球墨铸铁件缩孔缩松

合集下载

球墨铸铁件产生缺陷的原因有哪些?

球墨铸铁件产生缺陷的原因有哪些?

球墨铸铁件产生缺陷的原因有哪些?球墨铸铁件产生缺陷的原因不单是球化处理问题,那么还有什么问题?在球墨铸铁件生产中,常见的铸件缺陷除有灰铸铁件的一般缺陷外,还有球化不良、球化衰退、夹渣、缩松、石墨漂浮、皮下气孔等。

通常,产生这些缺陷的原因不单是球化处理问题,有时还有造型制芯、熔炼浇注、配砂质量、落砂清理等许多生产工序的问题,因此必须具体分析。

以便采取相应的合理措施加以解决。

(1)球化不良特征:在铸件或试棒断面上分布有明显可见的小黑点,愈往中心愈密。

金相组织中.有聚集分布的厚片状石墨原因分析:1.原铁液硫含量过高2.铁液氧化3.残余球化剂量不足4反球化元素的干扰防止方法:1.尽量选用低硫的焦炭和新生铁。

若原铁液含硫量过高,应采用炉内、炉外脱硫或相应提高球化剂的加入量。

交界铁液一定要分离干净,灰铸铁的铁掖不应混入球墨铸铁中。

球化处理时,防止炉渣出到浇包中2.操作中严防铁液氧化3.熔制配比适当、成分稳定的中间合金,并采用合适的处理温度,注意球化处理操作。

防止铁液与合金作用过分激烈或“结死”在包底4镁球墨铸铁中。

加人少量的稀土,可中和反球化元素的干扰(2)球化衰退特征:球墨铸铁铁液,停留一定时间后,球化效果会消失原因分析: 铁液的残余镁量和残余稀土量随着时间的延长会逐渐减少,过了一定时间后。

球化剂残余量已减少到不足以保证铸件球化时,就造成球化衰退镁量和稀土量逐渐减少的原因是:1. 在铁液表面的MgS、CeS与空气中氧作用,发生下列反应:2MgS+O2=2MgO气↑+2S2CeS+ O2=2CeO气+2S烟状的MgO和CeO在空气中逸损,S返回铁液与Mg、Ce作用又生成MgS、CeS,这样循环,Mg、Ce不断损失2.镁在铁液中溶解度极小,大部分镁以微小的气泡悬浮在铁液中。

当有搅拌、回包、浇注、机械振动等情况时,镁气泡会集聚上浮,并穿出铁液表面。

遇空气燃浇而损失3.镁、稀土与氧有极大的亲和力。

铁液表面的镁和稀土要逐渐氧化、镁还有蒸发损失等防止方法:1.经球化处理的铁液应有足够的球化剂残余量2.降低原铁液硫含量,并防止铁液氧化3.球化处理后应扒净渣子4.缩短铁液经球化处理后的停留时间5.在铁液表面加覆盖熔剂,如石墨粉、木炭粉、冰晶石粉等(3)夹渣(黑渣)特征: 在铸件断面上呈现暗黑色,没有光泽,主要由琉化镁、硫化锰、氧化镁、二氧化硅、氧化铁、氢化镁等所组成,是一种非金属夹杂物,可用硫印、氧印等方法显示出来。

10步解决解决球墨铸铁件缩孔、缩松问题

10步解决解决球墨铸铁件缩孔、缩松问题

10步解决解决球墨铸铁件缩孔、缩松问题上世纪50年代初(甚至更早),铸造界就发现铸铁件由石墨析出产生的体积膨胀可对铸件起到自补缩作用,然而,至今仍然有不少铸造工艺人员不会很好地利用这种自补缩作用。

一般认为:ω(C),ω(Si)量越高,孕育作用越强,越有利于石墨化;石墨化膨胀量越大,自补缩作用就越好。

他们不知道石墨膨胀发生时间对补缩作用会有影响,甚至有人主张要采取工艺措施,使石墨化膨胀提前,使膨胀与凝固初期的收缩均衡,达到减少外部补缩量,从而减小冒口尺寸的目的,其结果反而导致外部补缩与石墨化膨胀相互抵触,使铸件更容易产生缩孔、缩松缺陷。

随着生产技术的发展,铸造界对此问题的认识已逐步深化。

早在21年前,RW Heine就发现:先共晶石墨析出使石墨化膨胀提前,不但使膨胀不能用于补缩,反而会使铁液倒流,进人冒口导致铸件产生缩孔、缩松缺陷。

近年来,国外已经开展了如何利用石墨化膨胀自补缩作用的试验研究,并且加强对到如何控制石墨析出时间,使石墨化膨胀高峰期推迟的方法。

现摘要介绍如下石墨析出时间的控制。

最初只是通过控制ω(C),ω(Si)量和孕育强度,以防止初生石墨析出引起膨胀过早;目前,已发展到研制特殊球化剂和特殊孕育剂,使石墨析出高峰从铸件凝固初期推迟到凝固后期,也就是使大部分石墨化膨胀推迟到型腔进出口已凝固封闭、外部补缩已停止、只能依靠石墨化膨胀进行自补缩的凝固后期,从而使膨胀更有效地起到消除缩孔、缩松的作用。

