激光束参数测量

激光束参数测量
激光束参数测量

激光束参数测量

实验报告

课程名称红外与微光技术

姓名

学号

一、实验名称:光束参数的图像测量

二、实验目的

1.掌握激光束光斑半径,光腰半径,发散角,光强分布图像测量技术;

2.掌握高斯光束理论;

3. 了解半导体激光器等激光束的光强分布图像测量。 三、实验原理

激光束光强分布测量,以前采用小孔扫描或相纸曝光方法,精度差,不能实时观察光强分布。利用CCD 相机队光强分布进行图像采集,根据图像数据对光束参数进行分析计算,有很高的精度,又能实时观察。如图1所示,CCD 激光光束分析系统包括激光器、CCD 相机以及数据处理系统。数据处理系统对CCD 输出的图像数据进行处理,计算出激光束的重要参数,并以一维、二维、三维方式显示光强分布。

激光器输出光激光功率密度一般比较高,光强超出CCD 量程范围,会对CCD 探测器造成损害。所以测量过程中必须使用了衰减片,以保护CCD 探测器。软件系统也可以帮助我们有效保护CCD 探测器。在3维轮廓窗口的左边有一个按七色彩虹颜色排列的光亮度对比条,按照这个指示,我们很容易知道现在CCD 相机正在接收到的激光强度是否已超出了其量程。如果光束图像中出现白色,则表示光强已快接近饱和,这时应该减少激光器的输出功率或增加衰减片来保护CCD 相机。

光斑半径的测量,按照最大值的1/e 计算。在计算之前先对所获得的光强图像分布平滑滤波处理,然后找出图像的灰度最大值和所对应的坐标值(计算机内图像的像素坐标),然后进行高斯拟合。

光腰半径或共焦参数的测量,采用下面方法。在光轴上任意两个位置z1

z2测得光斑半径为w1和w2,则

212

0z z f w f πλ

?

-=

?=

(1)

由此二式通过数值求解求出光腰半径0w 或共焦参数f ,式中λ为激光波长。求出共焦参数后,发散角由下式求出

θ=

(2)

四、实验器材

位移台、He-Ne 激光器、半导体激光器、CCD 相机、二维反射镜架、分光片、衰减片。

五、实验内容

1. 拍摄并采集He-Ne 激光束光强分布图像;

2. 测量光斑半径,观察光强三维分布;

3. 计算公焦参数。

六、实验步骤

1.实验前盖紧CCD 相机盖子,打开激光器的电源开关;

2.调整光路,保证在位移台移动的过程中光束基本在CCD 相机盖子的中心; 3.加衰减片(从最大衰减率开始),关闭门窗、窗帘和照明光源,直到人眼不能明显观察到光斑为止;

4.启动软件,打开CCD 相机盖子;

5.测量激光束的参数,记录水平和垂直方向光斑直径以及平台位置; 6.改变平台位置,重复测量光斑直径,直到平台不能移动为止;

七、实验数据及结果分析:

测量数据:He —Ne 激光器波长为632.8nm 。

其中value 为当前测试的光斑半径的测量值(按照最大值的1/e 计算);mean 为光斑半径的测量值(按照最大值的1/e 计算)的平均值,radiu 为光斑半经径mean/2; 光腰半径是利用matlab 中的solve 函数和公式:

)(][02

0222

0210ωωωωωλ

πωf z =--

-=

?

再利用其它公式计算共焦参数和发散角。

数据分析:测得的X方向光腰半径在100~400um,都有可能。造成这样的不确定性,我觉得,主要在于每一次测量的不准确度,测量误差比较大,在测量过程中,我们小组也没有很好的控制测量次数,可能也会产生误差,但是根据理论知识,激光光束的发散角很小,本来利用matlab解方程可以得到两个解,我们根据一些激光的基础知识(在比较短的距离内,测量的光斑半径与光腰半径基本相当),把另外1个解舍去了,留下了现在看到的解,利用这个解算的发散角还是比较能接受的。同理,测得的Y 方向光腰半径在100~400um,问题还是在于每次测量的准确度不能确定,误差比较大。

1.以平台位置为横坐标,光斑直径为纵坐标作图;

(i)X方向:直线拟合的情况

二次项拟合的情况:

(ii)Y方向:直线拟合的情况

二次项拟合的情况:

曲线拟合分析:X方向上基本可以说明曲线满足一个二次曲线,与公式的形式上基本吻合,Y方向上应该也可以说明,不过我觉得Y方向曲线的凹凸性是不是有

点问题。

2.根据实验数据求出光腰半径;

(1) 导出求解公式:

2

201)(f

z z +

=ωω λ

πω20

=

f

2

22

1))((f

z z +

=ωω λ

πωωωωω20

2

1

2

2

1

2

.

)1))(((

.)1))(((

-=-=z f z z

]1)(

1)([||2

22

120

21--

-=

-ωωωωλ

πωz z 即

)(][02

02

22

02

10ωωωωωλ

πωf z =--

-=

? 以01

.0|)

()(|

00<+?-?ωωf z f z 为判

据,求解光腰半径和发散角。上表中已经填入的0ω和发散角分别是相邻的两个刻度值对应的光斑直径求出的结果。

(2) 求出结果,设法验证结果正确性(已经填入数据测量表格):为了验

证结果的正确性,应该取任意两个刻度对应的光斑半径求解出各个光腰半径 ,并进行分析。

这里只验证X 方向:

验证分析:利用验证的数据,能比较好的看出发散角的大小范围,排除一些其他比较不靠谱的数据,我们可以近似认为激光光束的发散角在0.7~1.1mrad内,与理论知识,激光光束发散角小基本吻合,如果要具体通过理论分析知道发散角大小应该可以用自再现方式算出来。激光的光腰半径在200~400um左右,应该也差不多,我觉得。

八、实验结论

1、利用实验数据、高斯光束的公式和Matlab测得He—Ne激光器的光腰半径约为200~400um左右,发散角在0.7~1.2mrad左右。

2、我觉得实验误差比较大,实验结论不太准确。

九、心得体会:

1、单说实验,测量的时候比较简单,数据处理时比较复杂。

2、处理数据的时候,很明显发现误差有点大,激光光腰半径基本算是没有测准,虽然光腰半径和发散角大小基本符合理论知识,但是我觉得还是没有测量的很好。我觉得,实验过程中,我们测量过程中没有准确的定一个统一的采样次数可能产生误差比较大,其他步骤的测量误差应该不大。所以,我觉得这个测量方法不是太好(在看过其他组数据之后,他们的数据也有这样的问题)。

十、对本实验过程及方法、手段的改进建议:

1、我觉得可以想个其他测量方法来做,这个有点太准确。

2、提高CCD的成像质量应该可以减少误差,还有,我们组在测量时应该注意采样数目应该要基本一致。

十一、思考题

1、在实验过程中,如何避免CCD饱和?

