新疆克拉玛依市第十三中学七年级数学下《第六章 实数》单元综合(无答案)测试题 (新版)新人教版
七年级初一数学下学期第六章 实数单元 期末复习综合模拟测评学能测试试卷
七年级初一数学下学期第六章 实数单元 期末复习综合模拟测评学能测试试卷一、选择题1.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019M x x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是( ) A .M N < B .M N > C .M N D .M N ≥2.在下面各数中无理数的个数有( )-3.14,23,227,0.1010010001...,+1.99,-3π A .1个 B .2个 C .3个 D .4个3.我们规定一种运算“★”,其意义为a ★b =a 2﹣ab ,如2★3=22﹣2×3=﹣2.若实数x 满足(x +2)★(x ﹣3)=5,则x 的值为( )A .1B .﹣1C .5D .﹣5 4.下列各式的值一定为正数的是 ( )A .aB .2aC .2(100)a -D .20.01a + 5.若15的整数部分为a ,小数部分为b ,则a-b 的值为()A .615-B .156-C .815-D .158- 6.下列计算正确的是( ) A .21155⎛⎫-= ⎪⎝⎭ B .()239-= C .42=± D .()515-=- 7.若m 、n 满足()21150m n -+-=,则m n +的平方根是( ) A .4± B .2± C .4 D .28.如图,数轴上,A B 两点表示的数分别为1,2--,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A .12B 21C .22D 229.下列各数中,属于无理数的是( )A .227B 2C 9D .0.1010010001 10.估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间二、填空题11.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号).12.若x +1是125的立方根,则x 的平方根是_________.13.如果一个有理数a 的平方等于9,那么a 的立方等于_____.14.2(2)0x -=,则y x -的平方根_________.15.已知2m =,则m 的相反数是________.16. 1.105≈ 5.130≈≈________.17.设a ,b 都是有理数,规定 *=a b ()()48964***-⎡⎤⎣⎦=__________.18.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a 的值为______.19.已知a 、b 为两个连续的整数,且a b ,则a +b =_____.20.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,=2,现对72进行如下操作:72821→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____.三、解答题21.探究与应用:观察下列各式:1+3= 21+3+5= 21+3+5+7= 21+3+5+7+9= 2……问题:(1)在横线上填上适当的数;(2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)22.阅读下列材料:()1121230123⨯=⨯⨯-⨯⨯ 123(234123)3⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 由以上三个等式相加,可得读完以上材料,请你计算下列各题.(1)求1×2+2×3+3×4+…+10×11的值.(2)1×2+2×3+3×4+……+n×(n+1)=___________.23.已知32x y --的算术平方根是3,26x y +-的立方根是的整数部分是z ,求42x y z ++的平方根.24.已知:b 是立方根等于本身的负整数,且a 、b 满足(a+2b)2+|c+12|=0,请回答下列问题:(1)请直接写出a 、b 、c 的值:a=_______,b=_______,c=_______.(2)a 、b 、c 在数轴上所对应的点分别为A 、B 、C ,点D 是B 、C 之间的一个动点(不包括B 、C 两点),其对应的数为m ,则化简|m+12|=________. (3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 、点C 都以每秒1个单位的速度向左运动,同时点A 以每秒2个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点C 之间的距离表示为AC ,点A 与点B 之间的距离表示为AB ,请问:AB−AC 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求出AB−AC 的值.25.阅读下列材料: 问题:如何计算1111122334910++++⨯⨯⨯⨯呢? 小明带领的数学活动小组通过探索完成了这道题的计算.他们的解法如下:解:原式1111111(1)()()()22334910=-+-+-++- 1110=-910= 请根据阅读材料,完成下列问题: (1)计算:111112233420192020++++⨯⨯⨯⨯; (2)计算:111126129900++++; (3)利用上述方法,求式子111115599131317+++⨯⨯⨯⨯的值. 26.如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences ).这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).(1)观察一个等比列数1,1111,,,24816,…,它的公比q = ;如果a n (n 为正整数)表示这个等比数列的第n 项,那么a 18= ,a n = ;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S =1+2+4+8+16+…+230…①等式两边同时乘以2,得2S =2+4+8+16++32+…+231…②由② ﹣ ①式,得2S ﹣S =231﹣1即(2﹣1)S =231﹣1所以 3131212121S -==-- 请根据以上的解答过程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若数列a 1,a 2,a 3,…,a n ,从第二项开始每一项与前一项之比的常数为q ,请用含a 1,q ,n 的代数式表示a n ;如果这个常数q ≠1,请用含a 1,q ,n 的代数式表示a 1+a 2+a 3+…+a n .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】设122018p x x x =+++,232018q x x x =++,然后求出M -N 的值,再与0进行比较即可.【详解】解:根据题意,设122018p x x x =+++,232018q x x x =++, ∴1p q x -=,∴()()12201823201920192019()M x x x x x x p q x pq p x =++++++=•+=+•; ()()12201923201820192019()N x x x x x x p x q pq q x =++++++=+•=+•; ∴20192019()M N pq p x pq q x -=+•-+•=2019()x p q •- =201910x x •>;∴M N >;故选:B.【点睛】本题考查了比较实数的大小,以及数字规律性问题,解题的关键是熟练掌握作差法比较大小.2.C解析:C根据无理数的三种形式求解.【详解】-3.14,,227,0.1010010001...,+1.99,-3π无理数的有:,0.1010010001...,-3π共3个 故选:C【点睛】 本题考查了无理数的定义,辨析无理数通常要结合有理数的概念进行.初中范围内学习的无理数有三类:①π类,如2π,3π等;②③虽有规律但是无限不循环的数,如0.1010010001…,等.3.B解析:B【分析】根据a ★b=a 2-ab 可得(x+2)★(x -3)=(x+2)2-(x+2)(x -3),进而可得方程:(x+2)2-(x+2)(x -3)=5,再解方程即可.【详解】解:由题意得:(x+2)2-(x+2)(x -3)=5,x 2+4x+4-(x 2-x -6)=5,x 2+4x+4-x 2+x+6=5,5x=-5,解得:x=-1,故选:B .【点睛】此题主要考查了实数运算,以及解方程,关键是正确理解所给条件a ★b=a 2-ab 所表示的意义.4.D解析:D【分析】任何数的绝对值都是一个非负数.非负数(正数和0)的绝对值是它本身,非正数(负数和0)的绝对值是它的相反数.任何数的平方都是大于等于0的.【详解】选项A 中,当a=0,则a =0;选项B 中,当a=0,则a²=0;选项C 中,当a=100,则(a-100)²=0;选项D 中,无论a 取何值,a²+0.01始终大于0.故选:D.此题考查绝对值的非负性,算术平方根的非负性,解题关键在于掌握其性质. 5.A解析:A【分析】先根据无理数的估算求出a、b的值,由此即可得.【详解】91516<<,<<34<<,3,3a b∴==,)336a b∴-=-=,故选:A.【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.6.B解析:B【分析】根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-=⎪⎝⎭,所以,选项A运算错误,不符合题意;B.()239-=,正确,符合题意;2=,所以,选项C运算错误,不符合题意;D.()511-=-,所以,选项D运算错误,不符合题意;故选:B.【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则.7.B解析:B【分析】根据非负数的性质列式求出m、n,根据平方根的概念计算即可.【详解】由题意得,m-1=0,n-15=0,解得,m=1,n=15,=4,4的平方根的±2,故选B .【点睛】考查的是非负数的性质、平方根的概念,掌握非负数之和等于0时,各项都等于0是解题的关键.8.D解析:D【分析】设点C 的坐标是x ,根据题意列得12x =-,求解即可. 【详解】解:∵点A 是B ,C 的中点.∴设点C 的坐标是x ,则12x =-,则2x =-+∴点C 表示的数是2-+故选:D .【点睛】此题考查数轴上两点的中点的计算公式:两点的中点所表示的数等于两点所表示的数的平均数,正确掌握计算公式是解题的关键.9.B解析:B【分析】无限不循环小数是无理数,根据定义解答即可.【详解】A 、227是小数,不是无理数;B 是无理数;C 是整数,不是无理数;D 、0.1010010001是有限小数,不是无理数,故选:B .【点睛】此题考查无理数的定义,熟记定义并运用解题是关键.10.C解析:C【解析】试题分析:∵16<20<25,∴∴4<5.故选C.考点:估算无理数的大小.二、填空题11.③,④【分析】①[x) 示小于x的最大整数,由定义得[x)x≤[x)+1,[)<<-8,[)=-9即可,②由定义得[x)x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义解析:③,④【分析】①[x) 示小于x的最大整数,由定义得[x)<x≤[x)+1,[385-)<385-<-8,[385-)=-9即可,②由定义得[x)<x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),又[x)<x联立即可判断.【详解】由定义知[x)<x≤[x)+1,①[385-)=-9①不正确,②[x)表示小于x的最大整数,[x)<x,[x) -x<0没有最大值,②不正确③x≤[x)+1,[x)-x≥-1,[x)–x有最小值是-1,③正确,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),∵[x)<x,∴x1-≤[x)<x,④正确.故答案为:③④.【点睛】本题考查实数数的新规定的运算,阅读题给的定义,理解其含义,掌握性质[x)<x≤[x)+1,利用性质解决问题是关键.12.±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x+1=,解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正解析:±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.13.±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了解析:±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了平方根及有理数的乘方.解题的关键是掌握平方根的概念及有理数乘方的法则.14.【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可.【详解】解:,且,∴y-3=0,x-2=0,..的平方根是.故答案为:.【点睛】此题考查算术平解析:±1【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可.【详解】解:23(2)0y x -+-=20,(2)0x -≥,∴y-3=0,x-2=0,3,2y x ∴==.1y x ∴-=.y x ∴-的平方根是±1.故答案为:±1.【点睛】此题考查算术平方根的性质及乘方的性质,求一个数的平方根,根据算术平方根的性质及乘方的性质求出x 与y 的值是解题的关键.15.【分析】根据相反数的定义即可解答.【详解】解:的相反数是,故答案为:. 【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.解析:2【分析】根据相反数的定义即可解答.-=,解:m的相反数是2)2故答案为:2【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.16.-0.0513【分析】根据立方根的意义,中,m的小数点每移动3位,n的小数点相应地移动1位.【详解】因为所以-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方解析:-0.0513【分析】=中,m的小数点每移动3位,n的小数点相应地移动1位.n【详解】≈5.130≈-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方根的定义是关键.17.1【分析】根据规定,利用算术平方根与立方根的定义计算即可得答案.【详解】∵,∴=()()=(2+2)(3-4)=4(-1)==2-1故答案为:1 【点睛】 本题考查平方解析:1 【分析】根据规定,利用算术平方根与立方根的定义计算即可得答案. 【详解】∵*=a b∴()()48964***-⎡⎤⎣⎦=*) =(2+2)*(3-4) =4*(-1)==2-1 =1. 故答案为:1 【点睛】本题考查平方根与立方根,正确理解规定,熟练掌握平方根和立方根的定义是解题关键.18.3 【分析】利用平方根、立方根的定义求出x 与y 的值,即可确定的值. 【详解】解:根据题意的2a+1+3-4a=0, 解得a=2, ∴, ,故答案为:3. 【点睛】本题考查了平方根和立方根,熟解析:3 【分析】利用平方根、立方根的定义求出x 与y 的值. 【详解】解:根据题意的2a+1+3-4a=0, 解得a=2,∴25,8x y ==-,∴=,故答案为:3. 【点睛】本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.19.9 【分析】首先根据的值确定a 、b 的值,然后可得a+b 的值. 【详解】 ∵<, ∴4<<5, ∵a<<b , ∴a=4,b =5, ∴a+b=9, 故答案为:9. 【点睛】本题主要考查了估算无理数的解析:9 【分析】a 、b 的值,然后可得a +b 的值. 【详解】<∴45,∵a b , ∴a =4,b =5, ∴a +b =9, 故答案为:9. 【点睛】本题主要考查了估算无理数的大小,关键是正确确定a 、b 的值.20.255 【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可. 【详解】解:∵,,, ∴只解析:255 【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可. 【详解】解:∵1=,3=,15=,∴只进行3次操作后变为1的所有正整数中,最大的是255, 故答案为:255. 【点睛】本题考查了估算无理数大小的应用,主要考查学生的阅读能力和逆推思维能力.三、解答题21.(1)2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=n 2; (3)﹣1.008016×106. 【分析】(1) 根据从1开始连续n 各奇数的和等于奇数的个数的平方即可得到. (2) 根据规律写出即可. (3) 先提取符号,再用规律解题. 【详解】 解:(1)1+3=22 1+3+5=32 1+3+5+7=42 1+3+5+7+9=52 ……故答案为:2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=2(1)n +(3)原式=﹣(1+3+5+7+9+…+2019) =﹣10102 =﹣1.0201×106. 【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可. 22.(1)440;(2)()()1123n n n ++. 【分析】通过几例研究n(n+1)数列前n 项和,根据题目中的规律解得即可. 【详解】.(1)1×2+2×3+3×4+…+10×11=1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+1(10111291011)3⨯⨯-⨯⨯ =1101112=4403⨯⨯⨯. (2)1×2+2×3+3×4+……+n×(n+1)=1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+()()()()121113n n n n n n ++--+⎡⎤⎣⎦ =()()1123n n n ++. 故答案为:()()1123n n n ++. 【点睛】本题考查数字规律问题,读懂题中的解答规律,掌握部分探究的经验,用题中规律进行计算是关键.23.6±【分析】根据算术平方根、立方根的定义列出二元一次方程组,之后对方程组进行求解,得到x 和y 的值,再根据题意得到z 的值,即可求解本题. 【详解】解:由题意可得3x 29268y x y --=⎧⎨+-=⎩,解得54x y =⎧⎨=⎩,36<<67∴<<,6z ∴=,424542636∴++=⨯++⨯=x y z ,故42x y z ++的平方根是6±. 【点睛】本题考查了平方根、立方根、算术平方根,解决本题的关键是熟记平方根、立方根、算术平方根的定义.24.(1)2;-1;12-;(2)-m-12;(3)AB−AC的值不会随着时间t的变化而改变,AB-AC=1 2【分析】(1)根据立方根的性质即可求出b的值,然后根据平方和绝对值的非负性即可求出a和c 的值;(2)根据题意,先求出m的取值范围,即可求出m+12<0,然后根据绝对值的性质去绝对值即可;(3)先分别求出运动前AB和AC,然后结合题意即可求出运动后AB和AC的长,求出AB−AC即可得出结论.【详解】解:(1)∵b是立方根等于本身的负整数,∴b=-1∵(a+2b)2+|c+12|=0,(a+2b)2≥0,|c+12|≥0∴a+2b=0,c+12=0解得:a=2,c=1 2 -故答案为:2;-1;12 -;(2)∵b=-1,c=12-,b、c在数轴上所对应的点分别为B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,∴-1<m<1 2 -∴m+12<0∴|m+12|= -m-12故答案为:-m-12;(3)运动前AB=2-(-1)=3,AC=2-(12-)=52由题意可知:运动后AB=3+2t+t=3+3t,AC=52+2t+t=52+3t∴AB-AC=(3+3t)-(52+3t)=12∴AB−AC的值不会随着时间t的变化而改变,AB-AC=12.【点睛】此题考查的是立方根的性质、非负性的应用、利用数轴比较大小和数轴上的动点问题,掌握立方根的性质、平方、绝对值的非负性、利用数轴比较大小和行程问题公式是解决此题的关键.25.(1)原式=20192020(2)原式=99100(3)原式=417【分析】(1)类比题目中的拆项方法,类比得出答案即可;(2)先把原式拆分成题(1)原式的样子,再根据(1)的拆项方法,类比得出答案即可;(3)分母是相差4的两个自然数的乘积,类比拆成以两个自然数为分母,分子为1的两个自然数差的14即可.【详解】解:(1)原式=(1-12)+(12-13)+(13-14)+……+(12019-12020)=1-1 2020=2019 2020;(2)原式=1111 12233499100 ++++⨯⨯⨯⨯=(1-12)+(12-13)+(13-14)+……+(199-1100)=1-1 100=99 100(3)原式=14×(4444155********+++⨯⨯⨯⨯)=14×(1-15+15-19+19-113+113-117)=14×(1-117)=14×1617=4 17【点睛】本题考查算式的规律,注意分子、分母的特点,解题的关键是根据规律灵活拆项,并进一步用规律解决问题.26.(1)12,1712,n-112;(2)24332-;(3)()11111na aa--【分析】(1)12÷1即可求出q,根据已知数的特点求出a18和a n即可;(2)根据已知先求出3S,再相减,即可得出答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)12÷1=12,a18=1×(12)17=1712,a n=1×(12)n﹣1=112n-,故答案为:12,1712,112n-;(2)设S=3+32+33+ (323)则3S=32+33+…+323+324,∴2S=324﹣3,∴S=2433 2-(3)a n=a1•q n﹣1,a1+a2+a3+…+a n=() 11111na aa--.【点睛】本题考查了整式的混合运算的应用,主要考查学生的理解能力和阅读能力,题目是一道比较好的题目,有一定的难度.。
【3套打包】乌鲁木齐市人教版初中数学七年级下册第六章《实数》单元检测试卷(含答案解析)
