生的可能性是有大小的。 常见考法:判断哪些事件是必然事件,哪些是不可能事件 例1:下列说法错误.. 的是( ) A .同时抛两枚普通正方体骰子,点数都是4的概率为16 B .不可能事件发生机会为0 C .买一张彩票会中奖是可能事件 D .一件事发生机会为%,这件事就有可能发生 二、简单事件的概率 1、概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。 2、必然事件发生的概率为1,记作P (必然事件)=1,不可能事件发生的概率为0,记作P(不可能事件)=0,如果A 为不确定事件,那么0

条件概率练习题

选修2-3 2.2.1 条件概率补充练习 广水一中:邓文平 一、选择题 1.下列式子成立的是( ) A .P (A | B )=P (B |A ) B .0

条件概率及其应用

本科毕业论文(设计) (2014 届) 条件概率及其应用 院系数学与统计学院专业数学与应用数学姓名冯杰 指导教师孙晓玲 职称副教授

摘要 条件概率是概率论中的一个重要而实用的概念,在概率论的知识体系中起着承上启下的作用.因而本文以条件概率及其应用作为研究课题,研究条件概率的概念、性质以及相关的四个公式(条件概率公式、乘法公式、全概率公式、贝叶斯公式)的基本计算方法,并研究全概率公式以及贝叶斯公式在实际生活中的应用.通过本课题的研究,可了解抽签问题和风险决策问题中全概率公式和贝叶斯公式的应用.了解应用条件概率方法可以使实际生活中的问题转变为相关概率计算,让问题解决过程变得简洁,清晰.因此,研究条件概率及其应用有着极其重要的意义. 关键词:条件概率;全概率公式;贝叶斯公式;风险决策

ABSTRACT Conditional probability is an important and useful concepts in probability theory, play a connecting role in probability theory system. So in this paper, the conditional probability and its application as the research subject, research condition probability concept, character and correlation of four formula (conditional probability formula, multiplication formula, the formula of total probability, the Bias formula) the basic calculation methods, application and study the full probability formula and Bias formula in practical life. Through the study of this subject, can understand the application of ballot problem and risk decision making problem in the whole probability formula and Bias formula. The probabilistic method to understand the application conditions can make real life problems into the relevant probability calculation so, problem solving process more concise, clear. Therefore, there is an extremely important significance of conditional probability and Its Applications. Key words:conditional probability;complete probability formula;Bayes formula;Risk decision

《等可能条件下的概率计算》教案

《等可能条件下的概率计算》教案 教学目标 1、在具体情境中进一步理解概率的意义,体会概率是描述不确定现象的数学模型. 2、进一步理解等可能事件的意义,会列出一些类型的随机实验的所有等可能结果(基本事件),会把事件分解成等可能的结果(基本事件). 3、能借助概率的计算判断事件发生可能性的大小. 4、会列出一些类型的随机试验的所有可能结果. 教学过程 情境:抛掷一只均匀的骰子一次. 问题: (1)点数朝上的试验结果是有限的吗?如果是有限的共有几种? (2)哪一个点数朝上的可能性较大? (3)点数大于4与点数不大于4这两个事件中,哪个事件发生的可能性大呢? 说明:(3)要求一个随机事件的概率,首先要弄清这个试验有多少等可能的结果.这是解决问题的关键. (1)(2)等可能事件的概率的有限性和等可能性.(让学生一一列举出来) 小结:等可能条件下的概率的计算方法: ()m P A n 其中m表示事件A发生可能出现的结果数,n表示一次试验所有等可能出现的结果数说明:我们所研究的事件大都是随机事件.所以其概率在0和1之间. 例1、不透明的袋子中装有3个白球和2个红球.这些球除颜色外都相同,拌匀后从中任意出1个球.问: (1)(学生讨论)会出现那些等可能的结果? (2)摸出白球的概率是多少? (3)摸出红球的概率是多少? 说明: (1)制定一个随机事件的可能的结果时,n的求法容易出错.有些同学认为摸出的球不是白球就是红球,所以摸出n种颜色的球是等可能的,这是不对的;引导学生弄清这个实验有多少等可能的结果. 例2、抛掷一枚均匀的硬币2次,记录2次的结果作为一次试验,重复这样的试验十次.并在小组内交流试验的结果. 问题1:你能只通过一次试验,列出所有可能的结果吗?

