四川省内江市2020年中考数学试题(教师版)
2020年四川省内江市中考数学试卷(有详细解析)
2020年四川省内江市中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共12小题,共36.0分)1.12的倒数是()A. 2B. 12C. −12D. −22.下列四个数中,最小的数是()A. 0B. −12020C. 5D. −13.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B. C. D.4.如图,已知直线a//b,∠1=50°,则∠2的度数为()A. 140°B. 130°C. 50°D. 40°5.小明参加学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是()A. 80,90B. 90,90C. 90,85D. 90,956.将直线y=−2x−1向上平移两个单位,平移后的直线所对应的函数关系式为()A. y=−2x−5B. y=−2x−3C. y=−2x+1D. y=−2x+37.如图,在△ABC中,D、E分别是AB和AC的中点,S四边形BCED=15,则S△ABC=()A. 30B. 25C. 22.5D. 208.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是AC⏜的中点,则∠D的度数是()A. 30°B. 40°C. 50°D. 60°9.如图,点A是反比例函数y=kx图象上的一点,过点A作AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,则k的值为()A. 43B. 83C. 3D. 410.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则符合题意的方程是()A. 12x=(x−5)−5 B. 12x=(x+5)+5C. 2x=(x−5)−5D. 2x=(x+5)+511.如图,矩形ABCD中,BD为对角线,将矩形ABCD沿BE、BF所在直线折叠,使点A落在BD上的点M处,点C落在BD上的点N处,连结EF.已知AB=3,BC=4,则EF的长为()A. 3B. 5C. 5√136D. √1312.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t的取值范围是()A. 12≤t<2 B. 12<t≤1C. 1<t≤2D. 12≤t≤2且t≠1二、填空题(本大题共8小题,共44.0分)13.函数y=12x−4中,自变量x的取值范围是______ .14.2020年6月23日9时43分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功发射北斗系统第五十五颗导航卫星,标志着北斗三号卫星导航定位系统正式建成.根据最新数据,目前兼容北斗的终端产品至少有7亿台,其中7亿用科学记数法表示为______.15.已知关于x的一元二次方程(m−1)2x2+3mx+3=0有一实数根为−1,则该方程的另一个实数根为______.16.如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为______.17.分解因式:b4−b2−12=______.18.若数a使关于x的分式方程x+2x−1+a1−x=3的解为非负数,且使关于y的不等式组{y−34−y+13≥−13122(y−a)<0的解集为y≤0,则符合条件的所有整数a的积为______.19.如图,在平面直角坐标系中,点A(−2,0),直线l:y=√33x+√33与x轴交于点B,以AB为边作等边△ABA1,过点A1作A1B1//x轴,交直线l于点B1,以A1B1为边作等边△A1B1A2,过点A2作A2B2//x轴,交直线l于点B2,以A2B2为边作等边△A2B2A3,以此类推……,则点A2020的纵坐标是______.20.已知抛物线y1=−x2+4x(如图)和直线y2=2x+b.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2.若y1≠y2,取y1和y2中较大者为M;若y1=y2,记M=y1=y2.①当x=2时,M的最大值为4;②当b=−3时,使M>y2的x的取值范围是−1<x<3;③当b=−5时,使M=3的x的值是x1=1,x2=3;④当b≥1时,M随x的增大而增大.上述结论正确的是______.(填写所有正确结论的序号)三、解答题(本大题共8小题,共70.0分))−1−|−2|+4sin60°−√12+(π−3)0.21.计算:(−1222.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB//CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.23.我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有______名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为______,图中m的值为______;(3)学校决定从本次比赛获得“A等级”的学生只能怪,选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.24.为了维护我国海洋权力,海监部门对我国领海实行了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时60海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,海监船继续向东航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求B处到灯塔P的距离;(2)已知灯塔P的周围50海里内有暗礁,若海监船继续向正东方向航行是否安全?25.如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.(1)求证:BE是⊙O的切线;(2)设OE交⊙O于点F,若DF=2,BC=4√3,求线段EF的长;(3)在(2)的条件下,求阴影部分的面积.26.我们知道,任意一个正整数x都可以进行这样的分解:x=m×n(m,n是正整数,且m≤n),在x的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是x的最佳分解.并规定:f(x)=mn.例如:18可以分解成1×18,2×9或3×6,因为18−1>9−2>6−3,所以3×6是18的最佳分解,所以f(18)=36=12.(1)填空:f(6)=______;f(9)=______;(2)一个两位正整数t(t=10a+b,1≤a≤b≤9,a,b为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求f(t)的最大值;(3)填空:①f(22×3×5×7)=______;②f(23×3×5×7)=______;③f(24×3×5×7)=______;④f(25×3×5×7)=______.27.如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B顺时针旋转90°到BQ,连结QP交BC于点E,QP延长线与边AD交于点F.(1)连结CQ,求证:AP=CQ;AC,求CE:BC的值;(2)若AP=14(3)求证:PF=EQ.28.如图,抛物线y=ax2+bx+c经过A(−1,0)、B(4,0)、C(0,2)三点,点D(x,y)为抛物线上第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当△BCD的面积为3时,求点D的坐标;(3)过点D作DE⊥BC,垂足为点E,是否存在点D,使得△CDE中的某个角等于∠ABC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.答案和解析1.A×2=1,解:∵12∴1的倒数是2,22.D|<|−1|,解:∵|−12020>−1,∴−12020∴5>1>−1>−1,2020因此最小的是−1,3.C解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、既不是轴对称图形,也不是中心对称图形,故本选项不合题意.4.B解:∵直线a//b,∴∠3=∠1=50°.又∵∠2+∠3=180°,∴∠2=130°.5.B解:将数据重新排列为80,85,90,90,95,所以这组数据的中位数是90,众数为90,6.C解:直线y=−2x−1向上平移两个单位,所得的直线是y=−2x+1,7.D解:∵D、E分别是AB、AC边上的中点,∴DE//BC,DE=12BC,∴△ADE∽△ABC,∴S△ADES△ABC =(DEBC)2=14,∴S△ADE:S四边形BCED=1:3,即S△ADE:15=1:3,∴S△ADE=5,∴S△ABC=5+15=20.8.A解:连接OB,如图,∵点B是AC⏜的中点,∴∠AOB=∠COB=12∠AOC=12×120°=60°,∴∠D=12∠AOB=30°.解:∵AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,∴△AOC的面积为2,∵S△AOC=12|k|=2,且反比例函数y=kx图象在第一象限,∴k=4,10.A解:设绳索长x尺,则竿长(x−5)尺,依题意,得:12x=(x−5)−5.11.C解:∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠A=∠C=∠EDF=90°,∴BD=√AB2+AD2=√32+42=5,∵将矩形ABCD沿BE所在直线折叠,使点A落在BD上的点M处,∴AE=EM,∠A=∠BME=90°,∴∠EMD=90°,∵∠EDM=∠ADB,∴△EDM∽△BDA,∴EDBD =EMAB,设DE=x,则AE=EM=4−x,∴x5=4−x3,解得x=52,∴DE=52,同理△DNF∽△DCB,∴DF BD =NF BC , 设DF =y ,则CF =NF =3−y ,∴y5=3−y4,解得y =53.