答:1、利用软件系统帮助我们有效避免CCD探测器饱和。在3维轮廓窗口的左边有一个按七色彩虹颜色排列的光亮度对比条,按照这个指示,我们很容易知道

现在CCD相机正在接收到的激光强度是否已超出了其量程。如果光束图像中出现白色,则表示光强已快接近饱和,这时应该减少激光器的输出功率或增加衰减片来保护CCD相机。2、使用了衰减片,将激光器输出光激光功率密度(一般比较高)衰减至CCD量程范围,利于测量,同时保护CCD探测器。

2、在利用图像灰度值进行光束半径测量时,为何进行高斯拟合?依据是什么?

答:根据激光原理的基本知识,对于基模高斯光束,我们知道,光强在横截面内的分布函数为高斯函数,而我们使用的He-Ne激光器工作模式应该在基模模式(个人推测,而且通过测量,X、Y方向上的光腰半径基本相当,光斑也基本可以认为是圆形,所以可以认为工作在基模状态),所以,我们在利用图像灰度值进行光束半径测量时,要进行高斯拟合,依据就是光强在横截面内的分布函数为高斯函数,也方便我们测量计算。

激光切割机技术参数...

FIBERBLADE Cutting System 光纤激光切割机 一、Messer激光切割系统介绍 1、机器原理 梅塞尔公司在工业用激光切割机的开发和制造领域已有近40年的经验. 其激光技术得到 了世界范围的认可, 并在许多不同领域得到应用. 划时代的技术发展, 如专利激光切割头, 表明了梅塞尔公司的技术能力. 在此领域为激光加工建立的新标准将为客户带来巨大的利益. 产品系列包括: 2维激光切割系统 3维激光切割系统

激光焊接系统 自动化设备 装料及卸料系统 通过与世界领先的激光器厂商的常年合作, 保证机器与激光的最佳组合. 其大激光功率及用户友好式的CNC数控系统适应高速切割及广泛的生产制造领域. Fiberblade具备良好的动态性能, 在宽广范围内可实现切割与零件重量无关的高精度无挂渣的成品零件. 机器配合编程软件及相应自动套料程序, 可实现快速高效的零件编程, 扩展机器应用. 应用激光束作为工具, 切割速度快, 成品部件割缝窄, 精度高. 可无困难地实现复杂轮廓的切割. 切口边缘光洁、无毛刺, 绝大多数场合下无需后续处理. Fiberblade主要应用领域为金属加工, 特别是碳钢、不锈钢和铝材. 该系统既可应用氧气切割, 也可采用保护气体实现高压切割. 经测试其可切割性后, 该系统可切割金属合金、塑料以及非金属材料机器设计理念除了实现最佳切割结果外, 同样关注环境保护问题. 采用抽烟除尘装置可满足最严格的排放标准. 机器可满足现有安全规程, 满足相关CE标准. 2、功能描述

Fiberblade激光切割机,是一个集最新动力工程,电脑数控和光纤激光器技术的全新技术 发展水平的设计它是市面上最先进的紧凑型中规格工业级光纤激光切割系统;无需激光器 维护的低维修费系统,高效率、低功耗。 机器工作台采用交换式工作台系统,减少上料时间. 该系统交替使用两块台面. 切割一块台面上的板材, 同时另一块台面位于工作区域外. 操作员可取下成品部件并换上新板, 机器同时进行切割. 另一台面上的工件完成后, 由工作区域换出, 新板就位. 板材置于工作台支架上并确定位置后, 切割头随垂直定位轴下降. 传感控制器保证切割头维持正确定位, 可避免板材变形引起的问题. 激光束通过光纤传输到切割头上, 然后由透镜聚焦. 切割头沿工件轮廓移动, 但不与工件接触, 激光束和切割气体通过割嘴聚集到工件上. 横向运动通过溜板滑动定位实现. 纵向运动由车架自行移动实现. 两套同步驱动伺服电机确保设备的高精度, 轴向运动的高加速度, 可变激光功率控制, 可切割如窄条, 尖角等的复杂图形部件. 通过CNC数控系统可自动设定切割参数如气体种类, 气体压力, 激光参数. CNC数控系统内的切割数据及图形数据的分离, 可实现快速变化的工作要求, 并增加机器功能的灵活性, 适用范围更广. 由随动式直接抽风系统, 把切割过程中产生的尘粒抽出, 并经过烟尘过滤后, 达到安全及环境规范的排放要求. 二、标准配置介绍 1、机器构造

激光切割机工艺手册

第一章激光切割方法 1.1 激光熔化切割 在激光熔化切割中,工件被局部熔化后借助气流把熔化的材料喷射出去。因为材料的转移只发生在其液态情况下,所以该过程被称作激光熔化切割。 激光光束配上高纯惰性切割气体促使熔化的材料离开割缝,而气体本身不参于切割。 ——激光熔化切割可以得到比气化切割更高的切割速度。气化所需的能量通常高于把材料熔化所需的能量。在激光熔化切割中,激光光束只被部分吸收。 ——最大切割速度随着激光功率的增加而增加,随着板材厚度的增加和材料熔化温度的增加而几乎反比例地减小。在激光功率一定的情况下,限制因数就是割缝处的气压和材料的热传导率。 ——激光熔化切割对于铁制材料和钛金属可以得到无氧化切口。 ——产生熔化但不到气化的激光功率密度,对于钢材料来说,在104W/cm2~105 W/cm2之间。 1.2 激光火焰切割 激光火焰切割与激光熔化切割的不同之处在于使用氧气作为切割气体。借助于氧气和加热后的金属之间的相互作用,产生化学反应使材料进一步加热。由于此效应,对于相同厚度的结构钢,采用该方法可得到的切割速率比熔化切割要高。 另一方面,该方法和熔化切割相比可能切口质量更差。实际上它会生成更宽的割缝、明显的粗糙度、增加的热影响区和更差的边缘质量。 ——激光火焰切割在加工精密模型和尖角时是不好的(有烧掉尖角的危险)。可以使用脉冲模式的激光来限制热影响。 ——所用的激光功率决定切割速度。在激光功率一定的情况下,限制因数就是氧气的供应和材料的热传导率。 1.3 激光气化切割 在激光气化切割过程中,材料在割缝处发生气化,此情况下需要非常高的激光功率。 为了防止材料蒸气冷凝到割缝壁上,材料的厚度一定不要大大超过激光光束的直径。该加工因而只适合于应用在必须避免有熔化材料排除的情况下。该加工实际上只用于铁基合金很小的使用领域。 该加工不能用于,象木材和某些陶瓷等,那些没有熔化状态因而不太可能让材料蒸气再凝结的材料。另外,这些材料通常要达到更厚的切口。