2011年,埃肯公司(Elkem Metals.Inc.)技术服务部经理Doug White在“防止缩孔、缩松缺陷,提高球铁件工艺出品率”的论文中列述了防止球墨铸铁件缩孔、缩松缺陷的各项措施,其中几项主要措施都涉及。

1、在不发生石墨漂浮、没有初生石墨析出的前提下尽量提高ω(C)量图1是按照壁厚为13~38mm的铸件制作出来的。

为防止石墨漂浮,铸件的碳当量(CE=C+1/3Si)不能超过4.55%;对于更薄的铸件,CE可以适当提高。

球墨铸铁缩松缺陷,都与哪些因素有关

球墨铸铁缩松缺陷,都与哪些因素有关

球墨铸铁缩松缺陷,都与哪些因素有关墨铸件已广泛应用于大型模具铸造领域,是毛坯件最常用的生产工艺之一,随着汽车工业的迅速发展,裝备模具需求量逐年增长,铸造缺陷的影响也逐步凸显,常见缺陷有皱皮、变形、缩孔、夹砂和积碳等,本文主要针对球墨铸件缩孔缺陷进行研究。

1.缩孔的形成及危害(1)缩孔產生机理液态合金铁液由液态到固态过程中会出现体积变小現象,经历液态收缩、凝固收缩、固态收缩三个收缩过程。

当液态收缩量与凝固收缩量大于固态收缩量时便会产生缩孔,形状极不规则,孔壁粗糙并带有枝状晶,缩孔分为集中缩孔(简称缩孔)和分散缩孔(简称缩松)。

(2)缩孔特点缩孔主要集中在铸件的上部和最后凝固的部位,以及铸件壁厚悬殊处、凹角圆角半径小及内浇道附近等凝固较晚或凝固缓慢的部位(称為热节)。

缩孔表现出来的形式主要有4种,即明缩孔、夹角缩孔、芯面缩孔、内缩孔,如图1所示。

(a)明缩孔(b)夹角缩孔(c)芯面缩孔(d)内縮孔图1 缩孔形式(3)缩孔在模具中的危害主要有以下4个方面:一是减少铸件的有效承载截面积,甚至造成应力集中而大大降低铸件的物理和力学性能;二是铸件的连续性被破坏,使铸件的气密性、抗蚀性等性能显著降低;三是加工后铸件表面的粗糙度提高,致使制件拉毛;四是缩孔在球墨铸铁缺陷中占据很大比例,往往成为不可修复的缺陷,直接造成铸件报废,给企业带来巨大的經济损失。

2. 缩孔缺陷位置通过对以往铸件失效现象统计分析发现,球墨铸铁缩孔缺陷多发生于高牌号球墨铸铁的以下部位:铸件的热节和最后凝固部位;承重部位或使用麵部位;表面10mm以下部位。

如图2、图3所示。

图2图33. 原因分析(1)铸件热节和最后凝固部位的缩孔铸件热节部位多出现在铸件三面夹角、拐角、直径小的铸孔以及壁厚悬殊部位,热量散发缓慢或集中到某一点,铁液外层已凝固,但热节点位置仍处于液态,凝固层逐渐形成枝状晶并不断生长将尚存的铁液分割成若干个互不相同的熔池,随著温度的降低热节位置開始出现收缩,體积变小,此时不能得到铁液补充而凝固后的孔壁粗糙、排满树枝晶的疏松孔,形成大量分散缩孔。