∴DF =53. ∴EF =√DE 2+DF 2=√(52)2+(53)2=5√136. 12. D解:∵y =tx +2t +2=t(x +2)+2(t >0),∴直线y =tx +2t +2(t >0)经过点(−2,2),如图,当直线经过(0,3)时,直线y =tx +2t +2(t >0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则3=2t +2,解得t =12;当直线经过(0,6)时,直线y =tx +2t +2(t >0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则6=2t +2,解得t =2;当直线经过(0,4)时,直线y =tx +2t +2(t >0)与两坐标轴围成的三角形区域(不含边界)中有且只有三个整点,则4=2t +2,解得t =1;∴直线y =tx +2t +2(t >0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t 的取值范围是12≤t ≤2且t ≠1,13.x≠2解:根据题意得2x−4≠0,解得x≠2;∴自变量x的取值范围是x≠2.14.7×108解:7亿=700000000=7×108,15.−13解:把x=−1代入原方程得,(m−1)2−3m+3=0,即:m2−5m+4=0,解得,m=4,m=1(不合题意舍去),当m=4时,原方程变为:9x2+12x+3=0,即,3x2+4x+1=0,,解得,x1=−1,x2=−1316.15解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,在Rt△ABD中,AB=ADtan30∘=10√3,∵A′H⊥AB,∴AH=HB=5√3,∴A′H=√3AH=15,∵AM+MN=A′M+MN≤A′H,∴AM+MN≤15,∴AM+MN的最小值为15.17.(b+2)(b−2)(b2+3)解:b4−b2−12=(b2−4)(b2+3)=(b+2)(b−2)(b2+3),故答案为:(b+2)(b−2)(b2+3).18.40解:去分母,得:x+2−a=3(x−1),解得:x=5−a2,∵分式方程的解为非负数,∴5−a2≥0,且5−a2≠1,解得a≤5且a≠3,解不等式y−34−y+13≥−1312,得:y≤0,解不等式2(y−a)<0,得:y<a,∵不等式组的解集为y≤0,∴a>0,∴0<a≤5,则整数a的值为1、2、4、5,∴符合条件的所有整数a的积为1×2×4×5=40,19.22020−12√3解:∵直线l:y=√33x+√33与x轴交于点B,∴B(−1,0),∴OB=1,∵A(−2,0),∴OA=2,∴AB=1,∵△ABA1是等边三角形,∴A1(−32,√32),把y=√32代入y=√33x+√33,求得x=12,∴B1(12,√32),∴A1B1=2,∴A2(−12,√32+√32×2),即A2(−12,3√32),把y=3√32代入y=√33x+√33,求得x=72,∴B2(72,3√32),∴A2B2=4,∴A3(3,3√32+√32×4),即A3(3,7√32),……,A n的纵坐标为2n−12√3,∴点A2020的纵坐标是22020−12√3,20.②③④解:①当x =2时,y 1=4,y 2=4+b ,无法判断4与4+b 的大小,故①错误. ②如图1中,b =−3时,由{y =−x 2+4x y =2x −3,解得{x =−1y =−5或{x =3y =3, ∴两个函数图象的交点坐标为(−1,−5)和(3,3),观察图象可知,使M >y 2的x 的取值范围是−1<x <3,故②正确, ③如图2中,b =−5时,图象如图所示,M =3时,y 1=3,∴−x 2+4x =3,解得x =1或3,故③正确,④当b =1时,由{y =2x +1y =−x 2+4x,消去y 得到,x 2−2x +1=0, ∵△=0,∴此时直线y =2x +1与抛物线只有一个交点,∴b >1时,直线y =2x +b 与抛物线没有交点,∴M 随x 的增大而增大,故④正确.21. 解:原式=−2−2+4×√32−2√3+1 =−2−2+2√3−2√3+1=−3.22. (1)证明:∵AB//CD ,∴∠B =∠C ,在△ABE 和△CDF 中,{∠A =∠D ∠B =∠C AE =DF,∴△ABE≌△CDF(AAS),∴AB =CD ;(2)解:∵△ABE≌△CDF ,∴AB =CD ,BE =CF ,∠B =∠C ,∵∠B =40°,∴∠C =40°∵AB =CF ,∴CF =CD ,∴∠D =∠CFE =12(180°−40 °)=70°.23. 5 72° 40解:(1)3÷15%=20(名),20−3−8−4=5(名),故答案为:5;(2)360°×420=72°,8÷20=40%,即m=40,故答案为:72°,40;(3)“A等级”2男1女,从中选取2人,所有可能出现的结果如下:共有6种可能出现的结果,其中女生被选中的有4种,∴P(女生被选中)=46=23.24.解:(1)∵∠PAB=30°,∠ABP=120°,∴∠APB=180°−∠PAB−∠ABP=30°,∴PB=AB=60海里;(2)作PH⊥AB于H.∵∠BAP=∠BPA=30°,∴BA=BP=60,在Rt△PBH中,PH=PB⋅sin60°=60×√32=30√3,∵30√3>50,∴海监船继续向正东方向航行是安全的.25.(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,∵OD⊥BC,∴CD=BD,即OD垂直平分BC,∴EC=EB,在△OCE和△OBE中{OC=OB OE=OE EC=EB,∴△OCE≌△OBE(SSS),∴∠OBE=∠OCE=90°,∴OB⊥BE,∴BE与⊙O相切;(2)解:设⊙O的半径为x,则OD=OF−DF=x−2,OB=x,在Rt△OBD中,BD=12BC=2√3,∵OD2+BD2=OB2,∴(x−2)2+(2√3)2=x2,解得x=4,∴OD=2,OB=4,∴∠OBD=30°,∴∠BOD=60°,∴OE=2OB=8,∴EF=OE−OF=8−4=4.(3)∵∠BOE =60°,∠OBE =90°,∴在Rt △OBE 中,BE =√3OB =4√3,∴S 阴影=S 四边形OBEC −S 扇形OBC=2×12×4×4√3−120⋅π×42360, =16√3−16π3.26. 23 1 2021 2435 3548 2435解:(1)6可分解成1×6,2×3,∵6−1>3−2,∴2×3是6的最佳分解,∴f(6)=23,9可分解成1×9,3×3,∵9−1>3−3,∴3×3是9的最佳分解,∴f(9)=33=1,故答案为:23;1; (2)设交换t 的个位上数与十位上的数得到的新数为t′,则t′=10b +a , 根据题意得,t′−t =(10b +a)−(10a +b)=9(b −a)=54, ∴b =a +6,∵1≤a ≤b ≤9,a ,b 为正整数,∴满足条件的t 为:17,28,39;∵F(17)=117,F(28)=47,F(39)=139,∵47>117>139,∴F(t)的最大值为47; (3)①∵22×3×5×7的是最佳分解为20×21,∴f(22×3×5×7)=2021,故答案为:2021;②∵23×3×5×7的最佳分解为24×35,∴f(23×3×5×7)=2435,故答案为2435;③∵24×3×5×7的最佳分解是35×48,∴f(24×3×5×7)=3548,故答案为:3548;④∵25×3×5×7的最佳分解是48×70,∴f(25×3×5×7)=4870=2435,故答案为:2435.27.(1)证明:如图1,∵线段BP绕点B顺时针旋转90°得到线段BQ,∴BP=BQ,∠PBQ=90°.∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°.∴∠ABC=∠PBQ.∴∠ABC−∠PBC=∠PBQ−∠PBC,即∠ABP=∠CBQ.在△BAP和△BCQ中,∵{BA=BC∠ABP=∠CBQ BP=BQ,∴△BAP≌△BCQ(SAS).∴CQ=AP.(2)解:过点C作CH⊥PQ于H,过点B作BT⊥PQ于T.∵AP=14AC,∴可以假设AP=CQ=a,则PC=3a,∵四边形ABCD是正方形,∴∠BAC=∠ACB=45°,∵△ABP≌△CBQ,∴∠BCQ=∠BAP=45°,∴∠PCQ=90°,∴PQ=√PC2+CQ2=√(3a)2+a2=√10a,∵CH⊥PQ,∴CH=PC⋅CQPQ =3√1010a,∵BP=BQ,BT⊥PQ,∴PT=TQ,∵∠PBQ=90°,∴BT=12PQ=√102a,∵CH//BT , ∴CE EB =CH BT =3√1010a √102a =35, ∴CE CB =38.(3)解:结论:PF =EQ ,理由是:如图2,当F 在边AD 上时,过P 作PG ⊥FQ ,交AB 于G ,则∠GPF =90°,∵∠BPQ =45°,∴∠GPB =45°,∴∠GPB =∠PQB =45°,∵PB =BQ ,∠ABP =∠CBQ ,∴△PGB≌△QEB ,∴EQ =PG ,∵∠BAD =90°,∴F 、A 、G 、P 四点共圆,连接FG ,∴∠FGP =∠FAP =45°,∴△FPG 是等腰直角三角形,∴PF =PG ,∴PF =EQ .28. 解:(1)将A(−1,0)、B(4,0)、C(0,2)代入y =ax 2+bx +c 得:{a −b +c =016a +4b +c =0c =2,解得:{a =−12b =32c =2.