《等可能条件下的概率(一)》教案

《等可能条件下的概率(一)》教案 一、设计思路 本节课,我们从抛掷一枚均匀的骰子和摸球出发,在等可能条件下,让学生充分的探索和交流,一起感悟这个古典概型的两个基本特征,即试验结果的有限性和等可能性.能够在只通过一次试验中可能出现的结果的分析研究来求出随机事件的精确值.活动设计突出古典概型的基本特征(有限性、等可能性). 二、目标设计 1、在具体情境中进一步理解概率的意义,体会概率是描述不确定现象的数学模型. 2、进一步理解等可能事件的意义,会列出一些类型的随机实验的所有等可能结果(基本事件),会把事件分解成等可能的结果(基本事件). 3、能借助概率的计算判断事件发生可能性的大小. 三、活动设计 情境:抛掷一只均匀的骰子一次. 问题: (1)点数朝上的试验结果是有限的吗?如果是有限的共有几种? (2)哪一个点数朝上的可能性较大? (3)点数大于4与点数不大于4这两个事件中,哪个事件发生的可能性大呢? 说明:(3)要求一个随机事件的概率,首先要弄清这个试验有多少等可能的结果.这是解决问题的关键. (1)(2)等可能事件的概率的有限性和等可能性.(让学生一一列举出来) 小结:等可能条件下的概率的计算方法: ()m P A n 其中m表示事件A发生可能出现的结果数,n表示一次试验所有等可能出现的结果数说明:我们所研究的事件大都是随机事件.所以其概率在0和1之间. 例1、不透明的袋子中装有3个白球和2个红球.这些球除颜色外都相同,拌匀后从中任意出1个球.问: (1)(学生讨论)会出现那些等可能的结果? (2)摸出白球的概率是多少? (3)摸出红球的概率是多少? 说明: (1)制定一个随机事件的可能的结果时,n的求法容易出错.有些同学认为摸出的球不是白球就是红球,所以摸出n种颜色的球是等可能的,这是不对的;引导学生弄清这个实验有

浅谈条件概率在生活中的应用

浅谈条件概率在生活中的应用 摘要:条件概率在概率论中占着举足轻重的地位,其在生活中更是存在广泛的应用.之前有许多学者在应用方面对它进行了研究,取得很多重要成果.本文在其基础上,通过查阅各类资料,总结分析收集到的各方面信息,在深刻理解条件概率的定义、相关性质、概率计算以及三个重要公式的基础上,主要讨论了条件概率在生活中的广泛应用.其应用除进行举例分析外,还作了进一步的说明和拓展. 关键词:条件概率概率应用 Discuss Conditional Probability of application in life Abstract:Conditional probability in the probability of a pivotal position occupied, in life there is more widely used. before the application of many scholars studied it, made many important achievements. In this paper, its basis, through access to various types of Data, analyzed all aspects of the information collected, in a deep understanding of the definition of conditional probability, related to the nature, probability calculations and formulas on the basis of three important, mainly to discuss the conditions for the probability of a wide range of applications in life. In addition to the examples of its application Analysis, but also made a further explanation and expansion. Keywords: Conditional probability Probability Application 1.条件概率的相关概念 1.1概率定义 概率(英文名:probability),全国科学技术名词审定委员会审定公布的结果将其定义为:表征随机事件发生可能性大小的量,是事件本身所固有的不随人的主观意愿而改变的一种属性.通俗的讲:概率是随机事件发生的可能性大小,它是随机事件出现可能性的量度. 1.2条件概率定义 我们知道对概率的讨论总是在某些固定的条件下进行的,以前的讨论经常是假定除此之外无别的信息可用.但是,有时我们却会碰到这样的情况,即已知在某事件B 发生的条件下,求另一事件A的概率.下面我们看一个例子:

2.2 简单事件的概率(1)