【材料成型原理--铸造】第14章 缩孔与缩松

【材料成型原理--铸造】第14章  缩孔与缩松
V V (T0 T1 ) 100 % L L (T0 T1 ) 100 %
4/28
收缩三个阶段
铸造合金从浇注温度冷却到常温,一般要经历以下三个收缩阶段:
• 1.液态收缩:合金从浇注温度冷却到液相线温度发生的体收缩。
• 2.凝固收缩:金属从液相线温度到固相线温度间产生的体收缩。
对于纯金属和共晶合金,凝固期间的体收缩是由于状态的改变, 与温度无关,具有一定的数值。
6/28
铸铁的收缩 1液态收缩 2凝固收缩:白口铁参考铸钢(两部分)
灰口铁有石墨膨胀 3固态收缩:
珠光体转变前收缩 共析转变膨胀(铁素体膨胀+渗碳体收缩、石墨 膨胀) 珠光体转变后收缩
7/28
第二节 缩孔与缩松的形成机理
1、缩孔:铸造合金在凝固过程中,由于液态收缩和凝固 收缩的产生,往往在铸件最后凝固的部位出现孔洞,称 为缩孔,把尺寸较大而且集中的孔洞称为集中缩孔,简 称缩孔。
• 2、条件: 铸件由表及里逐层凝固。
11/28
二、缩松的形成
当某种成分下的合金结晶温度范围较宽时, 通常按体积凝固的方式凝固。凝固区域宽,晶 体容易发展成为树枝发达的粗大等轴晶,当固 相约占70%(体积分数)时,尚未凝固的液体被 分割为一个个互不相通的小熔池。
随温度降低,同样要发生液态收缩、凝 固收缩和固态收缩,由于合金的液态收缩和凝 固收缩大于固态收缩,出现的细小孔洞得不到 外部合金液的补充而形成分散性的细小缩孔, 即缩松。
20/28
21/28
• 由于按照体积凝固方式凝固,铸件表面在 凝固后期没有形成坚固的外壳,如果铸型刚度 不够,膨胀力将迫使型壁外移。尺寸精度变差。 • 随着石墨球的长大,共晶团之间的间隙逐 步扩大,使得铸件普遍膨胀。共晶团之间的间 隙就是球墨铸铁的显微缩松,并布满铸件整个 断面,所以球墨铸铁铸件产生缩松的倾向性很 大。 • 如果铸件厚大,球墨铸铁铸件这种较大的 缩前膨胀也会导致铸件产生缩孔。 • 如果铸型刚度足够大,石墨化的膨胀力能 够将缩松挤合。在这种情况下,球墨铸铁也可 看作是具有“自补缩”能力。

球墨铸铁件表面缺陷

球墨铸铁件表面缺陷

球墨铸铁件表面缺陷清华大学于震宗引言球墨铸铁件的缺陷分为表面缺陷和内在缺陷两大类,后者即有关金属材质方面的缺陷,不属于本文范围内。

本文内容重点是砂型铸件的表面缺陷,包括用湿型砂、水玻璃砂、树脂砂等砂型和砂芯生产的铸件。

砂型球墨铸件的表面缺陷有多种,本文仅选择①粘砂,②砂孔和渣孔,③夹砂,④气孔,⑤胀砂、缩孔和缩松等缺陷进行讨论。

有的缺陷如灰班虽然发生在铸件表面上,而产生原因完全属于材质方面,则不包括在本文内:一. 球墨铸件气孔缺陷气孔是最难分析其形成原因和最难找出防治方法的铸件缺陷。

这是因为气孔的形成原因很多,从外观上又不易分清气孔是属于那种类型的。

虽然采用扫描电镜和能谱等微观分析方法有助于估计气孔的产生原因,但是这些先进的技术都还处于研究阶段,大多数铸造工厂尚难在生产中利用。

根据气孔发生机理,可分为裹入、侵入、析出和反应四类气孔。

其中裹入气孔是浇注时金属液中裹带着空气泡,随着液流进入型腔中而产生的气孔缺陷。

侵入气孔是铸件表面凝固成壳以前,砂型、砂芯等造型材料受热产生的气体侵入金属液中,形成气泡而产生的气孔球铁铸件最常遇到的气孔缺陷是反应气孔和析出气孔。

以下将分别讨论:1. 析出气孔金属液中溶解的原子态氢、氮气体元素,随金属温度下降而溶解度逐渐减小。

下降至结晶温度或凝固温度时,溶解度突然变小,氢、氮以分子态气相析出形成气泡,使铸件产生气孔,称为析出气孔。

生产铸铁的工厂中,最常见的析出气孔是使用树脂砂型和砂芯造成氨氮气孔,也有来自炉料和增碳剂的氮气孔。

①氨氮酚醛树脂覆膜砂的硬化剂为乌洛托平(六亚甲基四胺(CH2)6N4)。

铸铁件用热芯盒呋喃树脂含有尿素(CO(NH2)2)。

硬化剂用含有尿素和NH4Cl的水溶液。

冷芯盒和自硬砂用酚醛脲烷树脂的聚异氰酸酯组分中含有-RNCO基团。

上述树脂砂都含有多少不等的氨或胺,都是引起析出气孔的根源。

所含氮不同于空气中的氮,大气中78%是由氮组成,并不引起析出气孔缺陷。

球墨铸铁缩孔(精)

球墨铸铁缩孔(精)

球墨铸铁缩孔、缩松问题探讨(3.对“均衡凝固技术”几个基本问题的讨论)3.对“均衡凝固技术”几个基本问题的讨论本文开头就提到,目前球铁件缩孔、缩松研究的焦点问题是:如何正确认识石墨化膨胀?如何利用石墨化膨胀进行补缩?以及如何处理外部补缩和自补缩的关系?对这几个焦点问题,近年来在国内流行的“均衡凝固技术”[28] 提出了一些看法,引起了各种不同的评论。

可能是由于实践经历和看问题角度的差别,笔者的认识和看法可能与之有所不同,谨在这里对其中几个基本问题进行讨论,希望通过不同观点的交流有助于加深对球铁缩孔、缩松问题的认识,特别希望有助于正确认识和利用石墨化膨胀进行补缩。