故抛物线的解析式为y =−12x 2+32x +2. (2)如图2,设点M 的坐标为(0,m),使得△BCM 的面积为3,3×2÷4=1.5,则m =2+1.5=72, M(0,72) ∵点B(4,0),C(0,2),∴直线BC 的解析式为y =−12x +2,∴DM 的解析式为y =−12x +72,联立抛物线解析式{y =−12x +72y =−12x 2+32x +2, 解得{x 1=3y 1=2,{x 2=1y 2=3. ∴点D 的坐标为(3,2)或(1,3).(3)分两种情况考虑:①当∠DCE =2∠ABC 时,取点F(0,−2),连接BF ,如图3所示.∵OC =OF ,OB ⊥CF ,∴∠ABC =∠ABF ,∴∠CBF =2∠ABC .∵∠DCB =2∠ABC ,∴∠DCB =∠CBF ,∴CD//BF .∵点B(4,0),F(0,−2),∴直线BF 的解析式为y =12x −2, ∴直线CD 的解析式为y =12x +2.联立直线CD 及抛物线的解析式成方程组得:{y =12x +2y =−12x 2+32x +2, 解得:{x 1=0y 1=2(舍去),{x 2=2y 2=3, ∴点D 的坐标为(2,3);②当∠CDE =2∠ABC 时,过点C 作CN ⊥BF 于点N ,交OB 于H.作点N 关于BC 的对称点P ,连接NP 交BC 于点Q ,如图4所示.∵∠OCH =90°−∠OHC ,∠OBF =90°−∠BHN ,∠OHC =∠BHN ,∴∠OCH =∠OBF .在△OCH 与△OBF 中{∠COH =∠BOF =90∘∠OCH =∠OBF, ∴△OCH∽△OBF ,∴OHOF =OC OB ,即OH 2=24,∴OH =1,H(1,0).设直线CN 的解析式为y =kx +n(k ≠0),∵C(0,2),H(1,0),∴{n =2k +n =0,解得{k =−2n =2, ∴直线CN 的解析式为y =−2x +2. 连接直线BF 及直线CN 成方程组得:{y =12x −2y =−2x +2,解得:{x =85y =−65, ∴点N 的坐标为(85,−65).∵点B(4,0),C(0,2),∴直线BC 的解析式为y =−12x +2. ∵NP ⊥BC ,且点N(85,−65),∴直线NP 的解析式为y =2x −225.联立直线BC 及直线NP 成方程组得:{y =−12x +2y =2x −225, 解得:{x =6425y =1825, ∴点Q 的坐标为(6425,1825). ∵点N(85,−65),点N ,P 关于BC 对称,∴点P 的坐标为(8825,6625).∵点C(0,2),P(8825,6625), ∴直线CP 的解析式为y =211x +2. 将y =211x +2代入y =−12x 2+32x +2整理,得:11x 2−29x =0,解得:x 1=0(舍去),x 2=2911,∴点D 的横坐标为2911.综上所述:存在点D ,使得△CDE 的某个角恰好等于∠ABC 的2倍,点D 的横坐标为2或2911.。
2020年四川省内江市中考数学试卷及答案
2020年四川省内江市中考数学试卷及答案A 卷(共100分)第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.12的倒数是()A.B.C.12D.12-2.下列四个数中,最小的数是()A.0B.12020-C.5D.1-3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B. C. D.4.如图,已知直线//a b ,150∠=︒,则2∠的度数为()A.140︒B.130︒C.50︒D.40︒5.小明参加学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是()A.80,90B.90,90C.90,85D.90,956.将直线21y x =--向上平移两个单位,平移后的直线所对应的函数关系式为()A.25y x =-- B.23y x =-- C.21y x =-+ D.23y x =-+7.如图,在ABC ∆中,D 、E 分别是AB 和AC 的中点,15BCED S =四边形,则ABC S ∆=()A.30B.25C.22.5D.208.如图,点A 、B 、C 、D 在⊙O 上,120AOC ∠=︒,点B 是 AC 的中点,则D ∠的度数是()A.30°B.40︒C.50︒D.60︒9.如图,点A 是反比例函数ky x=图象上的一点,过点A 作AC x ⊥轴,垂足为点C ,D 为AC 的中点,若AOD ∆的面积为1,则k 的值为()A.43B.83C.3D.410.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺.则符合题意的方程是()A.()1552x x =-- B.()1552x x =++C.()255x x =-- D.()255x x =++11.如图,矩形ABCD 中,BD 为对角线,将矩形ABCD 沿BE 、BF 所在直线折叠,使点A 落在BD 上的点M 处,点C 落在BD 上的点N 处,连结EF .已知34AB BC ==,,则EF 的长为()A.3B.5C.5136D.1312.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t 的取值范围是()A.122t ≤< B.112t <≤C.12t <≤ D.122t ≤≤且1t ≠第Ⅱ卷(非选择题共64分)注意事项:1、第Ⅱ卷共4页,用钢笔或圆珠笔将答案直接答在试卷上.2、答题前将密封线内的项目填写清楚.二、填空题(本大题共4小题,每小题5分,共20分)13.函数124y x =-中,自变量x 的取值范围是_____.14.2020年6月23日9时43分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功发射北斗系统第五十五颗导航卫星,标志着北斗三号卫星导航定位系统正式建成.根据最新数据,目前兼容北斗的终端产品至少有7亿台,其中7亿用科学记数法表示为______________15.已知关于x 的一元二次方程()221330m x mx -++=有一实数根为1-,则该方程的另一个实数根为_____________16.如图,在矩形ABCD 中,10BC =,30ABD ∠=︒,若点M 、N 分别是线段DB 、AB 上的两个动点,则AM MN +的最小值为___________________.三、解答题(本大题共5小题,共44分,解答应写出必要的文字说明或推演步骤)17.计算:()10124sin 6032π-⎛⎫---+︒- ⎪⎝⎭18.如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE =DF ,∠A =∠D .(1)求证:AB =CD ;(2)若AB =CF ,∠B =40°,求∠D 的度数.19.我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A 、B 、C 、D 四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B 等级”的学生人数有名;(2)在扇形统计图中,表示“D 等级”的扇形的圆心角度数为,图中m 的值为;(3)学校决定从本次比赛获得“A 等级”的学生中选出2名去参加市中学生知识竞赛.已知“A 等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.20.为了维护我国海洋权力,海监部门对我国领海实行了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时60海里的速度向正东方向航行,在A 处测得灯塔P 在北偏东60︒方向上,海监船继续向东航行1小时到达B 处,此时测得灯塔P 在北偏东30°方向上.(1)求B 处到灯塔P 的距离;(2)已知灯塔P 的周围50海里内有暗礁,若海监船继续向正东方向航行是否安全?21.如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD BC ^于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连结BE .(1)求证:BE 是⊙O 的切线;(2)设OE 交⊙O 于点F,若2DF BC ==,EF 的长;(3)在(2)的条件下,求阴影部分的面积.B 卷(共60分)四、填空题(本大题共4小题,每小题6分,共24分.)22.分解因式:4212b b --=_____________23.若数a 使关于x 的分式方程2311x ax x++=--的解为非负数,且使关于y 的不等式组()3113431220y y y a -+⎧-≥-⎪⎨⎪-<⎩的解集为0y ≤,则符合条件的所有整数a 的积为_____________24.如图,在平面直角坐标系中,点A (-2,0),直线33:33l y x =+与x 轴交于点B ,以AB 为边作等边1ABA ∆,过点1A 作11//A B x 轴,交直线l 于点1B ,以11A B 为边作等边112A B A ∆,过点2A 作22//A B x 轴,交直线l 于点2B ,以22A B 为边作等边223A B A ∆,以此类推……,则点2020A的纵坐标是______________25.已知抛物线214y x x =-+(如图)和直线22y x b =+.我们规定:当x 取任意一个值时,x 对应的函数值分别为1y 和2y .若12y y ≠,取1y 和2y 中较大者为M ;若12y y =,记12M y y ==.①当2x =时,M 的最大值为4;②当3b =-时,使2M y >的x 的取值范围是13x -<<;③当5b =-时,使3M =的x 的值是11x =,23x =;④当1b ≥时,M 随x 的增大而增大.上述结论正确的是____(填写所有正确结论的序号)五、解答题(本大题共3小题,每小题12分,共36分)26.