2011年吉林省中考数学试卷及答案
2011年中考数学试题含答案

2011年中考数学试题(含答案)班级:姓名:全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.一、选择题:(每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.4的平方根是()A.4 B.2 C.-2 D.2或-22.如图1,在数轴上表示到原点的距离为3个单位的点有()A.D点B.A点C.A点和D点D.B点和C点3.下列运算正确的是()A.(ab)5=ab5 B.a8÷a2=a6 C.(a2)3=a5 D.(a-b)2=a2-b24.如图2,CA⊥BE于A,AD⊥BF于D,下列说法正确的是()A.α的余角只有∠B B.α的邻补角是∠DACC.∠ACF是α的余角D.α与∠ACF互补5.下列说法正确的是()A.频数是表示所有对象出现的次数B.频率是表示每个对象出现的次数C.所有频率之和等于1D.频数和频率都不能够反映每个对象出现的频繁程度6.2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C,峰顶的温度为(结果保留整数)()A.-26°C B.-22°C C.-18°C D.22°C7.已知a、b、c分别是三角形的三边,则方程(a + b)x2 + 2cx + (a + b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根8.已知矩形ABCD的边AB=15,BC=20,以点B为圆心作圆,使A、C、D三点至少有一点在⊙B内,且至少有一点在⊙B外,则⊙B的半径r的取值范围是()A.r>15 B.15<r<20 C.15<r<25 D.20<r<259.在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是()A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2C.y=2(x-2)2-2 D.y=2(x + 2)2 + 210.如图3,已知Rt△ABC≌Rt△DEC,∠E=30°,D为AB的中点,AC=1,若△DEC绕点D顺时针旋转,使ED、CD分别与Rt△ABC的直角边BC相交于M、N,则当△DMN为等边三角形时,AM的值为()A .3B .233C .33D.12011年高中阶段学校招生统一考试数学第Ⅱ卷(非选择题共90分)题号二三总分总分人17 18 19 20 21 22 23 24得分二、填空题:(每小题3分,共18分)把答案直接填在题中横线上.11.如图4,□ABCD中,对角线AC、BD交于点O,请你写出其中的一对全等三角形_________________.12.计算:cot60°-2-2 + 20080+233=__________.13.若A(1x,1y)、B(2x,2y)在函数12yx=的图象上,则当1x、2x满足_______________时,1y>2y.14.如图5,校园内有一块梯形草坪ABCD,草坪边缘本有道路通过甲、乙、丙路口,可是有少数同学为了走捷径,在草坪内走了一条直“路”EF,假设走1步路的跨度为0.5米,结果他们仅仅为了少走________步路,就踩伤了绿化我们校园的小草(“路”宽忽略不计).15.资阳市某学校初中2008级有四个绿化小组,在植树节这天种下柏树的颗数如下:10,10,x,8,若这组数据的众数和平均数相等,那么它们的中位数是________颗.16.如图6,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置.根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是______时_______分.三、解答题:(共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)先化简,再求值:(212x x--2144x x-+)÷222x x-,其中x=1.18.(本小题满分7分)如图7,在△ABC中,∠A、∠B的平分线交于点D,DE∥AC交BC于点E,DF∥BC交AC于点F.(1)点D是△ABC的________心;(2)求证:四边形DECF为菱形.19.(本小题满分8分)图4图2图5图1图7图3图6惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速地组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者.(1) 3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能否将救灾物资一次性地运往灾区? (2)要使救灾物资一次性地运往灾区,共有哪几种运货方案?20.(本小题满分9分)大双、小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A 袋中放着分别标有数字1、2、3的三个小球,B 袋中放着分别标有数字4、5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,大双、小双各蒙上眼睛有放回地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次). (1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由; (2)小双设计的游戏方案对双方是否公平?不必说理.21.(本小题满分9分)若一次函数y =2x -1和反比例函数y =2kx 的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.22.(本小题满分10分)如图8,小唐同学正在操场上放风筝,风筝从A 处起飞,几分钟后便飞达C 处,此时,在AQ 延长线上B 处的小宋同学,发现自己的位置与风筝和旗杆PQ 的顶点P 在同一直线上.(1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC约为多少米?(结果可保留根号)23.(本小题满分10分) 阅读下列材料,按要求解答问题:如图9-1,在ΔABC 中,∠A =2∠B ,且∠A =60°.小明通过以下计算:由题意,∠B =30°,∠C =90°,c =2b ,a =3b ,得a2-b2=(3b)2-b2=2b2=b·c .