122组合(一)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
C43 34 3
P3 4
P3 3
如何计算:
m n
概念讲解 组合数公式
排列与组合是有区别的,但它们又有联系.
一般地,求从n 个不同元素中取出m 个元素的排
列数,可以分为以下2步:
第1步,先求出从这n 个不同元素中取出m 个元素
的组合数Cnm .
第2步,求每一个组合中m 个元素的全排列数Anm . 根据分步计数原理,得到: Anm Cnm Amm
有组合个数是: C32 3
如:已知4个元素a 、b 、 c 、 d ,写出每次取出两个
元素的所有组合个数是:C42 6
练一练
1.写出从a,b,c,d 四个元素中任取三个元素的所有组合。
c
bd
ac
d abc , abd , acd , bcd .
b
cdபைடு நூலகம்
组合
排列
abc
abc bac cab
acb bca cba



排列
问题2
从已知的 3个不同 元素中每 次取出2 个元素 , 合成一组


组合

概念讲解
组合定义:
一般地,从n个不同元素中取出m (m≤n)个元素合成一组,叫做从n个 不同元素中取出m个元素的一个组合.
排列与组合的 概念有什么共 同点与不同点?
概念讲解
排列定义: 一般地,从n个不同元素中取出m (m≤n) 个 元素,按照一定的顺序排成一列,叫做从 n 个不同元素 中取出 m 个元素的一个排列.
所有组合.
a
b
c
b cd
cd
ab , ac , ad , bc , bd , cd
d
(6个)
概念讲解
组合数:
从n个不同元素中取出m(m≤n)个元素的 所有组合的个数,叫做从n个不同元素中取出
m个元素的组合数,用符号 Cnm表示.
注意: Cnm 是一个数,应该把它与“组合”区别开来.
如:从 a , b , c三个不同的元素中取出两个元素的所
组合问题
(6)从4个风景点中选出2个,并确定这2个风景点的游览顺序,
有多少种不同的方法?
排列问题
练习2
甲、乙、丙、丁4支足球队举行单循环赛,
(1)列出所有各场比赛的双方;
(2)列出所有冠亚军的可能情况. 解:(1) 甲乙、甲丙、甲丁、乙丙、乙丁、丙丁 (2)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁 乙甲、丙甲、丁甲、丙乙、丁乙、丁丙
组合定义: 一般地,从n个不同元素中取出m(m≤n)个 元素合成一组,叫做从n个不同元素中取出m个元素的一 个组合.
共同点: 都要“从n个不同元素中任取m个元素”
不同点: 排列与元素的顺序有关, 而组合则与元素的顺序无关.
概念理解
思考一:ab与ba是相同的排列还是相同的组合?为什么? 思考二:两个相同的排列有什么特点?两个相同的组合呢?
又如:在5个元素a、b、c、d、e中 取3个元 abc abd abe acdace bcdbce cde bde ade 素的组合:
情境创设
问题一:从甲、乙、丙3名同学中选出2名去参 加某天的一项活动,其中1名同学参加上午的 活动,1名同学参加下午的活动,有多少种不 同的选法?
A32 6
问题二:从甲、乙、丙3名同学中选出2名去参 加某天的一项活动,有多少种不同的选法?
甲、乙;甲、丙;乙、丙 3
问题1
从已知的 3 个不同 元素中每 次取出2 个元素 , 按照一定 的顺序排 成一列.
因此:Cnm
Anm Amm
这里m、n
nn 1n 2n m 1
m! N,* 且 m n,这个公式叫做组合
数公式.
概念讲解
从 n 个不同元中取出m个元素的排列数
A C A m m m
n
n
m
组合数公式:
Cnm
Anm Amm
n(n 1)(n 2) m!
(n m 1)
Cnm
n! m!(n m)!
如从a,b,c,d 四个元素中任取三个元素
的所有组合数C43 ,如何通过排列数 A43来计算呢?
A 求 3可分两步考虑: 求4P34 可分两步考虑:
C 第一步, 3 ( 4)个; 4
A 第二步, 3 ( 6)个; 3
A C A 根据分步计数原理, 3 4
3
4
3 3.
A 从而 3 C A C 4
1)元素相同; 2)元素排列顺序相同.
元素相同
思考三:组合与排列有联系吗?
构造排列分成两步完成,先取后排;而构造 组合就是其中一个步骤.
判断下列问题是组合问题还是排列问题?
(1)设集合A={a,b,c,d,e},则集合A的含有3个元素的子集有
多少个?
组合问题
(2)某铁路线上有5个车站,则这条铁路线上共需准备多少种
abd
abd bad dab
adb bda dba
acd
acd cad dac
你发现a了dc cda dca
bcd
什么b?cd cbd dbc
bdc cdb dcb
不写出所有组合,怎样才能知道组合的种数?
前面已经提到,组合与排列有相互 关系,我们能否利用这种关系,通
过排列数 Anm 来求组合数Cnm 呢?
练习3
已知平面内A,B,C,D这四个点中任何3个点 都不在一条直线上,写出由其中每3点为顶 点的所有三角形.
解: ABC, ABD, ACD, BCD
概念理解
1.从 a , b , c三个不同的元素中取出两个元素的所有组
合分别是:
ab , ac , bc (3个)
2.已知4个元素a , b , c , d ,写出每次取出两个元素的
思考一:为何上面两个不同的组合数其结果相同?
这一结果的组合的意义是什么?
从10个元素中取出7个元素后,还剩下3
个元素,就是说,从10个元素中每次取出
7个元素的一个组合,与剩下的3个元素的
组合是一一对应的.因此,从10个元素中
取7个元素的组合,与从这10个元素中取
出3个元素的组合是相等的.
即:C170 C130
车票?
排列问题
有多少组种不合同是的选火车择票的价结? 果,排列组合问题
(3)10名同学是分选成择人数后相再同排的数序学的和结英语果两. 个学习小组,共有
多少种分法?
组合问题
(4)10人聚会,见面后每两人之间要握手相互问候,共需握手
多少次?
组合问题
(5)从4个风景点中选出2个游览,有多少种不同的方法?
我们规定:Cn0
1.
练习
1.计算
C
3 10

C
7 10
.
练习
2.比较
C
198 200

C2 200
的大小.
C
3 10
=
10
98
120
3 21
C170
1098 7 65 4 765 43 21
10 9 8 3 21
120
两数相等
不难发现
C
3 10
=
C
7 1
0
,
= C C 198 2
200
200
相关文档
最新文档