我们知道,任意一个正整数x 都可以进行这样的分解:x m n =⨯(m ,n 是正整数,且m n ≤),在x 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m n ⨯是x 的最佳分解.并规定:()mf x n =.例如:18可以分解成118⨯,29⨯或36⨯,因为1819263->->-,所以36⨯是18的最佳分解,所以()311862f ==.(1)填空:()6________f =;()9_________f =;(2)一个两位正整数t (10t a b =+,19a b ≤≤≤,a ,b 为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求()f t 的最大值;(3)填空:①()22357_____________f ⨯⨯⨯=;②()32357_____________f ⨯⨯⨯=;③()42357_____________f ⨯⨯⨯=;④()52357_____________f ⨯⨯⨯=.27.如图,正方形ABCD 中,P 是对角线AC 上的一个动点(不与A 、C 重合),连结BP ,将BP 绕点B 顺时针旋转90︒到BQ ,连结QP 交BC 于点E ,QP 延长线与边AD 交于点F .(1)连结CQ ,求证:AP CQ =;(2)若14AP AC =,求:CE BC 的值;(3)求证:PF EQ =.28.如图,抛物线2y ax bx c =++经过A (-1,0)、B (4,0)、C (0,2)三点,点D (x ,y )为抛物线上第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当BCD ∆的面积为3时,求点D 的坐标;(3)过点D 作DE BC ⊥,垂足为点E ,是否存在点D ,使得CDE ∆中的某个角等于ABC ∠的2倍?若存在,求点D 的横坐标;若不存在,请说明理由.数学试题参考答案1-10ADBBB CDADA 11-12CD13.2x ≠;14.8710⨯;15.13-;16.15.17.解:()10124sin 6032π-⎛⎫---+︒+- ⎪⎝⎭221=--+3=-18.(1)证明:∵AB ∥CD ,∴∠B =∠C ,在△ABE 和△CDF 中,∠B =∠C ,AE=DF ,∠A =∠D .∴△AEB ≌△DFC .∴AB =CD.(2)∵AB =CD ,AB =CF ,∴CD =CF ,∵∠B =∠C=40°,∴∠D =(180°-40°)÷2=70°.19.(1)学生总人数为3÷15%=20(人)∴成绩为“B 等级”的学生人数有20-3-8-4=5(人)故答案为:5;(2)“D 等级”的扇形的圆心角度数为43607220⨯︒=︒m=81004020⨯=,故答案为:72°;40;(3)根据题意画树状图如下:∴P (女生被选中)=4263=.20.(1)过点P作PD⊥AB于点D,由题意得,AB=60(海里),∠PAB=30°,∠PBD=60°,∴∠APB=∠PBD-∠PAB=60°-30°=30°=∠PAB,∴PB=AB=60(海里),答:B处到灯塔P的距离为60海里;(2)由(1)可知∠APB=∠PAB=30°,∴PB=AB=60(海里)在Rt△PBD中,PD=BPsin60°=603⨯=,2∵50>,∴海监船继续向正东方向航行是安全的.21.1)证明:连接OC,如图,∵OD⊥BC,∴CD=BD,∴OE为BC的垂直平分线,∴EB=EC,∴∠EBC=∠ECB,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC+∠EBC=∠OCB+∠ECB,即∠OBE=∠OCE,∵CE为⊙O的切线,∴OC⊥CE,∴∠OCE=90°,∴∠OBE=90°,∴OB⊥BE,∴BE与⊙O相切.(2)设⊙O 的半径为R ,则OD=R-DF=R-2,OB=R ,在Rt △OBD 中,BD=12BC=∵OD2+BD2=OB2,∴222(2)R R -+=,解得R=4,∴OD=2,OB=4,∴∠OBD=30°,∴∠BOD=60°,∴在Rt △OBE 中,∠BEO=30º,OE=2OB=8,∴EF=OE-OF=8-4=4,即EF=4;(3)由∠OCD=∠OBD=30º和OD ⊥BC 知:∠COD=∠BOD=60º,∴∠BOC=120º,又BC=OE=8,∴=S OBEC S S -阴影四边形扇形OBC21120482360π⨯⨯ 163π=,22.()()()2322bb b ++-23.4024.2020(21)2-25.②④26.(1)6=1×6=2×3,∵6−1>3−2,∴()6f =23;9=1×9=3×3,∵9−1>3−3,∴()9f =1,故答案为:23;1;(2)由题意可得:交换后的数减去交换前的数的差为:10b +a−10a−b =9(b−a )=54,∴b−a =6,∵1≤a≤b≤9,∴b =9,a =3或b =8,a =2或b =7,a =1,∴t 为39,28,17;∵39=1×39=3×13,∴()39f =313;28=1×28=2×14=4×7,∴()28f =47;17=1×17,∴()11717f =;∴()f t 的最大值47.(3)①∵22357⨯⨯⨯=20×21∴()220235721f ⨯⨯⨯=;②32357⨯⨯⨯=28×30∴()3281423573015f ⨯⨯⨯==;③∵42357⨯⨯⨯=40×42∴()4402023574221f ⨯⨯⨯==;④∵52357⨯⨯⨯=56×60∴()5561423576015f ⨯⨯⨯==,故答案为:20141514,,,21152815.27.解:∵四边形ABCD 为正方形,∴AB=BC ,∠ABC=90°,∵BP 绕点B 顺时针旋转90︒到BQ ,∴BP=BQ ,∠PBQ=90°,∴∠ABC-∠PBC=∠PBQ-∠PBC,∴∠ABP=∠CBQ ,在△APB 和△CQB 中,=⎧⎪∠=∠⎨⎪=⎩AB BC ABP CBQ BP QB ,∴△APB ≌△CQB(SAS),∴AP=CQ .(2)设AP=x ,则AC=4x ,PC=3x ,由(1)知CQ=AP=x ,△ABC 为等腰直角三角形,∴BC=2AC ,在Rt △PCQ中,由勾股定理有:==PQ ,且△PBQ 为等腰直角三角形,∴22==BQ PQ ,又∠BCQ=∠BAP=45°,∠BQE=45°,∴∠BCQ=∠BQE=45°,且∠CBQ=∠CBQ ,∴△BQE ∽△BCQ ,∴=BQ BE BC BQ,∴BE=4x ,∴CE=BC-BE=4x ,∴3234:8=CE BC ,故答案为:38.(3)在CE 上截取CG ,并使CG=FA,如图所示:∵∠FAP=∠GCQ=45°,且由(1)知AP=CQ ,且截取CG=FA ,故有△PFA ≌△QGC(SAS),∴PF=QG ,∠PFA=∠CGQ ,又∵∠DFP=180°-∠PFA ,∠QGE=180°-∠CGQ ,∴∠DFP=∠QGE ,∵DA //BC ,∴∠DFP=∠CEQ ,∴∠QGE=∠CEQ ,∴△QGE 为等腰三角形,∴GQ=QE ,故PF=QE .28.解答:解:(1)将A (−1,0)、B (4,0)、C (0,2)代入y =ax2+bx +c 得:016402a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:12322a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩故抛物线的解析式为213222y x x =-++.(2)如图2,过点D 作DM ∥BC ,交y 轴于点M ,设点M 的坐标为(0,m ),使得△BCM 的面积为3,CM=3×2÷4=1.5,则m =2+1.5=72,M (0,72)∵点B (4,0),C (0,2),∴直线BC 的解析式为y =−12x +2,∴DM 的解析式为y =−12x +72,联立抛物线解析式2172213222y x y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩,解得1232x y =⎧⎨=⎩,2213x y =⎧⎨=⎩.∴点D 的坐标为(3,2)或(1,3).(3)分两种情况考虑:①当∠DCE =2∠ABC 时,取点F (0,−2),连接BF ,如图3所示.∵OC =OF ,OB ⊥CF ,∴∠ABC =∠ABF ,∴∠CBF =2∠ABC .∵∠DCB =2∠ABC ,∴∠DCB =∠CBF ,∴CD ∥BF .∵点B (4,0),F (0,−2),∴直线BF 的解析式为y =12x−2,∴直线CD 的解析式为y =12x +2.联立直线CD 及抛物线的解析式成方程组得:212213222y x y x x ⎧=+⎪⎪⎨⎪=-++⎪⎩,解得:1102x y =⎧⎨=⎩(舍去),2223x y =⎧⎨=⎩,∴点D 的坐标为(2,3);②当∠CDE =2∠ABC 时,过点C 作CN ⊥BF 于点N ,交OB 于H .作点N 关于BC 的对称点P ,连接NP 交BC 于点Q ,如图4所示.解得:8565x y ⎧=⎪⎪⎨⎪=-⎪⎩,∴点N 的坐标为(86,55-).∵点B (4,0),C (0,2),∴直线BC 的解析式为y =−12x +2.∵NP ⊥BC ,且点N (86,55-),∴直线NP 的解析式为y =2x−225.联立直线BC 及直线NP 成方程组得:1222225y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩,解得:64251825x y ⎧=⎪⎪⎨⎪=⎪⎩,∴点Q 的坐标为(6418,2525).∵点N (86,55-),点N ,P 关于BC 对称,∴点P 的坐标为(8866,2525-).∵点C (0,2),P (8866,2525-),∴直线CP 的解析式为y =211x +2.将y =211x +2代入213222y x x =-++整理,得:11x2−29x =0,解得:x1=0(舍去),x2=2911,∴点D 的横坐标为2911.综上所述:存在点D ,使得△CDE 的某个角恰好等于∠ABC 的2倍,点D 的横坐标为2或2911.。