即a2-b2= bc .于是,小明猜测:对于任意的ΔABC ,当∠A =2∠B 时,关系式a2-b2=bc 都成立.(1)如图9-2,请你用以上小明的方法,对等腰直角三角形进行验证,判断小明的猜测是否正确,并写出验证过程;(2)如图9-3,你认为小明的猜想是否正确,若认为正确,请你证明;否则,请说明理由; (3)若一个三角形的三边长恰为三个连续偶数,且∠A =2∠B ,请直接写出这个三角形三边的长,不必说明理由.24.(本小题满分12分)如图10,已知点A 的坐标是(-1,0),点B 的坐标是(9,0),以AB 为直径作⊙O′,交y 轴的负半轴于点C ,过A 、B 、C 三点作抛物线.(1)求抛物线所对应的函数关系式;(2)点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O′于点D ,连结BD ,求直线BD 所对应的函数关系式;(3)在(2)的条件下,抛物线上是否存在点P ,使得∠PDB =∠CBD?如果存在,请求出点P 的坐标;如果不存在,请说明理由.图8 图9-1图9-2图9-3图10图72011年中考数学试题参考答案及评分意见 说 明:1. 解答题中各步骤所标记分数为考生解答到这一步应得分数的累计分数;2. 参考答案中的解法只是该题解法中的一种或几种,如果考生的解法和参考答案所给解法不同,请参照本答案中的标准给分;3. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分;4. 给分和扣分都以1分为基本单位;5. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同. 一、选择题:(每小题3分,共10个小题,满分30分) 1-5. DCBDC ;6-10. AACBB.二、填空题:(每小题3分,共6个小题,满分18分)11.答案不唯一,ΔAOB ≌ΔCOD 、ΔAOD ≌ΔCOB 、ΔADB ≌ΔCBD 、ΔABC ≌ΔCDA 之一均可;12.3434+(或34+3);13.x1<x2<0或 0<x1<x2; 14.4;15.10 ; 16.9,12;三、解答题:(共9个小题,满分72分)17.原式=[1(2)x x -–21(2)x -]×(2)2x x - 3分=1(2)x x -×(2)2x x -–21(2)x -×(2)2x x -=12–2(2)xx - 4分=22(2)x x --–2(2)xx -=12x - 5分 当x=1时,原式=121- 6分 = 1 7分说明:以上步骤可合理省略 . 18.(1) 内. 2分(2) 证法一:连接CD , 3分 ∵ DE ∥AC ,DF ∥BC ,∴ 四边形DECF 为平行四边形, 4分又∵ 点D 是△ABC 的内心,∴ CD 平分∠ACB ,即∠FCD =∠ECD , 5分又∠FDC =∠ECD ,∴ ∠FCD =∠FDC ∴ FC =FD , 6分 ∴ □DECF 为菱形. 7分 证法二:过D 分别作DG ⊥AB 于G ,DH ⊥BC 于H ,DI ⊥AC 于I . 3分 ∵AD 、BD 分别平分∠CAB 、∠ABC , ∴DI=DG , DG=DH .∴DH=DI . 4分 ∵DE ∥AC ,DF ∥BC , ∴四边形DECF 为平行四边形, 5分∴S□DECF=CE·DH =CF·DI , ∴CE=CF . 6分∴□DECF 为菱形. 7分19.(1) ∵3×5+6×3=33>30,3×1+6×2=15>13, 1分∴3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能将救灾物资一次性地运到灾区. 2分 (2) 设安排甲种货车x 辆,则安排乙种货车(9–x)辆, 3分由题意得:53(9)30,2(9)13.x x x x +-≥⎧⎨+-≥⎩ 5分解得:1.5≤x ≤5 6分注意到x 为正整数,∴x=2,3,4,57分∴安排甲、乙两种货车方案共有下表4种:方 案 方案一 方案二 方案三 方案四 甲种货车2345乙种货车7 6 5 48分说明:若分别用“1、8”,“2、7”等方案去尝试,得出正确结果,有过程也给全分. 20.(1) 大双的设计游戏方案不公平. 1分 可能出现的所有结果列表如下:1 23 4 4 8 12 551015或列树状图如下:4分∴P(大双得到门票)= P(积为偶数)=46=23,P(小双得到门票)= P(积为奇数)=13, 6分∵23≠13,∴大双的设计方案不公平. 7分(2) 小双的设计方案不公平. 9分参考:可能出现的所有结果列树状图如下:21.(1) ∵反比例函数y=2kx 的图象经过点(1,1),∴1=2k1分解得k=2, 2分∴反比例函数的解析式为y=1x . 3分(2) 解方程组211.y x y x =-⎧⎪⎨=⎪⎩,得11x y =⎧⎨=⎩,;122.x y ⎧=-⎪⎨⎪=-⎩,5分∵点A 在第三象限,且同时在两个函数图象上, ∴A(12-,–2). 6分(3) P1(32,–2),P2(52-,–2),P3(52,2).(每个点各1分) 9分22. (1) 在Rt △BPQ 中,PQ=10米,∠B=30°, 则BQ=cot30°×PQ =103,2分 又在Rt △APQ 中,∠PAB=45°, 则AQ=tan45°×PQ=10,即:AB=(103+10)(米); 5分 (2) 过A 作AE ⊥BC 于E ,在Rt △ABE 中,∠B=30°,AB=103+10,∴ AE=sin30°×AB=12(103+10)=53+5, 7分∵∠CAD=75°,∠B=30°, ∴ ∠C=45°, 8分在Rt △CAE 中,sin45°=AEAC ,∴AC=2(53+5)=(56+52)(米) 10分 23. (1) 由题意,得∠A=90°,c=b ,a=2b , ∴a2–b2=(2b)2–b2=b2=bc . 3分 (2) 小明的猜想是正确的. 4分理由如下:如图3,延长BA 至点D ,使AD=AC=b ,连结CD , 5分则ΔACD 为等腰三角形.∴∠BAC=2∠ACD ,又∠BAC=2∠B ,∴∠B=∠ACD=∠D ,∴ΔCBD 为等腰三角形,即CD=CB=a , 6分大双积 小双 图9-3图8图10答案图2图10答案图1又∠D =∠D ,∴ΔACD ∽ΔCBD , 7分∴ADCD CD BD =.即baa b c =+.∴a2=b2+bc .∴a2–b2= bc 8分(3) a=12,b=8,c=10.10分24.