3.1 球铁件是否可能实现“均衡凝固”?有利还是有弊?3.1.1收缩-膨胀叠加图存在的问题均衡凝固技术[28]给“均衡凝固”所作的定义是:“铸铁铁水冷却时要产生体积收缩,凝固时析出石墨产生体积膨胀。

均衡凝固就是利用膨胀和收缩动态叠加的自补缩和浇冒口系统的外部补缩,采用工艺措施,使单位时间的收缩与膨胀、收缩与补缩按比例进行的一种工艺原则” [28] 。

因此均衡凝固也称为“Proportional solidification”,即“按比例凝固”。

提出这种工艺原则的根据,也就是“均衡凝固技术”的基础,是收缩-膨胀叠加图(图31),该技术的一系列论断均以此图为依据。

但此图并非实验测试所得,与实际情况并不相符: 该理论认为一切铸铁件凝固过程的体积变化都可以用收缩曲线ABC与膨胀曲线ADC的叠加的结果(图31中曲线A/BD/C )表示,都是先收缩后膨胀。

图中A 点是充型开始,C 点是凝固终点,P点表示收缩与膨胀均等,称为“均衡点”,表示铸件只在P点之前需要外部补缩,P点之后不再需要补缩。

他们还认为薄小件是“集中收缩、骤然膨胀”,均衡点P后移;厚大件是“收缩分散,石墨化膨胀相对提前”,均衡点前移。

然而实际测量结果恰恰相反:上文图1是C E Bates 等人采用φ 12.7×7.01 mm的薄小试样测试的结果,冷却过程的体积变化(亦即缩-胀叠加结果,)是先胀后缩→缩了又胀→胀了又缩[1] ,与图2的厚大件相比,均衡点不但没有后移,反而是膨胀提前(均衡点前移)。

有关球铁铸件缩孔缩松形成及预防

有关球铁铸件缩孔缩松形成及预防

有关球铁铸件缩孔缩松形成及预防摘要,阐述有关球墨铸铁凝固特性、凝固过程体积变化和缩孔、缩松形成机理以及本人就缩孔、缩松的预防提出了看法。

关键词,球墨铸铁件,缩孔,缩松,防止前言球墨铸铁具有较大的缩孔、缩松倾向,如何防止和消除一直是铸造工作者关注的问题。

由于球墨铸铁缩孔、缩松形成的复杂性,在缩孔、缩松的形成机理和防止措施方面,存在许多不一致甚至相互矛盾的看法。

为有助于对此问题进行更深的研究,本文讲述有关球墨铸铁铸件缩孔、缩松的形成及预防,并就缩孔、缩松的预防方法发表本人的看法。

1 定义球墨铸铁是通过球化和孕育处理得到球状石墨,有效地提高了铸铁的机械性能,特别是提高了塑性和韧性,从而得到比碳钢还高的强度 1.1成分球墨铸铁除铁外的化学成分通常为:含碳量3.6,3.8,,含硅量2.0,3.0,,含锰、磷、硫总量不超过1.5,和适量的稀土、镁等球化剂1.2性能球铁铸件差不多已在所有主要工业部门中得到应用,这些部门要求高的强度、塑性、韧性、耐磨性、耐严重的热和机械冲击、耐高温或低温、耐腐蚀以及尺寸稳定性等。