2020年四川内江中考数学试题及答案
2020年四川内江中考数学试题及答案A 卷(共100分)注意事项:1、答题前,考生务必将将自己的姓名、学号、班级等填写好.2、答A 卷时,每小题选出答案后,用钢笔或水笔把答案直接填写在对应题目的后面括号.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.12的倒数是( ) A.B. C. 12 D. 12- 【答案】A 2.下列四个数中,最小的数是( )A. 0B. 12020-C. 5D. 1-【答案】D3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( ) A. B. C. D.【答案】B4.如图,已知直线//a b ,150∠=︒,则2∠的度数为( )A. 140︒B. 130︒C. 50︒D. 40︒【答案】B 5.小明参加学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是( )A. 80,90B. 90,90C. 90,85D. 90,95【答案】B6.将直线21y x =--向上平移两个单位,平移后的直线所对应的函数关系式为( )A. 25y x =--B. 23y x =--C. 21y x =-+D. 23y x =-+【答案】C7.如图,在ABC ∆中,D 、E 分别是AB 和AC 的中点,15BCED S =四边形,则ABC S ∆=( )A. 30B. 25C. 22.5D. 20【答案】D 8.如图,点A 、B 、C 、D 在⊙O 上,120AOC ∠=︒,点B 是AC 的中点,则D ∠的度数是( )A. 30B. 40︒C. 50︒D. 60︒【答案】A 9.如图,点A 是反比例函数k y x=图象上的一点,过点A 作AC x ⊥轴,垂足为点C ,D 为AC 的中点,若AOD ∆的面积为1,则k 的值为( )A. 43B. 83C. 3D. 4【答案】D10.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺.则符合题意的方程是( ) A. ()1552x x =-- B. ()1552x x =++ C . ()255x x =--D. ()255x x =++【答案】A11.如图,矩形ABCD 中,BD 为对角线,将矩形ABCD 沿BE 、BF 所在直线折叠,使点A 落在BD 上的点M 处,点C 落在BD 上的点N 处,连结EF .已知34AB BC ==,,则EF 的长为( )A. 3B. 5 513 13【答案】C 12.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t 的取值范围是( )A. 122t ≤<B.112t <≤ C. 12t <≤D. 122t ≤≤且1t ≠ 【答案】D第Ⅱ卷(非选择题 共64分)注意事项:1、第Ⅱ卷共4页,用钢笔或圆珠笔将答案直接答在试卷上.2、答题前将密封线内的项目填写清楚.二、填空题(本大题共4小题,每小题5分,共20分)13.函数124y x =-中,自变量x 的取值范围是_____ . 【答案】2x ≠14.2020年6月23日9时43分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功发射北斗系统第五十五颗导航卫星,标志着北斗三号卫星导航定位系统正式建成.根据最新数据,目前兼容北斗的终端产品至少有7亿台,其中7亿用科学记数法表示为______________【答案】8710⨯15.已知关于x 的一元二次方程()221330m x mx -++=有一实数根为1-,则该方程的另一个实数根为_____________ 【答案】13- 16.如图,在矩形ABCD 中,10BC =,30ABD ∠=︒,若点M 、N 分别是线段DB 、AB 上的两个动点,则AM MN +的最小值为___________________.【答案】15.三、解答题(本大题共5小题,共44分,解答应写出必要的文字说明或推演步骤)17.计算:()10124sin 601232π-⎛⎫---+︒-+- ⎪⎝⎭ 【答案】-318.如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE =DF ,∠A =∠D .(1)求证:AB =CD ;(2)若AB =CF ,∠B =40°,求∠D 的度数.【答案】(1)AB =CD (2)70°19.我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A 、B 、C 、D 四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为,图中m的值为;(3)学校决定从本次比赛获得“A等级”的学生中选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.【答案】(1)5(2)72°;40(3)2 320.为了维护我国海洋权力,海监部门对我国领海实行了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时60海里的速度向正东方向航行,在A处测得灯塔P在北偏东60︒方向上,海监船继续向东航行1小时到达B处,此时测得灯塔P在北偏东30方向上.(1)求B处到灯塔P的距离;(2)已知灯塔P的周围50海里内有暗礁,若海监船继续向正东方向航行是否安全?【答案】(1)B处到灯塔P的距离为60海里;(2)海监船继续向正东方向航行是安全的21.如图,AB是⊙O的直径,C是⊙O上一点,OD BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.(1)求证:BE是⊙O的切线;(2)设OE交⊙O于点F,若243DF BC==,EF的长;(3)在(2)的条件下,求阴影部分的面积.【答案】(1)见解析;(2)EF=4;(3)16 1633π-B卷(共60分)四、填空题(本大题共4小题,每小题6分,共24分.)22.分解因式:4212b b--=_____________【答案】()()()2322b b b++-23.若数a使关于x的分式方程2311x ax x++=--的解为非负数,且使关于y的不等式组()3113431220y yy a-+⎧-≥-⎪⎨⎪-<⎩的解集为0y≤,则符合条件的所有整数a的积为_____________【答案】4024.如图,在平面直角坐标系中,点A(-2,0),直线33:33l y x=+与x轴交于点B,以AB为边作等边1ABA∆,过点1A作11//A B x轴,交直线l于点1B,以11A B为边作等边112A B A∆,过点2A作22//A B x轴,交直线l于点2B,以22A B为边作等边223A B A∆,以此类推……,则点2020A的纵坐标是______________ 202031)-25.已知抛物线214y x x =-+(如图)和直线22y x b =+.我们规定:当x 取任意一个值时,x 对应的函数值分别为1y 和2y .若12y y ≠,取1y 和2y 中较大者为M ;若12y y =,记12M y y ==.①当2x =时,M 的最大值为4;②当3b =-时,使2M y >的x 的取值范围是13x ;③当5b =-时,使3M =的x 的值是11x =,23x =;④当1b ≥时,M 随x 的增大而增大.上述结论正确的是____(填写所有正确结论的序号)【答案】②③④五、解答题(本大题共3小题,每小题12分,共36分)26.我们知道,任意一个正整数x 都可以进行这样的分解:x m n =⨯(m ,n 是正整数,且m n ≤),在x 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m n ⨯是x 的最佳分解.并规定:()m f x n =. 例如:18可以分解成118⨯,29⨯或36⨯,因为1819263->->-,所以36⨯是18的最佳分解,所以()311862f ==. (1)填空:()6________f =;()9_________f =;(2)一个两位正整数t (10t a b =+,19a b ≤≤≤,a ,b 为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求()f t 的最大值; (3)填空:①()22357_____________f ⨯⨯⨯=;②()32357_____________f ⨯⨯⨯=;③()42357_____________f ⨯⨯⨯=;④()52357_____________f ⨯⨯⨯=. 【答案】(1)23;1;(2)t 为39,28,17;()f t 的最大值47;(3)20141514,,,2115281527.如图,正方形ABCD 中,P 是对角线AC 上的一个动点(不与A 、C 重合),连结BP ,将BP 绕点B 顺时针旋转90︒到BQ ,连结QP 交BC 于点E ,QP 延长线与边AD 交于点F .(1)连结CQ ,求证:AP CQ =;(2)若14AP AC =,求:CE BC 的值; (3)求证:PF EQ =.【答案】(1)见解析;(2) 38;(3)见解析 28.如图,抛物线2y ax bx c =++经过A (-1,0)、B (4,0)、C (0,2)三点,点D (x ,y )为抛物线上第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当BCD ∆的面积为3时,求点D 的坐标;(3)过点D 作DE BC ⊥,垂足为点E ,是否存在点D ,使得CDE ∆中的某个角等于ABC ∠的2倍?若存在,求点D 的横坐标;若不存在,请说明理由.【答案】(1)213222y x x =-++;(2)(3,2)或(1,3);(3)存在,2或2911.。
2020四川内江中考数学试卷
4.如图,已知直线 , ,则 的度数为()