人教版七年级下册数学单元检测卷:第六章实数一、填空题(每小题4分,共20分)1.比较大小:3-2>-23(填“>”“<”或“=”).2.计算:9-14+38-|-2|=.3.3-5的相反数为,4-17的绝对值为,绝对值为327的数为.4.用“*”表示一种新运算:对于任意正实数a,b,都有a*b=b+1,例如8*9=+1=4,那么15*196= .5.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是.二、选择题(每小题3分,共30分)6.-3的绝对值是()A.33B.-33C. 3 D.1 37.在实数-227,9,π,38中,是无理数的是()A.-227B.9C.πD.3 88.下列四个数中,最大的一个数是() A.2 B. 3 C.0 D.-29.某正数的平方根为a5和4a-255,则这个数为()A.1 B.2 C.4 D.9 10.下面实数比较大小正确的是()A.3>7 B.3> 2C.0<-2 D.22<311.实数a在数轴上的位置如图1所示,则下列说法不正确的是()图1A.a的相反数大于2 B.a的相反数是2C.|a|>2 D.2a<012.如图2,在数轴上点A表示的数为3,点B表示的数为6.2,点A,B 之间表示整数的点共有()图2A.3个B.4个C.5个D.6个13.|5-6|=()A.5+ 6 B.5- 6C.-5- 6 D.6- 514.若x-1+(y+1)2=0,则x-y的值为()A.-1 B.1C.2 D.315. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2C.547.7 D.±547.7三、解答题(共70分)16.(6分)求下列各式的值.(1)252-242×32+42;(2)2014-130.36-15×900;(3)|a-π|+|2-a|(2<a<π).(精确到0.01)17.(8分)求下列各式中x的值.(1)x2-5=4;(2)(x-2)3=-0.125.18.(8分)已知实数a,b满足a-14+|2b+1|=0,求b a的值.19.(8分)芳芳同学手中有一块长方形纸板和一块正方形纸板,其中长方形纸板的长为3 dm,宽为2 dm,且两块纸板的面积相等.(1)求正方形纸板的边长(结果保留根号).(2)芳芳能否在长方形纸板上截出两个完整的,且面积分别为2 dm2和3 dm2的正方形纸板?判断并说明理由.(提示:2≈1.414,3≈1.732)20.(8分)已知x-2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.21.(10分)“欲穷千里目,更上一层楼”说的是登得高看得远,如图3,若观测点的高度为h,观测者视线能达到的最远距离为d,则d=2hR,其中R是地球半径(通常取6 400 km).小丽站在海边一块岩石上,眼睛离海平面的高度h 为20 m,她观测到远处一艘船刚露出海平面,求此时d的值.22.(1人教版七年级数学下册第六章实数单元检测题一、选择题(每题3分,共30分)1.-3的绝对值是()A.33B.-33 C. 3 D.132.下列实数中无理数是()A. 1.21B.3-8 C.3-32 D.2273. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个4.下列说法正确的是 ()A.无限小数是无理数B.不循环小数是无理数C.无理数的相反数还是无理数D.两个无理数的和还是无理数5.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±206.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是17.下列四个数中的负数是()(-C.(﹣2)2 D.|﹣2|A.﹣22 B.2)18无理数一定是无限不循环小数②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④9. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2 C.547.7 D.±547.7二、填空题(本大题共8小题,共32分)1.比较大小:(填写“<”或“>”)2.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是________.3.已知实数m满足+=,则m=.〈<b,且a、b是两个连续的整数,则|a+b|= .4.已知,a235.若的值在两个整数a与a+1之间,则a=.6.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为cm2.7.请写出一个大于8而小于10的无理数:.8.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A 点表示的数是 .三、解答题(38分)1.(6分)已知实数a ,b 满足a -14+|2b +1|=0,求b a 的值.2.(6分)已知,求的算术平方根.3.(6分)计算: (1)9×(﹣32)+4+|﹣3|(2) .4.(本题8分)将下列各数填在相应的集合里.π,3.141 592 6,-0.456,3.030 030 003…(每两个3之间依次多1个0).有理数集合:{…};无理数集合:{…};正实数集合:{…};整数集合:{…}.5.(12分)数学活动课上,张老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为1<2<4,所以1<2<2,所以2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”亮亮说:“既然如此,因为2<5<3,所以5的小数部分就是(5-2)了.”张老师说:“亮亮真的很聪明.”接着,张老师出示了一道练习题:已知8+3=x+y,其中x是一个整数,且0<y<1,请你求出2x+(3-y)2 019的值.参 考 答 案:人教版数学 七年级下册期末复习 第6章《实数》 同步测试卷一.选择题(共10小题,3*10=30) 1.3的相反数是( ) A .- 3 B . 3 C .12D .2 2.81的平方根是( ) A .3 B .-3 C .±3D .±93.下列实数中,无理数是( ) A .-2 B .0 C .πD . 44.下列各式中正确的是( ) A .16=±4 B .3-27=-9 C .-32=-3 D .214=1125.下列说法中:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17是17的相反数.正确的有( )A .0个B .1个C .2个D .3个6.若一个数的算术平方根和立方根都等于它本身,则这个数一定是( ) A .0或1 B .1或-1 C .0或±1D .07.如图,数轴上点P 表示的数可能是( )A . 2B . 5C .10D .158.一个正方形的面积为2,则它的边长是( )A .4B .±2C .- 2D . 29.在实数 -13, -2, 0, 3 中,最小的实数是( )A .-2B .0C .-13D . 310.已知35.28=1.738,3a =0.173 8,则a 的值为( ) A .0.528B .0.052 8C .0.005 28D .0.000 528 二.填空题(共6小题,3*6=18) 11.化简:|3—2|=________. 12.比较大小:-6 ________-35.13.在数轴上到原点的距离是5的点表示的数是________.14.一个正数x 的两个平方根分别是a +2和a -4,则a =________. 15.已知a 、b 为两个连续的整数,且a <11<b ,则a +b = ________. 16.已知x -1+|2y -2|=0,则x -y =________. 三.解答题(共9小题,72分)17.(7分)计算:(-3)2+||3-2-2(3-1).18.(7分)解方程:3(x -2)2=27.19.(8分)解方程:2(x -1)3+16=0.20.(8分)20.某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r 为多少米(球的体积V =43πr 3,π取3.14,结果精确到0.1米)?21.(8分)实数a ,b ,c 在数轴上的对应点如图所示,化简:3a 3+||a +b -c 2-||b -c .22.(8分)已知实数2a -1的平方根是±3,2b +3。
七年级下册第六章实数测试题.doc
七年级下册第六章《实数》单元测试题班级: 姓名:成绩:一、选择题(每小题2分,共18分)1.下列说法:(1)无理数就是开方开不尽的数;(2)无理数包括正无理数、零、负有理数;(3)无理数是无限不循环小数(4)无理数都可以用数 轴上的点来表示。
A. 0B.正整数5, 下列说法错误的是() A. a 2与(一a ) 2相等C,喝与3是互为相反数 6. 下列说法正确的是( )C. 0和 1D. 1B. 与 J (-a )。
相等 D. \a \与a|互为相反数A. 0.25是0.5的一个平方根B. 正数有两个平方根,且这两个平方根之和等于0C. 72的平方根是7D.负数有一个平方根7, 下列各数中,不是无理数的是() A. V7 B. 0.5 C. 2H D. 0.151151115-(两个 5 之间依次 多1个1) 8. 下列说法正确的是() A. -0.064的立方根是0.4 B. —9的平方根是±3C. 16的立方根是应D. 0.01的立方根是0.000001 其中正确的说法的个数是( A.2.A.3.A. 1B. 2 (-0.7)之的平方根是( -0.7 B. ±0.7 能与数轴上的点一一对应的是 整数 B.有理数C. 3 ) C. C. 0.7 ) 无理数 4.D. D. 0.49 如果一个实数的平方根与它的立方根相等,)D.实数 则这个数是9.一个正数的算术平方根是a,那么比这个正数大2的数的算术平方根是()A. a ~ +2B. ± Ja" + 2C. Ja ~ + 2D. Ja + 2二、填空题(每个空1分,共24分)10.在数轴上表示一必的点离原点的距离是。
11.9的算术平方根是—;(-3尸的算术平方根是; 3的一 4 /—平方根是;E的平方根是;岳的平方根是。
912.—的立方根是;9的立方根是;一125的立方根是。
27 —13.V5-2的相反数是;绝对值是—;V2的相反数是—。
七年级初一数学下学期第六章 实数单元 期末复习测试综合卷检测试卷
七年级初一数学下学期第六章 实数单元 期末复习测试综合卷检测试卷一、选择题1.已知:表示不超过的最大整数,例:,令关于的函数(是正整数),例:=1,则下列结论错误..的是( ) A .B .C .D .或12.对一组数(),x y 的一次操作变换记为()1,P x y ,定义其变换法则如下:()()1,,P x y x y x y =+-,且规定()()()11,,n n Px y P P x y -=(n 为大于1的整数), 如,()()11,23,1P =-,()()()()()21111,21,23,12,4P P P P ==-=,()()()()()31211,21,22,46,2P P P P ===-,则()20171,1P -=( ). A .()10080,2B .()10080,2-C .()10090,2-D .()10090,23.下列数中,有理数是( ) A 7B .﹣0.6C .2πD .0.151151115…4.下列各数-(-3),0,221(-)--2--42π,,,中,负数有( ) A .1个B .2个C .3个D .4个5.让我们轻松一下,做一个数字游戏.第一步:取一个自然数n 1=5,计算n 12+1得a 1;第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2;第三步:算出a 2的各位数字之和得n 3,计算n 32+1得a 3;……依此类推,则a 2018的值为( ) A .26B .65C .122D .1236.估算231﹣的值是在哪两个整数之间( ) A .0和1B .1和2C .2和3D .3和47.若一个数的平方根与它的立方根完全相同.则这个数是()A .1B .1-C .0D .10±,8.下列说法:①±3都是27的立方根;②116的算术平方根是±1438-216的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有( ) A .1个B .2个C .3个D .4个9.下列说法正确的是( )A .a 2的正平方根是aB 819=±C .﹣1的n 次方根是1D 321a --一定是负数10.16的平方根是( ) A .4B .4-C .4±D .2±二、填空题11.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.12.若已知()21230a b c -+++-=,则a b c -+=_____. 13.一个数的平方为16,这个数是 .14.如果某数的一个平方根是﹣5,那么这个数是_____.15.对任意两个实数a ,b 定义新运算:a ⊕b=()()a a b b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是先做括号内的,那么(5⊕2)⊕3=___.16.对于任意有理数a ,b ,定义新运算:a ⊗b =a 2﹣2b +1,则2⊗(﹣6)=____. 17.已知31.35 1.105≈,3135 5.130≈,则30.000135-≈________.18.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: 10]33]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________. 19.34330035.12=30.3512x =-,则x =_____________. 20.若x 、y 分别是811-2x -y 的值为________.三、解答题21.(1)观察下列式子: ①100222112-=-==; ②211224222-=-==; ③322228442-=-==; ……根据上述等式的规律,试写出第n 个等式,并说明第n 个等式成立;(2)求01220192222++++的个位数字.22.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯ ,将以上三个等式两边分别相加得:11111111112233422334++=-+-+-⨯⨯⨯=13144-= (1)猜想并写出:1n(n 1)+ = .(2)直接写出下列各式的计算结果:①1111...12233420152016++++⨯⨯⨯⨯= ; ②1111...122334(1)n n ++++⨯⨯⨯⨯+= ; (3)探究并计算:1111 (24466820142016)++++⨯⨯⨯⨯. 23.你会求(a ﹣1)(a 2012+a 2011+a 2010+…+a 2+a+1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:()()2111a a a -+=-,()()23111a a a a -++=-,()()324111a a a a a -+++=-,(1)由上面的规律我们可以大胆猜想,得到(a ﹣1)(a 2014+a 2013+a 2012+…+a 2+a+1)= 利用上面的结论,求:(2)22014+22013+22012+…+22+2+1的值是 . (3)求52014+52013+52012+…+52+5+1的值.24.在已有运算的基础上定义一种新运算⊗:x y x y y ⊗=-+,⊗的运算级别高于加减乘除运算,即⊗的运算顺序要优先于+-⨯÷、、、运算,试根据条件回答下列问题. (1)计算:()53⊗-= ; (2)若35x ⊗=,则x = ;(3)在数轴上,数x y 、的位置如下图所示,试化简:1x y x ⊗-⊗;(4)如图所示,在数轴上,点A B 、分别以1个单位每秒的速度从表示数-1和3的点开始运动,点A 向正方向运动,点B 向负方向运动,t 秒后点A B 、分别运动到表示数a 和b 的点所在的位置,当2a b ⊗=时,求t 的值.25.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= . (2)计算:2320191333...3+++++ (3)计算:101102103200555...5++++26.已知a 是最大的负整数,b 是多项式2m 2n ﹣m 3n 2﹣m ﹣2的次数,c 是单项式﹣2xy 2的系数,且a 、b 、c 分别是点A 、B 、C 在数轴上对应的数.(1)求a 、b 、c 的值,并在数轴上标出点A 、B 、C .(2)若M 点在此数轴上运动,请求出M 点到AB 两点距离之和的最小值; (3)若动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒12个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,点Q 能追上点P ?(4)在数轴上找一点N ,使点M 到A 、B 、C 三点的距离之和等于10,请直接写出所有的N 对应的数.(不必说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据新定义的运算逐项进行计算即可做出判断. 【详解】 A. ==0-0=0,故A 选项正确,不符合题意;B. ===,=,所以,故B 选项正确,不符合题意;C.=,= ,当k=3时,==0,==1,此时,故C 选项错误,符合题意;D.设n 为正整数,当k=4n 时,==n-n=0,当k=4n+1时,==n-n=0, 当k=4n+2时,==n-n=0, 当k=4n+3时,==n+1-n=1,所以或1,故D 选项正确,不符合题意,故选C. 【点睛】本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.2.D解析:D 【详解】 因为()()11,10,2P -=,()()()()()21111,11,10,2=2,2P P P P -=-=-,()()()()()31211,11,22,20,4P P P P -=-=-=,()()41,14,4P -=-,()()51,10,8P -= ()()61,18,8P -=-,所以()()211,10,2n n P --=,()()21,12,2n n n P -=-,所以 ()()100920171,10,2P -=,故选D.3.B解析:B 【分析】根据有理数的定义选出即可. 【详解】解:A 7是无理数,故选项错误; B 、﹣0.6是有理数,故选项正确; C 、2π是无理数,故选项错误;D 、0.l51151115…是无理数,故选项错误. 故选:B . 【点睛】本题考查了实数,注意有理数是指有限小数和无限循环小数,包括整数和分数.4.C解析:C 【分析】根据相反数的定义,有理数的乘方,绝对值的性质分别化简,再根据正负数的定义进行判断即可得解解:-(-3)=3;211()24-=;224-=-;44--=-; 所以2-2-4π--,,是负数,共3个。
七年级数学下册第六章实数单元综合测试含解析新人教
《第6章实数》一、选择题1.下列数不是有理数的是()A.0 B.C.﹣2 D.π2.正方体的体积为9,它的棱长是()A.整数B.分数C.有理数D.无限不循环小数3.等腰三角形的腰为3,底为2,下列说法不正确的是()A.底边上的高为有理数B.它的周长为有理数C.它的面积不是有理数D.腰上的高不是有理数4.如图,在4×4的方格纸中,有一个格点三角形ABC,关于它的描述正确的是()A.三边长都是有理数B.是等腰三角形C.是直角三角形D.有一条边长为55.面积为6的正方形边长,估计介于()A.1和2之间B.2和2.5之间C.2.5和3之间D.3和4之间6.在2,﹣,π,0,,2.101010…(相邻两个1之间有1个0),3.14,0.1212212221…(相邻两个1之间2的个数逐次加1)这些数中无理数的个数是()A.1 B.2 C.3 D.47.下列说法正确的是()A.0.是无理数B.是分数C.是无限小数,是无理数D.0.13579…(小数部分由连续的奇数组成)是无理数8.下列说法正确的是()A.有理数可以用有限小数或无限循环小数表示B.无限小数就是无理数C.不循环小数是无理数D.0既不是有理数,也不是无理数9.下列各数,没有算术平方根的是()A.2 B.﹣4 C.0 D.10.算术平方根等于本身的数是()A.0 B.0和1 C.0,1和﹣1 D.111.下列说法正确的是()A.0.1是0.01的算术平方根 B.0.6是3.6的算术平方根C.3是的算术平方根D.﹣2是(﹣2)2的算术平方根12.下列说法错误的是()A.非负数有算术平方根B.是的算术平方根C.没有意义 D.无选项。
精选初中数学七年级下册第六章《实数》单元检测试卷(解析版)
人教版七年级数学下册第六章实数单元检测题一、选择题。
(每小题3分,共30分)1.下列选项中正确的是()A.27的立方根是±3B.16的平方根是±4C.9的算术平方根是3D.立方根等于算术平方根的数是12.下列各数中是无理数的为()A. 2 B.0 C.12017D.-13. 已知m=4+3,则以下对m的估算正确的() A.2<m<3 B.3<m<4C.4<m<5 D.5<m<64.比较4,17,363的大小,正确的是()A.4<17<363 B.4<363<17C.363<4<17 D.17<363<45.如图6-X-1所示,实数a=3,则在数轴上表示-a的点应落在()A.线段AB上B.线段BC上C.线段CD上D.线段DE上6.下列说法中,正确的有( )①只有正数才有平方根;②a一定有立方根;③-a没意义;④3-a=-3a;⑤只有正数才有立方根.A.1个B.2个C.3个D.4个7.如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有( )A.0个B.1个om]C.2个D.3个8.已知5+11的整数部分为a,5-11的小数部分为b,则a+b的值为( )A.10 B.211C.11-12 D.12-11[9.文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1.若输入7,则输出的结果为()A.5 B.6 C.7 D.810. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2 C.547.7 D.±547.7二、填空题。
(每空3分,共15分)1.请写出两个你喜欢的无理数,使它们的和为有理数,你写出的两个无理数是________________.2.化简-(5+7)-|5-7|的结果为________.3.a +3的立方根是2,3a +b -1的平方根是±4,则a +2b 的算术平方根是________.4.规定用符号[m]表示一个实数m 的整数部分,例如:⎣⎢⎡⎦⎥⎤23=0,[3.14]=3.按此规定[10+1]的值为________.5..已知数轴上有A ,B 两点,且这两点之间的距离为4 2,若点A 在数轴上表示的数为3 2,则点B 在数轴上表示的数为________.三、计算题(10分)(1)2+3 2-5 2;(2)|3-2|+|3-2|-|2-1|;四、解下列方程:(10分)(1)(x -2)3=64;(2)4(3x+1)2-1=0.五、综合题(共35分)1.(8分)在数轴上表示a,b,c三个数的点的位置如图6-X-2所示.化简:|c|-(c+a)2+b2-|a-b|.图6-X-22.(8分)已知一个正数x的两个平方根分别是2a-3和5-a,求a和x的值.3.(9分)已知A=m-2n-m+3是n-m+3的算术平方根,B=2n-17m-12n是7m-12n的立方根,求B+A的平方根.4.(10分)如图所示,长方形内相邻两个正方形的面积分别为2和4,求长方形内阴影部分的面积.参考答案一、选择题。
七年级初一数学下学期第六章 实数单元达标测试综合卷检测