激光测距仪使用教程

美国LaserCraft高精度激光测距仪-Contour XLRic型,这款激光测距仪是高精度和远量程的结合体,是目前市场性能最好的一款手持激光测量系统。它能成功地在保持良好精度的前提下测量以下目标到前所未有的距离:175米到电力线,400米到电线杆,800米到建筑物。同时,它是一款坚固防水的仪器,遇到下雨,下雪,大雾或沙尘暴天气时,您只把工作模式选择到“坏天气”模式,您的工作就不会受到任何影响。在坏天气下使用它,就如同在好天气下使用一样方便,好用。如果装配了三脚架,它就可以用来进行更远距离的精确测量和进行精密的倾斜测量。 Contour XLR采用最新激光技术,小巧、轻便、使用方便,可准确测量目标距离。有恶劣天气工作模式保证仪器在仪器在雨、雪、雾、沙尘暴天气条件下仍可可靠工作。仪器配备HUD显示器,可边瞄准边测量。是建筑结构规划等通用距离测量的得力仪器。最大测量距离1850米,精度0.1米。 Contour XLRi具有XLR系列的全部特点,同时增加360度倾角传感器。有六种工作模式,分别是距离、角度、水平距离、垂直距离、二点高度、三点高度。有串行口,可通过计算机或数据记录器记录数据。典型应用:矿山地形测量、森林资源调查、倾斜测量、高度测量、水平杆测量、塔高测量。 Contour XLRic将XLRi和GPS以及数据采集器结合起来,可测量不易达到目标的参数。内置软件可计算树高、倾斜、面积、周长、不见线的长度、水平距离等。XLRic内部有数字罗盘和倾角传感器,是测绘的得力仪器。

ContourMAX最大测量距离达到3000米,重仅1.6公斤,首/末目标可选,门控能力、恶劣天气模式、手持/平台安装可选。典型应用:火灾控制系统、遥测、GPS偏移测、航空测量等。和Contour 系列手持激光测量系统中的Contour XLRi比较起来,Contour XLR ic在内部又集成了一个高精度磁通量数字罗盘。配合高精度磁通量数字罗盘,XLR ic在功能就比XLR和XLRi多了不少。有了Contour XLRic,您就可以把它和您的GPS系统连接起来,去测量那些无法到达或不容易到达的地方的坐标信息,省时又省钱。或者您也可以使用它内置的软件计算:树高,倾斜度,面积,周长,空间线段的长度,水平距离,高差等等数据。由于Contour XLRic配置了数字罗盘和倾斜角度测量仪,所以它完全可以被看作是一个手持式全站仪,可以协助您进行测绘和测量工作。一级人眼安全的激光测距仪精确地向您报告以下测量数据:距离,方位,倾斜角。技术特点-测量距离到: 1850米;-测量精度达到:10厘米;-倾斜角度测量;-方位角测量;-周长测量;-面积测量;-电力线高度和垂度测量;- 3D空间尺寸测量;-连接GPS工作;-高度测量功能;-“点到点”斜距测量;-水平距离测量和垂直距离测量;-独特的坏天气模式:一般的测距仪在天气不好的情况下,测量的距离往往会大大缩短,甚至无法工作。Contour系列激光测距仪的“坏天气模式”消除了这种现象。当天气情况不好的时候,比如:多云,大雾,扬尘,潮湿等,启动该模式,测量起来就和好天气时测量一样轻松快速!工作模式(详细功能)模式一标准测量模式:该模式测量仪

半导体激光器常用参数的测定

半导体激光器常用参数的测定 一 实验目的:掌握半导体激光器常用的电学参数及其测试方法 一 实验基本原理 1、 普通光源的发光——受激吸收和自发辐射 普通常见光源的发光(如电灯、火焰、太阳等地发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。激发的过程是一个“受激吸收”过程。处在高能级(E2)的电子寿命很短(一般为10-8~10-9秒),在没有外界作用下会自发地向低能级(E1)跃迁,跃迁时将产生光(电磁波)辐射。辐射光子能量为 12E E h -=ν 这种辐射称为自发辐射。原子的自发辐射过程完全是一种随机过程,各发光原子的发光过程各自独立,互不关联,即所辐射的光在发射方向上是无规则的射向四面八方,另外未位相、偏振状态也各不相同。由于激发能级有一个宽度,所以发射光的频率也不是单一的,而有一个范围。在通常热平衡条件下,处于高能级E2上的原子数密度N2,远比处于低能级的原子数密度低,这是因为处于能级E 的原子数密度N 的大小时随能级E 的增加而指数减小,即N ∝exp(-E/kT),这是著名的波耳兹曼分布规律。于是在上、下两个能级上的原子数密度比为 ]/)(ex p[/1212kT E E N N --∝ 式中k 为波耳兹曼常量,T 为绝对温度。因为E2>E1,所以N2《N1。例如,已知氢原子基态能量为E1=-13.6eV ,第一激发态能量为E2=-3.4eV ,在20℃时,kT≈0.025eV,则 0)400ex p(/12≈-∝N N 可见,在20℃时,全部氢原子几乎都处于基态,要使原子发光,必须外界提供能量使原子到达激发态,所以普通广义的发光是包含了受激吸收和自发辐射两个过程。一般说来,这种光源所辐射光的能量是不强的,加上向四面八方发射,更使能量分散了。 2、 受激辐射和光的放大 由量子理论知识知道,一个能级对应电子的一个能量状态。电子能量由主量子数n(n=1,2,…)决定。但是实际描写原子中电子运动状态,除能量外,还有轨道角动量L 和自旋角动量s ,它们都是量子化的,由相应的量子数来描述。对轨道角动量,波尔曾给出了量子化公式Ln =nh ,但这不严格,因这个式子还是在把电子运动看作轨道运动基础上得到的。严格的能量量子化以及角动量量子化都应该有量子力学理论来推导。 量子理论告诉我们,电子从高能态向低能态跃迁时只能发生在l (角动量量子数)量子数相差±1的两个状态之间,这就是一种选择规则。如果选择规则不满足,则跃迁的几率很小,甚至接近零。在原子中可能存在这样一些能级,一旦电子被激发到这种能级上时,由于不满足跃迁的选择规则,可使它在这种能级上的寿命很长,不易发生自发跃迁到低能级上。这种能级称为亚稳态能级。但是,在外加光的诱发和刺激下可以使其迅速跃迁到低能级,并放出光子。这种过程是被“激”出来的,故称受激辐射。受激辐射的概念世爱因斯坦于1917年在推导普朗克的黑体辐射公式时,第一个提出来的。他从理论上预言了原子发生受激辐射的可能性,这是激光的基础。 受激辐射的过程大致如下:原子开始处于高能级E2,当一个外来光子所带的能量hυ正好为某一对能级之差E2-E1,则这原子可以在此外来光子的诱发下从高能级E2向低能级E1跃迁。这种受激辐射的光子有显著的特点,就是原子可发出与诱发光子全同的光子,不仅频

