超高速加工的现状以及发展趋势

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超高速加工的现状以及发展趋势

09制造331—20 孙赟作业①

1.技术概述

超高速加工技术是指采用超硬材料的刃具,通过极大地提高切削速度和

进给速度来提高材料切除率、加工精度和加工质量的现代加工技术。

超高速加工的切削速度范围因不同的工件材料、不同的切削方式而异。

目前,一般认为,超高速切削各种材料的切速范围为:铝合金已超过1600m/min,铸铁为1500m/min,超耐热镍合金达300m/min,钛合金达150~1000m/min,

纤维增强塑料为2000~9000m/min。各种切削工艺的切速范围为:车削

700~7000m/min,铣削300~6000m/min,钻削200~1100m/min,磨削250m/s以上等等。

超高速加工技术主要包括:超高速切削与磨削机理研究,超高速主轴单

元制造技术,超高速进给单元制造技术,超高速加工用刀具与磨具制造技术,超高速加工在线自动检测与控制技术等

对于机械零件而言,高速加工即是以较快的生产节拍进行加工。一个生产节拍:零件送进--定位夹紧--刀具快进--刀具工进(在线检测)--刀具快退--工具松开、卸下--质量检测等七个基本生产环节。而高速切削是指刀具切削刃相对与零件表面的切削运动(或移动)速度超过普通切削5~10倍,主要体现在刀具快进、工进及快退三个环节上,是高速加工系统技术中的一个子系统;对于整条生产自动线而言,高速加工技术表征是以较简捷的工艺流程、较短、较快的生产节拍的生产线进行生产加工。这就要突破机械加工传统观念,在确保产品质量的前提下,改革原有加工工艺(方式):或采用一工位多工序、一刀多刃,或以车、铰、铣削替代磨削,或以拉削、搓、挤、滚压加工工艺(方式)替代滚、插、铣削加工…等工艺(方式),尽可能地缩短整条生产线的工艺流程;对于某一产品而言,高速加工技术也意味着企业要以较短的生产周期,完成研发产品的各类信息采集与处理、设计开发、加工制造、市场营销及反馈信息。这与敏捷制造工程技术理念有相同之处。

高速加工技术产生于近代动态多变的全球化市场经济环境。在激烈的市场竞争中,要求企业产品质量高、成本低、上市快、服务好、环境清洁和产品创新换代及时,由此牵引高速加工技术不断发展。自二十世纪八十年代,高速加工技术基于金属(非金属)传统切削加工技术、自动控制技术、信息技术和现代管理技术,逐步发展成为综合性系统工程技术。现已广泛实用于生产工艺流程型制造企业(如现代轿(汽)车生产企业);随着个性化产品的社会需求增加,其生产条件为多

品种、单件小批制造加工(机械制造业中,这种生产模式将占到总产值的70%),高速加工技术必将在生产工艺离散型或混和型企业中(如模具、能源设备、船舶、航天航空…等制造企业)得到进一步应用和发展。

二十世纪末期,我国变革计划经济体制,改革开放,建成有中国特色社会主义市场经济体制。实用的高速加工技术跟随引进的先进数控自动生产线、刀具(工具)、数控机床(设备),在机械制造业得到广泛应用,相应的管理模式、技术、理念随之融入企业。企业家们对现代信息技术和企业制度、机制在未来可持续发展、市场竞争中的重要地位和作用,认识日益深刻。社会主义市场经济环境,不仅促

进企业转制、调整产业、产品结构和技改,还给企业展现出应用和发展高速加工技术良好而广阔的前景。

我国引进数控轿车自动生产线中的高速加工技术

二十世纪八十年代以来,我国相继从德国、美国、法国、日本…等国引进了多条较先进的轿车数控生产自动线,使我国轿车制造工业得到空前发展。其中较典型的是来自德国的一汽--大众捷达轿车和上海大众桑塔纳轿车自动生产线,其处于国际二十世纪九十年代中期水平。其中应用了较多较实用的高速加工技术。从中可部分了解到世界高速加工技术的现状与发展趋势。本文重点介绍一汽--大众捷达轿车传、发生产线。