(1) ∵以AB 为直径作⊙O′,交y 轴的负半轴于点C , ∴∠OCA+∠OCB=90°, 又∵∠OCB+∠OBC=90°, ∴∠OCA=∠OBC , 又∵∠AOC= ∠COB=90°, ∴ΔAOC ∽ ΔCOB , 1分∴O A O C O CO B=.又∵A(–1,0),B(9,0),∴19O CO C=,解得OC=3(负值舍去). ∴C(0,–3),3分设抛物线解析式为y=a(x+1)(x –9),∴–3=a(0+1)(0–9),解得a=13,∴二次函数的解析式为y=13(x+1)(x –9),即y=13x2–83x –3. 4分 (2) ∵AB 为O′的直径,且A(–1,0),B(9,0), ∴OO′=4,O′(4,0), 5分∵点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O′于点D ,∴∠BCD=12∠BCE=12×90°=45°,连结O′D 交BC 于点M ,则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=12AB=5.∴D(4,–5). 6分∴设直线BD 的解析式为y=kx+b (k≠0)∴90,4 5.k b k b +=⎧⎨+=-⎩ 7分解得1,9.k b =⎧⎨=-⎩∴直线BD 的解析式为y=x –9. 8分(3) 假设在抛物线上存在点P ,使得∠PDB=∠CBD ,解法一:设射线DP 交⊙O′于点Q ,则BQ C D =.分两种情况(如答案图1所示):①∵O′(4,0),D(4,–5),B(9,0),C(0,–3).∴把点C 、D 绕点O′逆时针旋转90°,使点D 与点B 重合,则点C 与点Q1重合, 因此,点Q1(7,–4)符合BQC D =,∵D(4,–5),Q1(7,–4),∴用待定系数法可求出直线DQ1解析式为y=13x –193.9分解方程组21193318 3.33y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,得11941229416x y ⎧-=⎪⎪⎨--⎪=⎪⎩,;2294122941.6x y ⎧+=⎪⎪⎨-+⎪=⎪⎩,∴点P1坐标为(9412+,29416-+),[坐标为(9412-,29416--)不符合题意,舍去].10分②∵Q1(7,–4),∴点Q1关于x 轴对称的点的坐标为Q2(7,4)也符合BQ C D =.∵D(4,–5),Q2(7,4).∴用待定系数法可求出直线DQ2解析式为y=3x –17. 11分解方程组231718 3.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩, ∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].12分∴符合条件的点P 有两个:P1(9412+,29416-+),P2(14,25).解法二:分两种情况(如答案图2所示): ①当DP1∥CB 时,能使∠PDB=∠CBD . ∵B(9,0),C(0,–3).图10答案∴用待定系数法可求出直线BC 解析式为y=13x –3.又∵DP1∥CB ,∴设直线DP1的解析式为y=13x+n .把D(4,–5)代入可求n= –193,∴直线DP1解析式为y=13x –193. 9分解方程组21193318 3.33y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,得11941229416x y ⎧-=⎪⎪⎨--⎪=⎪⎩,;2294122941.6x y ⎧+=⎪⎪⎨-+⎪=⎪⎩,∴点P1坐标为(9412+,29416-+),[坐标为(9412-,29416--)不符合题意,舍去].10分②在线段O′B 上取一点N ,使BN=DM 时,得ΔNBD ≌ΔMDB(SAS),∴∠NDB=∠CBD .由①知,直线BC 解析式为y=13x –3.取x=4,得y= –53,∴M(4,–53),∴O′N=O′M=53,∴N(173,0),又∵D(4,–5),∴直线DN 解析式为y=3x –17. 11分解方程组231718 3.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩,∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].12分∴符合条件的点P 有两个:P1(9412+,29416-+),P2(14,25).解法三:分两种情况(如答案图3所示): ①求点P1坐标同解法二. 10分②过C 点作BD 的平行线,交圆O′于G , 此时,∠GDB=∠GCB=∠CBD . 由(2)题知直线BD 的解析式为y=x –9,又∵ C (0,–3)∴可求得CG 的解析式为y=x –3,设G (m,m –3),作GH ⊥x 轴交与x 轴与H ,连结O′G ,在Rt △O′GH 中,利用勾股定理可得,m=7, 由D (4,–5)与G(7,4)可得, DG 的解析式为317y x =-,11分解方程组231718 3.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩,∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去]. 12分∴符合条件的点P 有两个:P1(9412+,29416-+),P2(14,25).说明:本题解法较多,如有不同的正确解法,请按此步骤给分.。
2011年中考吉林省长春市数学试卷及解析

图②是交替摆放A、B两种卡片得到的图案.若摆放这个图案共用两
种卡片21张,则这个图案中阴影部分的面积之和为(结
果保留 ).
三、解答题(每小题5分,共20分)
15.先化简,再求值: + ,其中x= .
16.小华有3张卡片,小明有2张卡片,卡片上的数字如图所示.小华和小明分别从自己的卡片中随机抽取一张.请你用画树状图或列表的方法,求抽取的两张卡片上的数字和为6的概率.
16.解:
或
(3分)
P(抽取的两张卡片上的数字和为6)= = .(5分)
17.解:设小矩形花圃的长为xm,宽为ym.
根据题意,得 (3分)
解得
答:小矩形花圃的长为4m,宽为2m.(5分)
18.解:在△ABC中,∠C= , ,
∵∠A= ,AB=2.1,
∴
(3分)
∵BD=0.9,
∴CD= BC-BD=1.701-0.9=0.801 0.8.