2.2 简单事件的概率(1) 等可能性事件A 发生的概率P(A)= n m ,n 表示结果总数,m 表示事件A 发生的结果数. 1.一道选择题共有4个答案,其中有且只有一个是正确的,有一位同学随意地选了一个答案,那么他选对的概率为(D ). A.1 B. 21 C. 31 D. 4 1 2.从分别标有数-3,-2,-1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是(D ). A. 71 B. 72 C. 73 D. 7 4 3.一个不透明口袋中共有50个球,其中白球20个,红球20个,蓝球10个,则摸出一个球不是白球的概率是(B ). A. 54 B. 53 C. 52 D. 5 1 4.有五张背面完全相同的卡片,正面分别写有(9,2)0,8, 722,2-2,把卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是无理数的概率是(B ). A. 51 B. 52 C. 53 D. 5 4 5.掷一枚均匀立方体骰子,6个面上分别标有数字1,2,3,4,5,6,则有: (1)P(掷出的数字是1)= 6 1 . (2)P(掷出的数字大于4)= 31 . (第6题) 6.如图所示为一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为 13 8 . 7.在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取一个球,摸到红球的概率是8 5,则这个袋子中有红球 5个. 8.有10张卡片,每张卡片分别写有1,2,3,4,5,6,7,8,9,10,从中任意摸取一张卡片,摸到的卡片是2的倍数的概率是多少?3的倍数呢?5的倍数呢? 【答案】P (摸到的卡片是2的倍数)=105=2 1; P (摸到的卡片是3的倍数)= 10 3; P (摸到的卡片是5的倍数)=102=51. 9.用24个球设计一个摸球游戏,使得: (1)摸到红球的概率是21,摸到白球的概率是31,摸到黄球的概率是6 1.

条件概率应用举例教案

课题:条件概率的应用举例 执教人:杨伟光2018.5.11 一、教学目标: 理解条件概率的概念,初步掌握求条件概率的两种基本方法。让学生探索、发现数学知识和掌握数学知识的内在规律的过程,不断获得成功积累愉快的体验,不断增进学习数学的兴趣,同时还通过探索这一活动培养学生善于和他人合作的精神. 二、教学重点、难点 重点:对条件概率概念的理解 难点:对条件概率概念的理解与熟练应用条件概率解题 三、教学模式与教法、学法 本课采用“探究——发现”教学模式.利用多媒体辅助教学,突出活动的组织设计与方法的引导.“抓三线”,即(一)知识技能线(二)过程与方法线(三)能力线.“抓两点”,即一抓学生情感和思维的兴奋点,二抓知识的切入点,突出探究、发现与交流. 四、教学过程 (一)创设情境,揭示课题 首先引入一个实际问题,激发学生的兴趣。 某天你妈妈带你到她的一个朋友家做客,闲谈间正巧碰到她的女儿回家,这时主人介绍说:“这是我的一个女儿,我还有一个孩子呢。”这个家庭中有两个孩子,已知其中有一个是女孩,问这时另一个孩子也是女孩的概率为多大? 听课笔记:

(二)师生携手,生成概念 新知 在事件A 发生的情况下事件B 发生的条件概率为:)(A B P = ) ()(A n AB n = 1.如何从集合角度理解条件概率? 提示:如图所示,事件的样本点已落在图形A 中(事件A 已发生), 问落在B (事件B )中的概率.由于样本点已落在A 中,且又要求落在B 中,于是只能落在AB 中,则其概率计算公式为P (B |A )= P (AB )P (A )(P (A )>0),类似地,P (A |B )=P (AB )P (B )(P (B )>0). 2.对公式的理解: ①如果知道事件A 发生会影响事件B 发生的概率,那么P (B )≠P (B |A ); ②已知A 发生,在此条件下B 发生,相当于AB 发生,要求P (B |A ),相当于把A 看作新的基本事件空间计算AB 发生的概率, 即P (B |A )=n (AB )n (A ) =n (AB ) n (Ω)n (A ) n (Ω) = P (AB )P (A ). 听课笔记:

九上数等可能条件下的概率

等可能条件下的概率 一、知识点梳理 知识点1、概率的定义: 表示一个事件发生的可能性大小的数叫做该事件的概率.知识点2、概率的表示方法: 等可能条件下的概率的计算方法:()m P A n = 说明: 1、其中m表示事件A发生可能出现的结果数,n表示一次试验所有等可能出现的结果数. 2、由于我们所研究的事件大都是随机事件.所以其概率在0和1之间. 概率是0表示该事件不可能发生,而概率是1则表示该事件一定发生或必然发生. 3、例如在抛掷一枚骰子的试验中,朝上的点数出现的所有等可能的结果共有6种(1、2、3、 4、 5、6)如果我们关注的“点数不大于4”,那么这一事件发生的可能结果有4种(朝 上的点数分别为1、2、3、4)所以P(点数不大于4)=42 63 = 知识点3、等可能性: 设一个试验的所有可能发生的结果有n个,它们都是随机事件 ....,每次试验有且只有 ....其中 的一个 ..结果出现,而且每个结果出现的机会均等 ....,那么我们说这n个事件的发生是等可能的,也称这个试验的结果具有等可能性. 说明:无论是试验的所有可能产生结果是有限个,还是无限个,只有具备下列几个特征:①在试验中发生的事件都是随机事件②在每一次试验中有且只有一个结果出现③每个结果出现机会均等.这样的试验结果才具有等可能性. 知识点4、频率与概率 在试验中,某一事件发生的频率是指该事件出现的次数与试验的总次数的比值,而这一事件发生的概率是指该事件发生的可能性的大小. 说明: 1、一个事件发生的频率在概率的附近上下波动,试验的次数越多,事件发生的频率就越接近该事件发生的概率 2、频率是经过试验得到的结果,而概率是经过理论分析的预测值或理论值.两者是不同的.当试验的次数很多的时候,频率就趋近于概率. 知识点5、转盘与概率 从圆心开始将圆盘划分几个扇形区域,做成一个可以自由转动的安有指针的转盘,这样由于转盘转动的随机性,就可以根据指针所指向的扇形区域占整个圆面积的大小,来确定指针指向某一特定的区域的概率. 如图,指针固定在原点当转盘转动后,指针指向A、B、C、D四个区域是等可能的(因 为四个扇形的圆心角都是90度)所以指针指向每个区域的概率都是 4 1

简单事件的概率练习题

、选择题 1.下列事件是必然事件的是( A. 随机抛掷一枚均匀的硬币,落地后正面一定朝上 B. 打开电视体育频道,正在播放 NBA 求赛 拿出一支笔芯,则拿出黑色笔芯的概率是( A.- 3 3.同时抛掷两枚质地均匀的骰子,骰子的六个面分别刻有1到6的点数,朝上的 B. 从一个装有2个白球和1个红球的袋子中任取一球, C. 抛一枚硬币,出现正面的概率 D. 任意写一个整数,它能被2整除的概率 6. 一个均匀的立方体六个面上分别标有数 1,2,3, 这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等 1 于朝下一面上的数的-的概率是() 2 B.- 3 C.射击运动员射击一次,命中十环 D. 若a 是实数,则|a 0 2.盒子里有3支红色笔芯,2支黑色笔芯, 每支笔芯除颜色外均相同?从中任意 面的点数中,一个点数能被另一个点数整除的概率是 A. — B. 3 C. 口 18 4 18 4. 在一张边长为4cm 的正方形纸上做扎针随机试验, 形阴影区域,贝U 针头扎在阴影区域内的概率为 () 1 1 A. B. - C. D. - 16 4 16 4 5. 甲、乙两名同学在一次用频率去估计概率的试验中 23 36 纸上有一个半径为1cm 的圆 D. 统计了某一结果出现的频率,绘出的统计图如图所示, 则符合这一结果的试验可能是( A.掷一枚正六面体的骰子,出现1点的概率 取到红球的概率 D.- 3 C.- 2 4,5,6?右图是 4