大族激光切割工艺p参数

大族激光切割工艺p参数, [table=98%] [tr][td=3,1,604] 切割层1(CUT1)工艺参数 [/td][/tr] [tr][td=63] P100 [/td][td=220] 切割速度 [/td][td=321] 单位: mm/min [/td][/tr] [tr][td=63] P101 [/td][td=220] 切割激光功率 [/td][td=321] 单位: 瓦(W) [/td][/tr] [tr][td=63] P102 [/td][td=220] 最小切割激光功率百分比 [/td][td=321] 单位: 0-100% [/td][/tr] [tr][td=63] P103 [/td][td=220] 切割激光模式(CS/PRC激光器) [/td][td=321] 1=连续, 2=门脉冲(CS/PRC激光器) [/td][/tr] [tr][td=63] P104 [/td][td=220] 切割脉冲频率 [/td][td=321] 1~8:对应激光器上设置的激光脉冲频率(CS/ROFIN激光器) 0-999Hz PRC激光器) [/td][/tr] [tr][td=63] P105

切割脉冲占空比(PRC激光器) [/td][td=321] 1-100% [/td][/tr] [tr][td=63] P106 [/td][td=220] 切割喷嘴高度 [/td][td=321] 单位: [tr][td=63] P107 [/td][td=220] 切割气体压力 [/td][td=321] 单位: [/td][/tr] [tr][td=63] P108 [/td][td=220] 切割气体类型 [/td][td=321] 1=空气, 2=氧气, 3=氮气 [/td][/tr] [tr][td=63] P109 [/td][td=220] 切割头是否提升 [/td][td=321] 单位: 0-50mm [/td][/tr] [tr][td=3,1,604] 穿孔(PIERCE)工艺参数 [/td][/tr] [tr][td=63] P110 [/td][td=220] 穿孔方式 [/td][td=321] 0-3(穿孔方式);0=不穿孔;1=正常穿孔;2=渐进式穿孔;3=强力穿孔 [/td][/tr] [tr][td=63] P111 [/td][td=220] 穿孔激光功率

激光切割机工艺手册

第一章 激光切割方法 1.1 激光熔化切割 在激光熔化切割中,工件被局部熔化后借助气流把熔化的材料喷射出去。因为材料的转移只发生在其液态情况下,所以该过程被称作激光熔化切割。 激光光束配上高纯惰性切割气体促使熔化的材料离开割缝,而气体本身不参于切割。 ——激光熔化切割可以得到比气化切割更高的切割速度。气化所需的能量通常高于把材料熔化所需的能量。在激光熔化切割中,激光光束只被部分吸收。 ——最大切割速度随着激光功率的增加而增加,随着板材厚度的增加和材料熔化温度的增加而几乎反比例地减小。在激光功率一定的情况下,限制因数就是割缝处的气压和材料的热传导率。 ——激光熔化切割对于铁制材料和钛金属可以得到无氧化切口。 ——产生熔化但不到气化的激光功率密度,对于钢材料来说,在104W/cm2~105 W/cm2之间。 1.2 激光火焰切割 激光火焰切割与激光熔化切割的不同之处在于使用氧气作为切割气体。借助于氧气和加热后的金属之间的相互作用,产生化学反应使材料进一步加热。由于此效应,对于相同厚度的结构钢,采用该方法可得到的切割速率比熔化切割要高。 另一方面,该方法和熔化切割相比可能切口质量更差。实际上它会生成更宽的割缝、明显的粗糙度、增加的热影响区和更差的边缘质量。 ——激光火焰切割在加工精密模型和尖角时是不好的(有烧掉尖角的危险)。可以使用脉冲模式的激光来限制热影响。 ——所用的激光功率决定切割速度。在激光功率一定的情况下,限制因数就是氧气的供应和材料的热传导率。 1.3 激光气化切割 在激光气化切割过程中,材料在割缝处发生气化,此情况下需要非常高的激光功率。 为了防止材料蒸气冷凝到割缝壁上,材料的厚度一定不要大大超过激光光束的直径。该加工因而只适合于应用在必须避免有熔化材料排除的情况下。该加工实际上只用于铁基合金很小的使用领域。 该加工不能用于,象木材和某些陶瓷等,那些没有熔化状态因而不太可能让材料蒸气再凝结的材料。另外,这些材料通常要达到更厚的切口。 ——在激光气化切割中,最优光束聚焦取决于材料厚度和光束质量。 ——激光功率和气化热对最优焦点位置只有一定的影响。

FLUKE 416D 激光测距仪详细参数

FLUKE 416D 激光测距仪详细参数切换到传统表格版

激光测距是光波测距中的一种测距方式,如果光以速度c在空气中传播在A、B两点间往返一次所需时间为t,则A、B两点间距离D可用下列表示。 D=ct/2 式中:D——测站点A、B两点间距离; c——光在大气中传播的速度; t——光往返A、B一次所需的时间。 由上式可知,要测量A、B距离实际上是要测量光传播的时间t,根据测量时间方法的不同,激光测距仪通常可分为脉冲式和相位式两种测量形式。 相位式激光测距仪 相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光往返测线一次所产生的相位延迟,再根据调制光的波长,换算此相位延迟所代表的距离。即用间接方法测定出光经往返测线所需的时间,如下图所示。