2011年吉林省长春市中考数学试题
一、选择题(每小题3分,共24分)
1.-2的绝对值等于【】
A.- B. C.-2D.2
2.某汽车参展商为了参加第八届中国(长春)国际汽车博览会,印制了105000张宣传彩页.105000这个数字用科学记数法表示为【】
A.10.5×104B.1.05×105C.1.05×106D.0.105×106
(1)用含有x的代数式表示CE的长.
(2)求点F与点B重合时x的值.
(3)当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式.
(4)当x为某个值时,沿PD将以点D、E、F、B为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x的值.
2011长春数学中考

数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共24分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上;考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;答在试卷上无效.一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.无理数5-的相反数是( )A 、 5-B 、 5C 、 51D 、51- 2.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠l=35º,那么∠2是的度数是( )A 、35ºB 、45ºC 、55ºD 、65º3.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为6,10,5,3,4,8,4,这组数据的中位数和极差分别是( )A .4,7B .7,5C .5,7D .3,74·化简()3133--的结果是( )A 、 3B 、-3C 、 3D 、3- 5.小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了了一会儿太极拳散步回家。
下面能反映当天小华的爷爷离家的距离y 与时间x 的函数关系的大致图象是( )A B C D6、如图,数轴上的A 、B 、C 三点所表示的数分别为a 、b 、c 。
根据图中各点位置,下面正确的是( )A 、 (a-1)(b-1)>0B 、 (c-1)(b-1)>0C 、(a+1)(b+1)<0D 、(c+1)(b+1)<07、已知△ABC 在平面直角坐标系中的位置如图所示,将△ABC 先向下平移5个单位,再向左平移2个单位,则平移后C 点的坐标是( )A 、(5,-2)B 、(1,-2)C 、(2,-1)D 、(2,-2)8、如图,已知矩形纸片ABCD ,点E 是AB 的中点,点G 是BC 上的一点,∠BEG>60º,现沿直线EG 将纸片折叠,使点B 落在纸片上的点H 处,连接AH ,则与∠BEG 相等的角的个数为( )A 、4B 、3C 、2D 、19、如图,AB 是⊙0的直径,CD 是⊙O 的弦,∠DAB=48º,则∠ACD 等于( )A 、42ºB 、 48ºC 、52ºD 、58º10、如图,四边形ABCD 中,∠BAD=∠ACB=90º,AB=AD,AC=4BC,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A 、2252x y =B 、2254x y =C 、 252x y =D 、 254x y =11、芜湖国际动漫节期间,小明进行了富有创意的形象设计.如图1,他在边长为1的正方形ABCD 内作等边三角形BCE ,并与正方形的对角线交于F 、G 点,制成如图2的图标.则图标中阴影部分图形AFEGD 的面积= .12、电子跳蚤游戏盘是如图所示的△ABC ,AB=AC=BC=6.如果跳蚤开始时在BC 边的P0处,BP 0=2.跳蚤第一步从P 0跳到AC 边的P 1(第1次落点)处,且CP 1=CP 0;第二步从P 1跳到AB 边的P 2(第2次落点)处,且AP 2=AP 1;第三步从P 2跳到BC 边的P 3(第3次落点)处,且BP 3=BP 2;…;跳蚤按照上述规则一直跳下去,第n次落点为Pn (n 为正整数),则点P 2009与点P 2010之间的距离为 ( )A 、2B 、22C 、 4D 、 6二、填空题:l3.比较大小:.(填“>”、“<”或“=”)14.如图,P 是菱形ABCD 对角线BD 上一点,PE ⊥AB 于点E ,PE=4cm ,则点P 到BC 的距离是 cm .15.某校举行以“保护环境,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是 .16.已知△ABC 中,D 、E 分别是两边AB 和AC 的中点,若△ABC 的周长是8cm ,则△ADE 的周长是 cm .17.一次函数y=kx+b(k 为常数且k ≠0)的图象如图所示,则使l ≤y ≤3成立的x 的取值范围是 。
2011年吉林省中考数学试卷(解析版)

2011年吉林省中考数学试卷参考答案与试题解析一、填空题(每小题2分,共20分)1.(2分)(2011•吉林)如图,数轴上的点A向左移动2个单位长度得到点B,则点B表示的数是.【考点】:数轴M114.【难易度】:容易题.【分析】:由图知,点A在数轴上的位置为1,而点A向左移动2个单位长度得到点B,则点B表示的数为1﹣2=﹣1.【解答】:答案为﹣1.【点评】:本题考查了数轴上点的相关计算;理解实数与数轴的对应是解答本题的关键。
2.(2分)(2011•吉林)长白山自然保护区面积约为215000公顷,用科学记数法表示为.【考点】:科学记数法M11B.【难易度】:容易题【分析】:科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n 表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂。
【解答】:答案2.15×105.【点评】:此题主要考查了科学记数法.科学记数法是将一个数表示为a×10n的形式,其中1≤|a|<10,n为整数,解答的关键是要正确确定a的值以及n的值.3.(2分)(2011•吉林)不等式2x﹣5<3的解集是.【考点】:一元一次不等式(组)的解及解集M12K.【难易度】:容易题.【分析】:由2x﹣5<3,移项合并同类项得得:2x<8,两边同时除以2得x<4,则不等式的解集为x<4.【解答】:答案为:x<4.【点评】:本题主要考查了一元一次不等式(组)的解及解集,能熟练地运用解不等式的步骤解不等式是解答本题的关键.4.(2分)(2011•吉林)方程=2的解是x=.【考点】:解可化为一元一次方程的分式方程M12B.【难易度】:容易题【分析】:两边同时乘以x+1,得:x=2(x+1),去括号得:x=2x+2,移项得:x﹣2x=2,合并同类项得:﹣x=2,两边同时乘以-1,得x=﹣2,检验:把x=﹣2代入最简公分母x+1≠0 【解答】:答案x=﹣2.【点评】:此题主要考查了解分式方程,熟知解分式方程的步骤是解答本题的关键,注意解完方程后需要验根。