七年级初一数学下学期第六章 实数单元达标测试综合卷检测一、选择题1.设n 为正整数,且1n n <<+,则n 的值为( )A .42B .43C .44D .452.对于实数a ,我们规定,用符号为a 的根整数,例如:3=,3=.我们可以对一个数连续求根整数,如对5连续两次求根整数:5221.若对x 连续求两次根整数后的结果为1,则满足条件的整数x 的最大值为( ) A .5 B .10 C .15 D .16 3.若一个正数x 的平方根为27a -和143a -,则x =( ) A .7B .16C .25D .494. )A .2和3之间B .3和4之间C .4和5之间D .5和6之间5.规定用符号[]n 表示一个实数的小数部分,例如:[]3.50.5, 1.==按照此规定, 1⎤⎦的值为( )A 1B 3C 4D 1+6.+1的值在( ) A .2到3之间B .3到4之间C .4到5之间D .5到6之间7.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)2;(4是7的平方根. A .1B .2C .3D .48.下列各数中,属于无理数的是( )A .227B C D .0.10100100019.3的平方根是( )A .B .9C D .±910.估计2 ) A .1到2之间B .2到3之间C .3到4之间D .4到5之间二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.1264___________.13.若()2320m n ++-=,则m n 的值为 ____. 14.观察下列算式:246816⨯⨯⨯+2(28)⨯1616+4=20; 4681016⨯⨯⨯+2(410)⨯1640+4=44;… 3032343616⨯⨯⨯+__________ 15.用⊕表示一种运算,它的含义是:1(1)(1)xA B A B A B ⊕=++++,如果5213⊕=,那么45⊕= __________. 16.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡=⎣,现对72进行如下操作:72→72⎡⎤⎣⎦=8→82⎡=⎣→2=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________.17.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a 2x y +的值为______.18.若x <0323x x ____________. 1946________.20.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.三、解答题21.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数 x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫=⎪⎝⎭;(2)已知(),3L x y x by =+,31,222L ⎛⎫=⎪⎝⎭.若正格线性数(),18L x kx =,(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由. 22.在有理数的范围内,我们定义三个数之间的新运算法则“⊕”:a ⊕b ⊕c =2a b c a b c --+++.如:(1)-⊕2⊕3=123(1)2352---+-++=.①根据题意,3⊕(7)-⊕113的值为__________; ②在651128,,,,0,,,,777999---这15个数中,任意取三个数作为a ,b ,c 的值,进行“a ⊕b ⊕c ”运算,在所有计算结果中的最大值为__________;最小值为__________.23.阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用2﹣1来表示2的小数部分,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为4<7<9,即2<7<3,所以7的整数部分为2,小数部分为(7﹣2)请解答:(1)10的整数部分是 ,小数部分是 ;(2)如果5的小数部分为a ,13的整数部分为b ,求a +b ﹣5的值.24.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用). 25.阅读材料,回答问题:(1)对于任意实数x ,符号[]x 表示“不超过x 的最大整数”,在数轴上,当x 是整数,[]x 就是x ,当x 不是整数时,[]x 是点x 左侧的第一个整数点,如[]33=,[]22-=-,[]2.52=,[]1.52-=-,则[]3.4=________,[]5.7-=________.(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下:①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元;②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?26.阅读下列材料:小明为了计算22019202012222+++++的值,采用以下方法:设22019202012222s =+++++ ① 则22020202122222s =++++ ②②-①得,2021221s s s -==- 请仿照小明的方法解决以下问题: (1)291222++++=________;(2)220333+++=_________;(3)求231n a a a a ++++的和(1a >,n 是正整数,请写出计算过程).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先确定2019介于1936、2025这两个平方数之间,从而可以得到4445<<,再根据已知条件即可求得答案. 【详解】解:∵193620192025<<∴2244201945<<.<∴4445<<∵n 为正整数,且1n n <<+∴44n =. 故选:C 【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与2019临界的两个完全平方数是解决问题的关键.2.C解析:C 【分析】对各选项中的数分别连续求根整数即可判断得出答案. 【详解】 解:当x=5时,5221,满足条件; 当x=10时,10331,满足条件; 当x=15时,15331,满足条件; 当x=16时,16442,不满足条件;∴满足条件的整数x 的最大值为15, 故答案为:C . 【点睛】本题考查了无理数估算的应用,主要考查学生的阅读能力和理解能力,解题的关键是读懂题意.3.D解析:D 【解析】 【分析】首先根据正数的两个平方根互为相反数,列的方程:(27a -)+(143a -)=0,解方程即可求得a 的值,代入即可求得x 的两个平方根,则可求得x 的值. 【详解】∵一个正数x 的平方根为27a -和143a -, ∴(27a -)+(143a -)=0, 解得:a=7.∴27a -=7,143a -=-7, ∴x=(±7)2 =49.故选D. 【点睛】此题考查平方根,解题关键在于求出a 的值.4.D解析:D 【分析】用平方法进行比较,看27在哪两个整数平方之间即可. 【详解】∵252527=<,263627=>∴5<6 故选:D 【点睛】本题考查比较二次根式的大小,常见方法有2种: (1)将数字平方,转化为不含二次根号的数字比较; (2)将数字都转化到二次根式中,然后进行比较.5.B解析:B 【分析】根据3<4的小数部分,根据用符号[n]表示一个实数的小数部分,可得答案. 【详解】解:由34,得4+1<5.3, 故选:B . 【点睛】本题考查了估算无理数的大小,利用了无理数减去整数部分就是小数部分.6.B解析:B 【分析】的范围,继而可求得答案. 【详解】 ∵22=4,32=9,∴<3,∴+1<4, 故选B. 【点睛】本题考查了无理数的估算,熟练掌握是解题的关键.7.C解析:C【解析】4=-,故(1)对;根据算术平方根的性质,可知49的算术平方根是7,故(2)错;根据立方根的意义,可知23)对;是7的平方根.故(4)对;故选C.8.B解析:B【分析】无限不循环小数是无理数,根据定义解答即可.【详解】A、227是小数,不是无理数;B是无理数;C是整数,不是无理数;D、0.1010010001是有限小数,不是无理数,故选:B.【点睛】此题考查无理数的定义,熟记定义并运用解题是关键. 9.A解析:A【分析】直接根据平方根的概念即可求解.【详解】解:∵(2=3,∴3的平方根是为.故选A.【点睛】本题主要考查了平方根的概念,比较简单.10.D解析:D【分析】2与3之间,所以2在4与5之间.【详解】解:∵22=4,32=9,∴23,∴2+2<3+2,则4<2+<5,故选:D.【点睛】键.二、填空题11.-4【解析】解:该圆的周长为2π×2=4π,所以A′与A的距离为4π,由于圆形是逆时针滚动,所以A′在A的左侧,所以A′表示的数为-4π,故答案为-4π.解析:-4π【解析】解:该圆的周长为2π×2=4π,所以A′与A的距离为4π,由于圆形是逆时针滚动,所以A′在A的左侧,所以A′表示的数为-4π,故答案为-4π.12.2【分析】的值为8,根据立方根的定义即可求解.【详解】解:,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.解析:2【分析】8,根据立方根的定义即可求解.【详解】=,8的立方根是2,8故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.13.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,mn=(-3)2=9.故答案为9.【解析:【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,m n=(-3)2=9.故答案为9.【点睛】此题考查绝对值和算术平方根非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.14.【分析】根据题目数据,计算结果等于首尾两个偶数的乘积的平方的算术平方根再加上16的算术平方根,依此进行计算即可.【详解】解:==1080+4=1084.故答案为:1084.【点睛】解析:【分析】根据题目数据,计算结果等于首尾两个偶数的乘积的平方的算术平方根再加上16的算术平方根,依此进行计算即可.【详解】==1080+4=1084.故答案为:1084.【点睛】本题考查了算术平方根,读懂题目信息,观察出计算结果等于首尾两个偶数的乘积加上4是解题的关键.15.【分析】按照新定义的运算法先求出x ,然后再进行计算即可. 【详解】 解:由 解得:x=8故答案为. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可. 【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=818181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.16.255 【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案. 【详解】 解:(1)解析:255 【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案.【详解】解:(1)由题意得:64→=8→2=→=1,∴对64只需进行3次操作后变为1,故答案为3;(2)与上面过程类似,有256→=16→4=→=2→1=,对256只需进行4次操作即变为1,类似的有255→=15→3=→=1,即只需进行3次操作即变为1,故最大的正整数为255;故答案为255.【点睛】本题主要考查算术平方根的应用,熟练掌握算术平方根是解题的关键.17.3【分析】利用平方根、立方根的定义求出x 与y 的值,即可确定的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴,,故答案为:3.【点睛】本题考查了平方根和立方根,熟解析:3【分析】利用平方根、立方根的定义求出x 与y 的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴25,8x y ==-,∴=,故答案为:3.【点睛】本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.18.0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,∴,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是解析:0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,x x=-+=,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是非负数;立方根的符号与被开方的数的符号相同;解题的关键是正确判断符号.19.6【分析】求出在哪两个整数之间,从而判断的整数部分.【详解】∵,,又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解解析:6【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.20.-11或-12【分析】根据题意可知,,再根据新定义即可得出答案.【详解】解:由题意可得:∴∴的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小解析:-11或-12【分析】根据题意可知65a -≤<-,12210a -≤<-,再根据新定义即可得出答案.【详解】解:由题意可得:65a -≤<-∴12210a -≤<-∴[]2a 的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小,理解题目的新定义,根据新定义得出a 的取值范围是解此题的关键.三、解答题21.(1)5,3;(2)有正格数对,正格数对为()26L ,【分析】(1)根据定义,直接代入求解即可;(2)将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+求出b 的值,再将(),18L x kx =代入(),3L x y x by =+,表示出kx ,再根据题干分析即可.【详解】解:(1)∵(),3L x y x y =+∴()2,1L =5,31,22L ⎛⎫= ⎪⎝⎭3 故答案为:5,3;(2)有正格数对. 将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+, 得出,1111323232L b ⎛⎫=⨯+⨯= ⎪⎝⎭,, 解得,2b =,∴()32L x y x y =+,,则()3218L x kx x kx =+=, ∴1832x kx -=∵x ,kx 为正整数且k 为整数 ∴329k +=,3k =,2x =,∴正格数对为:()26L ,. 【点睛】本题考查的知识点是实数的运算,理解新定义是解此题的关键.22.(1)3(2)53(3)117-【分析】 (1)根据给定的新定义,代入数据即可得出结论;(2)分a-b-c≥0和a-b-c≤0两种情况考虑,分别代入定义式中找出最大值,比较后即可得出结论.【详解】解:①根据题中的新定义得:3⊕()7-⊕113=()()111137373332---++-+= ②当a-b-c≥0时,原式()12a b c a b c a =--+++=, 则取a 的最大值,最小值即可, 此时最大值为89,最小值为67-; 当a-b-c≤0时, 原式()12a b c a b c b c =-+++++=+, 此时最大值为785993b c +=+=,最小值为6511777b c ⎛⎫⎛⎫+=-+-=- ⎪ ⎪⎝⎭⎝⎭, ∵586113977>>->- ∴综上所述最大值为53,最小值为117-. 【点睛】本题考查了有理数的混合运算,读懂题意弄清新定义式的运算是解题的关键.23.(1)3,﹣3;(2)1.【分析】(1)根据34<解答即可;(2)根据23得出a ,根据34得出b ,再把a ,b 的值代入计算即可.【详解】(1)∵34<<,3﹣3,故答案为:3﹣3;(2)∵23,a 2,∵34,∴b =3,a +b 2+31.【点睛】此题考查无理数的估算,正确掌握数的平方是解题的关键.24.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP 与△ODQ 的面积相等;(3)2∠GOA+∠ACE=∠OHC ,理由见解析.【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t ,OP=8-2t ,根据△ODP 与△ODQ 的面积相等列方程求解即可;(3)由∠AOC=90°,y 轴平分∠GOD 证得OG ∥AC ,过点H 作HF ∥OG 交x 轴于F ,得到∠FHC=∠ACE,∠FHO=∠GOD,从而∠GOD+∠ACE=∠FHO+∠FHC,即可证得2∠GOA+∠ACE=∠OHC.【详解】(180b-=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);故答案为:(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由运动知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴114222ODQ DS OQ x t t=⨯=⨯=△,11823123 22ODP DS OP y t t=⨯=-⨯=-△(),∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x轴平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC,∴∠FHC=∠ACE.∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC,即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.25.(1)3;6-;(2)①2;3;6.②这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【分析】(1)根据题意,确定实数左侧第一个整数点所对应的数即得;(2)①根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得;②根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得.【详解】(1)∵3 3.44<<∴[]3.43=∵6 5.75-<-<-∴[]5.76-=-故答案为:3;6-.(2)①∵3.074<∴3.07公里需要2元∵47.9312<<∴7.93公里所需费用分为两段即:前4公里2元 ,后3.93公里1元∴7.93公里所需费用为:2+1=3(元)∵19.212174<<∴19.17公里所需费用分为三段计费即: 前4公里2元,4至12公里2元,12公里至19.17公里2元;∴19.17公里所需费用为:2226++=(元)故答案为:2;3;6.②由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需费用为:2226++=(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地铁最大里程为:24+8=32(公里)∴这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里 答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【点睛】本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键.26.(1)1021-;(2)21332-;(3)111n a a +-- 【分析】(1)设式子等于s ,将方程两边都乘以2后进行计算即可;(2)设式子等于s ,将方程两边都乘以3,再将两个方程相减化简后得到答案; (3)设式子等于s ,将方程两边都乘以a 后进行计算即可.【详解】(1)设s=291222++++①, ∴2s=29102222++++②, ②-①得:s=1021-,故答案为:1021-;(2)设s=220333+++①, ∴3s=22021333+++②,②-①得:2s=2133-, ∴21332s -=, 故答案为: 21332-; (3)设s=231n a a a a ++++①, ∴as=231n n a a a a a +++++②,②-①得:(a-1)s=11n a +-,∴s=111n a a +--. 【点睛】此题考查代数式的规律计算,能正确理解已知的代数式的运算规律是难点,依据规律对于每个式子变形计算是关键.。
新疆克拉玛依市七年级数学下册第六单元《实数》测试卷(提高培优)
一、选择题1.给出下列各数①0.32,②227,③π,④5,⑤0.2060060006(每两个6之间依次多个0),⑥327,其中无理数是( ) A .②④⑤ B .①③⑥ C .④⑤⑥ D .③④⑤2.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上 C .在线段OC 上D .在线段OB 上 3.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是( )A .2B .4C .6D .84.下列命题中,①81的平方根是9;②16的平方根是±2;③−0.003没有立方根;④−64的立方根为±4;⑤5,其中正确的个数有( )A .1B .2C .3D .45.在0、3、0.536、39、227-、π、-0.1616616661……(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)这些数中,无理数的个数是( )A .3B .4C .5D .66.下列实数中,是无理数的为( ) A .3.14 B .13C .5D .9 7.下列实数:32233.14640.010*******-;;;; (相邻两个1之依次多一个0);52-,其中无理数有( )A .2个B .3个C .4个D .5个8.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .4079.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间 10.在 1.4144-,2-,227,3π,23-,0.3•,2.121112*********...中,无理数的个数( )A .1B .2C .3D .411.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( ) A .3B .3-C .3±D .3± 12.和数轴上的点一一对应的数是( ) A .自然数 B .有理数 C .无理数 D .实数 13.已知:m 、n 为两个连续的整数,且5m n <<,以下判断正确的是( ) A .5的整数部分与小数部分的差是45- B .3m =C .5的小数部分是0.236D .9m n +=14.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±915.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n二、填空题16.计算:201()( 3.14)20|252π---+--17.对于结论:当a +b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成是b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两数也互为相反数”.(1)试举一个例子来判断上述结论的猜测是否成立?(2332x -35x +12x -的值.18.计算:(1223168(2)(3)--(2)22(2)8x -=19.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值.20.(1)计算:①231698(2)-+-; ②3121125|63|6+-+--.(2)求下列各式中x 的值:③22536x =;④3(1)64x --=.21.把下列各数填在相应的横线上1.4,2020,2-,32-,0.31,0,38-,π-,1.3030030003…(每相邻两个3之间0的个数依次加1)(1)整数:______(2)分数:______(3)无理数:______22.37-的相反数是________;绝对值等于3的数是________23.求下列各式中的x :(1)2940x -=;(2)3(1)8x -= 24.计算:31891224-++-+. 25.求下列各式中x 的值.(1)2(1)2x +=; (2)329203x +=. 26.2(2)-的平方根是 _______ ;38a 的立方根是 __________.三、解答题27.已知()253|53|0x y -++--=.(1)求x ,y 的值;(2)求xy 的算术平方根.28.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)求11m m ++-的值;(2)在数轴上还有C 、D 两点分别表示实数c 和d ,且有2c d +4d +数,求23c d -的平方根.29.求下列各式中的x的值.(1)4x2=9;(2)(2x﹣1)3=﹣27.30.计算:(1)2019-(1)|2|(2)[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x。
七年级数学下学期《第6章实数》单元测试卷及答案解析
人教版七年级数学下学期《第 6章实数》单元测试卷 •选择题(共37小题)
C . 4个
C . 1 或 0
若a 为实数,则下列式子中一定是负数的是
2
-(a+1) F 列对实数的说法其中错误的是(
1.
F 列实数 一 •二.'
…. -'I -
2.
无理数二的相反数是( A .-: 3.
设n 为正整数,且
C .影
n v 唠二:v n+1,贝U n 的值为( )
C .
4. —I 「整数部分是
C .
5.
F 列等式成立的是(
C .
-^8=-3 6.