相位式激光测距仪一般应用在精密测距中。由于其精度高,一般为毫米级,为了有效的反射信号,并使测定的目标限制在与仪器精度相称的某一特定点上,对这种测距仪都配置了被称为合作目标的反射镜。 若调制光角频率为ω,在待测量距离D上往返一次产生的相位延迟为φ,则对应时间t 可表示为: t=φ/ω 将此关系代入(3-6)式距离D可表示为 D=1/2 ct=1/2 c·φ/ω=c/(4πf) (Nπ+Δφ) =c/4f (N+ΔN)=U(N+) 式中:φ——信号往返测线一次产生的总的相位延迟。 ω——调制信号的角频率,ω=2πf。 U——单位长度,数值等于1/4调制波长 N——测线所包含调制半波长个数。 Δφ——信号往返测线一次产生相位延迟不足π部分。 ΔN——测线所包含调制波不足半波长的小数部分。 ΔN=φ/ω 在给定调制和标准大气条件下,频率c/(4πf)是一个常数,此时距离的测量变成了测线所包含半波长个数的测量和不足半波长的小数部分的测量即测N或φ,由于近代精密机械加工技术和无线电测相技术的发展,已使φ的测量达到很高的精度。 为了测得不足π的相角φ,可以通过不同的方法来进行测量,通常应用最多的是延迟测相和数字测相,目前短程激光测距仪均采用数字测相原理来求得φ。 由上所述一般情况下相位式激光测距仪使用连续发射带调制信号的激光束,为了获得测距高精度还需配置合作目标,而目前推出的手持式激光测距仪是脉冲式激光测距仪中又一新型测距仪,它不仅体积小、重量轻,还采用数字测相脉冲展宽细分技术,无需合作目标即可达到毫米级精度,测程已经超过100m,且能快速准确地直接显示距离。是短程精度精密工程测量、房屋建筑面积测量中最新型的长度计量标准器具。现应用最多的是leica公司生产的DISTO系列手持式激光测距仪。 手持式激光测距仪使用注意事项 DISTO及其他手持式激光测距仪,由于采用激光进行距离测量,而脉冲激光束是能量非常集中的单色光源,所以在使用时不要用眼对准发射口直视,也不要用瞄准望远镜观察光滑反射面,以免伤害人的眼睛。一定要按仪器说明书中安全操作规范进行测量。野外测量时不可将仪器发射口直接对准太阳以免烧坏仪器光敏元件。 以上以DISTO仪器为例简要介绍了仪器部分测量功能,不同厂家生产的手持式激光测距仪功能键略有异同,但只要认真阅读使用说明书,就会充分发挥手持式激光测距仪在房屋建筑面积测量和其他精密工程测量中的作用。 激光测距传感器

半导体激光器工作原理及主要参数

半导体激光器工作原理及主要参数 OFweek激光网讯:半导体激光器又称为激光二极管(LD,Laser Diode),是采用半导体材料作为工作物质而产生受激发射的一类激光器。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)。激励方式有电注入、电子束激励和光泵浦激励三种形式。半导体激光器件,一般可分为同质结、单异质结、双异质结。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。半导体激光器的优点在于体积小、重量轻、运转可靠、能耗低、效率高、寿命长、高速调制,因此半导体激光器在激光通信、光存储、光陀螺、激光打印、激光医疗、激光测距、激光雷达、自动控制、检测仪器等领域得到了广泛的应用。 半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外 部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。 目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs 二极管半导体激光器。 半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。 小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些 器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。 大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。 半导体激光器主要参数: 波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。 阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数 十毫安。

激光的原理及激光器分类

激光器的原理及分类 一、基础原理 量子理论认为,所有物质都是由各种微观”粒子”组成,如分子,原子,质子,中子,电子等。在微观世界里,各种粒子都有其固有的能级结构。当一个粒子从高能级掉到低能级时,根据能量守恒定律,它要把两个能级相差部分的能量释放出来,通常这个能量以光和热两种形式释放出来。 二、自发辐射、受激辐射 1、自发辐射 普通常见光源的发光(如电灯、火焰、太阳等地发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。激发的过程是一个“受激吸收”过程。但是处在高能级(E2)的电子寿命很短(一般为10-8~10-9秒),在没有外界作用下会自发地向低能级(E1)跃迁,跃迁时将产生光(电磁波)辐射。辐射光子能量=E2-E1。过程各自独立、互补关联,所有辐射的光在发射方向上是无规律的射向四面八方,并且频率不同、偏振状态和相位不同。 2、受激辐射 在原子中也存在这样一些特定高能级,一旦电子被激发到这个高能级之上,却由于不满足跃迁的条件,发生跃迁的几率很低,电子能够在高能级上的时间很

长,就所谓的亚稳定状态。但在能在外界光场的照射下发生往下跃迁,并且向下跃迁时释放出一个与射入光场相同的光子,在同一个方向、有同一个波长。这就是受激辐射,激光正是利用这一原理激发出来。 二、粒子数反转 通过受激辐射出来的光子,不仅可以引起其他粒子受激辐射,也可以引起受激吸收。只有在处于高能级的原子数量大于处于低能级原子数时,所产生的受激辐射才能大于受激吸收。但是在自然条件下,原子都是都处于稳定的基态,只能通过技术手段将大量的原子都调整到高能级的状态,才能有多余的辐射向外产生。这个技术叫粒子数反转。 三、光放大过程 通过粒子数反转后,其中一个粒子首先在外界光场的照射刺激下,对外发出了一个光子,这个光子又刺激其他粒子再次对外发射光子,并且方向相同,波长

光纤激光器参数测量

光纤激光器参数测量 概要:全光纤可调谐激光器是高速大容量光通信系统中的关键部件,特别是它的较宽的增益带宽和简便稳定的调谐结构,以及其激光波长恰好处在光通信1500nm波段等诸多独特优点,越来越引起广大光通信工作者的极大重视,已成为激光器研制领域的一个热点。 关键词:光纤激光器 引言 光通信技术是当代通信技术发展的最新成就,在信息传输的速率和距离、通信系统的有效性、可靠性和经济性方面取得了卓越的成就,使通信领域发生了巨大的变化,已成为现代通信的基石,是信息时代来临的主要物质基础之一。 光纤通信以令人眩目的速度发展起来,70年代中期即进入了实用化阶段,其应用遍及长途干线、海底通信、局域网、有线电视等各领域。其发展速度之快,应用范围之广,规模之大,涉及学科之多(光、电、化学、物理、材料等),是此前任何一项新技术所不能与之相比的。现在,光纤通信的新技术仍在不断涌现,生产规模不断扩大,成本不断下降,显示了这一技术的强大生命力和广阔应用前景。它将成为信息高速公路的主要传输手段,是将来信息社会的支柱。经过30年的发展,光纤通信历经五次重大技术变革,前四代光纤通信均已得到广泛应用。 实验过程及原理分析 一、实验目的: 1.了解光纤光栅的工作原理及相关特性; 2.了解光纤激光器的工作原理及相关特性; 3.掌握光纤激光器性能参数的测量方法; 二、实验原理: 光纤调谐激光器常用的调谐方法有旋转光栅、调节腔内标准具角度、利用声光滤波器、电调液晶标准具、可调谐光纤光栅等等,调谐范围为几nm到几十nm。非光纤调谐器件与光纤之间的耦合将不可避免地增大腔内的插入损耗,从而导致激光器的低斜率效率和高阈值。可调谐光纤光栅是光纤器件,用光纤光栅作为调谐装置能与光纤兼容,可有效克服用非光纤调谐方法所造成的插入损耗问题。本实验使用光纤光栅调谐装置调谐环形腔掺铒光纤激光器的输出波长,实现窄线宽可调谐激光输出。实验装置如图1所示。 图1可调谐光纤光栅激光器原理图