2011长春中考数学

2011长春中考数学2011年长春市中考数学试卷回顾2011年,长春市中考数学试卷继续保持了一贯的应用性和多样性,考察了学生的基本数学知识和运算能力,同时也注重了素质教育和思维能力的培养。
下面将对2011年长春市中考数学试卷的题目进行详细回顾。
第一部分为选择题,共30小题。
这部分主要考察学生的基本知识和运算能力,包括整数、分数、小数、代数式、几何等方面。
例如,第5题考察了学生对分数的理解和计算能力,要求计算1/4+2/3,即要求学生将两个不同的分数相加并化简为最简分数。
另外,第12题考察了学生对几何图形的认识和计算能力,要求计算给定矩形的面积。
这些题目旨在检验学生对基本概念和运算的掌握情况。
第二部分为填空题,共10小题。
这部分主要考察学生的运算能力和解决实际问题的能力。
例如,第16题要求学生根据已知条件计算出对角线的长度,再加上一条边的长度,形成一个含有根式的算式,考察学生运用勾股定理求解直角三角形的能力。
另外,第19题考察了学生对比例关系的理解,要求学生根据已知比例计算出未知量的值。
这些题目旨在培养学生独立思考和解决问题的能力。
第三部分为解答题,共4小题。
这部分主要考察学生的综合运用能力和解决实际问题的能力。
例如,第23题是一个生活中的实际问题,要求学生根据已知条件计算出桶中酒的原来浓度,考察学生运用浓度的计算公式解决实际问题的能力。
另外,第27题考察了学生利用比例关系进行计算和推理的能力,要求学生根据已知比例计算出其他未知量的值。
这些题目旨在培养学生运用数学知识解决实际问题的能力。
综上所述,2011年长春市中考数学试卷综合了基础知识的考察、运算能力的培养和实际问题的解决能力,旨在培养学生的综合素质和思维能力。
这样的考题设置有助于学生全面发展,并为他们将来的学习和工作打下坚实的数学基础。
2011年吉林省长春市中考数学试卷与答案

2011年黑龙江省齐齐哈尔市中考数学试卷-(word 整理版)一、单项选择题(每题3分,满分30分)1、下列各式:①a 0=1;②a 2•a 3=a 5;③2-2=- ;④-(3-5)+(-2)4÷8×(-1)=0;⑤x 2+x 2=2x 2,其中正确的是( )A 、①②③B 、①③⑤C 、②③④D 、②④⑤2、下列图形中既是轴对称图形又是中心对称图形的是( )A 、B 、C 、D 、3、向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是( )4、下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( )A 、B 、C 、D 、5、若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)是反比例函数y= 图象上的点,且x 1<x 2<0<x 3,则y 1、y 2、y 3的大小关系正确的是( )A 、y 3>y 1>y 2B 、y 1>y 2>y 3C 、y 2>y 1>y 3D 、y 3>y 2>y 16、某工厂为了选拔1名车工参加直径为5㎜精密零件的加工技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,平均数依次为 、,方差依次为s 甲2、s 乙2,则下列关系A. <,s 甲2<s 乙2B. =,s 甲2<s 乙2C. =,s 甲2>s 乙2D. >,s 甲2>s 乙2 7、分式方程=有增根,则m 的值为( )A 、0和3B 、1C 、1和-2D 、3为.A3 B 2 C D9、已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,现有下列结论:①b 2-4ac >0 ②a >0 ③b >0 ④c >0 ⑤9a+3b+c <0,则其中结论正确的个数是( ) A 、2个 B 、3个 C 、4个 D 、5个10、如图,在Rt △ABC 中,AB=CB ,BO ⊥AC ,把△ABC 折叠,使AB 落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连接DE 、EF .下列结论:①tan ∠ADB=2;②图中有4对全等三角形;③若将△DEF 沿EF 折叠,则点D 不一定落在AC 上;④BD=BF ;⑤S 四边形DFOE =S △AOF ,上述结论中正确的个数是( ) 二、填空题(每题3分,满分30分)11、2010年10月31日,上海世博会闭幕.累计参观者突破7308万人次,创造了世博会历史上新的纪录.用科学记数法表示为 人次.(结果保留两个有效数字) 12、函数中,自变量x 取值范围是 .13、如图,点B 、F 、C 、E 在同一条直线上,点A 、D 在直线BE 的两侧,AB ∥DE ,BF=CE ,请添加一个适当的条件: ,使得AC=DF .14、因式分解:-3x 2+6xy-3y 2= .15、中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各两个,将所有棋子反面朝上放在棋盘中,任取一个不是士、象、帅的概率 .16、将一个半径为6cm ,母线长为15cm 的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是 度.17、一元二次方程a 2-4a-7=0的解为 .18、某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有 种购买方案.19、已知三角形相邻两边长分别为20cm 和30cm ,第三边上的高为10cm ,则此三角形的面积为 .20、如图,△ABC 是边长为1的等边三角形.取BC 边中点E ,作ED ∥AB ,EF ∥AC ,得到四边形EDAF ,它的面积记作S 1;取BE 中点E 1,作E 1D 1∥FB ,E 1F 1∥EF ,得到四边形E 1D 1FF 1,它的面积记作S 2.照此规律作下去,则S 2011= . 三、解答题(满分60分)21、先化简,再求值:(1- )÷ ,其中a=sin60°.x 甲x 乙x 甲x 乙x 甲x 乙x 甲x 乙x 甲x 乙22、如图,每个小方格都是边长为1个单位长度的小正方形.(1)将△ABC向右平移3个单位长度,画出平移后的△A1B1C1.(2)将△ABC绕点O旋转180°,画出旋转后的△A2B2C2.