7. 甲、乙、丙、丁四名运动员参加 4X 100米接力赛,甲必须为第一接力棒或第 四接棒的运动员,那么这四名运动员在比赛过程的接棒顺序有( ) A . 3 种 B . 4 种 C . 6 种 D . 12 种 8. 一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( 15 9. 在6件产品中,有2件次品,任取两件都是次品的概率是() A 、1 B 丄 C 、丄 D 、丄 5 6 行 15 10. 在拼图游戏中,从图中的四张纸片中,任取两张纸片,能拼成“小房子” (如 图所示)的概率等于( ) A. 1 B . L C . 1 D . 2 2 3 3 二、填空题 11. 一个瓷罐中装有1枚白色围棋棋子,1枚黑色棋子,现从罐中有返回地摸棋 子两次,摸到两个白子的概率为 ____________ ,先摸到白子,再摸到黑子的概率 为 . 12. 如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若 指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止) ,两个指 针所指区域的数字和为偶数的概率是 —— 13. 小明与小亮在一起做游戏时需要确定作游戏的先后顺序, 他们约定用“锤子、 剪刀、布”的方式确定,请问在一个回合中两个人都出“布”的概率是 — 14. 晓芳抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概 率为 _______ . 15. 在一副去掉大、小王的扑克牌中任取一张,则 P (抽到黑桃K )等于 _______ P (抽到9)等于 . 16. 单项选择题是数学试题的重要组成部分,当你遇到不会做的题目时,如果你 随便选一个答案(假设每个题目有4个选项),那么你答对的概率为 ______________ A. B. C. D. 15

条件概率教学设计

8.2.2 条件概率 一、教学目标 (一)知识目标 在具体情境中,了解条件概率的概念,掌握条件概率的计算公式,并能运用条件概率公式解决有关的简单概率问题. (二)情感目标 创设教学情境,培养学生学习数学的良好思维习惯和兴趣,加深学生对从特殊到一般的思想认知规律的认识,树立学生善于创新的思维品质. (三)能力目标 在知识的教学过程中,培养学生从特殊到一般的探索归纳能力及运算能力和应用新知的能力,渗透归纳、转化的数学思想方法. 二、教学重点 条件概率的概念,条件概率公式的简单应用. 三、教学难点 正确理解条件概率公式,并能灵活运用条件概率公式解决简单实际问题. 四、教学过程 (一)引入课题 [教师] (配合多媒体演示) 问题1:掷一个骰子,求掷出的点数为3的概率. [学生] (回答) 6 1 [教师] (引导学生一起分析)本次试验的全集Ω={1,2,3,4,5,6},设B ={掷出点数为3},则B 的基本事件数为1. 6 1)(=中的元素数 中的元素数Ω= ∴B B P [教师] (配合多媒体演示) 问题2:掷一个骰子,已知掷出了奇数,求这个奇数是3的概率. [学生] (回答)31 [教师] (引导学生一起分析)已知掷出了奇数后,试验的可能结果只有3个,它们是1,3,5. 本次试验的全集改变为A ={1,3,5},这时相对于问题1,试验的条件已经改变. 设B ={掷出的点数为3},则B ={3},这时全集A 所含基本事件数为3,B 所含基本事件 数为1,则P (已知掷出奇数的条件下,掷出3)= 3 1 A =中的元素数中的元素数 B . [教师] (针对问题2再次设问)问题2与问题1都是求掷出奇数3的概率,为什么结果不一样? [学生] 这两个问题的提法是不一样的,问题1是在原有条件(即掷出点数1,2,3,4,5,6的一切可能情形)下求得的;而问题2是一种新的提法,即在原有条件下还另外增加了一个附加条件(已知掷出点数为奇数)下求得的,显然这种带附加条件的概率不同于P(A)也不同P(A ∩B). [教师] (归纳小结,引出条件概率的概念)问题2虽然也是讨论事件B (掷出点数3)的概率,但是却以已知事件A (掷出奇数为前提的,这样的概率称为A 发生条件下的事件B 发生的条件概率. (板书课题——条件概率) (二)传授新知 1.形成概念 [教师] 在引入课题的基础上引出下列概念: (多媒体演示)设A 、B 是事件,用P(B|A)表示已知A 发生的条件下B 发生的条件概

相关文档
最新文档