激光切割基础知识

激光切割加工基础知识 第一部分 激光切割的原理和功能 一、激光切割的原理 激光切割是由电子放电作为供给能源,通过 He 、N 2、CO 2 等混合气体为激发媒介,利用反射镜组聚焦产生激光光束,从而对材料进行切割。 激光切割的过程:在数控程序的激发和驱动下,激光发生器内产生出特定模式和类型的激光,经过光路系统传送到切割头,并聚焦于工件表面,将金属熔化;同时, 喷嘴从与光束平行的方向喷出辅助气体将熔渣吹走;在由程控的伺服电机驱动下,切割头按照预定路线运动,从而切割出各种形状的工件。 图1:激光切割示意图 二、机床结构 SLCF-X15×40F 数控激光切割机是意大利普瑞玛(PRIMA )工业公司的主导机型——悬臂式飞行光路结构的激光切割机,加工板材尺寸为1500×4000毫米,配有交换工作台。 (一) 该机型的主要特点如下: ● 悬臂式开式结构,可从三个方向上下料,人机接近性极好,可放置超长超宽的 板材。 ● 可移动式切割工作台与主机分离,柔性大。可加装焊接、切管等功能。 ● 精密传动部件不在切割区域内,防护容易,也不会由于工作台及床身切割热变 形影响机床的精度。 ● 从根本上消除了电器双边同步锁产生的误差,避免了横梁的扭动,使得光路稳 定,切割精度提高。 ● 配有高速的Z 轴系统,同时可通过数控系统控制辅助气体的压力、流量等,大 大提高了加工效率。 ● 新型的PM —400V2.0智能化编程软件,具有蛙跳、共边切割、优化套排料、高 效穿孔、尖角处理等功能。 ● 具有先进的多腔分室除尘系统,比单纯的抽风系统除尘效果更高。 1—激光器;2—激光束;3—全反射棱镜;4—聚焦物镜;5—工件;6—工作台

零购手持激光测距仪-技术参数

激光测距仪徕卡D510的特点: ?Pointfinder 4倍变焦 ?IP65水射流保护和防尘 ?360°倾角传感器 ?智能水平模式 ?高跟踪 ?蓝牙智能 ?免费应用程序- 徕卡DISTO草图 徕卡D510的功能: 1.4倍变焦的简单和精确的定位- Pointfinder:随着Pointfinder改进,徕卡DISTOD510完美的精 确度和在不利的光线条件下进行测量。野外工作时,在阳光明媚的天气,这是一个决定性的优势。即使肉眼看不到红色激光点,也可以看到准确的目标在显示屏上的十字线。 2.无限数量的的测量选项- 360°倾角传感器:徕卡DISTOD510配备了一个360°的倾斜传感器。? 这意味着,它不仅可以测量角度,而且全方位测量!惊人的间接测量结合的Pointfinder。?因此,即使没有反射的目标点,也是可以测量的。例如,确定一棵树的高度时,或当测量反射玻璃幕墙的高度。?这些常规的激光测距仪是不能测定的。 3.高效的高度轮廓测量:使用此功能,徕卡DISTOD510显示一个既定的参考点的距离和高度差。 这使得可以轻松快速地进行轮廓测量,而无需使用更昂贵的测量方法。另外,此功能可用于检查横梁是否是直的,现有的楼层的水平度。 4.快速传输-蓝牙智能与应用程序:徕卡DISTOD510测量数据可方便,准确地使用集成的蓝牙?智能 技术转移。免费的应用程序徕卡DISTO草图支持在iPhone或iPad上的地籍图或表的创建。尺寸照片,甚至可以进入到任何努力。 5.现代人体工程学:复杂的测量功能提供最简单的操作,这就是徕卡测量系统。?徕卡DISTOD510 已经适应了现代手机的用户界面。此外,你最喜欢的功能可以分配给一对选择键,按下一个按钮,以便快速存取。 6.又硬又容易清洁-IP65:特别密封,以防止水和灰尘的外壳和键盘。?在流水下清洗,也没问题。 此外,激光测距仪,可以在各种天气条件下使用,防尘和喷水保护