某数的算术平方根等于它本身,那么这个数 心曰 定是
A . - a 2
B . -( a+1)
A .实数与数轴上的点 ■对
应
,无理数个数是(
B .两个无理数的和不一定是无理数
C.负数没有平方根也没有立方根
D .算术平方根等于它本身的数只有
--的算术平方根是(
V64
1
1
10. * . 啲近似值在(
A. 1和2之间 B . 2和3之间 C . 3和4之间 D . 4和5之间
m的点应落在(
11.如图,若实数m=- ^+1,则数轴上表示
」V弓G 0吾I I」r
-4 -3 -2 -11 0 1 2 3 4 5
第1页(共18页)。
七年级初一数学下学期第六章 实数单元达标测试综合卷检测试卷
七年级初一数学下学期第六章 实数单元达标测试综合卷检测试卷一、选择题1.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边2.下列各数中,属于无理数的是( ) A .227B .3.1415926C .2.010010001D .π3-3.观察下列各等式:231-+= -5-6+7+8=4-10-l1-12+13+14+15=9 -17-18-19-20+21+22+23+24=16 ……根据以上规律可知第11行左起第11个数是( ) A .-130B .-131C .-132D .-1334.下列命题中,①81的平方根是9;②16的平方根是±2;③−0.003没有立方根;④−64的立方根为±4;⑤5,其中正确的个数有( ) A .1B .2C .3D .45.规定用符号[]n 表示一个实数的小数部分,例如:[]3.50.5,22 1.⎡⎦=⎤-⎣=按照此规定, 101⎡⎤+⎣⎦的值为( )A .101-B .103-C .104-D .101+6.下列说法正确的个数是( ). (1)无理数不能在数轴上表示(2)两条直线被第三条直线所截,那么内错角相等 (3)经过一点有且只有一条直线与已知直线平行 (4)两点之间线段最短 A .0个B .1个C .2个D .3个7.如图,数轴上,A B 两点表示的数分别为1,2--,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A .12B 21C .22D 228.330x y =,则x 和y 的关系是( )A .0x y ==B .0x y -=C .1xy =D .0x y += 9.4的平方根是( )A .±16B .2C .﹣2D .±210.下列说法:①±3都是27的立方根;②116的算术平方根是±14;③﹣38-=2;④16的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有( ) A .1个B .2个C .3个D .4个二、填空题11.若已知()21230a b c -+++-=,则a b c -+=_____.12.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 .13.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___14.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.15.写出一个大于3且小于4的无理数:___________. 16.3是______的立方根;81的平方根是________32=__________.17.如果一个正数的两个平方根为a+1和2a-7,则这个正数为_____________. 18.2x -﹣x|=x+3,则x 的立方根为_____.19.若x 、y 分别是811-2x -y 的值为________. 20.如图,直径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点'O ,则点'O 对应的数是_______.三、解答题21.下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)观察发现:1n(1)n =+__________1111122334n(1)n ++++=⨯⨯⨯+ .(2)初步应用:利用(1)的结论,解决以下问题“①把112拆成两个分子为1的正的真分数之差,即112= ;②把112拆成两个分子为1的正的真分数之和,即112= ; ( 3 )定义“⊗”是一种新的运算,若1112126⊗=+,11113261220⊗=++,111114*********⊗=+++,求193⊗的值.22.观察下列各式:111122-⨯=-+;11112323-⨯=-+; 11113434-⨯=-+; …(1)你发现的规律是_________________.(用含n 的式子表示;(2)用以上规律计算:1111223⎛⎫⎛⎫-⨯+-⨯+ ⎪ ⎪⎝⎭⎝⎭11113420172018⎛⎫⎛⎫-⨯+⋅⋅⋅+-⨯ ⎪ ⎪⎝⎭⎝⎭23.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯ , 将以上三个等式两边分别相加得:11111111112233422334++=-+-+-⨯⨯⨯=13144-= (1)猜想并写出:1n(n 1)+ = .(2)直接写出下列各式的计算结果:①1111...12233420152016++++⨯⨯⨯⨯= ; ②1111...122334(1)n n ++++⨯⨯⨯⨯+= ; (3)探究并计算:1111 (24466820142016)++++⨯⨯⨯⨯. 24.我们规定:a p -=1p a(a ≠0),即a 的负P 次幂等于a 的p 次幂的倒数.例:24-=214 (1)计算:25-=__;22-(﹣)=__; (2)如果2p -=18,那么p =__;如果2a -=116,那么a =__; (3)如果a p -=19,且a 、p 为整数,求满足条件的a 、p 的取值. 25.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).26.在已有运算的基础上定义一种新运算⊗:x y x y y ⊗=-+,⊗的运算级别高于加减乘除运算,即⊗的运算顺序要优先于+-⨯÷、、、运算,试根据条件回答下列问题. (1)计算:()53⊗-= ; (2)若35x ⊗=,则x = ;(3)在数轴上,数x y 、的位置如下图所示,试化简:1x y x ⊗-⊗;(4)如图所示,在数轴上,点A B 、分别以1个单位每秒的速度从表示数-1和3的点开始运动,点A 向正方向运动,点B 向负方向运动,t 秒后点A B 、分别运动到表示数a 和b 的点所在的位置,当2a b ⊗=时,求t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A 、B 、C 到原点的距离的大小,从而得到原点的位置,即可得解. 【详解】 ∵|a|>|c|>|b|,∴点A 到原点的距离最大,点C 其次,点B 最小, 又∵AB=BC ,∴原点O 的位置是在点B 、C 之间且靠近点B 的地方. 故选:C . 【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键.2.D解析:D 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】 解:A 、227是有理数,故选项A 不符合题意; B 、3.1415926是有理数,故选项B 不符合题意; C 、2.010010001是有理数,故选项C 不符合题意;D、π3-是无理数,故选项D题意;故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.C解析:C【分析】通过观察发现:每一行等式右边的数就是行数的平方,故第n行右边的数就是n的平方,而左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.【详解】解:第一行:211=;第二行:224=;第三行:239=;第四行:2416=;……第n行:2n;∴第11行:211121=.∵左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.∴第11行左起第1个数是-122,第11个数是-132.故选:C.【点睛】此题主要考查探索数与式的规律,正确找出规律是解题关键.4.A解析:A【分析】根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断.【详解】解:81的平方根是±9,所以①错误;±2,所以②正确;-0.003有立方根,所以③错误;−64的立方根为-4,所以④错误;故选:A.【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.5.B解析:B 【分析】根据3<4的小数部分,根据用符号[n]表示一个实数的小数部分,可得答案. 【详解】解:由34,得4+1<5.3, 故选:B . 【点睛】本题考查了估算无理数的大小,利用了无理数减去整数部分就是小数部分.6.B解析:B 【分析】根据数轴与实数,平行线的性质与判定以及两点之间线段最短对每个说法逐一判断后即可得到答案. 【详解】(1)实数与数轴上的点一一对应,故无理数能在数轴上表示出来,故原说法错误; (2)两条平行直线被第三条直线所截,那么内错角相等,故原说法错误; (3)经过直线外一点有且只有一条直线与已知直线平行,故原说法错误; (4)两点之间线段最短,正确. 故选B . 【点睛】本题考查了命题与定理的知识,解题的关键是熟知课本上的一些定义与定理.7.D解析:D 【分析】设点C 的坐标是x ,根据题意列得12x=-,求解即可. 【详解】解:∵点A 是B ,C 的中点. ∴设点C 的坐标是x ,则12x=-,则2x =-+∴点C 表示的数是2-+ 故选:D . 【点睛】此题考查数轴上两点的中点的计算公式:两点的中点所表示的数等于两点所表示的数的平均数,正确掌握计算公式是解题的关键.8.D解析:D 【分析】根据立方根的性质得出x+y=0即可解答. 【详解】0+=, ∴x+y=0 故答案为D . 【点睛】本题主要考查了立方根的性质,通过立方根的性质得到x+y=0是解答本题的关键.9.D解析:D 【分析】根据平方根的定义以及性质进行计算即可. 【详解】4的平方根是±2, 故选:D . 【点睛】本题考查了平方根的问题,掌握平方根的定义以及性质是解题的关键.10.A解析:A 【分析】根据平方根,算术平方根,立方根的定义找到错误选项即可. 【详解】①3是27的立方根,原来的说法错误; ②116的算术平方根是14,原来的说法错误;2是正确的;4,4的平方根是±2,原来的说法错误;⑤9是81的算术平方根,原来的说法错误. 故其中正确的有1个. 故选:A . 【点睛】本题考查了立方根,平方根,算术平方根的知识;用到的知识点为:一个正数的正的平方根叫做这个数的算术平方根;一个正数的平方根有2个;任意一个数的立方根只有1个.二、填空题 11.6 【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可. 【详解】 解:因为, 所以, 解得, 故,故答案为:6. 【点睛】本题考查非负数的性质,主要考查绝对值、平方解析:6 【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可. 【详解】解:因为()2120a b -+++=, 所以10,20,30a b c -=+=-=, 解得1,2,3a b c ==-=, 故1(2)36a b c -+=--+=, 故答案为:6. 【点睛】本题考查非负数的性质,主要考查绝对值、平方和算术平方根的非负性.理解几个非负数(式)的和为0,那么这几个数或(式)都为0是解题关键.12.. 【详解】第一次:3×449+5=1352,第二次:,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5解析:8.【详解】第一次:3×449+5=1352,第二次:13522k,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:82k,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为201是奇数,所以第201次运算结果是8.故答案为8.13.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列解析:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数,∵1994493÷=……,即1中第三个数故答案为.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键.14.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.如等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.解析:π等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16,15都是无理数.16.±9 2-【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;【详解】解:∵ ,∴3是27的立方根;∵ ,∴81的平方根是 ;∵ ,∴;故答案为:2解析:【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;【详解】解:∵3327= ,∴3是27的立方根;∵2(9)81±= ,∴81的平方根是9± ;2< ,22=故答案为:27,9±,;【点睛】本题主要立方根、平方根的定义以及去绝对值法则,掌握一个数的平方根有两个,它们互为相反数是解题的关键.17.9根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: ,解得:,则这个正数是.故答案为:9.【解析:9【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: 1270a a ++-=,解得:2a =,则这个正数是2(21)9+=.故答案为:9.【点睛】本题主要考查了平方根,熟练掌握平方根的定义是解本题的关键. 18.3【分析】直接利用二次根式有意义的条件得出x 的取值范围进而得出x 的值,求出答案.【详解】解:∵有意义,∴x﹣2≥0,解得:x≥2,∴+x﹣2=x+3,则=5,故x ﹣2=25,解得解析:3【分析】直接利用二次根式有意义的条件得出x 的取值范围进而得出x 的值,求出答案.【详解】解得:x≥2,﹣2=x+3,5,故x﹣2=25,解得:x=27,故x的立方根为:3.故答案为:3.【点睛】此题主要考查了二次根式有意义的条件,正确掌握二次根式的性质是解题关键.19.【分析】估算出的取值范围,进而可得x,y的值,然后代入计算即可.【详解】解:∵,∴,∴的整数部分x=4,小数部分y=,∴2x-y=8-4+,故答案为:.【点睛】本题考查了估算无理解析:4+【分析】估算出8-x,y的值,然后代入计算即可.【详解】解:∵34<<,∴4<85,∴8x=4,小数部分y=448=∴2x-y=8-44=故答案为:4【点睛】本题考查了估算无理数的大小,解题的关键是求出x,y的值.20.【分析】点对应的数为该半圆的周长.【详解】解:半圆周长为直径半圆弧周长即故答案为:.【点睛】本题考查数轴上的点与实数的关系.明确的长即为半圆周长是解答的关键. 解析:12π+【分析】点O '对应的数为该半圆的周长.【详解】解:半圆周长为直径+半圆弧周长 即12π+ 故答案为:12π+.【点睛】 本题考查数轴上的点与实数的关系.明确OO '的长即为半圆周长是解答的关键.三、解答题21.(1)111n n -+;1n n +;(2)①1341-;②112424+;( 3 )14. 【分析】(1)利用材料中的“拆项法”解答即可; (2)①先变形为111234=⨯,再利用(1)中的规律解题;②先变形为121224=,再逆用分数的加法法则即可分解; (3)按照定义“⊗”法则表示出193⊗,再利用(1)中的规律解题即可. 【详解】 解:(1)观察发现:()11n n =+111n n -+, 1111122334(1)n n ++++⨯⨯⨯+ =11111111223341n n -+-+-+⋯+-+ =111n -+ =1n n +; 故答案是:111n n -+;1n n +.(2)初步应用: ①111234=⨯=1134-; ②121112242424==+; 故答案是:1134-;112424+. ( 3 )由定义可知: 193⊗=11111111112203042567290110132++++++++ =455111111611311412-+-+-+⋯+- =13211- =14. 故193⊗的值为14. 【点睛】 考查了有理数运算中的规律型问题:数字的变化规律,有理数的混合运算.本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.22.(1)111111n n n n -⨯=-+++;(2)20172018- 【分析】 (1)由已知的等式得出第n 个式子为111111n n n n -⨯=-+++; (2)根据规律将原式中的积拆成和的形式,运算即可.【详解】 (1)∵第1个式子为111122-⨯=-+ 第2个式子为11112323-⨯=-+ 第3个式子为11113434-⨯=-+ ……∴第n 个式子为111111n n n n -⨯=-+++ 故答案为:111111n n n n -⨯=-+++(2)由(1)知:原式1111111(1)()()()2233420172018=-++-++-++⋅⋅⋅+-+ 112018=-+20172018=- 【点睛】本题考查有理数的混合运算以及数字规律,分析题目,找出规律是解题关键.23.(1)111n n -+;(2)①20152016;②1n n +;(3)10074032. 【分析】(1)观察所给的算式可得:分子为1,分母为两个相邻整数的分数可化为这两个整数的倒数之差,由此即可解答;(2)根据所得的规律把各分数进行转化,再进行分数的加减运算即可解答;(3)先提取14,类比(2)的运算方法解答即可. 【详解】 (1)()11n n + =111n n -+; (2)①1111...12233420152016++++⨯⨯⨯⨯=11111122334-+-+-+…+1120152016-=112016-=20152016; ②()1111...1223341n n ++++⨯⨯⨯⨯+=11111122334-+-+-+…+111n n -+=111n -+=1n n +; (3)1111 (24466820142016)++++⨯⨯⨯⨯ =14(1111 (12233410071008)++++⨯⨯⨯⨯), =14(11111122334-+-+-+…+1110071008-), =14(111008-), =14×10071008 =10074032. 【点睛】本题考查了有理数的运算,根据题意找出规律是解决问题的关键.24.(1)125;14;(2)3;±4.(3)当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.【分析】(1)根据题意规定直接计算.(2)将已知条件代入等式中,倒推未知数.(3)根据定义,分别讨论当a为不同值时,p的取值即可解答.【详解】解:(1)5﹣2=125;(﹣2)﹣2=14;(2)如果2﹣p=18,那么p=3;如果a﹣2=116,那么a=±4;(3)由于a、p为整数,所以当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.故答案为(1)125;14;(2)3;±4.(3)当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.【点睛】本题考查新定义,能够理解a的负P次幂等于a的p次幂的倒数这个规定定义是解题关键. 25.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由见解析.【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t,OP=8-2t,根据△ODP与△ODQ的面积相等列方程求解即可;(3)由∠AOC=90°,y轴平分∠GOD证得OG∥AC,过点H作HF∥OG交x轴于F,得到∠FHC=∠ACE,∠FHO=∠GOD,从而∠GOD+∠ACE=∠FHO+∠FHC,即可证得2∠GOA+∠ACE=∠OHC.【详解】(180b-=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);故答案为:(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由运动知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴114222ODQ DS OQ x t t=⨯=⨯=△,11823123 22ODP DS OP y t t=⨯=-⨯=-△(),∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x轴平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC,∴∠FHC=∠ACE.∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC,即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.26.(1)5;(2)5或1;(3)1+y-2x;(4)t1=3;t2=5 3【分析】(1)根据题中的新运算列出算式,计算即可得到结果;(2)根据题中的新运算列出方程,解方程即可得到结果;(3)根据题中的新运算列出代数式,根据数轴得出x 、y 的取值范围进行化简即可;(4)根据A 、B 在数轴上的移动方向和速度可分别用代数式表示出数a 和b ,再根据(2)的解题思路即可得到结果.【详解】解:(1)5(3)5(3)(3)5⊗-=--+-=;(2)依题意得:335-+=x , 化简得:3=2-x ,所以32x -=或32x -=-,解得:x =5或x =1;(3)由数轴可知:0<x <1,y <0,所以1x y x ⊗-⊗ = (1)()-+--+x x y x x=1-++--x x y x x=12+-y x(4)依题意得:数a =−1+t ,b =3−t ;因为2a b ⊗=, 所以(1)(3)32-+--+-=t t t , 化简得:241-=-t t ,解得:t =3或t =53, 所以当2a b ⊗=时,t 的值为3或53. 【点睛】本题主要考查了定义新运算、有理数的混合运算和解一元一次方程,根据定义新运算列出关系式是解题的关键.。
新疆七年级数学下册第六单元《实数》经典测试题(提高培优)
一、选择题1.给出下列各数①0.32,②227,③π,⑤0.2060060006(每两个6之间依次多个0), ) A .②④⑤ B .①③⑥C .④⑤⑥D .③④⑤2.有下列四种说法:①数轴上有无数多个表示无理数的点; ②带根号的数不一定是无理数; ③平方根等于它本身的数为0和1; ④没有最大的正整数,但有最小的正整数; 其中正确的个数是( ) A .1 B .2 C .3 D .43.,则x+y 的值为( )A .-3B .3C .-1D .14.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16 ……根据以上规律可知第11行左起第11个数是( ) A .-130B .-131C .-132D .-1335.0215中,是无理数的是( )A B .0C D .2156.下列实数220.010*******;; (相邻两个1之依次多一个0);2,其中无理数有( )A .2个B .3个C .4个D .5个7.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( ) A .135B .220C .345D .4078.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★abb;若a b <,则a ★bba.则下列说法中正确的有( )①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b+<★ A .① B .②C .①②D .①②③9.若53a =-,则a 在( )A .3-和2-之间B .2-和1-之间C .1-和0之间D .0和1之间 10.估计50的立方根在哪两个整数之间( ) A .2与3B .3与4C .4与5D .5与611.我们定义新运算如下:当m n ≥时,m22n m n =-;当m n <时,m3n m n =-.若5x =,则(3-)(6x -)x 的值为( )A .-27B .-47C .-58D .-6812.在1.414,3213,5π,23-中,无理数的个数是( ) A .1B .2C .3D .413.下列说法正确的有( ) (1)带根号的数都是无理数; (2)立方根等于本身的数是0和1; (3)a -一定没有平方根;(4)实数与数轴上的点是一一对应的; (5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a ,a 一定是一个无理数. A .1个 B .2个 C .3个 D .4个 14.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( ) A .1或﹣1B .-5或5C .11或7D .-11或﹣715.下列各组数中都是无理数的为( ) A .0.07,23,π; B .0.7•,π2; C 26,π;D .0.1010101……101,π3二、填空题16.观察下列各式,并用所得出的规律解决问题:(12=1.414200=14.1420000=0.03=0.17323=1.732,300=17.32…由此可见,被开方数的小数点每向右移动 位,其算术平方根的小数点向 移动 位;(25=2.23650=7.0710.5= ,500= ; (331=131000=1031000000=100…小数点变化的规律是: .(4310=2.1543100=4.642310000= ,30.1= .17.()1116353cos302-⎛⎫+-+--︒ ⎪⎝⎭18.“*”是规定的一种运算法则:a*b=a 2-3b . (1)求2*5的值为 ; (2)若(-3)*x=6,求x 的值;19.如图,A ,B ,C 在数轴上对应的点分别为a ,1-,2,其中1a <-,且AB BC =,则a =_______.20.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是_____.若点B 表示 3.14-,则点B 在点A 的______边(填“左”或“右”).21.比较大小:12π-________12-.22.若|2|0x x y -++=,则12xy -=_____. 23.求下列各式中的x : (1)2940x -=;(2)3(1)8x -=24.根据如图所示的程序计算,若输出y 的值为16,则输入x 的值为 ______.25.正方形面积为21.2cm ,则边长为_______cm .26.有个数值转换器,原理如图所示,当输入x 为27时,输出的y 值是________________.三、解答题27.求下列x 的值.(1) 27x 3=-8 (2) (3x -1)2=9 28.计算:(1)(23)(41)----;(2)1111115()13()3()555-⨯-+⨯--⨯-; (3)23(2)|21|27-+--;(4)311()()(2)424-⨯-÷-. 29.观察下列各式:322111124==⨯⨯,33221129234+==⨯⨯,33322112336344++==⨯⨯,33332211234100454+++==⨯⨯;…回答下面的问题:(1)猜想:33333123(1)n n ++++-+=_________;(直接写出你的结果)(2)根据(1)中的结论,直接写出13+23+33+......+93+103的值是_________; (3)计算:213+223+233+......+293+303的值. 30.对于有理数a ,b ,定义一种新运算“”,规定ab a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简a b ;②当a b a c =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明.。