(3)画出一条直线将△AC1A2的面积分成相等的两部分.23、已知:二次函数y= x2+bx+c,其图象对称轴为直线x=1,且经过点(2,- ).(1)求此二次函数的解析式.(2)设该图象与x轴交于B、C两点(B点在C点的左侧),请在此二次函数x轴下方的图象上确定一点E,使△EBC的面积最大,并求出最大面积.注:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=- .24、为增强学生体质,教育行政部门规定学生每天在校参加户外体育活动的平均时间不少于1小时.某区为了解学生参加户外体育活动的情况,对部分学生参加户外体育活动的时间进行了抽样调查,并将调查结果绘制成如下的统计图表(不完整).请你根据图中提供的信息解答下列问题:(1)求a、b的值.(2)求表示参加户外体育活动时间为0.5小时的扇形圆心角的度数.(3)该区0.8万名学生参加户外体育活动时间达标的约有多少人?25、某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.(1)请你直接写出甲厂的制版费及y甲与x的函数解析式,并求出其证书印刷单价.(2)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?(3)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?26、在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证 EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.27、建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元.在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?28、已知直线y= x+4 与x轴、y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于点C.(1)试确定直线BC的解析式.(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿CBA向点A运动(不与C、A重合),动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围.(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存在,请说明理由.2011年黑龙江省齐齐哈尔市中考数学试卷答案1.7.3×1072.x ≥-2且x≠33.AB=DE 或∠A=∠D 等4. -3(x -y)25.16116. 1447. a 1=2+11,a 2=2-118.219.2 10.(1002+503)或(1002-503)11. 83•201041⎪⎭⎫⎝⎛(表示为402321⎪⎭⎫ ⎝⎛•3亦可)21.解:原式=(11++a a -11+a )·aa 2)1(+ = 1+a a ·a a 2)1(+ =a +1 ----------------- (3分)把a =sin60°=23代入 --------------------------------------------------- (1分)原式=123+=223+-----------------------------------------------------------------(1分) 22.(1)平移正确给2分;(2)旋转正确给2分;(3)面积等分正确给2分(答案不唯一).23.解:(1) 由已知条件得⎪⎪⎩⎪⎪⎨⎧-=++⨯=⨯-49224314322c b b-------------------------------------------- (2分) 解得 b=-23, c=-49∴此二次函数的解析式为 y=43x 2-23x -49----------------------------- (1分) (2) ∵43x 2-23x -49=0 ∴x 1=-1,x 2=3∴BC=4 ---------------------------------------------------------------- (1分) ∵E 点在x 轴下方,且△EBC 面积最大∴E 点是抛物线的顶点,其坐标为(1,—3)---------------------------------- (1分) ∴△EBC 的面积=21×4×3=6 ------------------------------------------------------ (1分) 24.解:(1)a=80 , b= 10%-------------------------------------------------------------------- (2分)(2)20060×100%×360°=108°------------------------------------------------------ (2分) (3) 80+40+200×10%=140------------------------------------------------------------- (1分)200140×100%×8000=5600------------------------------------------------------- (2分) 25.解:(1)制版费1千元, y 甲=21x+1 ,证书单价0.5元. -----------------------------(3分)(2)把x=6代入y 甲=21x+1中得y=4当x ≥2时由图像可设 y 乙与x 的函数关系式为 y 乙=kx+b ,由已知得 2k+b=3 6k+b = 4解得⎪⎪⎩⎪⎪⎨⎧==4125k b ---------------------------------------------------------------(2分) 得y 乙=2541+x 当x=8时,y 甲=21×8+1=5, y 乙=41×8+25=29----------------------------(1分) 5-29=0.5(千元) 即,当印制8千张证书时,选择乙厂,节省费用500元.-------------------------(1分)(3)设甲厂每个证书的印刷费用应降低a 元8000a=500 所以a=0.0625答:甲厂每个证书印刷费最少降低0.0625元.