为了满足使用条件的这些变化、球墨铸铁现有许多牌号,提供了机械性能和物理性能的一个很宽的范围。

如国际标准化组织ISO1083所规定的大多数球墨铸铁铸件,主要是以非合金态生产的。

显然,这个范围包括抗拉强度大于800牛顿/毫米,延伸率为2%的高强度牌号。

另一个极端是高塑性牌号,其延伸率大于17%,而相应的强度较低(最低为370牛顿/毫米勺。

强度和延伸率并不是设计者选择材料的唯一根,而其它决定性的重要性能还包括屈服强度、弹性模数、耐磨性和疲劳强度、硬度和冲击性能。

另外,耐蚀性和抗氧化以及电磁性能1对于设计者也许是关键的。

为了满足这些特殊使用,研制了一组奥氏体球铁,通常叫傲Ni一Resis亡球铁。

这些奥氏体球铁,主要用锌、铬和锰合金化,并且列入国际标准。

2球墨铸铁的凝固特点球墨铸铁有着与其它合金不同的凝固特点:(1)共晶凝固温度范围宽,呈糊状凝固(2)与灰铸铁相比,共晶团数多,共晶膨胀较大。

球铁缩松(厚大件)问题

球铁缩松(厚大件)问题

球墨铸铁易出现缩孔及缩松缺陷,其集中性缩孔主要产生在冒口颈,通常称为冒口颈缩孔。

成因:
1、碳当量。

提高铁液的碳含量,有利于石墨化,但随着石墨化膨胀,缩孔缩松倾向变大。

碳当量不宜过低。

2、磷含量。

磷使凝固范围扩大,此外磷共晶在最后凝固时得不到补给,会使铸件外壳变弱,增大了缩孔缩松的倾向。

3、残余稀土。

残余稀土量和残余镁量会增加球墨铸铁的白口倾向,使石墨膨胀减少,增大缩孔缩松的倾向。

4、铸型刚度。

砂型的紧实度不够或不均匀,会增加该缺陷的几率。

5、浇注温度。

浇注温度过高会增加液态收缩量,对消除缩孔、缩松不利。

6、铸件壁厚。

过厚铸件内部液态收缩大,当厚度变化太突然时,孤立的厚大断面得不到补缩,会增大该缺陷的倾向。

7、冒口及冷铁。

若浇注的冒口和冷铁设置不当,不能保证金属液顺序凝固,会影响冒口的补缩效果。

控制措施:
1、化学成分。

碳当量>3.9%,磷含量<0.08%,残留镁含量<0.07%,采用稀土镁合金处理时,稀土氧化物残余量控制在0.02-0.04%。

2、冒口。

冒口的尺寸、数量及安放位置要适当,力求做到顺序凝固,确保铸件能不断地补充金属液。

3、铸造工艺。

采用冷铁布置。

一提高凝固速度,使致密;二改变铸件的温度分布,利于铸件顺序凝固。

4、铸型。

提高砂箱的刚度和型砂紧实度,保证铸型有足够的刚度。

5、浇注温度。

一般铸件的温度应控制在1300-1350℃,厚大铸件,浇铸温度还可再低。

球墨铸铁件表面缺陷

球墨铸铁件表面缺陷

球墨铸铁件表面缺陷清华大学于震宗引言球墨铸铁件的缺陷分为表面缺陷和内在缺陷两大类,后者即有关金属材质方面的缺陷,不属于本文范围内。

本文内容重点是砂型铸件的表面缺陷,包括用湿型砂、水玻璃砂、树脂砂等砂型和砂芯生产的铸件。

砂型球墨铸件的表面缺陷有多种,本文仅选择①粘砂,②砂孔和渣孔,③夹砂,④气孔,⑤胀砂、缩孔和缩松等缺陷进行讨论。

有的缺陷如灰班虽然发生在铸件表面上,而产生原因完全属于材质方面,则不包括在本文内:一. 球墨铸件气孔缺陷气孔是最难分析其形成原因和最难找出防治方法的铸件缺陷。

这是因为气孔的形成原因很多,从外观上又不易分清气孔是属于那种类型的。

虽然采用扫描电镜和能谱等微观分析方法有助于估计气孔的产生原因,但是这些先进的技术都还处于研究阶段,大多数铸造工厂尚难在生产中利用。

根据气孔发生机理,可分为裹入、侵入、析出和反应四类气孔。

其中裹入气孔是浇注时金属液中裹带着空气泡,随着液流进入型腔中而产生的气孔缺陷。

侵入气孔是铸件表面凝固成壳以前,砂型、砂芯等造型材料受热产生的气体侵入金属液中,形成气泡而产生的气孔球铁铸件最常遇到的气孔缺陷是反应气孔和析出气孔。

以下将分别讨论:1. 析出气孔金属液中溶解的原子态氢、氮气体元素,随金属温度下降而溶解度逐渐减小。

下降至结晶温度或凝固温度时,溶解度突然变小,氢、氮以分子态气相析出形成气泡,使铸件产生气孔,称为析出气孔。

生产铸铁的工厂中,最常见的析出气孔是使用树脂砂型和砂芯造成氨氮气孔,也有来自炉料和增碳剂的氮气孔。

①氨氮酚醛树脂覆膜砂的硬化剂为乌洛托平(六亚甲基四胺(CH2)6N4)。

铸铁件用热芯盒呋喃树脂含有尿素(CO(NH2)2)。

硬化剂用含有尿素和NH4Cl的水溶液。

冷芯盒和自硬砂用酚醛脲烷树脂的聚异氰酸酯组分中含有-RNCO基团。

上述树脂砂都含有多少不等的氨或胺,都是引起析出气孔的根源。

所含氮不同于空气中的氮,大气中78%是由氮组成,并不引起析出气孔缺陷。

硅钼球墨铸铁件缩松的防止措施分析

硅钼球墨铸铁件缩松的防止措施分析

硅钼球墨铸铁件缩松的防止措施分析摘要:球墨铸铁件在铸造生产中经常出现缩松缺陷,若不能及时处理,铸件内部会出现大小不一的夹渣、疏松,严重影响铸件的外观质量和使用性能。

为了提高球墨铸铁件质量,分析了缩松的形成原因及预防措施。

首先分析了球墨铸铁的组织结构,认为碳化物、石墨是造成缩松缺陷的主要原因。

在生产实践中发现:影响铸件缩松率高低的因素很多,如浇注温度、冷却速度等都会影响铸件的缩松倾向和程度。

关键词:一般来说,浇注温度越高,冷却速度越快则铸件缩松倾向越大;石墨形态为细小密集呈圆环状、球状时有助于避免或减轻铸件表面产生缩松类缺陷;若石墨形态为松散片状或块状时则不利于防止或减轻此类缺陷。