【3套打包】乌鲁木齐市人教版初中数学七年级下册第六章《实数》单元测试(解析版)
人教版七年级数学下册第六章实数章末能力测试卷一.选择题(共 10 小题)1.计算: 27 =()A .3B .± 3C .3 3D .332 3, π,此中,无理数共有() 2.以下实数 0,,3A .1 个B .2 个C .3 个D .4 个22)3.若 a =4,b =9,且 ab<0,则 a-b 的值为(A . -2B .± 5C .5D .-54.假如一个实数的平方根与它的立方根相等,则这个数是()A .0B .正实数C .0和1D .15.给出以下说法:① -2 是 4 的平方根;②9 的算术平方根是9;③327 =-3;④ 2 的平方根是2 .此中正确的说法有()A .0 个B .1 个C .2 个D .3 个6.以下变形正确的选项是( )A . 17=±4B . 3 27 =±3C . ( 4)2 =-4D . ± 121 =± 119 37.一个数的立方根是 4 ,这个数的平方根是( )A .8B . -8C .± 8D .± 48.实数 a 、 b 在数轴上的对应点的地点如下图,则正确的结论是() A . b>-2B . -b<0C . -a>bD .a>-b9.在数 -3,-(-2),0, 9 中,大小在 -1 和 2 之间的数是()A . -3B . -(-2)C .0D . 910.如图将 1、2 、3 、 6 按以下方式摆列.若规定(m,n)表示第 m 排从左向右第n 个数,则 (5,4)与 (15,8)表示的两数之积是( )A .1B . 2C . 6D .3 2二.填空题(共 6 小题)11.4的平方根是, 1 的立方根是,16 的算术平方根是.912. 16 的算术平方根与 -8 的立方根之和是.13.一个正方体,它的体积是棱长为 2cm 的正方体的体积的 8 倍,则这个正方体的棱长是cm .14.关于正实数 a , b 作新定义: a ⊙ b=2 ab , 若 25 ⊙ x 2=4,则 x 的值为.15.|15 4|=.16.数轴上从左到右挨次有 A 、B 、C 三点表示的数分别为a 、b 、 10, 此中 b 为整数,且满足|a+3|+|b-2|=b-2, 则 b-a= .三.解答题(共7 小题)4 | 364 |( 3)2 3 12517.计算:27918.求以下各式中 x 的值:(1)9x 2-4=0;3(2)(3x-1) +64=0.19.已知一个数的两个平方根分别是3a 1和a+13,求这个数的立方根.220.已知 -8 的平方等于a, b 的平方等于121,c 的立方等于 -27,d 的算术平方根为5.(1)写出 a,b,c,d 的值;(2)求 d+3c 的平方根;2(3)求代数式a-b +c+d 的值.21.有一个边长为 9cm 的正方形和一个长为 24cm 、宽为 6cm 的长方形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少厘米?22.已知表示a, b 两个实数的点在数轴上的地点如下图,化简|a-b|+|a+b|.23.阅读达成问题:数轴上,已知点A、 B、 C.此中, C 为线段 AB 的中点:(1)如图,点 A 表示的数为 -1,点 B 表示的数为3,则线段AB 的长为,C 点表示的数为;(2)若点 A 表示的数为 -1,C 点表示的数为2,则点 B人教版七年级数学下册第六章实数素质检测卷一.选择题(共10 小题)1. 4 的值是()A.2B. -2C.± 2D.42.算术平方根等于它相反数的数是()A.0B.1C.0 或 1D.0 或± 13.以下实数是无理数的是()1A. -2B.πC.3D.164.以下说法正确的选项是()A.16 的平方根是4B.8的立方根是±2C. -27的立方根是 -3D.49 =±75.若3x3 y =0,则x与y的关系是()A. x=y=0B. x=yC. x 与 y 互为相反数D. x 与 y 互为倒数16 的平方根之和是()6.-64 的立方根与A.0B. -6C. -2D.-6 或 -27.在实数中,立方根等于它自己的数有()A.1 个B.2 个C.3 个D.无数个8.绝对值大于不大于6的整数有()个.A .5B . 10C . 6D . 139.关于非零的两个实数a ,b ,规定a ※b=am –bn.若3※(–5)=15,(–1)※ 2 = –13,则4※ (–7)的值为()A.?28B.28C. ?2D.210.如图,数轴上的点 A,B,C,D,E 对应的数分别为 -1,0,1,2,3,那么与实数11 2 对应的点在()A .线段AB 上B .线段 BC 上C .线段CD 上D .线段 DE 上二.填空题(共 6 小题)11. 9 的平方根是;的立方根是 .12.有一个数值变换器,原理如图:当输入的 x=4 时,输出的 y 等于 .13.小于5 的最大整数是.14.数轴上从左到右挨次有 A 、B 、C 三点表示的数分别为 a 、b 、 10, 此中 b 为整数,且满足|a+3|+|b-2|=b-2, 则 b-a=.15 .已知 |a|= 4, 3 b =2,ab<0,则 ab 的值为.16 .将一组数按下边的方式进行摆列:2,2, 6,2 2, 10;2 3, 14,4,32,2 5;若 2 2 的地点记为(1,4),26 的地点记为(3,3),则这组数中最大的有理数的地点记为.三.解答题(共 6 小题)4 |364| ( 3) 23 12517.计算:27918.求以下各式中x 的值:(1)(x+2)2-36=0;3(2)64(x+1) =27.19.已知 a 的平方根是它自己, b 是 2a+8 的立方根,求ab+b 的算术平方根.20.已知5a1b 1 =0,求a2017(a b )2018的值.21.小丽想在一块面积为 640 cm2的正方形纸片中,沿着边的方向裁出一块面积为420 cm2的长方形的纸片,使它的长与宽之比为3:2,小丽能用这块纸片裁出切合要求的纸片吗?请简要说明原因.22.如图,面积为30 的长方形OABC的边 OA 在数轴上, O 为原点, OC=5,将长方形OABC 沿数轴水平挪动 ,O,A,B,C 挪动后的对应点分别记为O,A, B , C ,挪动后的长方形OABC 与11111111原长方形 OABC重叠部分的面积记为S.(1)当 S恰巧等于原长方形面积的一半时,数轴上点A1表示的数是多少?(2)设点 A 的挪动距离AA=x.1①当 S=10 时,求 x 的值;111OO,当点 D,E 所表示的数互为相反数②D 为线段AA的中点,点 E 在线段OO上,且 OE=31时,求 x 的值.答案:1-5AABCC6-10 DCBBC11.人教版七年级下册数学第 6 章实数培优试题一.选择题(共10 小题)1.289 的平方根是±17 的数学表达式是()A.289 =17B.289 =±17C.±289 =±17 D.±289 =17 2.已知一个数的平方是16, 则这个数的立方是()A.8B. 64C. 8 或 -8D.64 或 -643.一个数的算术平方根是0.01,则这个数是()A.0.1B. 0.01C. 0.001D. 0.00014.以下各式中正确的选项是()A.16 =±4B.327 =-9C.( 3)2 =-3D.93 =425.假如 -b 是 a 的立方根,则以下结论正确的选项是()A.b3 =a B. -b= a3C. b= a3D.b3 =a 6.已知正方体的体积为64,则这个正方体的棱长为()A.4B. 8C.4 2D.2 2 7.已知一个正数的两个平方根分别为3a-1 和 -5-a,则这个正数的立方根是()A. -2B. 2C. 3D.48.在 -2,0,1,2 这四个数中,最小的数是()A. -2B. 0C.1D.29.如图,在数轴上表示无理数8 的点落在()A.线段 AB 上B.线段 BC上C.线段 CD上D.线段 DE 上10.以下说法正确的选项是()A.若a2 =a,则 a>0a与3b也互为相反数B.若 a 与 b 互为相反数,则 3C.若a2 = ( b )2 , 则a=bD.若 a>b>0,则 a b二.填空题(共 6 小题)11.已知 2x-1 的平方根是±3,则 5x+2 的立方根是.12.若一个数的算术平方根与它的立方根相等,那么这个数是13.如图,某计算机中有、、三个按键,以下是这三个按键的功能.(1):将荧幕显示的数变为它的算术平方根,比如:荧幕显示的数为49 时,按下后会变为 7.(2):将荧幕显示的数变为它的倒数,比如:荧幕显示的数为25 时,按下后会变成 0.04.(3):将荧幕显示的数变为它的平方,比如:荧幕显示的数为 6 时,按下后会变为36.若荧幕显示的数为100 时,小刘第一下按,第二下按,第三下按,以后以、、的次序轮番按,则当他按了第2018下后荧幕显示的数是14.关于正实数a,b作新定义:a⊙ b=2a b,若 25x2=4,则x 的值为.15.已知实数a、 b都是比 2 小的数,此中 a 是整数, b 是无理数,请依据要求,分别写出一个a、 b 的值:a=, b=.16.如图,长方形内有两个相邻的正方形,面积分别为 4 和 3 ,那么暗影部分的面积为.三.解答题(共 8 小题)17.求 x 的值:2(1)(x+1) =64(2)8x 3+27=0.4 | 364 |( 3) 23 12518.计算:27919.已知 a+1 的算术平方根是 1,-27 的立方根是 b-12,c-3 的平方根是± 2,求 a+b+c 的平方根.20.如下图的圆柱形容器的容积为 81 升,它的底面直径是高的 2 倍.( π 取 3)( 1)这个圆柱形容器的底面直径为多少分米?( 2)若这个圆柱形容器的两个底面与侧面都是用铁皮制作的,则制作这个圆柱形容器需要铁皮多少平方分米?(不计消耗)21.关于实数 a 、 b 定义运算 "#"a#b=ab-a-1 .( 1)求 (-2)#3 的值;( 2)经过计算比较 3#(-2)与(-2)#3 的大小关系;( 3)若 x#(-4)=9,求 x 的值.22.已知表示a, b 两个实数的点在数轴上的地点如下图,化简|a-b|+|a+b|.23.右图是一个无理数挑选器的工作流程图.(1)当 x 为 16 时, y 值为(2)能否存在输入存心义的x 值后,却一直输不出y 值?假如存在,写出全部知足要求的x值;假如不存在,请说明原因;x 值可能(3)假如输入 x 值后,挑选器的屏幕显示“该操作没法运转”,请你剖析输入的是什么状况;3 时,判断输入的x 值能否(4)当输出的y 值是。
新疆克拉玛依市七年级数学下册第六单元《实数》测试卷(提高培优)
一、选择题1.有下列四种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③平方根等于它本身的数为0和1;④没有最大的正整数,但有最小的正整数;其中正确的个数是( )A .1B .2C .3D .4C 解析:C【分析】根据实数的定义,实数与数轴上的点一一对应,平方根的定义可得答案.【详解】①数轴上有无数多个表示无理数的点是正确的;②2=;③平方根等于它本身的数只有0,故本小题是错误的;④没有最大的正整数,但有最小的正整数,是正确的.综上,正确的个数有3个,故选:C .【点睛】本题主要考查了实数的有关概念,正确把握相关定义是解题关键.2.定义运算:132x y xy y =-※,若211a =-※,则a 的值为( ) A .12-B .12C .2-D .2C 解析:C 【分析】 根据新定义的运算得到关于a 的方程,求解即可.【详解】解:因为211a =-※, 所以132112a a ⨯-=-, 解得 2a =-.故选:C【点睛】本题考查了新定义的运算与一元一次方程,根据新定义运算得到一元一次方程是解题关键.3.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间B解析:B【分析】借助O 、A 、B 、C 的位置以及绝对值的定义解答即可.【详解】解:-5<c<0,b=5,|d ﹣5|=|d ﹣c |∴BD=CD ,∴D 点介于O 、B 之间.故答案为B .【点睛】本题考查了实数、绝对值和数轴等相关知识,掌握实数和数轴上的点一一对应是解答本题的关键. 4.下列实数31,7π-,3.1438,27,0.2-,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( )A .5个B .4个C .3个D .2个C 解析:C【分析】根据无理数的定义、算术平方根与立方根逐个判断即可得.【详解】31 4.4285717=小数点后的428571是无限循环的,属于有理数,3273=-属于有理数,82= 则无理数为8,1.010010001π-⋯,共有3个,故选:C .【点睛】本题考查了无理数、算术平方根与立方根,熟记各定义是解题关键.5.下列选项中,属于无理数的是( )A .πB .227-C 4D .0A解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A.π是无理数;B.227-是分数,属于有理数;是整数,属于有理数;D.0是整数,属于有理数.故选:A.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.6.下列命题中真命题的个数()①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线平行;③和为180°的两个角互为邻补角;的算术平方根是7;⑤有理数和数轴上的点一一对应;⑥垂直于同一条直线的两条直线互相平行.A.4 B.3 C.2 D.1D解析:D【分析】根据无理数、平行公理、邻补角、算术平方根、实数与数轴、平行线的判定逐个判断即可得.【详解】①无理数包括正无理数和负无理数,此命题是假命题;②经过直线外一点有且只有一条直线与已知直线平行,此命题是真命题;③和为180︒的两个角不一定互为邻补角,此命题是假命题;7=,此命题是假命题;⑤实数和数轴上的点一一对应,此命题是假命题;⑥在同一平面内,垂直于同一条直线的两条直线互相平行,此命题是假命题;综上,真命题的个数是1个,故选:D.【点睛】本题考查了无理数、平行公理、邻补角、实数与数轴等知识点,熟练掌握各定义与公理是解题关键.7.已知无理数m5π-的整数部分相同,则m为()A B C1D.π-解析:C【分析】m 的整数部分与小数部分,进而可得答案.【详解】解:因为23, 3.14π≈,2,5π-的整数部分为1,所以无理数m 的整数部分是12,所以121m =+=.故选:C .【点睛】m 的整数部分与小数部分是解题的关键.8.在1.414,213,5π,2中,无理数的个数是( ) A .1B .2C .3D .4C解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:1.414是有限小数,属于有理数;213是分数,属于有理数; 5π是无理数;2是无理数,∴无理数的个数是3个,故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…等有这样规律的数.9.在 -1.414π, 3.212212221…,227,3.14这些数中,无理数的个数为( )A .2B .3C .4D .5C 解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】4=,22 3.1428577=小数点后的142857是无限循环的,,2π+⋯,共4个,故选:C .【点睛】 本题考查了算术平方根、无理数,熟记无理数的定义是解题关键.10.下列各组数中都是无理数的为( )A .0.07,23,π;B .0.7•,π;C ,π;D .0.1010101……101,π解析:C【分析】根据无理数的定义,依次判断即可.【详解】解:A. 0.07,23是有理数,故该选项错误; B .0.7 是有理数,故该选项错误;C ,π都是无理数,故该选项正确;D .0.1010101……101是有理数,故该选项错误.故选:C .【点睛】本题主要考查了无理数的定义.其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题11.计算(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭ (2)1110623⎛⎫÷-⨯⎪⎝⎭ (3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭(4+1)-2;(2)360;(3)4;(4)【分析】(1)先去括号和绝对值再进行混合运算即可(2)先将括号内通分运算再将除法改为乘法最后计算即可(3)先去括号再将除法改为乘法最后计算即可(4)分别计算解析:(1)-2;(2)360;(3)4;(4)143. 【分析】 (1)先去括号和绝对值,再进行混合运算即可.(2)先将括号内通分运算,再将除法改为乘法,最后计算即可.(3)先去括号,再将除法改为乘法,最后计算即可.(4)分别计算出根式的值,在进行加法运算即可.【详解】(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭ 121242424234=-⨯+⨯-⨯ 12166=-+-2=-(2)1110623⎛⎫÷-⨯ ⎪⎝⎭ 61061=÷⨯ 1066=⨯⨯360=(3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭11(3)=-⨯-13=+4=(4+=153=- 143= 【点睛】本题考查实数的混合运算.掌握其运算法则是解答本题的关键.12.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.(1);(2);(3)【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知再利用绝对值的性质化简绝对值号继而求得答案;(3)根据非负数的性质求出的值再代入进而求其平方根【详解】解:(1)∵解析:(1)2+2;(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-∴点B 表示2+2∴2+2m =-.(2)∵2+2m =-∴1221230m +=-+=->,1221210m -=--=-<∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +4d +∴240c d d ++=∴2040c d d +=⎧⎨+=⎩∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-=∴23164c d -==±,即23c d -的平方根是4±.本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.13.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a +数.ab ;-6【分析】原式去括号合并得到最简结果利用相反数及非负数的性质求出a 与b 的值代入计算即可求出值【详解】解:原式=2a2-2ab-(2a2-3ab )=2a2-2ab-2a2+3ab=ab ∵与互为解析:ab ;-6.【分析】原式去括号合并得到最简结果,利用相反数及非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:原式=2a 2-2ab-(2a 2-3ab )=2a 2-2ab-2a 2+3ab= ab , ∵2a +∴,∴a+2=0,30b -=,解得:a=-2,3b =,当a=-2,b=3时,原式=-6.【点睛】此题考查了整式的加减-化简求值,以及算术平方根的非负性,熟练掌握运算法则是解本题的关键.14.计算:(1.(2)()23540.255(4)8⨯--⨯⨯-.(1)6;(2)【分析】(1)首先计算算术平方根立方根然后进行加减计算即可;(2)首先计算乘方乘法最后进行加减计算即可【详解】解:(1)=4-(-2)=6(2)===【点睛】本题考查了实数的混合运算 解析:(1)6;(2)70.【分析】(1)首先计算算术平方根、立方根,然后进行加减计算即可;(2)首先计算乘方、乘法,最后进行加减计算即可.【详解】解:(1=6.(2)()23540.255(4)8⨯--⨯⨯- =()()5160.255648⨯--⨯⨯-=1080-+=70.【点睛】 本题考查了实数的混合运算,正确理解算术平方根、立方根性质及乘方法则,确定运算顺序是关键.15.把下列各数填在相应的横线上1.4,2020,,32-,0.31,0π-,1.3030030003…(每相邻两个3之间0的个数依次加1)(1)整数:______(2)分数:______(3)无理数:______(1)20200;(2)14;(3)130********…(每相邻两个3之间0的个数依次加1)【分析】根据实数的分类进行填空即可【详解】解:=-2(1)整数:20200(2)分数:14(3)无理数解析:(1)2020,02)1.4,32-,0.31;(3),π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【分析】根据实数的分类进行填空即可.【详解】,(1)整数:2020,0(2)分数:1.4,32-,0.31(3)无理数:π-,1.3030030003…(每相邻两个3之间0的个数依次加1)故答案为:2020,0 1.4,32-,0.31;π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【点睛】本题考查了实数的分类,掌握实数的分类是解题的关键.16.求满足下列条件的x 的值:(1)3(3)27x +=-;(2)2(1)218x -+=.(1);(2)或5【分析】(1)根据立方根即可解答;(2)根据平方根即可解答【详解】解:(1);(2)∴或5【点睛】本题考查了平方根立方根解决本题的关键是熟记平方根立方根的定义解析:(1)6x =-;(2)3x =-或5【分析】(1)根据立方根,即可解答;(2)根据平方根,即可解答.【详解】解:(1)3(3)27x +=-33x +=-6x =-;(2)2(1)218x -+=2(1)16x -=14x -=±∴3x =-或5.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.17.已知m n 、是两个连续的整数,且m n <<,则m n +=_______________________.【分析】估算确定出m 与n 的值即可求出m+n 的值【详解】解:∵∴即∴m=5n=6则m+n=5+6=11故答案为:11【点睛】此题考查了估算无理数的大小弄清无理数估算的方法是解本题的关键解析:11【分析】估算确定出m 与n 的值,即可求出m +n 的值.【详解】解:∵34<<, ∴526<+<,即56<<,∴m =5,n =6,则m +n =5+6=11,故答案为:11【点睛】此题考查了估算无理数的大小,弄清无理数估算的方法是解本题的关键.18.若2x =,29y =,且0xy <,则x y -等于______.5或-5【分析】先由绝对值和平方根的定义求得xy 的值然后根据xy <0分类计算即可;【详解】∵∴∵xy <0∴当x=2y=-3时x-y=2+3=5当x=-2y=3时x-y=-2-3=-5故答案为:5或- 解析:5或-5【分析】先由绝对值和平方根的定义求得x 、y 的值,然后根据xy <0分类计算即可;【详解】∵ 2x =,29y =,∴ 2x =±,3=±y ,∵ xy <0,∴ 当x=2,y=-3时,x-y=2+3=5,当x=-2,y=3时,x-y=-2-3=-5,故答案为:5或-5【点睛】本题主要考查了平方根的定义、绝对值、有理数的减法,正确掌握知识点是解题的关键;19.10b +=,则20132014a b +=___________.2【分析】先根据算术平方根的非负性绝对值的非负性求出ab 的值再代入计算有理数的乘方运算即可得【详解】由算术平方根的非负性绝对值的非负性得:解得则故答案为:2【点睛】本题考查了算术平方根的非负性绝对值解析:2【分析】先根据算术平方根的非负性、绝对值的非负性求出a 、b 的值,再代入计算有理数的乘方运算即可得.【详解】由算术平方根的非负性、绝对值的非负性得:10a -=,10b +=,解得1a =,1b =-,则()201420132014201311112a b +=+-=+=, 故答案为:2.【点睛】本题考查了算术平方根的非负性、绝对值的非负性、有理数的乘方,熟练掌握算术平方根和绝对值的非负性是解题关键.20.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--,如果13a =-,2a 是1a 的差倒数,4a 是3a 的差倒数,4a 是5a 的差倒数…依此类推,那么的12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-值是______.