----------------------------------------(1分) 26. O A B C A 1 B 1C 1A 2B 2C 2解(1)EG=CG EG ⊥CG------------------------------------------------------------(2分) (2)EG=CG EG ⊥CG------------------------------------------------------------(2分) 证明:延长FE 交DC 延长线于M ,连MG ∵∠AEM=90°, ∠EBC=90°,∠BCM=90° ∴四边形BEMC 是矩形. ∴BE=CM ,∠EMC=90° 又∵BE=EF ∴EF=CM∵∠EMC=90°,FG=DG ∴MG=21FD=FG ∵BC=EM ,BC=CD ∴EM=CD ∵EF=CM ∴FM=DM ∴∠F=45° 又FG=DG ∵∠CMG=21∠EMC=45° ∴∠F=∠GMC ∴△GFE ≌△GMC∴EG=CG ,∠FGE=∠MGC----------------------------------------------------------------------(2分) ∵∠FMC=90° ,MF=MD ,FG=DG ∴MG ⊥FD∴∠FGE+∠EGM=90° ∴∠MGC+∠EGM=90°即∠EGC=90°∴EG ⊥CG------------------------------------------------------------------------------------------- (2分) 27.(本小题满分10分)解:(1)解:设新建一个地上停车位需x 万元,新建一个地下停车位需y 万元,由题意得⎩⎨⎧=+=+1.1235.0y x y x解得⎩⎨⎧==4.01.0y x答:新建一个地上停车位需0.1万元,新建一个地下停车位需0.4万元---------(4分)﹙2﹚设新建m 个地上停车位,则10<0.1m +0.4(50-m) ≤11解得 30≤m <3100, 因为m 为整数,所以m =30或m =31或m =32或m =33,对应的50-m =20或50-m =19或50-m =18或50-m =17所以,有四种建造方案。
2011年吉林省中考数学试卷分析

2011年浑江区中考数学学科分析报告浑江区教师进修学校魏小莉一、试题特点:2011年吉林省中考数学试卷题型结构较09、10年没有变化,还是7道大题,总分共计120分。
填空题仍为10道,共20分,所占比例约为17%;选择题6道,共18分,所占比例约为15%;解答题12道,共82分,所占比例约为68%。
客观题占总分值33%,主观题占总分值的67%。
试卷内容涉及了数学课程标准所规定的“数与代数”、“空间与图形”、“统计与概率”的核心内容,三者分值分别为58分、48分、14分,三者约占总分值的比例分别为48.3%、40%、11.7%。
试卷充分体现了新课标、新教材的新理念。
在注意控制难度的同时,又有较好的区分度,给义务教育阶段数学的教学起到了良好的导向作用,同时又有利于高中的招生工作。
整套试卷关注学生对基础知识、基本技能、基本方法和基本思想的掌握,注重对数学核心内容、基本能力和基本思想方法的考查,注重对数学活动过程的考查:1、注重数学核心知识的考查,突现学业考试的基础性大部分试题是日常教学中常见的典型问题,立足课本,符合课标要求,语言叙述、呈现方式为学生所熟悉,整张试卷呈现方式简洁质朴,实现了数学的内在美。
注重通性通法的考查,基本杜绝了繁、难、偏、旧试题的出现,即使作为压轴题的第27,28题,涉及的知识也是初中最为基础的、常见的函数知识,使得绝大部分学生都能顺利地完成试题的解答,有利于学生充分展现自己的学习成果。
试卷涵盖了课程标准的全部一级知识点和主要的二级知识点,基本保证了对学生基本数学素质考查的效度。
如:第17题分式的化简求值,是初中“数与式”的核心内容,能够考查学生的计算技能。
第18题的列方程(组),突出数学的建模与应用。
第19题从随机抽取扑克牌这一古典类型出发考查学生对概率的认识,符合课程标准对“体会概率的意义,计算简单事件发生的概率”的要求,有利于对日常教学的正确引导,有利于减轻学生学业负担,避免了部分教师盲目扩充知识,加大难度。
2011年长春市初中毕业考试数学试题精选

2011年长春市初中毕业考试数学试题精选
4.一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的中位数为
(A)37.(B)35.
(C)33.8.(D)32.
7.如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2).点D、E分别在AB、BC边上,BD=BE=1.沿直线DE将△BDE 翻折,点B落在点B′处.则点B′的坐标为
(A)(1,2).(B)(2,1).(C)(2,2).(D)(3,1).
(第7题)(第8题)
8.如图,直线l1//l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,连结AC、BC.若∠ABC=54°,则∠1的大小为(A)36°.(B)54°.(C)72°.(D)73°.11.如图,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O 于A、B两点,点P在优弧AB上,且与点A、B不重合,连结PA、PB.则∠APB 的大小为__ _
度.
(第11题)(第12题)
12.如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE的长为.14.边长为2的两种正方形卡片如图①所示,卡片中的扇形半径均为2.图
②是交替摆放A、B两种卡片得到的图案.若摆放这个图案共用两种卡片
21张,则这个图案中阴影部分图形的面积和为(结果保留π).
(第4题)
(第14题)
4.B 7.B 8.C 11.45 12.6 14.π
(44-)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11页
E
F
C
A
B
OD
26.有甲乙两个均装有进水管和出水管的容器,初始时, 两容器同时开进水管,甲容器到 8 分钟时,关闭进水管 打开出水管;到 16 分钟时,又打开了进水管,此时既 进水又出水,到 28 分钟时,同时关闭两容器的进水管。 两容器每分钟进水量与出水量均为常数,容器的水量 y(升)与时间 x (分)之间的函数关系如图所示,解答下 列问题: (1)甲容器的进水管每分钟进水_______升,出水管每 分钟出水_____升. (2) 求乙容器内的水量 y 与时间 x 的函数关系式.
值.
18.学校组织各班开展“阳光体育”活动,某班体育委 员第一次到时商店购买了 5 个毽子和 8 根跳绳,花费 34 元,第二次又去购买了 3 个毽子和 4 根跳绳,花费 18 元,求每个毽子和每个跳绳各多少元?