A. B. C. D.
【答案】B
【解析】
【分析】
利用平行线的性质即可解决问题.
【详解】如图,∵a∥b,
∴∠1=∠3=50°,
∴∠2=180°−50°=130°,
故选:B.
【点睛】本题考查平行线的性质,解题的关键是熟练把握基本学问,属于中考常考题型.
5.小明参与学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是( )
【详解】∵ ,
∴最小的数是 ,
故选:D.
【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,确定值大的反而小.
3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()
A. B. C. D.
【答案】B
【解析】
由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.
A. 80,90B. 90,90C. 90,85D. 90,95
【答案】B
【解析】
【分析】
依据中位数、众数的定义即可求解.
【详解】把分数从小到大排列为:80,85,90,90,95
故中位数为90,众数为90
故选B.
【点睛】此题主要考查中位数、众数,解题的关键是熟知中位数、众数的定义.
6.将直线 向上平移两个单位,平移后的直线所对应的函数关系式为()
1. 的倒数是()
A. B. C. D.
【答案】A
【解析】
2020年四川省内江中考数学试卷
数学试卷 第1页(共8页) 数学试卷 第2页(共8页)绝密★启用前2020年四川省内江市初中学业水平考试暨高中阶段学校招生考试试卷数 学本试卷分为A 卷和B 卷两部分.A 卷1至5页,满分100分;B 卷6至8页,满分60分.全卷满分160分,考试时间120分钟.A 卷(共100分)注意事项:1.答题前,考生务必将自己的姓名、学号、班级等填写好.2.答A 卷时,每小题选出答案后,用钢笔或水笔把答案直接填写在对应题目的后面括号.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.12的倒数是 ( )A .2B .12C .12- D .2- 2.下列四个数中,最小的数是( )A .0B .12020-C .5D .1-3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )ABCD4.如下图,已知直线°1=50a b ∥,∠,则2∠的度数为( )A .140°B .130°C .50°D .40°5.小明参加学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是( )A .80,90B .90,90C .90,85D .90,956.将直线=21y x --向上平移两个单位,平移后的直线所对应的函数关系式为( ) A .=25y x --B .=23y x --C .=21y x -+D .=23y x -+7.如下图,在ABC △中,D E 、分别是AB 和AC 的中点,=15BCED S 四边形,则=ABC S △( )A .30B .25C .22.5D .208.如下图,点A B C D 、、、在O ⊙上,°=120AOC ∠,点B 是AC 的中点,则D ∠的度数是( )A .30°B .40°C .50°D .60°9.如下图,点A 是反比例函数=ky x图象上的一点,过点A 作AC x ⊥轴,垂足为点C D ,为AC 的中点,若AOD △的面积为1,则k 的值为 ( )A .43B .83C .3D .4毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------数学试卷 第3页(共8页) 数学试卷 第4页(共8页)10.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺.则符合题意的方程是( )A .()1=552x x -- B .()1=552x x ++ C .()2=55x x --D .()2=55x x ++11.如下图,矩形ABCD 中,BD 为对角线,将矩形ABCD 沿BE BF 、所在直线折叠,使点A 落在BD 上的点M 处,点C 落在BD 上的点N 处,连结EF .已知=3=4AB BC ,,则EF 的长为 ( )A .3B .5C D 12.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线()=220y tx t t ++>与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t 的取值范围是( )A .122t ≤< B .112t <≤ C .12t <≤D .122t ≤≤且1t ≠ 第Ⅱ卷(非选择题 共64分)注意事项:1.第Ⅱ卷共3页,用钢笔或圆珠笔将答案直接答在试卷上.2.答题前将密封线内的项目填写清楚.二、填空题(本大题共4小题,每小题5分,共20分)13.函数1=24y x -中,自变量x 的取值范围是________; 14.2020年6月23日9时43分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功发射北斗系统第五十五颗导航卫星,标志着北斗三号卫星导航定位系统正式建成.根据最新数据,目前兼容北斗的终端产品至少有7亿台,其中7亿用科学记数法表示为________;15.已知关于x 的一元二次方程()22133=0m x mx -++有一实数根为1-,则该方程的另一个实数根为________;16.如下图,在矩形ABCD 中,°=10=30BC ABD ,∠,若点M N 、分别是线段DB AB 、上的两个动点,则AM MN +的最小值为________.三、解答题(本大题共5小题,共44分,解答应写出必要的文字说明或推演步骤)17.(本小题满分7分)计算:()10°124sin6032π-⎫⎛---+-- ⎪⎝⎭18.(本小题满分9分)如下图,点C E F B ,,,在同一直线上,点A D ,在BC 异侧,==AB CD AE DF A D ∥,,∠∠.(1)求证:=AB CD ;(2)若°==40AB CF B ,∠,求D ∠的度数.19.(本小题满分9分)我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A B C D 、、、四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.数学试卷 第5页(共8页) 数学试卷 第6页(共8页)(1)成绩为“B 等级”的学生人数有________名;(2)在扇形统计图中,表示“D 等级”的扇形的圆心角度数为________,图中m 的值为________;(3)学校决定从本次比赛获得“A 等级”的学生中选出2名去参加市中学生知识竞赛.已知“A 等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.20.(本小题满分9分)为了维护我国海洋权力,海监部门对我国领海实行了常态化巡航管理.如下图,正在执行巡航任务的海监船以每小时60海里的速度向正东方向航行,在A 处测得灯塔P 在北偏东60°方向上,海监船继续向东航行1小时到达B 处,此时测得灯塔P 在北偏东30°方向上. (1)求B 处到灯塔P 的距离;(2)已知灯塔P 的周围50海里内有暗礁,若海监船继续向正东方向航行是否安全?21.(本小题满分9分)如下图,AB 是O ⊙的直径,C 是O ⊙上一点,OD BC ⊥于点D ,过点C 作O ⊙的切线,交OD 的延长线于点E ,连结BE . (1)求证:BE 是O ⊙的切线;(2)设OE 交O ⊙于点F,若=2DF BC ,,求线段EF 的长; (3)在(2)的条件下,求阴影部分的面积.B 卷(共60分)注意事项:加试卷共3页,请将答案直接填写在试卷上.四、填空题(本大题共4小题,每小题6分,共24分.)22.分解因式:4212=b b --________; 23.若数a 使关于x 的分式方程2=311x ax x++--的解为非负数,且使关于y 的不等式组()3113431220y y y a -+⎧--⎪⎨⎪-⎩≥<的解集为0y ≤,则符合条件的所有整数a 的积为________; 24.如下图,在平面直角坐标系中,点()20A -,,直线:l y 与x 轴交于点B ,以AB 为边作等边1ABA △,过点1A 作11A B x ∥轴,交直线l 于点1B ,以11A B 为边作等边112A B A △,过点2A 作22A B x ∥轴,交直线l 于点2B ,以22A B 为边作等边223A B A △,以此类推……,则点2020A 的纵坐标是________;25.已知抛物线21=4y x x -+(如下图)和直线2=2y x b +.我们规定:当x 取任意一个值时,x 对应的函数值分别为1y 和2y .若12y y ≠,取1y 和2y 中较大者为M ;若12=y y ,记12==M y y .①当=2x 时,M 的最大值为4;②当=3b -时,使2M y >的x 的取值范围是13x -<<;③当=5b -时,使=3M 的x 的值是12=1=3x x ,;④当1b ≥时,M 随x 的增大而增大.