浇注温度越高,冷却速度越快,铸件内部容易出现缩松缺陷。

为此,采用较低的浇注温度、较快的冷却速度,或使用较小的冷铁、薄壁管等措施,可改善铸件的组织结构;或者利用铁液表面张力来弥补收缩产生的内应力。

另外,对于硅钼球墨铸铁件在生产中应特别注意防止其缩松缺陷。

一、组织结构分析1、组织中的碳化物,一般可分为两类:①单一碳化物,即纯碳化物,是铸铁中最主要的缺陷。

此类化合物在凝固过程中不会产生收缩,也不会发生扩散作用而影响铸件的力学性能。

所以生产中常常以较低的含碳量来获得较高的硬度和良好的韧性。

②复杂碳化物,即由两种以上不同类型、不同形态的石墨聚集而成,这类化合物在凝固过程中容易产生收缩和扩散作用而影响铸件性能。

2、石墨是铁合金铸态时在石墨形态中一种相互连接的网状组织。

由于存在这种结构,使石墨与基体结合得最好,同时也是在铸铁凝固过程中最容易产生收缩缺陷的地方,所以对其形态变化应予以重视。

一般认为球墨铸铁以片状者居多,而石墨则以圆形者居多。

3、由于球墨铸铁是由奥氏体和铁素体两相组成,因此它不存在铁素体和奥氏体之间所固有的共晶转变问题(在实际生产中要注意铁素体和奥氏体的凝固顺序)。

一般认为石墨是在奥氏体形成过程中直接形成的,因而石墨形态对凝固过程中组织变化及缩松倾向都有很大影响。

球铁铸件缩孔、缩松的成因与防止

球铁铸件缩孔、缩松的成因与防止

球铁铸件缩孔、缩松的成因与防止球铁铸件缩孔、缩松的成因与防止摘要:球墨铸铁大多数是共晶或过共晶成分,其糊状凝固方式使铸件外壳没有抵抗石墨化膨胀能力,因而铸型产生型壁迁移,增大铸件体积,极易产生内部缩孔、缩松。

球墨铸铁凝固时,在枝晶和共晶团间的最后凝固区域,收缩的体积得不到完全补充,留下的空洞形成宏观及微观缩松。

La 有助于消除缩松倾向。

分析缩孔缩松形成原因并提出相应的防止办法,有助于减少由此产生的废品损失。

关键词:球墨铸铁、收缩、缩孔、缩松1 前言1.1 缺陷形成原因球墨铸铁生产技术日臻完善,多年技术服务的实践表明,生产中出现的铸造缺陷,完全可以用成熟的经验予以消除。