【分析】根据题意可以写出这列数的前几项从而可以发现数字的变化规律从而可以求得所求式子的值【详解】∵∴……∴每三个数一个循环∵∴则+--3-3-++3=-3-++3故答案为:【点晴】本题考查数字的变化解析:1312. 【分析】 根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.【详解】∵13a =-,∴()211134a ==--,3441131a ,443131a ,()511134a ==--, …… ∴1a ,2n a a ⋅⋅⋅每三个数一个循环,∵202036731÷=⋅⋅⋅,∴202013a a ==-,则12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-143343=--+++14-43-3 -3-14+43+3 =-3-14+43+3 1312=. 故答案为:1312. 【点晴】 本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.三、解答题21.计算:(1)7|2|--(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭解析:(1)2;(2)5【分析】(1)先计算绝对值及开立方,再计算加减法;(2)先计算括号中的减法及乘方,再按顺序计算乘除法.【详解】解:(1)7|2|--=7-2-3=2;(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭=15144⨯÷ =5.【点睛】 此题考查实数的混合运算,掌握运算法则及运算顺序是解题的关键.22.计算:(1321(2)(10)4---⨯-(2)225(24)-⨯--÷解析:(1)-12,(2)-12.【分析】(1)、(2)两小题都属于实数的混合运算,先计算乘方和开方,再计算乘除,最后再算加减即可得出结果.【详解】解:(1321(2)(10)4---⨯- 1100458=⨯+- 1325=-12=-,(2)225(24)-⨯--÷45(24)3=-⨯--÷208=-+12=-.【点睛】本题考查了实数的混合运算,根据算式确定运算顺序并运用相应的运算法则正确计算是解题的关键.23.已知2x +1的算术平方根是0=4,z 是﹣27的立方根,求2x +y +z 的平方根.解析:【分析】先根据算术平方根的定义求得2x 的值,再根据算术平方根的定义求出y ,根据立方根的定义求z ,然后代入要求的式子进行计算,最后根据平方根的定义即可得出答案.【详解】解:∵2x +1的算术平方根是0,∴2x +1=0,∴2x =﹣1,∵=4,∴y =16,∵z 是﹣27的立方根,∴z =﹣3,∴2x +y +z =﹣1+16﹣3=12,∴2x +y +z的平方根是=【点睛】本题考查了平方根、算术平方根、立方根,解决本题的关键是熟记平方根、算术平方根、立方根的定义.24.定义一种新运算,观察下列式子:212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;(1)计算:()32-★的值;(2)猜想:a b =★________;(3)若12162a +=-★,求a 的值. 解析:(1)0;(2)22ab ab +;(3)5a =-【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程,再进一步解方程即可.【详解】解:(1)∵212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;∴()()()232322320-=⨯-+⨯⨯-=★;(2)由(1)可得:22a b ab ab =+★.故答案为:22ab ab +.(3)2111222216222a a a +++=⨯+⨯⨯=-★,解得:5a=-.【点睛】此题考查有理数的混合运算以及解一元一次方程,理解运算方法是解决问题的关键.25)1152-⎛⎫-+︒ ⎪⎝⎭解析:3 2【分析】根据平方根定义、负指数幂、零指数幂、特殊角的三角函数值计算即可;【详解】解:原式33421421222=-+-=-+-=.【点睛】本题主要考查了实数的运算,结合负整数指数幂、零指数幂、特殊角的三角函数值计算是解题的关键.26.计算:(1)225--(2)1+解析:(1)-4;(2)1.【分析】(1)根据乘方、开方、绝对值的意义化简,再计算即可;(2)先根据绝对值的意义脱去绝对值,再计算即可求解.【详解】解:(1)225--=-4+6-1-5=-4;(2)1)1=++1=+1=-+=-1+2=1.【点睛】本题考查了实数的性质与运算,熟知实数的运算法则和性质是解题关键.27.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab⊕=--.求()23-⊕的值.解析:1【分析】根据新运算的运算法则计算即可.【详解】解:()()()2322231-⊕=⨯---⨯-()4614611=----=-+-=.【点睛】本题考查新定义下的有理数运算,通过阅读材料掌握新运算的运算法则是解题关键. 28.计算:(1(2)0(0)|2|π--(3)解方程:4x 2﹣9=0.解析:(1)-8;(2)13)x =±32. 【分析】(1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可;(3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键.。
七年级初一数学下学期第六章 实数单元达标测试综合卷学能测试
七年级初一数学下学期第六章 实数单元达标测试综合卷学能测试一、选择题1.下列说法错误的是( )A .a 2与(﹣a )2相等B 互为相反数CD .|a|与|﹣a|互为相反数2.如果一个自然数的算术平方根是n ,则下一个自然数的算术平方根是( )A .n +1B .21n +C D3.下列计算正确的是( )A 2=±B .13= C .2(5= D 2=±4.下列说法中正确的个数有( ) ①0是绝对值最小的有理数; ②无限小数是无理数;③数轴上原点两侧的数互为相反数; ④相反数等于本身的数是0; ⑤绝对值等于本身的数是正数; A .2个B .3个C .4个D .5个5.下列说法正确的是 ( )A .m -一定表示负数B .平方根等于它本身的数为0和1C .倒数是本身的数为1D .互为相反数的绝对值相等6.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1; ③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直 A .0个B .1个C .2个D .3个7.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;=﹣;④0.01的立方根是0.00001,其中正确的个数是( )A .1个B .2个C .3个D .4个8.设4a ,小整数部分为b ,则1a b-的值为( )A .BC .1+D .19.在实数:3.14159,1.010010001....,4.21••,π,227中,无理数有( ) A .1个 B .2个 C .3个 D .4个 10.已知一个正数的两个平方根分别是3a +1和a +11,这个数的立方根为( )A .4B .3C .2D .0二、填空题11.写出一个3到4之间的无理数____. 12.观察下列算式:16+4=20;40+4=44;…__________13.对于有理数a ,b ,规定一种新运算:a ※b=ab +b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上). 14.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.15.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是__________. 16.如果某数的一个平方根是﹣5,那么这个数是_____.17.2(2)0x -=,则y x -的平方根_________.18.===,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________. 19.已知正实数x 的平方根是m 和m b +. (1)当8b =时,m 的值为_________;(2)若22()4m x m b x ++=,则x 的值为___________20.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,=2,现对72进行如下操作:72821→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____.三、解答题21.先阅读第()1题的解法,再解答第()2题:()1已知a ,b 是有理数,并且满足等式52b a =+,求a ,b 的值.解:因为52b a -=+所以()52b a =-所以2b a 52a 3-=⎧⎪⎨-=⎪⎩解得2a 313b 6⎧=⎪⎪⎨⎪=⎪⎩()2已知x ,y是有理数,并且满足等式2x 2y 17--=-x y +的值.22.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数 x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫= ⎪⎝⎭; (2)已知(),3L x y x by =+,31,222L ⎛⎫=⎪⎝⎭.若正格线性数(),18L x kx =,(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由. 23.定义:如果2b n =,那么称b 为n 的布谷数,记为()b g n =. 例如:因为328=,所以()3(8)23g g ==,因为1021024=, 所以()10(1024)210g g ==.(1)根据布谷数的定义填空:g (2)=________________,g (32)=___________________. (2)布谷数有如下运算性质:若m ,n 为正整数,则()()()=+g mn g m g n ,()()m g g m g n n ⎛⎫=- ⎪⎝⎭. 根据运算性质解答下列各题: ①已知(7) 2.807g =,求 (14)g 和74g ⎛⎫⎪⎝⎭的值; ②已知(3)g p =.求(18)g 和316g ⎛⎫⎪⎝⎭的值. 24.计算(1)+|-5|1)2020 (22|25.已知:b 是立方根等于本身的负整数,且a 、b 满足(a+2b)2+|c+12|=0,请回答下列问题:(1)请直接写出a 、b 、c 的值:a=_______,b=_______,c=_______.(2)a 、b 、c 在数轴上所对应的点分别为A 、B 、C ,点D 是B 、C 之间的一个动点(不包括B 、C 两点),其对应的数为m ,则化简|m+12|=________. (3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 、点C 都以每秒1个单位的速度向左运动,同时点A 以每秒2个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点C 之间的距离表示为AC ,点A 与点B 之间的距离表示为AB ,请问:AB−AC 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求出AB−AC 的值.26.观察下列解题过程: 计算231001555...5+++++ 解:设231001555...5S =+++++① 则23410155555....5S =+++++② 由-②①得101451S =-101514S -∴= 即10123100511555 (5)4-+++++= 用学到的方法计算:2320191222...2+++++【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用平方运算,立方根的化简和绝对值的意义,逐项判断得结论. 【详解】 ∵(﹣a )2=a 2, ∴选项A 说法正确;a =a ,互为相反数,故选项B 说法正确;互为相反数,故选项C 说法正确; ∵|a|=|﹣a|, ∴选项D 说法错误. 故选:D .【点睛】此题主要考查了绝对值的意义,平方运算及立方根的化简.掌握立方根的化简和绝对值的意义是解决本题的关键.2.D解析:D【分析】根据算术平方根的平方等于这个这个自然数,得出下一个自然数,可得答案.【详解】解:这个自然数是2n,则和这个自然数相邻的下一个自然数是21n+,.故选:D.【点睛】本题考查了算术平方根,掌握一个数算术平方根的平方等于这个数是解题关键.3.C解析:C【分析】A、根据算术平方根的定义即可判定;B、根据平方根的定义即可判定;C、根据平方根的性质计算即可判定;D、根据立方根的定义即可判定.【详解】A2=,故选项错误;B、13=±,故选项错误;C、2(=5,故选项正确;D2,故选项错误.故选:C.【点睛】此题考查平方根,立方根,解题关键在于掌握运算法则.4.A解析:A【分析】分别利用绝对值的定义、无理数、有理数的定义、相反数的定义分别进行判断即可得出答案.【详解】①0是绝对值最小的有理数;根据绝对值的性质得出,故此选项正确;②无限小数是无理数;根据无限循环小数是有理数判断,故此选项错误;③数轴上原点两侧的数互为相反数;根据到原点距离相等的点是互为相反数,故此选项错误;④相反数等于本身的数是0;根据相反数的定义判断,故此选项正确;⑤绝对值等于本身的数是正数;还有0的绝对值也等于本身,故此选项错误.∴正确的个数有2个故选:A.【点睛】本题主要考查了绝对值的定义、无理数、有理数的定义、相反数的定义等知识,熟练掌握其性质是解题关键.5.D解析:D【分析】当m是负数时,-m表示正数;平方根等于本身的数是0;倒数等于本身的数是±1;互为相反数的绝对值相等.【详解】A. 若m=﹣1,则﹣m=﹣(﹣1)=1,表示正数,故A选项错误;B. 平方根等于它本身的数为0,故B选项错误;C. 倒数是本身的数为1和﹣1,故C选项错误;D. 互为相反数的绝对值相等,故D选项正确;故选D【点睛】本题考查了平方根、倒数以及相反数的概念,熟练掌握各个知识点是解题关键.6.A解析:A【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;0.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.7.A解析:A【分析】利用平方根和立方根的定义解答即可. 【详解】①﹣0.064的立方根是﹣0.4,故原说法错误; ②﹣9没有平方根,故原说法错误;④0.000001的立方根是0.01,故原说法错误, 其中正确的个数是1个, 故选:A . 【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.8.D解析:D 【详解】解:∵1<2<4,∴1<2, ∴﹣2<<﹣1,∴2<43, ∴a=2,b=422=-2∴1222122a b -==-=-. 故选D . 【点睛】本题考查估算无理数的大小.9.B解析:B 【分析】有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可. 【详解】解:因为3.14159,227是有限小数,4.21是无限循环小数, 所以它们都是有理数;=4,4是有理数; 因为1.010010001…,π=3.14159265…, 所以1.010010001…,π,都是无理数. 综上,可得无理数有2个:1.010010001…,π. 故选:B . 【点睛】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.10.A解析:A【分析】根据一个正数的两个平方根互为相反数,可知3a+1+a+11=0,a=-3,继而得出答案.【详解】∵一个正数的两个平方根互为相反数,∴3a+1+a+11=0,a=-3,∴3a+1=-8,a+11=8∴这个数为64,所以,这个数的立方根为:4.故答案为:4.【点睛】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.二、填空题11.π(答案不唯一).【解析】考点:估算无理数的大小.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解.解:3到4之间的无理数π.答案不唯一.解析:π(答案不唯一).【解析】考点:估算无理数的大小.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解.解:3到4之间的无理数π.答案不唯一.12.【分析】根据题目数据,计算结果等于首尾两个偶数的乘积的平方的算术平方根再加上16的算术平方根,依此进行计算即可.【详解】解:==1080+4=1084.故答案为:1084.【点睛】解析:【分析】根据题目数据,计算结果等于首尾两个偶数的乘积的平方的算术平方根再加上16的算术平方根,依此进行计算即可.【详解】==1080+4=1084.故答案为:1084.【点睛】本题考查了算术平方根,读懂题目信息,观察出计算结果等于首尾两个偶数的乘积加上4是解题的关键.13.①③【解析】【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若a=b ,两式解析:①③【解析】【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若a=b,两式相等,若a≠b,则两式不相等,所以②错误;方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a※b)※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c右边=a※(b※c)=a※(b×c+c)=a(b×c+c) +(b×c+c)=abc+ac+bc+c2两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.14.403 【解析】当k=6时,x6=T (1)+1=1+1=2, 当k=2011时,=T()+1=403. 故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达解析:403 【解析】当k=6时,x 6=T (1)+1=1+1=2,当k=2011时,2011x =T(20105)+1=403. 故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达式并写出用T 表示出的表达式是解题的关键.15.; 【解析】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有, 又因为,,,,,所以第n 个数的绝对值是, 所以第个数是,第n 个数是,故答案为-82,. 点睛:本题主要考查了有理数的混合运解析:82-;2(1)(1)n n -⋅+ 【解析】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有(1)n-,又因为2211=+,2521=+,21031=+,21741=+,,所以第n 个数的绝对值是21n +,所以第9个数是92(1)(91)82-⋅+=-,第n 个数是2(1)(1)nn -⋅+,故答案为-82,2(1)(1)n n -⋅+.点睛:本题主要考查了有理数的混合运算,规律探索问题通常是按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,揭示的式子的变化规律,常常把变量和序列号放在一起加以比较,就比较容易发现其中的规律.16.25 【分析】利用平方根定义即可求出这个数. 【详解】设这个数是x (x≥0),所以x =(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.解析:25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x (x ≥0),所以x =(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.17.【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可.【详解】解:,且,∴y-3=0,x-2=0,..的平方根是.故答案为:.【点睛】此题考查算术平解析:±1【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可.【详解】解:23(2)0y x -+-=20,(2)0x -≥,∴y-3=0,x-2=0,3,2y x ∴==.1y x ∴-=.y x ∴-的平方根是±1.故答案为:±1.【点睛】此题考查算术平方根的性质及乘方的性质,求一个数的平方根,根据算术平方根的性质及乘方的性质求出x 与y 的值是解题的关键.18.【分析】观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式,找=+≥n n(1)【分析】=+=(2=+n(n≥1)的等式表示出来是(3n n=+≥(1)【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是(1)=+≥n n=+≥(1)n n【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.19.-4【分析】(1)根据正实数平方根互为相反数即可求出m的值;(2)根据题意可知,再代入求解即可.【详解】解:(1)∵正实数的平方根是和,∴,∵,∴,∴;(2)∵正解析:【分析】(1)根据正实数平方根互为相反数即可求出m的值;(2)根据题意可知22,()m x m b x +==,再代入求解即可.【详解】解:(1)∵正实数x 的平方根是m 和m b +,∴0m b m ++=,∵8b =,∴28m =-,∴4m =-;(2)∵正实数x 的平方根是m 和m b +,∴22,()m x m b x +==,∴224x x +=,∴22x =,∵x 是正实数,∴x .故答案为:-4.【点睛】本题考查的知识点是平方根,掌握正实数平方根的性质是解此题的关键. 20.255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵,,,∴只解析:255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵1=,3=,15=,∴只进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点睛】本题考查了估算无理数大小的应用,主要考查学生的阅读能力和逆推思维能力.三、解答题21.x y 9+=或x y 1+=-.【分析】利用等式左右两边的有理数相等和二次根式相同,建立方程组,然后解方程即可.【详解】因为2x 2y 17--=-所以()2x 2y 17-=- 所以2x 2y 17y 4-=⎧=⎨⎩, 解得{x 5y 4==或{x 5y 4=-=,所以x y 9+=或x y 1+=-.【点睛】本题是一个阅读题目,主要考查了实数的运算,其中关键是理解解方程组的思路就是消元.对于阅读理解题要读懂阅读部分,然后依照同样的方法和思路解题. 22.(1)5,3;(2)有正格数对,正格数对为()26L ,【分析】(1)根据定义,直接代入求解即可;(2)将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+求出b 的值,再将(),18L x kx =代入(),3L x y x by =+,表示出kx ,再根据题干分析即可.【详解】解:(1)∵(),3L x y x y =+∴()2,1L =5,31,22L ⎛⎫= ⎪⎝⎭3 故答案为:5,3;(2)有正格数对. 将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+, 得出,1111323232L b ⎛⎫=⨯+⨯= ⎪⎝⎭,, 解得,2b =,∴()32L x y x y =+,,则()3218L x kx x kx =+=, ∴1832x kx -=∵x ,kx 为正整数且k 为整数∴329k +=,3k =,2x =,∴正格数对为:()26L ,. 【点睛】本题考查的知识点是实数的运算,理解新定义是解此题的关键.23.(1)1;5;(2)①3.807,0.807;②12p +;4p -.【分析】(1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案;(2)①根据布谷数的运算性质, g (14)=g (2×7)=g (2)+g (7),7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭,再代入数值可得解; ②根据布谷数的运算性质, 先将两式化为2(18)(2)(3)g g g =+,3()(3)(16)16g g g =-,再代入求解.【详解】解:(1)g (2)=g (21)=1,g (32)=g (25)=5;故答案为1,32;(2)①g (14)=g (2×7)=g (2)+g (7),∵g (7)=2.807,g (2)=1,∴g (14)=3.807;7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭g (4)=g (22)=2, ∴74g ⎛⎫ ⎪⎝⎭=g (7)-g (4)=2.807-2=0.807; 故答案为3.807,0.807;②∵()3g p =.∴22(18)(23)(2)(3)12g g g g p =⨯=+=+; 3()(3)(16)416g g g p =-=-. 【点睛】本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键.24.(1)0;(2)4.【分析】(1)实数的混合运算,先化简绝对值、求一个数的立方根,乘方,然后再做加减;(2)二实数的混合运算,先化简二次根式和求一个数的立方根及绝对值,然后去括号,最后做加减.【详解】解:(1)+|-5|1)2020=5-4-1=0(22|=43(25-+=435-=4【点睛】本题考查实数的混合运算,掌握运算法则和顺序正确计算是解题关键.25.(1)2;-1;12-;(2)-m-12;(3)AB−AC的值不会随着时间t的变化而改变,AB-AC=1 2【分析】(1)根据立方根的性质即可求出b的值,然后根据平方和绝对值的非负性即可求出a和c 的值;(2)根据题意,先求出m的取值范围,即可求出m+12<0,然后根据绝对值的性质去绝对值即可;(3)先分别求出运动前AB和AC,然后结合题意即可求出运动后AB和AC的长,求出AB−AC即可得出结论.【详解】解:(1)∵b是立方根等于本身的负整数,∴b=-1∵(a+2b)2+|c+12|=0,(a+2b)2≥0,|c+12|≥0∴a+2b=0,c+12=0解得:a=2,c=1 2 -故答案为:2;-1;12 -;(2)∵b=-1,c=12-,b、c在数轴上所对应的点分别为B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,∴-1<m <12-∴m+12<0 ∴|m+12|= -m-12故答案为:-m-12; (3)运动前AB=2-(-1)=3,AC=2-(12-)=52由题意可知:运动后AB=3+2t +t=3+3t ,AC=52+2t +t=52+3t ∴AB -AC=(3+3t )-(52+3t )=12∴AB−AC 的值不会随着时间t 的变化而改变,AB -AC=12. 【点睛】此题考查的是立方根的性质、非负性的应用、利用数轴比较大小和数轴上的动点问题,掌握立方根的性质、平方、绝对值的非负性、利用数轴比较大小和行程问题公式是解决此题的关键.26.22020−1【分析】根据题目提供的求解方法进行计算即可得解.【详解】设S =2320191222...2+++++①则2S =2+22+23+…+22019+22020,②②−①得,S =(2+22+23+…+22019+22020)-(2320191222...2+++++)=22020−1 即2320191222...2+++++=22020−1.【点睛】本题考查了规律型:数字的变化类,有理数的混合运算,读懂题目信息,理解并掌握求解方法是解题的关键.。