高中物理激光器的电学参数的测定

半导体激光器常用参数的测定(一) 一 实验目的:掌握半导体激光器常用的电学参数及其测试方法 一 实验基本原理 1、 普通光源的发光——受激吸收和自发辐射 普通常见光源的发光(如电灯、火焰、太阳等地发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。激发的过程是一个“受激吸收”过程。处在高能级(E2)的电子寿命很短(一般为10-8~10-9秒),在没有外界作用下会自发地向低能级(E1)跃迁,跃迁时将产生光(电磁波)辐射。辐射光子能量为 12E E h -=ν 这种辐射称为自发辐射。原子的自发辐射过程完全是一种随机过程,各发光原子的发光过程各自独立,互不关联,即所辐射的光在发射方向上是无规则的射向四面八方,另外未位相、偏振状态也各不相同。由于激发能级有一个宽度,所以发射光的频率也不是单一的,而有一个范围。在通常热平衡条件下,处于高能级E2上的原子数密度N2,远比处于低能级的原子数密度低,这是因为处于能级E 的原子数密度N 的大小时随能级E 的增加而指数减小,即N ∝exp(-E/kT),这是著名的波耳兹曼分布规律。于是在上、下两个能级上的原子数密度比为 ]/)(ex p[/1212kT E E N N --∝ 式中k 为波耳兹曼常量,T 为绝对温度。因为E2>E1,所以N2《N1。例如,已知氢原子基态能量为E1=-13.6eV ,第一激发态能量为E2=-3.4eV ,在20℃时,kT≈0.025eV,则 0)400ex p(/12≈-∝N N 可见,在20℃时,全部氢原子几乎都处于基态,要使原子发光,必须外界提供能量使原子到达激发态,所以普通广义的发光是包含了受激吸收和自发辐射两个过程。一般说来,这种光源所辐射光的能量是不强的,加上向四面八方发射,更使能量分散了。 2、 受激辐射和光的放大 由量子理论知识知道,一个能级对应电子的一个能量状态。电子能量由主量子数n(n=1,2,…)决定。但是实际描写原子中电子运动状态,除能量外,还有轨道角动量L 和自旋角动量s ,它们都是量子化的,由相应的量子数来描述。对轨道角动量,波尔曾给出了量子化公式Ln =nh ,但这不严格,因这个式子还是在把电子运动看作轨道运动基础上得到的。严格的能量量子化以及角动量量子化都应该有量子力学理论来推导。 量子理论告诉我们,电子从高能态向低能态跃迁时只能发生在l (角动量量子数)量子数相差±1的两个状态之间,这就是一种选择规则。如果选择规则不满足,则跃迁的几率很小,甚至接近零。在原子中可能存在这样一些能级,一旦电子被激发到这种能级上时,由于不满足跃迁的选择规则,可使它在这种能级上的寿命很长,不易发生自发跃迁到低能级上。这种能级称为亚稳态能级。但是,在外加光的诱发和刺激下可以使其迅速跃迁到低能级,并放出光子。这种过程是被“激”出来的,故称受激辐射。受激辐射的概念世爱因斯坦于1917年在推导普朗克的黑体辐射公式时,第一个提出来的。他从理论上预言了原子发生受激辐射的可能性,这是激光的基础。 受激辐射的过程大致如下:原子开始处于高能级E2,当一个外来光子所带的能量h υ正好为某一对能级之差E2-E1,则这原子可以在此外来光子的诱发下从高能级E2向低能级E1跃迁。这种受激辐射的光子有显著的特点,就是原子可发出与诱发光子全同的光子,不仅频

激光切割工艺详解-共30页

激光切割工艺 发表于 2009-10-26 20:50 | 只看该作者发表的帖子 1# 本文章共4286字,分3页,当前第1页,快速翻页:123 激光切割工艺 激光切割的工艺参数 (1)光束横模 ① 基模又称为高斯模,是切割最理想的模式,主要出现在功率小于1kW的激光器。 ② 低阶模与基模比较接近,主要出现在1~2kW的中功率激光器。 ③ 多模是高阶模的混合,出现在功率大于3kW的激光器。

切割速度与横模及板厚的关系见图1。由图可以看出,300W的单模激光和500W的多模有同等的切割能力。但是,多模的聚焦性差,切割能力低,单模激光的切割能力优于多模。常用材料的单模激光切割工艺参数见表1,多模激光切割工艺参数见表2。 表1 常用材料的单模激光切割工艺参数 材料 厚度/mm 辅助气体 切割速度/cmmin-1 切缝宽度/mm 功率/W 低碳钢 3.0 O2 60 0.2 250 不锈钢 1.0 O2 150 0.1

40.0 O2 50 3.5 钛合金 10.0 O2 280 1.5 有机透明玻璃10.0 N2 80 0.7 氧化铝 1.0 O2 300 0.1 聚酯地毯

N2 260 0.5 棉织品(多层)15.0 N2 90 0.5 纸板 0.5 N2 300 0.4 波纹纸板 8.0 N2 300 0.4 石英玻璃 1.9

60 0.2 聚丙烯 5.5 N2 70 0.5 聚苯乙烯 3.2 N2 420 0.4 硬质聚氯乙烯7.0 N2 120 0.5 纤维增强塑料3.0 N2

0.3 木材(胶合板)18.0 N2 20 0.7 低碳钢 1.0 N2 450 - 500 3.0 N2 150 6.0 N2 50 1.2 O2

外腔He-Ne激光器的调试及参数测量

半外腔He-Ne 激光器的调试及参数测量 1. 引言 虽然在1917年爱因斯坦就预言了受激辐射的存在,但在一般热平衡情况下,物质的受激辐射总是被受激吸收所掩盖,未能在实验中观察到。直到1960年,第一台红宝石激光器才面世,它标志了激光技术的诞生 按工作物质的类型不同,激光器可以分成四大类:固体激光器、气体激光器、液体激光器和半导体激光器。He-Ne 激光器是继红宝石激光器后出现的第二种激光器,也是目前使用最为广泛的激光器之一。因此有必要通过实验对He-Ne 激光器作全面的了解。 2. 实验目的 1) 了解He-Ne 激光器的构造。 2) 观察并测量He-Ne 激光器的功率、发散角、横模式等性能参数。 3) 调整谐振腔一端的反射镜,观察谐振腔改变后He-Ne 激光器性能参数的变化。 3. 基本原理 3.1 He-Ne 激光器结构 He-Ne 激光器由光学谐振腔(输出镜与全反镜)、工作物质(密封在玻璃管里的氦气、氖气)、激励系统(激光电源)构成,如下图 He-Ne 激光器激励系统采用开关电路的直流电源,体积小,重量轻,可靠性高,并装有散热风机,可长时间运行。 激光管的布氏窗与输出镜、全反镜之间用模具成型的耐老化的硅胶套封接。避免了因灰尘、潮气污染布氏窗、输出镜、全反镜而造成的激光输出功率下降。输出镜、全反射调节采用差动螺丝,粗调调节范围大,可锁定。细调调节范围小,调节时不易出差错。在激光管的阴极、阳极上串接着镇流电阻,防止激光管在放电时出现闪烁现象。激光器外壳接地,手碰激光器外壳无静电感应的刺痛感。 放电毛细管内充的氦氖混合气体的压强比约为7:1,总压强在100Pa 至400Pa 。放电管两端贴有用水晶片制成的布儒斯特窗。窗口平面的法线与放电管轴向间的夹角也恰好等于水晶的布儒斯特角,约56°。安装布儒斯特窗口可以使激光器输出的激光为在纸面内振动的偏振光,沿该方向振动的偏振光通过布儒斯特窗时不会反射,因此有利于减少损耗,提高输出功率。 3.2 He-Ne 激光器谐振腔与激光横模 光学谐振腔的两个反射镜构成腔的边界,他对腔内的激光场产生约束作用,使激光场的分布以及振荡频率都只能存在一系列分离的本征状态,每一个本征态称为一种激光模式。激光模式有两类:一类称为纵模,它是指可能存在于腔内得每一种驻波场,用模序数q 描述沿腔轴线的激光场的节点数。另一类是横模,指可能存在于腔内的每一种横向场分布,用模序数m 和n 描述。如果谐振腔由两面方形孔径的反射镜组成,则m 和n 分别表示沿镜面直角坐标系的水平和竖直坐标轴的激光场节线数。如果谐振腔由两面圆形孔径反射镜组成,则m 和n 分别表示沿镜面极坐标系的角向和径向的激光场节线数。因此每一个激光模式可以用三个独立的模序数表示,记成n m q TEM ,,。单独表示横模时可记成n m TEM ,。如00TEM 表示基