2.技术发展趋势

近净成形与近无缺陷成形技术在下世纪初有以下发展趋势:

近净成形技术生产的成形件精度会进一步提高,可以做出形状更加复杂的成形件,更加接近于净成形。

近净成形技术会不断有新发展,一方面原来的工艺方法会得到不断改进提高,另一方面综合利用各种成形手段会出现新的复合成形新工艺。

随着新材料的出现,不少材料用传统加工方法很难加工,从而推动了新材料近净成形技术的发展。

计算机的发展、非线性问题计算方法的发展,推动了非线性有限元等技术发展,使数值模拟技术由学校、研究单位走向工厂,将广泛用于成形工艺分析,并且将由宏观模拟进一步向微观的组织模拟和质量预测方向发展。

解决自动化大批量生产与用户对产品个性化要求的矛盾,生产过程的柔性化将会得到发展。

由于高效、节能、节材带来的材料和资源的节约和有效利用、成形技术和装备的进步、无污染工艺材料的采用,使成形技术由污染大户转变为清洁生产技术。

超精密加工技术的发展趋势是:向更高精度、更高效率方向发展;向大型化、微型化方向发展;向加工检测一体化方向发展;机床向多功能模块化方向发展;不断探讨适合于超精密加工的新原理、新方法、新材料。21世纪初十年将是超精密加工技术达到纳米加工技术的关键十年。

精密制造技术是指零件毛坯成形后余量小或无余量、零件毛坯加工后精度达亚微米级的生产技术总称。它是近净成形与近无缺陷成形技术、超精密加工技术与超高速加工技术的综合集成。

近净成形与近无缺陷成形技术改造了传统的毛坯成形技术,使机械产品毛坯成形实现由粗放到精化的转变,使外部质量作到无余量或接近无余量,内部质量作到无缺陷或接近无缺陷,实现优质、高效、轻量化、低成本的成形。该项技术

涉及到铸造成形、塑性成形、精确连接、热处理改性、表面改性、高精度模具等专业领域。

超精密加工技术是指被加工零件的尺寸精度高于0.1µm,表面粗糙度Ra 小于0.025µm,以及所用机床定位精度的分辨率和重复性高于0.01µm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。

超精密加工技术主要包括:超精密加工的机理,超精密加工的设备制造技术,超精密加工工具及刃磨技术,超精密测量技术和误差补偿技术,超精密加工工作环境条件。

超高速加工技术是指采用超硬材料的刀具,通过极大地提高切削速度和进给速度来提高材料切除率、加工精度和加工质量的现代加工技术。

超高速加工的切削速度范围因不同的工件材料、不同的切削方式而异。目前,一般认为,超高速切削各种材料的切速范围为:铝合金已超过1600m/min,铸铁为1500m/min,超耐热镍合金达300m/min,钛合金达150~1000m/min,纤维增强塑料为2000~9000m/min。各种切削工艺的切削速度范围为:车削700~7000m/min,铣削300~6000m/min,钻削200~1100m/min,磨削250m/s以上等等。

3.高速加工的主要优点有:1、切削力降低30%左右,特别适合刚性差的工件2、由于加工时对刀具和工件进行了冷却润滑,减少了切削热对工件的影响,特别适合加工易热变形的工件;3、激振频率远远高于机床和工艺系统的固有频率,加工平稳,振动小,加工表面质量好;4、能极大地提高生产效率。但是,高速切削采用的高压大流量冷却方式会增加环境污染、提高生产成本、减少刀具

的耐用度、加大机床腐蚀等一系列问题。

4.总结

高速加工技术为机械制造企业快速响应市场信息提供了强有力的支持。而机械制造中,要实现高速加工,必须集成、优化多学科领域的基础科研与知识,实施系统工程技术。进入二十一世纪,随着加入WTO,我国正逐步融入全球化生产制造的序列中,随着国外先进制造技术设备大量引进及大力实施国家"863"、创新基金、国家重大科技产业工程项目…等重大科技计划,综合科学技术水平将日益提高,高速加工技术在国内机械制造业将日趋实用与普及。

相关文档
最新文档