七年级初一数学下学期第六章 实数单元 期末复习测试综合卷检测试题
七年级初一数学下学期第六章 实数单元 期末复习测试综合卷检测试题一、选择题1.下列说法正确的是( )A .有理数是整数和分数的统称B .立方等于本身的数是0,1C .a -一定是负数D .若a b =,则a b = 2.给出下列各数①0.32,②227,③π,④5,⑤0.2060060006(每两个6之间依次多个0),⑥327,其中无理数是( ) A .②④⑤ B .①③⑥ C .④⑤⑥ D .③④⑤3.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B 4.下列命题是假命题的是( ) A .0的平方根是0B .无限小数都是无理数C .算术平方根最小的数是0D .最大的负整数是﹣15.下列各组数的大小比较正确的是( )A 56B 3πC .5.329D . 3.1->﹣3.1 6.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17-是17的平方根.其中正确的有( )A .0个B .1个C .2个D .3个7.下列说法:①±3都是27的立方根;②116的算术平方根是±1438-216的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有( )A .1个B .2个C .3个D .4个 8.已知m 是整数,当|m 40|取最小值时,m 的值为( )A .5B .6C .7D .89.下列说法:①有理数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③某数的绝对值是它本身,则这个数是非负数;④16的平方根是±4,用式子表示是164=±.⑤若a ≥0,则2()a a =,其中错误的有( )A .1个B .2个C .3个D .4个1016 ) A .4 B .4- C .4±D .2± 二、填空题11.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示).12.若实数a 、b满足20a +=,则a b=_____. 13.已知,x 、y 是有理数,且y4,则2x +3y 的立方根为_____.14.2(2)0x -=,则y x -的平方根_________.15.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.16.已知,a 、b 互为倒数,c 、d互为相反数,求1=_____. 17.3是______的立方根;81的平方根是________2=__________. 18.设a ,b 都是有理数,规定*=a b ()()48964***-⎡⎤⎣⎦=__________.19.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.20.已知正实数x 的平方根是m 和m b +.(1)当8b =时,m 的值为_________;(2)若22()4m x m b x ++=,则x 的值为___________三、解答题21.先阅读第()1题的解法,再解答第()2题:()1已知a ,b是有理数,并且满足等式52b a =+,求a ,b 的值.解:因为52b a -=+所以()52b a =-所以2b a 52a 3-=⎧⎪⎨-=⎪⎩解得2a 313b 6⎧=⎪⎪⎨⎪=⎪⎩()2已知x ,y是有理数,并且满足等式2x 2y 17--=-x y +的值.22.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N .(I )解方程:log x 4=2;(Ⅱ)log 28=(Ⅲ)计算:(lg 2)2+lg 2•1g 5+1g 5﹣2018= (直接写答案)23.阅读下面文字: 对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 可以如下计算:原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦ 1014⎛⎫=+- ⎪⎝⎭ 114=- 上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:(1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭ (2)235120192018201720163462⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭ 24.下面是按规律排列的一列数:第1个数:11(1)2--+. 第2个数:()()231112(1)11234⎡⎤⎡⎤----+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦. 第3个数:()()()()2345111113(1)111123456⎡⎤⎡⎤⎡⎤⎡⎤------+++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦. …(1)分别计算这三个数的结果(直接写答案).(2)写出第2019个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.25.是无理数,而无理是无限不循环小数,因1的小数部分,事的整数部分是1,将这个数减去其整数部的小数部分,又例如:∵23223<<,即23<<的整数部分为2,小数部分为)2。
七年级初一数学下学期第六章 实数单元达标测试综合卷学能测试试题
七年级初一数学下学期第六章 实数单元达标测试综合卷学能测试试题一、选择题1.下列式子正确的是( )A .25=±5B .81=9C .2(10)-=﹣10D .±9=32.2(4)-的平方根与38-的和是( )A .0B .﹣4C .2D .0或﹣4 3.下列各数中,比-2小的数是( )A .-1B .-5C .0D .1 4.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式(代数式中a 换成b ,b 换成a ,代数式保持不变).下列三个代数式:①2()a b -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( ) A .①② B .①③ C .②③ D .①②③5.若a ,b 均为正整数,且7a >,32b <,则+a b 的最小值是( ) A .3 B .4 C .5D .6 6.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;③3a -=﹣3a ;④0.01的立方根是0.00001,其中正确的个数是( )A .1个B .2个C .3个D .4个 7.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >08.若a 16b 64a+b 的值是( ) A .4 B .4或0 C .6或2D .6 9.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17-是17的平方根.其中正确的有( )A .0个B .1个C .2个D .3个10.7和6- )A 76B 67C 76+D .76)-二、填空题11.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示).12.如果一个有理数a 的平方等于9,那么a 的立方等于_____.13.观察下列算式:①246816⨯⨯⨯+=2(28)⨯+16=16+4=20;②4681016⨯⨯⨯+=2(410)⨯+16=40+4=44;…根据以上规律计算:3032343616⨯⨯⨯+=__________14.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.15.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是__. 16.2(2)-的平方根是 _______ ;38a 的立方根是 __________.17.已知72m =-,则m 的相反数是________.18.3是______的立方根;81的平方根是________;32-=__________.19.若2x -+|2﹣x|=x+3,则x 的立方根为_____. 20.若x ,y 为实数,且|2|30x y ++-=,则(x+y) 2012的值为____________.三、解答题21.观察下列三行数:(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第9个数,记这三个数的和为a ,化简计算求值:(5a 2-13a-1)-4(4-3a+54a 2) 22.概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n a a a a a ÷÷÷÷个(a≠0)记作a ,读作“a 的圈n 次方”.初步探究 (1)直接写出计算结果:2③=________,1)2-(⑤=________; (2)关于除方,下列说法错误的是________ A .任何非零数的圈2次方都等于1; B .对于任何正整数n ,1=1; C .3④=4③ D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;1)2-(⑩=________. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于________;(3)算一算:()3242162÷+-⨯④. 23.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下:我们称使等式 1a b ab -=+成立的一对有理数,a b 为“共生有理数对”,记为(),a b ,如:数对12,3⎛⎫ ⎪⎝⎭,25,3⎛⎫ ⎪⎝⎭,都是“共生有理数对”. (1)判断下列数对是不是“共生有理数对”,(直接填“是”或“不是”).(2,1)- ,(13,2) . (2)若 5,2a ⎛⎫- ⎪⎝⎭是“共生有理数对”,求a 的值; (3)若(),m n 是“共生有理数对”,则(),n m --必是“共生有理数对”.请说明理由; (4)请再写出一对符合条件的 “共生有理数对”为 (注意:不能与题目中已有的“共生有理数对”重复).24.计算:(1)()()232018311216642⎛⎫-+-- ⎪⎝⎭ (253532325.2是无理数,而无理数是无限不循环小数,22﹣12的小数部2的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为47927<37的整数部分为27﹣2) 请解答:(110的整数部分是 ,小数部分是 ;(25a 13b ,求a +b 526.你会求(a ﹣1)(a 2012+a 2011+a 2010+…+a 2+a+1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:()()2111a a a -+=-,()()23111a a a a -++=-,()()324111a a a a a -+++=-,(1)由上面的规律我们可以大胆猜想,得到(a ﹣1)(a 2014+a 2013+a 2012+…+a 2+a+1)= 利用上面的结论,求:(2)22014+22013+22012+…+22+2+1的值是 .(3)求52014+52013+52012+…+52+5+1的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据平方根、算术平方根的定义求出每个式子的值,再进行判断即可.【详解】A 5,故选项A 错误;B 9,故选项B 正确;C =10,故选项C 错误;D 、=±3,故选项D 错误.故选:B .【点睛】本题主要考查平方根和算术平方根,解题的关键是掌握平方根和算术平方根的定义与性质.2.D解析:D【分析】【详解】=4,4的平方根是±2,的平方根为±2,2,﹣2+(﹣2)=﹣4,2+(﹣2)=0.0或﹣4.故选:D.【点睛】本题考查的是实数的运算,熟知平方根的定义及立方根的定义是解答此题的关键.3.B解析:B【分析】根据正数大于零,零大于一切负数,两个负数比大小,绝对值越大负数反而小,可得答案【详解】解:1>0>-1,|>|-2|>-1,∴-2<-1,故选:B.【点睛】本题考查了实数大小比较,利用负数的绝对值越大负数反而小是解题关键.4.A解析:A【分析】在正确理解完全对称式的基础上,逐一进行判断,即可得出结论.【详解】解:根据信息中的内容知,只要任意两个字母交换,代数式不变,就是完全对称式,则:①(a-b)2=(b-a)2;是完全对对称式.故此选项正确.②将代数式ab+bc+ca中的任意两个字母交换,代数式不变,故ab+bc+ca是完全对称式, ab+bc+ca中ab对调后ba+ac+cb,bc对调后ac+cb+ba,ac对调后cb+ba+ac,都与原式一样,故此选项正确;③a2b+b2c+c2a 若只ab对调后b2a+a2c+c2b 与原式不同,只在特殊情况下(ab相同时)才会与原式的值一样∴将a与b交换,a2b+b2c+c2a变为ab2+a2c+bc2.故a2b+b2c+c2a不是完全对称式.故此选项错误,所以①②是完全对称式,③不是故选择:A.【点睛】本题是信息题,考查了学生读题做题的能力.正确理解所给信息是解题的关键.5.B解析:B【分析】的范围,然后确定a、b的最小值,即可计算a+b的最小值.【详解】23.∵a a为正整数,∴a的最小值为3.12.∵b b为正整数,∴b的最小值为1,∴a+b的最小值为3+1=4.故选B.【点睛】本题考查了估算无理数的大小,解题的关键是:确定a、b的最小值.6.A解析:A【分析】利用平方根和立方根的定义解答即可.【详解】①﹣0.064的立方根是﹣0.4,故原说法错误;②﹣9没有平方根,故原说法错误;④0.000001的立方根是0.01,故原说法错误,其中正确的个数是1个,故选:A.【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.7.B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.8.C解析:C【分析】由a是16的平方根可得a=±2,由b是64的立方根可得b=4,由此即可求得a+b的值.【详解】∵a是16的平方根,∴a=±2,∵b是64的立方根,∴b=4,∴a+b=2+4=6或a+b=-2+4=2.故选C.【点睛】本题考查了平方根及立方根的定义,根据平方根及立方根的定义求得a=±2、 b=4是解决问题的关键.9.B解析:B【详解】解:①实数和数轴上点一一对应,本小题错误;②π不带根号,但π是无理数,故本小题错误;③负数有立方根,故本小题错误;是17的平方根,本小题正确,④17正确的只有④一个,故选B.10.C解析:C【分析】在数轴上表示7和-6,7在右边,-6在左边,即可确定两个点之间的距离.【详解】如图,7和67在右边,6在左边,7和67-(6)76.故选:C.【点睛】本题考查了数轴,可以发现借助数轴有直观、简捷,举重若轻的优势.二、填空题11..【解析】【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=.解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=.“ 解析:12++n n . 【解析】【详解】 根据题意按规律求解:b 1=2(1-a 1)=131221-4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =12++n n . 解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=12++n n . “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a 中n 的取值.12.±27【分析】根据a 的平方等于9,先求出a ,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了解析:±27【分析】根据a 的平方等于9,先求出a ,再计算a 3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了平方根及有理数的乘方.解题的关键是掌握平方根的概念及有理数乘方的法则. 13.【分析】根据题目数据,计算结果等于首尾两个偶数的乘积的平方的算术平方根再加上1 6的算术平方根,依此进行计算即可.【详解】解:==1080+4=1084.故答案为:1084.【点睛】解析:【分析】根据题目数据,计算结果等于首尾两个偶数的乘积的平方的算术平方根再加上16的算术平方根,依此进行计算即可.【详解】==1080+4=1084.故答案为:1084.【点睛】本题考查了算术平方根,读懂题目信息,观察出计算结果等于首尾两个偶数的乘积加上4是解题的关键.14.﹣2或﹣1或0或1或2.【分析】有三种情况:①当时,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;②当时,[x]=0,(x)=0,[x)=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三种情况:①当10x -<<时,[x ]=-1,(x )=0,[x )=-1或0,∴[x ]+(x )+[x )=-2或-1;②当0x =时,[x ]=0,(x )=0,[x )=0,∴[x ]+(x )+[x )=0;③当01x <<时,[x ]=0,(x )=1,[x )=0或1,∴[x ]+(x )+[x )=1或2;综上所述,化简[x ]+(x )+[x )的结果是-2或﹣1或0或1或2.故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.【详解】请在此输入详解!15.【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1,∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…,∴第n 个数的分母为n2+3,∴第n 个数 解析:2213n n -+ 【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1,∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…,∴第n 个数的分母为n 2+3,∴第n 个数是2213n n -+,故答案为:221 3n n -+. 16.2a【分析】根据平方根的定义及立方根的定义解答.【详解】的平方根是,的立方根是2a ,故答案为:,2a.【点睛】此题考查平方根及立方根的定义,利用定义求一个数的平方根及立解析:【分析】根据平方根的定义及立方根的定义解答.【详解】38a 的立方根是2a ,故答案为:,2a .【点睛】此题考查平方根及立方根的定义,利用定义求一个数的平方根及立方根.17.【分析】根据相反数的定义即可解答.【详解】解:的相反数是,故答案为:.【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.解析:2【分析】根据相反数的定义即可解答.【详解】-=,解:m的相反数是2)2故答案为:2【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.18.±9 2-【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;【详解】解:∵ ,∴3是27的立方根;∵ ,∴81的平方根是;∵ ,∴;故答案为:2解析:【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;【详解】=,解:∵3327∴3是27的立方根;∵2(9)81±= ,∴81的平方根是9± ;2< ,22=故答案为:27,9±,;【点睛】本题主要立方根、平方根的定义以及去绝对值法则,掌握一个数的平方根有两个,它们互为相反数是解题的关键.19.3【分析】直接利用二次根式有意义的条件得出x 的取值范围进而得出x 的值,求出答案.【详解】解:∵有意义,∴x﹣2≥0,解得:x≥2,∴+x﹣2=x+3,则=5,故x ﹣2=25,解得解析:3【分析】直接利用二次根式有意义的条件得出x 的取值范围进而得出x 的值,求出答案.【详解】∴x ﹣2≥0,解得:x≥2,﹣2=x+3,5,故x ﹣2=25,解得:x =27,故x 的立方根为:3.故答案为:3.【点睛】此题主要考查了二次根式有意义的条件,正确掌握二次根式的性质是解题关键. 20.1【分析】先根据绝对值的非负性、算术平方根的非负性求出x 、y 的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:解得则故答案为:1.【点睛】本题考查了解析:1【分析】先根据绝对值的非负性、算术平方根的非负性求出x 、y 的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:2030x y +=⎧⎨-=⎩解得23x y =-⎧⎨=⎩则201220122012()(23)11x y +=-+==故答案为:1.【点睛】本题考查了绝对值的非负性、算术平方根的非负性、有理数的乘方运算,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.三、解答题21.(1)-(-2)n ;(2)第②行数等于第①行数相应的数减去2;第③行数等于第①行数相应的数除以(-2);(3)-783【分析】第一个有符号交替变化的情况时,可以考虑在你所找到的规律代数式中合理的加上负号,并检验计算结果。
新疆克拉玛依市第十三中学七年级数学下《第六章 实数》单元综合(无答案)测试题 (新版)新人教版
1一.选择题(每小题2分,共24分)1. 计算4的结果是…………………………………………………………………..( ).A.2 B.±2 C.-2 D.4.2. 在-1.732,2,π,3.41 ,2+3,3.212212221…,3.14这些数中,无理数的个数为( ). A. 5 B.2 C.3 D.43. 已知下列结论:①在数轴上只能表示无理数2;②任何一个无理数都能用数轴上的点 表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是………………………………………………………………( ). A.①② B.②③ C.③④ D.②③④4. 下列各式中,正确的是……………………………………………………..( ).A.3355-=-B.6.06.3-=-C.13)13(2-=-D.636±=6. 下列说法中,正确的是……………………………………………………..( ). A. 不带根号的数不是无理数 B. 8的立方根是±2C. 绝对值是3的实数是3D. 每个实数都对应数轴上一个点7. 若a a =-2)3(-3,则a 的取值范围是……………………………………..( ). A. a >3 B. a ≥3 C. a <3 D. a ≤39.下列说法错误的是…………………………………………………………….( ) A .3-是9的平方根 B .5的平方等于5 C .1-的平方根是1± D .9的算术平方根是3 10.下列说法中正确的是………………………………………………………..( )A. 实数2a -是负数 B. a a =2C. a -一定是正数D. 实数a -的绝对值是a 11. 有下列说法:其中正确的说法的个数是………………………………….( )(1)无理数就是开方开不尽的数; (2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示。
新人教版初中数学七年级下册第六章《实数》单元测试卷及答案
人教版七年级数学下册第六章实数单元综合能力提高测试卷一、选择题( 每题 3 分,共30分)1.以下选项中正确的选项是()A. 27的立方根是± 3B.16 的平方根是± 4C. 9 的算术平方根是3D.立方根等于平方根的数是12.在实数﹣ 0.8, 2015 ,﹣223),四个数中,是无理数的是(73A .﹣ 0.8B. 2015223 C.﹣D.733.( -1)2的平方根是()51B. -111A.25C.D.±25554.以下四个数中的负数是()A.﹣ 22B.( 1)2C.(﹣ 2)2D. |﹣2| 5. | 6 -3|+|2- 6 |的值为()A . 5B. 5-2 6C.1D. 2 6 -16.在以下各式中正确的选项是().( 2)2=-2.9=3.16=8.22=2A B C D 7.一个自然数 a 的算术平方根为x,则 a+1 的立方根是().3x 1B .3( x 1)2.3 a21D.3 x21A C8.以下结论中正确的个数为()( 1)零是绝对值最小的实数;( 2)数轴上所有的点都表示实数;( 3)无理数就是带根号的数;(4)-1的立方根为±1;273A.1 个B.2 个C.3 个D.4个9.若x 3 =3,则(x+3)2的值是()A. 81B. 27C. 9D. 310.如有理数 a 和 b 在数轴上所表示的点分别在原点的右侧和左侧,则b2-︱ a- b︱等于()A. a B.- a C. 2b+ a D.2b -a二、填空 (每小 3分,共30 分)11.在以下各数中无理数有个。