19.如图所示,把一副普通朴克牌中的 4 张黑桃牌洗匀 后正面向下放在一起, (1)从 4 张牌中随机摸取一张,摸取的牌带有人像的 概率是________________
l D
A
O
B
C
A1 B 1
C3
D2
2
16.如图所示,将一个正方形纸片按下列顺序折叠,然
后将最后 折叠的纸片沿虚线去一个三角形和一个形如
“1”的图形,将纸片展开,得到的图形是( )
第5页
三、解答题(每小题 5 分,共 20 分)
x2+2x+1 x 17.先化简 x2-1 -x-1,再选一个合适的 x 值代入求
x
(1)求双曲线表示的函数解析式。 (2)将正方形 ABCD 沿 X 轴向左平移______个单位长度
第10页
时,点 C 的对应点恰好落在(1)中的双曲线上
y C
B D
OA
x
六、解答题(每小题 8 分,共 16 分) 25.如图,在⊙O 中,AB 为直径,AC 为弦,过点 C 作 CD
⊥AB 与点 D,将△ACD 沿点 D 落在点 E 处,AE 交⊙O 于
方体组成的,他看到的几何体的主视图是( )
13.某班九名同学在篮球场进行定点投篮测试,每人投
篮子次,投中的次数统计如下:
4,3,2,4,4,1,5,0,3,则这级数据的中位数、
众数分别为(
)
A 3.4
B
C 3.3
D 4.4
14.某学校准备修建一个面积为 200 平方米的矩形花圃,
第4页
它的长比宽多 10 米,设花圃的宽为 x 米,则可列方程为
2011 年吉林省中考数学试卷及 答案
吉林省 2011 年初中毕业生学业考试数学试卷
(满分 150 分,考试时间 120 分钟)
一、填空题(每小题 2 分,共 20 分)
1.如图,数轴上的点 A 向左移动 2 个单位长度得到点 B,
则点 B 表示的数是
.
B
A
01
2.长(第白1题山) 自然保护区面积约为 215000 公顷,用科学记
果可以估计八年级体育达标优秀的学生共有
名.
人数 40 35
优秀
30
25
24
圆心角为 度
20 16
15
不及格 7.5%
10
%
5 0 不及格 及格 良好 优秀 成绩
及格
% 良好
图①
图②
五、解答题(每小题 7 分,共 14 分) 23.如图所示,为求出河对岸两棵树 A.B 间的距离,小 坤在河岸上选取一点 C,然后沿垂直于 AC 的直线的前进 了 12 米到达 D,测得∠CDB=900。取 CD 的中点 E,测∠ AEC=560,
(
)
A x ( x -10)=200
B
2 x +2( x -10)=200
C x ( x +10)=200
D
2 x +2( x +10)=200
15.如图,两个等圆⊙A⊙B 分别与直线l 相切于点 C、D,
连接 AB,与直线l 相交于点 O , ∠AOC=300,连接 AC.BC,若 AB=4,则圆的半径为( )
上(点 P 不点 A.O 重合)则
∠BPC 可能为
度 (写出一个即可).
第2页
第3页
a1=4
a2=10
a3=16
二、单项选择题(每小题 3 分,共 18 分)
11.下列计算正确的是( )
A a+2a=3a2
Ba·a2=a3
C (2a)2=2a2
D(-a2)3=a6
12.如图所示,小华看到桌面上的几何体是由五个小正
(3) 图③中所画的三角形与ABC 的面积相等,但不 全等。
C
C
A
B
A
B
C
C
A
B
A
B
第8页
22.某学校为了解八年级学生的体育达标情况,从八年
能学生中随机抽取 80 名学生进行测试,根据收集的数
据绘制成了如下不完整的统计图(图①图②),请根据
图中的信息解答下列问题:
(1)补全图①与图②
(2)若该学校八年级共有 600 名学生,根据统计结
第9页
∠BED=670,求河对岸两树间的距离(提示:过点 A 作
AF⊥BD 于点 F)
(参考数据 sin560≈ 4 ,tan560 ≈ 3 ,sin670≈14 ,tan670
5
2
15
≈7) 3
24.如图,在平的直角坐标系中,直线 y=-2x+2 与 x 轴 y 轴分别相交于点 A,B,四边形 ABCD 是正方形,曲线 y= k 在第一象限经过点 D.
第6页
(2)从 4 张牌中随机摸取一张不放回,接着再随机摸 取一张,利用画树形图或艾列表的方法,求摸取的这两 张牌都不带有人像的概率.
20.如图,四边形 ABCD 是平行四边形,点 E 在 BA 的延
长线上,且 BE=AD ,点 F 在 AD 上,AF=AB,
求证: AEF≌ DFC
E
A
F
D
B
C
四、解答题(每小题 6 分,共 12 分)
第7页
21.如图所示,在 7×6 的正方形网格中,选取 14 个格 点,以其中三个格点为顶点一画出 ABC,请你 以选取的格点为顶点再画出一个三角形,且分 别满足下列条件:
(1) 图①中所画的三角形与ABC 组成的图形是轴 对称图形。
(2) 图②中所画的三角形与ABC 组成的图形是中 心对称图形。
数法表示为
公顷
3.不等式 2 x -5<3 的解集是
.
4.方程 x =2 的解是 x =
.
x 1
5.在平面直角坐标系中,点 A(1,2)关于 y 轴对称的点
为 B (a ,2)则a =
.
6.在□ABCD 中, A=1200 ,则∠1=
度.
A
D
1200
1
B
C
7.如图,⊙O 是⊿ABC 的外接圆,∠BAC=500,点 P 在 AO