工业级激光器技术指标

工业级激光器技术指标 相关产品:镭射定位灯、红光定位灯、红光一字定位灯、红光十字定位灯、红光小十字定位灯、服装裁剪定位灯、布料裁剪定位灯、缝纫设备定位灯、红外线对格对条定位灯、印花机专用红光定位灯、绣花机红光定位、拉布机专用红光定位灯、开袋机专用红光定位、红外线标线器、激光划线灯、裁床镭射定位灯、针车专用激光定位灯、缝纫机对位灯、平网印花机定位、鞋机定型机定位灯、后踵定型机定位灯、丰字形、七横一竖定位灯、钉珠机、钉钮机、铆钉机专用红光定位灯 产品应用:可广泛用于服装裁床、缝纫机、裁剪机、印花机、绣花机、钉钮机、钉珠机、铆钉机、拉布机、开袋机、针车、毛巾印花机、枕巾印花机、平网印花机、以及鞋机定型机、后踵定型机等工业设备的标线定位。 产品特点: 特点1.产生的红色光线清晰明亮,产品直观实用体积小巧适用于各种服装,能起辅助标线与定位作用,提高裁剪的精度,大大提高工作效率。配套的支架和电源,使用简单方便。 特点2.红外线划线仪管芯采用日本进口半导体激光二极管,内置电路板经改良,特别适于恶劣的工作环境,能有效保证产品的稳定性和使用寿命。 特点3:现代激光定位工艺与传统定位方式相比具有无可替代的优势 a.传统定位过程繁琐;激光使用简易,通电即有断电即无。 b.传统定位模糊且不准,生产过程中耗损严重;激光效果清晰定位准确。。 c.传统定位生产工艺落后、耗时、人工成本高;激光定位工艺先进,节省成本。 d.安装方便(若另配我厂生产万向转动支架,能使使用更简便);拆卸简单。 特点4:产品光斑清晰,准直性好,体积小,工业适用性强,在工业和工艺待业的校正与定位中,取代了标尺、三角板、挡块等设备。并且能够帮助您在零贰玖陆捌伍捌壹柒零捌无法采用机械导向或在需要双手同时工作的地方工作。可以调节亮度,使之适合于材料表面和您所在位置的环境光线。对人眼起到有效的保护。 特点5:专用红外线激光定位器光斑清晰、小巧、易于安装,使用简单方便。从根本解决了传统的红外线激光标线器的主要问题,如使用寿命较短、光线强度低等。激光标线器管芯采用日本进口半导体激光二极管,内置电路板经改良,具有高抗干扰性、高稳定性、抑制浪涌电流及缓启动等特点,特别适于恶劣的工作环境,能有效保证产品的稳定性和使用寿命。 产品参数: 光斑形状:圆点、一字线、十字线(大十字线、小十字线)、丰字形 光线颜色:红色绿色(可选) 输出波长: 532nm 635nm 650nm 管芯功率:10~300mW 规格:Φ10×35mm Φ12×36mm Φ12×60mm Φ16×80mm Φ22×85mm Φ26×110mm(可定制) 光学透镜:光学镀膜玻璃透镜G3 出光张角:10°~120° 直线度:≥1/5000 线宽:3米处线宽≤1.0mm 工作电压:直流 5V 使用寿命:连续使用大于8000小时 工作温度:-10℃~75℃ 储藏温度:-40℃~85℃ 附件:专用电源工业用固定支架、万向旋转支架 1、专用电源(配套专用电源,具有很强的抗干扰性、高稳定性、抑制浪涌电流及缓启动等特点,特别适于

激光测距仪的使用方法操作指南

激光测距仪的使用方法|操作指南 美国激光技术公司(Laser Technology Inc.简称LTI公司),于1985年成立,已在美国证券交易所上市。设计和生产基于激光技术的测距测速仪器,在多个行业广泛应用,从维护交通秩序的激光测速到森林林场测量,从普通船舶停靠码头到航天飞机入坞都可以看到该公司的产品。目前有IMPULSE(英柏斯)和最新推出的图帕斯?200(TruPulse200型)。 应用范围:高尔夫球场、消防系统、建筑施工勘测设计、网络规划、勘测设计、电力部门测量、测绘、动物调查等等。 图帕斯(Trupulse)激光测距仪 新产品- 美国激光技术公司(Laser Technology, Inc.)全新推出的图帕斯?200,是本公司推出低价格系列的一款专业激光测距仪。它紧凑轻便的外观和“测量瞄准一体化”设计使激光和视线处于同一直线上,极大减小了由于激光发射点与视线之间的误差,使测量的结果更加精确。仪器具备的透明清晰显示数据的光学系统能够在您在眼睛瞄准目标的同时可以读出测量数据。仪器配备的屈光度调节器能够使您在工作的时候提供更好,更舒服,更加清晰的视野。利用倾斜度传感器,您能测量出水平距离和垂直距离,并且利用内置的程序能够马上计算出任何两点之间的高差。您可以通过标准的串口RS232(标准)或者无线蓝牙?技术进行数据传输。您在不同的环境条件下选择近距模式,远距模式或连续模式进行工作。 规格说明: ?尺寸:12cm x 5cm x9cm ?重量:220 g ?数据传输:RS232串口(标准)和无线蓝牙? (可选) ?电源:3.0V直流电; (2) AA or (1)CRV3 ?视力安全:(美国)食品及药物管理局一级别安全标准即联邦法规21章 ?环境要求:防水&防尘, NEMA 3, IP 64 ?温度:-20°C to +60°C ?光学放大倍数:7倍 ?显示器:液晶显示 ?单位:英尺,码,米,和度 ?脚架:单脚架/三脚架(1?4" - 20) ?距离:1000 m (0 ~ 3280 ft)标准环境下, 2000m (6560 ft)之于高反射度目标 ?倾斜度:+/- 90度

相关文档
最新文档