3 2 ,1,7, -, -3, 2 ,20, -5,38,25, 0, 0.5757757775 ⋯⋯6239(相两个 5 之的7 的个数逐次加1).12.一个数的算平方根等于它自己,个数是__________。
13.假如 x-4 是 16 的算平方根,那么x+ 4 的 ________.14.比大小:103;15.若25.36 =5.036,253.6 =15.906,253600= __________。
七年级初一数学下学期第六章 实数单元测试综合卷检测试题
七年级初一数学下学期第六章实数单元测试综合卷检测试题一、选择题1.3164的算术平方根是()A.12B.14C.18D.12±2.16的算术平方根是()A.2 B.2±C.4D.4±3.如图,在数轴上表示实数15的点可能是()A.点P B.点Q C.点M D.点N4.下列各数中3.1415926,-39,0.131131113……,94,-117无理数的个数有()A.1个B.2个C.3个D.4个5.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和-1,若△ABC绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2019次后,则数2019对应的点为()A.点A B.点B C.点C D.这题我真的不会6.下列一组数2211-8,3,0,2,0.010010001...7223π,,,(相邻两个1之间依次增加一个0),其中无理数的个数有( )A.0个B.1个C.2个D.3个7.下列说法正确的是()A.m-一定表示负数B.平方根等于它本身的数为0和1 C.倒数是本身的数为1 D.互为相反数的绝对值相等8.下列各式中,正确的是( )A91634B91634;C91638D916349.4的平方根是()A.±16 B.2 C.﹣2 D.±210.已知一个正数的两个平方根分别是3a+1和a+11,这个数的立方根为()A.4 B.3 C.2 D.0二、填空题11.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号).12.若x +1是125的立方根,则x 的平方根是_________. 13.估计512-与0.5的大小关系是:512-_____0.5.(填“>”、“=”、“<”) 14.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.15.高斯函数[]x ,也称为取整函数,即[]x 表示不超过x 的最大整数. 例如:[]2.32=,[]1.52-=-. 则下列结论:①[][]2.112-+=-;②[][]0x x +-=;③若[]13x +=,则x 的取值范围是23x ≤<;④当11x -≤<时,[][]11x x ++-+的值为0、1、2.其中正确的结论有_____(写出所有正确结论的序号). 16.对任意两个实数a ,b 定义新运算:a ⊕b=()()a a b b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是先做括号内的,那么(5⊕2)⊕3=___. 17.27的立方根为 .18.已知:103<157464<1003;43=64;53<157<63,则 315746454=,请根据上面的材料可得359319=_________.19.如图,直径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点'O ,则点'O 对应的数是_______.20.11133+=112344+=113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.三、解答题21.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M 这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余 将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN ,请找出它的明文. 22.观察下列各式:111122-⨯=-+; 11112323-⨯=-+; 11113434-⨯=-+; …(1)你发现的规律是_________________.(用含n 的式子表示;(2)用以上规律计算:1111223⎛⎫⎛⎫-⨯+-⨯+ ⎪ ⎪⎝⎭⎝⎭11113420172018⎛⎫⎛⎫-⨯+⋅⋅⋅+-⨯ ⎪ ⎪⎝⎭⎝⎭23.七年某班师生为了解决“22012个位上的数字是_____”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下: (1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2 ; 因为22=4,所以22个位上的数字是4; 因为23=8,所以23个位上的数字是8; 因为24= _____ ,所以24个位上的数字是_____; 因为25= _____ ,所以25个位上的数字是_____; 因为26= _____ ,所以26个位上的数字是_____;(2)小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?(3)利用上述得到的规律,可知:22012个位上的数字是_____;(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是_____. 24.我们在学习“实数”时画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O 为圆心,正方形的对角线长为半径画弧交数轴于点A”,请根据图形回答下列问题:(1)线段OA 的长度是多少?(要求写出求解过程) (2)这个图形的目的是为了说明什么?(3)这种研究和解决问题的方式体现了 的数学思想方法.(将下列符合的选项序号填在横线上)A .数形结合B .代入C .换元D .归纳 25.计算(1)+|-5|+364--(-1)2020 (2)2316273|32|(5)+----+-26.给定一个十进制下的自然数x ,对于x 每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x 的“模二数”,记为()2M x .如()()22735111, 561101M M ==.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定: 0与 0相加得 0; 0与1相加得1;1与1相加得 0,并向左边一位进1.如735561、的“模二数”111101、相加的运算过程如下图所示.根据以上材料,解决下列问题:(1)()29653M 的值为______ ,()()22589653M M +的值为_(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如()()22124100,630010M M ==,因为()()()222124630110,124630110M M M +=+=,所以()()()222124*********M M M +=+,即124与630满足“模二相加不变”.①判断126597,,这三个数中哪些与23“模二相加不变”,并说明理由; ②与23“模二相加不变”的两位数有______个【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】【详解】14,12=. 故选:A . 【点睛】此题主要考查了立方根的性质、算术平方根的性质和应用,要熟练掌握,解答此题的关键. 2.C解析:C 【分析】本题是求16的算术平方根,应看哪个正数的平方等于16,由此即可解决问题. 【详解】 ∵(±4)2=16, ∴16的算术平方根是4.故选:C . 【点睛】此题主要考查了算术平方根的运算.一个数的算术平方根应该是非负数.3.C解析:C 【分析】. 【详解】 ∵91516<<,<<即:34<<,3与4之间, 故数轴上的点为点M , 故选:C. 【点睛】本题主要考查了二次根式的估算,熟练掌握相关方法是解题关键.4.B解析:B 【解析】 【分析】根据无理数是无限不循环小数,可得答案. 【详解】32,3.1415926,-117是有理数,0.131131113……是无理数,共2个.故选B. 【点睛】本题考查了无理数,无理数是无限不循环小数,注意带根号的数不一定是无理数.5.A解析:A 【分析】根据题意得出每3次翻转为一个循环,2019能被3整除说明跟翻转3次对应的点是一样的. 【详解】翻转1次后,点B 所对应的数为1, 翻转2次后,点C 所对应的数为2 翻转3次后,点A 所对应的数为3 翻转4次后,点B 所对应的数为4 经过观察得出:每3次翻转为一个循环 ∵20193673÷=∴数2019对应的点跟3一样,为点A. 故选:A. 【点睛】本题是一道找规律的题目,关键是通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.6.C解析:C 【分析】根据无理数与有理数的概念进行判断即可得. 【详解】解:2211-8,3,0,2,0.010010001 (7223)π,,,(相邻两个1之间依次增加一个0),其中无理数的个数有:0.010010001 (2)π,(相邻两个1之间依次增加一个0),共2个故选:C 【点睛】本题考查了无理数定义,初中范围内学习的无理数有三类:①π类,如2π,3π等;②开方0.1010010001…,等.7.D解析:D 【分析】当m 是负数时,-m 表示正数;平方根等于本身的数是0;倒数等于本身的数是±1;互为相反数的绝对值相等. 【详解】A. 若m=﹣1,则﹣m=﹣(﹣1)=1,表示正数,故A 选项错误;B. 平方根等于它本身的数为0,故B 选项错误;C. 倒数是本身的数为1和﹣1,故C 选项错误;D. 互为相反数的绝对值相等,故D 选项正确; 故选D 【点睛】本题考查了平方根、倒数以及相反数的概念,熟练掌握各个知识点是解题关键.8.A解析:A 【解析】=±34 ,所以可知A 选项正确;故选A.9.D解析:D【分析】根据平方根的定义以及性质进行计算即可.【详解】4的平方根是±2,故选:D.【点睛】本题考查了平方根的问题,掌握平方根的定义以及性质是解题的关键.10.A解析:A【分析】根据一个正数的两个平方根互为相反数,可知3a+1+a+11=0,a=-3,继而得出答案.【详解】∵一个正数的两个平方根互为相反数,∴3a+1+a+11=0,a=-3,∴3a+1=-8,a+11=8∴这个数为64,所以,这个数的立方根为:4.故答案为:4.【点睛】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.二、填空题11.③,④【分析】①[x) 示小于x的最大整数,由定义得[x)x≤[x)+1,[)<<-8,[)=-9即可,②由定义得[x)x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义解析:③,④【分析】①[x) 示小于x的最大整数,由定义得[x)<x≤[x)+1,[385-)<385-<-8,[385-)=-9即可,②由定义得[x)<x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),又[x)<x联立即可判断.【详解】由定义知[x)<x≤[x)+1,①[385-)=-9①不正确,②[x)表示小于x的最大整数,[x)<x,[x) -x<0没有最大值,②不正确③x≤[x)+1,[x)-x≥-1,[x)–x有最小值是-1,③正确,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),∵[x)<x,∴x1-≤[x)<x,④正确.故答案为:③④.【点睛】本题考查实数数的新规定的运算,阅读题给的定义,理解其含义,掌握性质[x)<x≤[x)+1,利用性质解决问题是关键.12.±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x+1=,解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正解析:±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.13.>【解析】∵ . , ∴ , ∴ ,故答案为>.解析:> 【解析】∵11120.52222-=-=20-> , ∴202> , ∴10.52> ,故答案为>.14.1或5. 【分析】根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果. 【详解】解:根据题意得:x =3,y =2或x =3,y =﹣2, 则x ﹣y =1或5. 故答案为1解析:1或5. 【分析】根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果. 【详解】解:根据题意得:x =3,y =2或x =3,y =﹣2, 则x ﹣y =1或5. 故答案为1或5. 【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.①③. 【分析】根据[x]表示不超过x 的最大整数,即可解答. 【详解】由题意可知[-2.1]=-3,[1]=1,-3+1=-2,故①正确; ②中,当x 取小数时,显然不成立,例如x 取2.6,[x]解析:①③. 【分析】根据[x]表示不超过x 的最大整数,即可解答. 【详解】由题意可知[-2.1]=-3,[1]=1,-3+1=-2,故①正确;②中,当x 取小数时,显然不成立,例如x 取2.6,[x]+[-x]=2-3=-1,故②错误; ③中,若[x+1]=3,则x+1要满足x+1≥3,且x+1<4,解得x≥2,且x<3,故③正确; ④中,当-1≤x<1时,在取值范围内验证此式的值为1,2.故④错误; 所以正确的结论是①③.16.【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】(⊕2)⊕3=⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关解析:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】2)⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.17.3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算解析:3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算18.【分析】首先根据一个数的立方的个位数就是这个数的个位数的立方的个位数确定个位数,然后一次确定十位数,即可求得立方根.【详解】由103=1000,1003=1000000,就能确定是2位数.由解析:39【分析】首先根据一个数的立方的个位数就是这个数的个位数的立方的个位数确定个位数,然后一次确定十位数,即可求得立方根.【详解】由103=1000,1003=10000002位数.由59319的个位上的数是99,如果划去59319后面的三位319得到数59,而33=27、43=64339. 故答案为:39【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键.19.【分析】点对应的数为该半圆的周长.【详解】解:半圆周长为直径半圆弧周长即故答案为:.【点睛】本题考查数轴上的点与实数的关系.明确的长即为半圆周长是解答的关键. 解析:12π+【分析】点O '对应的数为该半圆的周长.【详解】解:半圆周长为直径+半圆弧周长 即12π+ 故答案为:12π+.【点睛】 本题考查数轴上的点与实数的关系.明确OO '的长即为半圆周长是解答的关键.20.【分析】观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式,找(1)n n =+≥ 【分析】=(2=+(3=+n(n ≥1)的等式表示出来是(1)n n =+≥ 【详解】由分析可知,发现的规律用含自然数n(n ≥1)的等式表示出来是(1)n n =+≥(1)n n =+≥ 【点睛】 本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n 表示的等式即可.三、解答题21.(1)N,E,T 密文为M,Q,P;(2)密文D,W,N 的明文为F,Y ,C .【分析】(1) 由图表找出N,E,T 对应的自然数,再根据变换公式变成密文.(2)由图表找出N=M,Q,P 对应的自然数,再根据变换.公式变成明文.【详解】解:(1)将明文NET 转换成密文:2522517263N M +→→+=→ 3313E Q →→=→ 5158103T P +→→+=→ 即N,E,T 密文为M,Q,P;(2)将密文D,W,N 转换成明文:()133138114D F →→⨯--=→2326W Y →→⨯=→253(2517)222N C→→⨯--=→即密文D,W,N的明文为F,Y,C.【点睛】本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换.22.(1)111111n n n n-⨯=-+++;(2)20172018-【分析】(1)由已知的等式得出第n个式子为111111 n n n n-⨯=-+++;(2)根据规律将原式中的积拆成和的形式,运算即可.【详解】(1)∵第1个式子为11 1122 -⨯=-+第2个式子为1111 2323 -⨯=-+第3个式子为1111 3434 -⨯=-+……∴第n个式子为111111 n n n n-⨯=-+++故答案为:111111 n n n n-⨯=-+++(2)由(1)知:原式1111111 (1)()()()2233420172018 =-++-++-++⋅⋅⋅+-+112018=-+20172018=-【点睛】本题考查有理数的混合运算以及数字规律,分析题目,找出规律是解题关键.23.(1)16,6;32,2;64,4;(2)对;(3)6;(4)3.【分析】(1)利用乘方的概念分别求出24、25、26的结果,即可解决;(2)算出210的结果,即可知道个位数是多少,即可解决;(3)按照上述规律,以4为周期,个位数重复2、4、8、6,故2012中刚好有503组,故能得出答案;(4)分别求出31,32,33,34,找出规律,个位数重复3,9,7,1,2013中是4的503倍,而且余1,故得出结论.【详解】解:(1)∵24=16、25=32、26=64∴24的个位数为6;25的个位数为2;26的个位数为4;(2)∵210=1024∴个位数是4,该说法对(3)可以知道规律,以4为周期,各位数重复2、4、8、6,故2012中刚好有503组,故22012个位数刚好为6;(4)∵31=3,32=9,33=27,34=81,35=243;∴个位数重复3,9,7,1∵2013中是4的503倍,而且余1∴个位数为3.【点睛】本题主要考查了乘方的运算以及找规律,熟练乘方的运算以及找出规律是解决本题的关键.24.;(2)数轴上的点和实数是一一对应关系;(3)A.【分析】(1)首先根据勾股定理求出线段OB的长度,然后结合数轴的知识即可求解;(2)根据数轴上的点与实数的对应关系即可求解;(3)本题利用实数与数轴的对应关系即可解答.【详解】解:(1)OB2=12+12=2,∴OB,∴OA=(2)数轴上的点和实数是一一对应关系(3) 这种研究和解决问题的方式,体现的数学思想方法是数形结合.故选A.【点睛】本题主要考查了实数与数轴之间的关系,此题综合性较强,不仅要结合图形,还需要熟悉平方根的定义.也要求学生了解数形结合的数学思想.25.(1)0;(2)4.【分析】(1)实数的混合运算,先化简绝对值、求一个数的立方根,乘方,然后再做加减;(2)二实数的混合运算,先化简二次根式和求一个数的立方根及绝对值,然后去括号,最后做加减.【详解】解:(1)+|-5|1)2020=5-4-1=0(22|=43(25-+=435-=4【点睛】本题考查实数的混合运算,掌握运算法则和顺序正确计算是解题关键.26.(1)1011,1101;(2)①12,65,97,见解析,②38【分析】(1) 根据“模二数”的定义计算即可;(2) ①根据“模二数”和模二相加不变”的定义,分别计算126597,,和12+23,65+23,97+23的值,即可得出答案②设两位数的十位数字为a ,个位数字为b ,根据a 、b 的奇偶性和“模二数”和模二相加不变”的定义进行讨论,从而得出与23“模二相加不变”的两位数的个数【详解】解: (1) ()296531011M =,()()221010111108531596M M =+=+故答案为:1011,1101()2①()()222301,1210M M ==,()()()222122311,122311M M M +=+=()()()22212231223M M M ∴+=+,12∴与23满足“模二相加不变”.()()222301,6501M M ==,,()()()222652310,652300M M M +=+=()()()22265236523M M M +≠+,65∴与23不满足“模二相加不变”.()()222301,9711M M ==,()()()2229723100,9723100M M M +=+=,()()()22297239723M M M +=+,97∴与23满足“模二相加不变”②当此两位数小于77时,设两位数的十位数字为a ,个位数字为b ,1a 70b 7≤≤<<,; 当a 为偶数,b 为偶数时()()2210002013,a b M M +==,∴()()()()22222301,102310(2)(3)1001M M M a b M a a b b +=++++++== ∴与23满足“模二相加不变”有12个(28、48、68不符合)当a 为偶数,b 为奇数时()()2210012013,a b M M +==,∴()()()()22222310,102310(2)(3)1000M M M a b M a a b b +=++++++== ∴与23不满足“模二相加不变”.但27、47、67、29、49、69符合共6个当a 为奇数,b 为奇数时()()2210112013,a b M M +==,∴()()()()222223100,102310(2)(3)1010M M M a b M a a b b +=++++++== ∴与23不满足“模二相加不变”.但17、37、57、19、39、59也不符合当a 为奇数,b 为偶数时()()2210102013,a b M M +==,∴()()()()22222311,102310(2)(3)1011M M M a b M a a b b +=++++++== ∴与23满足“模二相加不变”有16个,(18、38、58不符合)当此两位数大于等于77时,符合共有4个综上所述共有12+6+16+4=38故答案为:38【点睛】本题考查新定义,数字的变化类,认真观察、仔细思考,分类讨论的数学思想是解决这类问题的方法.能够理解定义是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示。
A.1 B.2 C.3 D.4
12. 的平方小题2分,共20分)
13.若x的立方根是- ,则x=___________.
A. B. C. D.
6.下列说法中,正确的是……………………………………………………..().
A.不带根号的数不是无理数B. 8的立方根是±2
C.绝对值是 的实数是 D.每个实数都对应数轴上一个点
7.若 -3,则 的取值范围是……………………………………..( ).
A. >3 B. ≥3C. <3 D. ≤3
A. 5 B.2 C.3 D.4
3.已知下列结论:①在数轴上只能表示无理数 ;②任何一个无理数都能用数轴上的点
表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.
其中正确的结论 是………………………………………………………………( ).
A.①②B.②③C.③④D.②③④
4.下列各式中,正确的是……………………………………………………..( ).
29.若一正数a的两个平方根分别是2m-3和5-m,求a 的值。(5分)
30.M是大于的最小整数,N是小于的最大整数,求M+N的平方根 。(5分)
9.下列说法错误的是……… …………………………………………………….()
A. 是9的平方根B. 的平方等于5 C. 的平方根是 D.9的算术平方根是3
10.下列说法中正确的是………………………………………………………..()
A.实数 是负数B. C. 一定是正数D.实数 的绝对值是
11.有下列说法:其中正确的说法的个数是………………………………….()
14.化 简=___________。
15.1- 的相反数是_________,绝对值是__________.
16. 的平方根是。
17.平方根等于本身的数是________;立方根等 于本身的数是_______
18.已知 =0,则- =_______.
19.如果 ,那么 的算术平方根是.
20.比较大小 ______ ; ________ .
新疆克拉玛依市第十三中学七年级数学下《第六章实数》单元测试题(新版)新人教版
一.选择题(每小题2分,共24分)
1.计算 的结果是……………………………………………… …………………..().
A.2B.±2C.-2D.4.
2.在-1.732, ,π,3. ,2+ ,3.212212221…,3.14这些数中,无理数的个数为( ).
三、解答题
24.化 简或计算:(每小题4分,共16分)
(1) + (2)
(3)(4)
25.求 的值(每小题4分,共12分)
(1) ;(2) ;(3)
26.若 ,求 的值。(5分)
27. 和 都是5的立方根,求a、b的值。(4分)
28.一个正方体的体积是16 ,另一正方体的体积是这个正方体体积的4倍,求另一个正方体的表面积。(5分)
21.绝对值小于的整数有个。
22.的算术平方根为a, =2,则a-b=.
23.把下列各数 填入相应的大括号内(12分) ,-3,0,3.1415 , , , , , ,
,1.121221222122221…(两个1之间依次多个2)
(1)无理数集合: … ;(2)非负数集合: … ;
(3 )整数集合: … ;(4)分数集合: … 。