上述结论正确的是________(填写所有正确结论的序号)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------数学试卷 第7页(共8页) 数学试卷 第8页(共8页)五、解答题(本大题共3小题,每小题12分,共36分)26.我们知道,任意一个正整数x 都可以进行这样的分解:=x m n ⨯(m n ,是正整数,且m n ≤),在x 的所有这种分解中,如果m n ,两因数之差的绝对值最小,我们就称m n ⨯是x 的最佳分解.并规定:()=m f x n.例如:18可以分解成118⨯,29⨯或36⨯,因为1819263--->>,所以36⨯是18的最佳分解,所以()3118==62f .(1)填空:()6f =________;()9f =________;(2)一个两位正整数()=1019t t a b a b a b +,≤≤≤,,为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求()f t =的最大值; (3)填空:①()22357=f ⨯⨯⨯________;②()32357=f ⨯⨯⨯________; ③()42357=f ⨯⨯⨯________; ④()52357=f ⨯⨯⨯________.27.如下图,正方形ABCD 中,P 是对角线AC 上的一个动点(不与A C 、重合),连结BP ,将BP 绕点B 顺时针旋转90°到BQ ,连结QP 交BC 于点E ,QP 延长线与边AD 交于点F .(1)连结CQ ,求证:=AP CQ ; (2)若1=4AP AC ,求:CE BC 的值;(3)求证:=PE EQ .28.如下图,抛物线2=y ax bx c ++经过()()()104002A B C -,、,、,三点,点()D x y ,为抛物线上第一象限内的一个动点. (1)求抛物线所对应的函数表达式;(2)当BCD △的面积为3时,求点D 的坐标;(3)过点D 作DE BC ⊥,垂足为点E ,是否存在点D ,使得CDE △中的某个角等于ABC ∠的2倍?若存在,求点D 的横坐标;若不存在,请说明理由.。
2020年四川省内江市中考数学试卷(含解析)
2020年四川省内江市市中考数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(本大题共12小题,每小题3分,共36分)1.的倒数是()A.2 B.C.﹣D.﹣22.下列四个数中,最小的数是()A.0 B.﹣C.5 D.﹣13.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.4.如图,已知直线a∥b,∠1=50°,则∠2的度数为()A.140°B.130°C.50°D.40°5.小明参加学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是()A.80,90 B.90,90 C.90,85 D.90,956.将直线y=﹣2x﹣1向上平移两个单位,平移后的直线所对应的函数关系式为()A.y=﹣2x﹣5 B.y=﹣2x﹣3 C.y=﹣2x+1 D.y=﹣2x+37.如图,在△ABC中,D、E分别是AB和AC的中点,S四边形BCED=15,则S△ABC=()A.30 B.25 C.22.5 D.208.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是的中点,则∠D的度数是()A.30°B.40°C.50°D.60°9.如图,点A是反比例函数y=图象上的一点,过点A作AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,则k的值为()A.B.C.3 D.410.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则符合题意的方程是()A.x=(x﹣5)﹣5 B.x=(x+5)+5C.2x=(x﹣5)﹣5 D.2x=(x+5)+511.如图,矩形ABCD中,BD为对角线,将矩形ABCD沿BE、BF所在直线折叠,使点A落在BD上的点M处,点C落在BD上的点N处,连结EF.已知AB=3,BC=4,则EF的长为()A.3 B.5 C.D.12.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t的取值范围是()A.≤t<2 B.<t≤1C.1<t≤2 D.≤t≤2且t≠1二、填空题(本大题共4小题,每小题5分,共20分)13.在函数y=中,自变量x的取值范围是.14.2020年6月23日9时43分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功发射北斗系统第五十五颗导航卫星,标志着北斗三号卫星导航定位系统正式建成.根据最新数据,目前兼容北斗的终端产品至少有7亿台,其中7亿用科学记数法表示为.15.已知关于x的一元二次方程(m﹣1)2x2+3mx+3=0有一实数根为﹣1,则该方程的另一个实数根为.16.如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN 的最小值为.三、解答题(本大题共5小题,共44分)17.(7分)计算:(﹣)﹣1﹣|﹣2|+4sin60°﹣+(π﹣3)0.18.(9分)如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.19.(9分)我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为,图中m的值为;(3)学校决定从本次比赛获得“A等级”的学生只能怪,选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.20.(9分)为了维护我国海洋权力,海监部门对我国领海实行了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时60海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,海监船继续向东航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求B处到灯塔P的距离;(2)已知灯塔P的周围50海里内有暗礁,若海监船继续向正东方向航行是否安全?21.(10分)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.(1)求证:BE是⊙O的切线;(2)设OE交⊙O于点F,若DF=2,BC=4,求线段EF的长;(3)在(2)的条件下,求阴影部分的面积.B卷(50分)一、填空题(本大题共4小题,每小题6分,共24分.)22.分解因式:b4﹣b2﹣12=.23.若数a使关于x的分式方程+=3的解为非负数,且使关于y的不等式组的解集为y≤0,则符合条件的所有整数a的积为.24.如图,在平面直角坐标系中,点A(﹣2,0),直线l:y=x+与x轴交于点B,以AB为边作等边△ABA1,过点A1作A1B1∥x轴,交直线l于点B1,以A1B1为边作等边△A1B1A2,过点A2作A2B2∥x轴,交直线l于点B2,以A2B2为边作等边△A2B2A3,以此类推……,则点A2020的纵坐标是.25.已知抛物线y1=﹣x2+4x(如图)和直线y2=2x+b.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2.若y1≠y2,取y1和y2中较大者为M;若y1=y2,记M=y1=y2.①当x=2时,M的最大值为4;②当b=﹣3时,使M>y2的x的取值范围是﹣1<x<3;③当b=﹣5时,使M=3的x的值是x1=1,x2=3;④当b≥1时,M随x的增大而增大.上述结论正确的是.(填写所有正确结论的序号)二、解答题(本大题共3小题,每小题12分,共36分)26.(12分)我们知道,任意一个正整数x都可以进行这样的分解:x=m×n(m,n是正整数,且m≤n),在x的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是x的最佳分解.并规定:f (x)=.例如:18可以分解成1×18,2×9或3×6,因为18﹣1>9﹣2>6﹣3,所以3×6是18的最佳分解,所以f(18)==.(1)填空:f(6)=;f(9)=;(2)一个两位正整数t(t=10a+b,1≤a≤b≤9,a,b为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求f(t)的最大值;(3)填空:①f(22×3×5×7)=;②f(23×3×5×7)=;③f(24×3×5×7)=;④f(25×3×5×7)=.27.(12分)如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B顺时针旋转90°到BQ,连结QP交BC于点E,QP延长线与边AD交于点F.(1)连结CQ,求证:AP=CQ;(2)若AP=AC,求CE:BC的值;(3)求证:PF=EQ.28.