据介绍:工业发达国家的铸造废品率可以控制在1%以下[1],国内先进水平也在2%左右,提高企业铸造技术水平,对减少废品十分重要。

1。

显微缩松显微镜观察微细连续缺失空间多角形疏松枝晶间、共晶团边界间众所周知,灰铸铁是逐层凝固方式,球墨铸铁是糊状凝固方式。

逐层凝固可以使铸件凝固时形成一个坚实的封闭外壳,铸件全封闭外壳的体积收缩可以减小壳体内的缩孔容积。

糊状凝固的特点是金属凝固时晶粒在金属液内部整个容积内形核、生长,固相与液相混合存在有如粥糊。

大多数球墨铸铁是共晶或过共晶成分,其糊状凝固方式使铸件外壳没有抵抗石墨化膨胀的能力,铸型产生型壁迁移,增大铸件体积,极易产生内部缩孔、缩松缺陷。

铸型冷却能力强,有利于铸件的容积凝固转变成逐层凝固,使铸件的分散缩松转变成集中缩孔。

然而,批量生产中湿砂型铸造很难被金属型或干砂型取代。

球墨铸铁凝固有以下三个特点,决定球墨铸铁是糊状凝固方式:①球化和孕育处理显著增加异质核心,核心存在于整个熔体,有利于全截面同时结晶。

②石墨球在奥氏体壳包围下生长,生长速度慢,延缓铸件表层形成坚实外壳;而片状石墨的端部始终与铁液接触,生长速度快,凝固时间短,促使灰铁铸件快速形成坚实外壳。

③球墨铸铁比灰铸铁导热率小 20%-30%,散热慢,外壳生长速度降低[3]。

球铁缩孔缩松的影响因素

球铁缩孔缩松的影响因素

球铁缩孔缩松的影响因素特点:缩孔和缩松在球铁中要比在普通灰铁中更为普遍。

要防止它们,就必须给予更多的注意和控制。

能够明显看出的、尺寸较大而又集中的孔洞叫缩孔,不宜看清的、细小分散的孔洞叫缩松。

大多在铸件热节的上部产生缩孔。

在铸件热节处、在缩孔的下方往往有比较分散的缩松。

但是,对于一些壁厚均匀的中心,或者是在厚壁的中心部位,也可出现缩松。

有些缩松的体积很小,只有在显微镜下才能被发现。

这种缩松呈多角形,有时连续、有时断续,分布在共晶团边界。

这种缩松叫显微缩松。

奥氏体枝晶凝固后,残余的铁液则在枝晶间最后凝固,因得不到补缩而形成显微缩松。

球墨铸铁的缩孔与缩松体积比普通灰铸铁、白口铸铁和碳钢都要大。

(从铸铁成分一文中有表及数据说明),但是,在生产中,也可采用无冒口工艺得到健全的球铁铸件。

球墨铸铁缩孔和缩松增大的原因1、球状石墨在铁液中析出经过球化处理后,球状石墨会立即在铁液中析出,并且,随着温度的逐步降低,铁液中的石墨球逐渐长大。

石墨析出和长大的过程,伴随着液态金属的膨胀。

2、离异共晶转变球墨铸铁以离异共晶的方式进行共晶转变。

其凝固方式是内外几乎是同时进行的粥样凝固,因而容易形成显微缩松。

3、共晶膨胀量大由于呈粥样凝固,铸件在共晶转变期间要持续很长时间,球墨铸铁的共晶时间可比普通灰铸铁延长一倍还要多,由此,导致共晶转变的石墨化膨胀量大。

4、型壁移动在共晶凝固期间,由于粥样凝固,决定了铸件表面的凝固层很薄,以至不能建立其足够强度的凝固外壳,以抑制共晶凝固期间产生的石墨化膨胀,致使铸型内壁向外移动。

在铸型刚度不够的情况下,使型腔尺寸增大,由此导致缩孔缩松体积进一步增大。

5、球化处理使铁液的过冷度加大铁液经过球化处理后,原有的氢、氧、氮和CO 气体含量减少,铁液得到了净化,致使外来核心减少。

并且,铁液的过热温度越高,净化程度也越高,由此导致的过冷倾向也更加剧。

此外,球化元素镁和稀土均能与碳形成炭化物,由此减少了石墨化程度,加大了收缩倾向。

铸件缩孔、缩松产生的原因

铸件缩孔、缩松产生的原因

.. 铸件缩孔、缩松产生的原因1、铸件结构方面的原因由于铸件断面过厚,造成补缩不良形成缩孔。

铸件壁厚不均匀,在壁厚部分热节处产生缩孔或缩松。

由于铸孔直径太小形成铸孔的砂芯被高温金属液加热后,长期处于高温状态,降低了铸孔表面金属的凝固速度,同时,砂芯为气体或大气压提供了信道,导致了孔壁产生缩孔和绣松。

铸件的凹角圆角半径太小,使尖角处型砂传热能力降低,凹角处凝固速度下降,同时由于尖角处型砂受热作用强,发气压力大,析出的气体可向未凝固的金属液渗入,导致铸件产生气缩孔。

2、熔炼方面的原因液体金属的含气量太高,导致在铸件冷却过程中以气泡形式析出,阻止邻近的液体金属向该处流动进行补缩,产生缩孔或缩松。

当灰铸铁碳当量太低时,将使铁水凝固时共晶石墨析出量减少,降低了石墨化膨胀的作用,使凝固收缩增加,同时也降低铁水的流动性。

认而降低铁水的自补缩能力,使铸件容易产生缩孔或缩松。

当铁水含磷量或含硫量偏高时,磷是扩大凝固温度范围的元素,同时形成大量的低熔点磷共晶,凝固时减少了补缩能力。

硫是阻碍石墨化的元素,硫还能降低铁水的流动性。

同时,铁水氧化严重,也降低液体金属的流动性,使铸件产生缩孔或缩松。

孕育铸铁或球墨铸铁在浇注前用硅铁等孕育剂进行孕育处理时,如果孕育不良,将导致铁水凝固时析出大量的渗碳体,从而使凝固收缩增加,产生缩孔或缩松。

3、工艺设计的原因(1)浇注系统设计不合理浇注系统设计与铸件的凝固原则相矛盾时,可能会导致铸件产生缩孔或缩松。

主要表现为浇注位置不合适,不利于顺序凝固,内浇口的位置及尺寸不正确。

对于灰铸铁和球墨铸铁,如果将内浇口开在铸件厚壁处,同时内浇口尺寸较厚,浇注后,内浇口则长时间处于液体状态。

在铁水凝固发生石墨化膨胀的作用下,铁水会经内浇口倒流回直浇道,从而使铸件产生缩孔和缩松。

(2)冒口设计不合理冒口位置、数量、尺寸及冒口颈尺寸未能促进铸件顺序凝固,都可能导致铸件产生缩孔和缩松。

如果在暗冒口顶部未放置出气冒口,或冷铁使用不当,也会导致铸件产生缩孔和缩松。

球墨铸铁铸件缩松缺陷

球墨铸铁铸件缩松缺陷

球墨铸铁铸件缩松缺陷一.影响球铁缩松的一般规律:1.球墨铸铁铸件的模数。

铸件模数大于2.5,容易实现无冒口铸造,但有专家对此规定限制值,有疑问。

一般来讲,比较厚大铸件,由于石墨化膨胀,容易铸造无缩松铸件。

此时,碳当量控制不要大于4.5%,避免石墨漂浮。

而热节分散的薄小铸件,容易产生缩松,通过冷铁,铬矿砂或局部内冒口设置解决。

特别要注意浇冒口系统的补缩,一般来讲,冒口尽可能使用热冒口,避免冷冒口使用。

2.要充分注意砂箱的刚度和砂型的硬度。

在砂箱刚度和砂型紧实度方面,设置再充分都不为过。

3.浇冒口工艺设计的合理性。

尽可能使用热冒口加冷铁,冷冒口补缩效果很差。

4.铸型的冷却速度。

5.浇注温度和浇注速度的合理选择。

一些比较厚的铸件,可以考虑适当调高浇注温度,同时延长浇注速度来解决缩松。

同时利于二次氧化渣浮出铸件内部,增加探伤检测的合格。

6.化学成分的合理选择和适当的残余镁,稀土含量。

7.在砂型冷却条件下,争取较多的石墨球数对减少缩松有利,对提高力学性能有利。

8.比较好的原材料和好的铁水冶金质量,要特别注意铁水不要在出炉前高温下保持时间过久,同时出炉前做好增加铁水石墨结晶核心的预处理,这样可以提高石墨球数,减少缩松。

二.新的减少缩松的观点:1.球墨铸铁因为铁水含有镁,促使状态图上共晶点右移,镁含量在0.035-0.045%时,其实际共晶点大约在4.4-4.5%。

2.球铁成分选择在共晶点附近,铁水流动性最好,则凝固时铁水容易补充收缩。

3.球铁球化前后的硫含量不要变化太大。

即原铁水硫含量不要太高。

硫含量高,石墨容易析出过早。

容易产生缩松。

4.锡柴周启明老师今年文章“防止球墨铸铁缩松缩孔方法的新进展”中指出:在不发生石墨漂浮和没有初生石墨析出前提下,尽量提高碳含量。

我对这句话的理解:一般来讲,过共晶越大,则液态下产生初生石墨就越多,对减少缩松不利。

5.球铁凝固期间,控制石墨膨胀的时间,使石墨化膨胀延迟。

在碳当量选择确定情况下,高碳低硅。

球墨铸铁件缩孔和缩松问题的解决措施

球墨铸铁件缩孔和缩松问题的解决措施

球墨铸铁件缩孔和缩松问题的解决措施前言自2008年起,一些工业发达国家如英国,美国,法国等11国的球墨铸铁年产量已经超过了灰铸铁,而我国的球墨铸铁产量只是灰铸铁产量的一半,但2014年达到了37%,2015年提高到42%,虽然有了很大的提高,也达到了世界的平均水平,但比发达国家还是低了很多,这种情况一是说明我国的球铁件生产还有很大的发展空间,前景很好,但从另一角度来看为什么我国的球墨铸铁件所占比例不如发达国家高呢,我想可能是我们现有的球铁件质量水平,性能水平,以及质量的稳定性,一致性和国外相比还有差距,不足以使产品设计部门放心来使用球铁件,拿ADI来做例子,美国每辆重型卡车中,至少有500公斤以上的ADI件,而我国的一汽,东风汽车厂,每年ADI底盘零件只有5000吨左右,国外的ADI大多用在汽车上,量大而广,而我国大多为生产耐磨件,如矿山等所用磨球,所以对我们这些铸造的同行们,肩负着很大的振兴球铁的重任,首先要把我们球铁的质量水平提高,不但只能生产低端的普通球铁件,也要能生产高端的球墨铸铁件。

在球墨铸铁的生产中,我们最常遇到的质量问题就是铸件的缩孔缩松缺陷,球铁和灰铸铁同是含石墨的铸铁,对铸件的缩孔缩松有良好的天然的自补缩条件,但尽管球铁的常用的碳当量比灰铸铁高,按理,球铁的自补缩条件应更好些,但实际情况是球铁件的缩孔缩松倾向比灰铸铁大得多,并且它的出现往往反复无常,同一种产品用同一成分,同一工艺生产时,有时也能获得健全致密的铸件,但有时缩孔缩松的废品率却很高,给企业带来了很大的损失。

当然,这种情况的出现是与球墨铸铁与灰铸铁的凝固机理不同而引起的,球墨铸铁件的宏观凝固过程与灰铸铁不同,它凝固断面上液-固两相区宽,呈现出“糊状凝固”形貌,而灰铸铁按“逐层凝固”方式推进,凝固形貌的这种差别则是由它们的结晶特点引起的,两者的区别表现在:1)球化及孕育处理显著增加异质核心(球墨铸铁的核心比灰铸铁多约50-200倍)核心存在于整个熔体,有利于全截面同时结晶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档