(12分)如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(4,0)、C(0,2)三点,点D(x,y)为抛物线上第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当△BCD的面积为3时,求点D的坐标;(3)过点D作DE⊥BC,垂足为点E,是否存在点D,使得△CDE中的某个角等于∠ABC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.参考答案与试题解析一、选择题1.【解答】解:∵×2=1,∴的倒数是2,故选:A.2.【解答】解:∵|﹣|<|﹣1|,∴﹣>﹣1,∴5>1>﹣>﹣1,因此最小的是﹣1,故选:D.3.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、既不是轴对称图形,也不是中心对称图形,故本选项不合题意.故选:C.4.【解答】解:∵直线a∥b,∴∠3=∠1=50°.又∵∠2+∠3=180°,∴∠2=130°.故选:B.5.【解答】解:将数据重新排列为80,85,90,90,95,所以这组数据的中位数是90,众数为90,故选:B.6.【解答】解:直线y=﹣2x﹣1向上平移两个单位,所得的直线是y=﹣2x+1,故选:C.7.【解答】解:∵D、E分别是AB、AC边上的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=,∴S△ADE:S四边形BCED=1:3,即S△ADE:15=1:3,∴S△ADE=5,∴S△ABC=5+15=20.故选:D.8.【解答】解:连接OB,如图,∵点B是的中点,∴∠AOB=∠COB=∠AOC=×120°=60°,∴∠D=∠AOB=30°.故选:A.9.【解答】解:∵AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,∴△AOC的面积为2,∵S△AOC=|k|=2,且反比例函数y=图象在第一象限,∴k=4,故选:D.10.【解答】解:设绳索长x尺,则竿长(x﹣5)尺,依题意,得:x=(x﹣5)﹣5.故选:A.11.【解答】解:∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠A=∠C=∠EDF=90°,∴BD===5,∵将矩形ABCD沿BE所在直线折叠,使点A落在BD上的点M处,∴AE=EM,∠A=∠BME=90°,∴∠EMD=90°,∵∠EDM=∠ADB,∴△EDM∽△BDA,∴,设DE=x,则AE=EM=4﹣x,∴,解得x=,∴DE=,同理△DNF∽△DCB,∴,设DF=y,则CF=NF=3﹣y,∴,解得y=.∴DF=.∴EF===.故选:C.12.【解答】解:∵y=tx+2t+2=t(x+2)+2(t>0),∴直线y=tx+2t+2(t>0)经过点(﹣2,2),如图,当直线经过(0,3)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则3=2t+2,解得t=;当直线经过(0,6)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则6=2t+2,解得t=2;当直线经过(0,4)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有三个整点,则4=2t+2,解得t=1;∴直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t的取值范围是≤t≤2且t≠1,故选:D.二、填空题13.【解答】解:根据题意得2x﹣4≠0,解得x≠2;∴自变量x的取值范围是x≠2.14.【解答】解:7亿=700000000=7×108,故答案为:7×108.15.【解答】解:把x=﹣1代入原方程得,(m﹣1)2﹣3m+3=0,即:m2﹣5m+4=0,解得,m=4,m=1(不合题意舍去),当m=4时,原方程变为:9x2+12x+3=0,即,3x2+4x+1=0,解得,x1=﹣1,x2=﹣,故答案为:﹣.16.【解答】解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,在Rt△ABD中,AB==10,∵A′H⊥AB,∴AH=HB=5,∴A′H=AH=15,∵AM+MN=A′M+MN≤A′H,∴AM+MN≥15,∴AM+MN的最小值为15.故答案为15.三、解答题17.【解答】解:原式=﹣2﹣2+4×﹣2+1=﹣2﹣2+2﹣2+1=﹣3.18.【解答】(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(AAS),∴AB=CD;(2)解:∵△ABE≌△DCF,∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°∵AB=CF,∴CF=CD,∴∠D=∠CFD=(180°﹣40°)=70°.19.【解答】解:(1)3÷15%=20(名),20﹣3﹣8﹣4=5(名),故答案为:5;(2)360°×=72°,8÷20=40%,即m=40,故答案为:72°,40;(3)“A等级”2男1女,从中选取2人,所有可能出现的结果如下:共有6种可能出现的结果,其中女生被选中的有4种,∴P(女生被选中)==.20.【解答】解:(1)∵∠PAB=30°,∠ABP=120°,∴∠APB=180°﹣∠PAB﹣∠ABP=30°,∴PB=AB=60海里;(2)作PH⊥AB于H.∵∠BAP=∠BPA=30°,∴BA=BP=60,在Rt△PBH中,PH=PB•sin60°=60×=30,∵30>50,∴海监船继续向正东方向航行是安全的.21.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,∵OD⊥BC,∴CD=BD,即OD垂直平分BC,∴EC=EB,在△OCE和△OBE中,∴△OCE≌△OBE(SSS),∴∠OBE=∠OCE=90°,∴OB⊥BE,∴BE与⊙O相切;(2)解:设⊙O的半径为x,则OD=OF﹣DF=x﹣2,OB=x,在Rt△OBD中,BD=BC=2,∵OD2+BD2=OB2,∴(x﹣2)2+(2)2=x2,解得x=4,∴OD=2,OB=4,∴∠OBD=30°,∴∠BOD=60°,∴OE=2OB=8,∴EF=OE﹣OF=8﹣4=4.(3)∵∠BOE=60°,∠OBE=90°,∴在Rt△OBE中,BE=OB=4,∴S阴影=S四边形OBEC﹣S扇形OBC=2××4×4﹣,=16﹣.一、填空题22.【解答】解:b4﹣b2﹣12=(b2﹣4)(b2+3)=(b+2)(b﹣2)(b2+3),故答案为:(b+2)(b﹣2)(b2+3).23.【解答】解:去分母,得:x+2﹣a=3(x﹣1),解得:x=,∵分式方程的解为非负数,∴≥0,且≠1,解得a≤5且a≠3,解不等式﹣≥﹣,得:y≤0,解不等式2(y﹣a)<0,得:y<a,∵不等式组的解集为y≤0,∴a>0,∴0<a≤5,则整数a的值为1、2、4、5,∴符合条件的所有整数a的积为1×2×4×5=40,故答案为:40.24.【解答】解:∵直线l:y=x+与x轴交于点B,∴B(﹣1,0),∴OB=1,∵A(﹣2,0),∴OA=2,∴AB=1,∵△ABA1是等边三角形,∴A1(﹣,),把y=代入y=x+,求得x=,∴B1(,),∴A1B1=2,∴A2(﹣,+×2),即A2(﹣,),把y=代入y=x+,求得x=,∴B2(,),∴A2B2=4,∴A3(3,+×4),即A3(3,),……,A n的纵坐标为,∴点A2020的纵坐标是,故答案为.25.【解答】解:①当x=2时,y1=4,y2=4+b,无法判断4与4+b的大小,故①错误.②如图1中,b=﹣3时,由,解得或,∴两个函数图象的交点坐标为(﹣1,﹣5)和(3,3),观察图象可知,使M>y2的x的取值范围是﹣1<x<3,故②正确,③如图2中,b=﹣5时,图象如图所示,M=3时,y1=3,∴﹣x2+4x=3,解得x=1或3,故③正确,④当b=1时,由,消去y得到,x2﹣2x+1=0,∵△=0,∴此时直线y=2x+1与抛物线只有一个交点,∴b>1时,直线y=2x+b与抛物线没有交点,∴M随x的增大而增大,故④正确.二、解答题26.【解答】解:(1)6可分解成1×6,2×3,∵6﹣1>3﹣2,∴2×3是6的最佳分解,∴f(6)=,9可分解成1×9,3×3,∵9﹣1>3﹣3,∴3×3是9的最佳分解,∴f(9)==1,故答案为:;1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10b+a,根据题意得,t′﹣t=(10b+a)﹣(10a+b)=9(b﹣a)=54,∴b=a+6,∵1≤a≤b≤9,a,b为正整数,∴满足条件的t为:17,28,39;∵F(17)=,F(28)=,F(39)=,∵,∴F(t)的最大值为;(3)①∵22×3×5×7的是最佳分解为20×21,∴f(22×3×5×7)=,故答案为:;②∵23×3×5×7的最佳分解为24×35,∴f(23×3×5×7)=,故答案为;③∵24×3×5×7的最佳分解是35×48,∴f(24×3×5×7)=,故答案为:;④∵25×3×5×7的最佳分解是48×70,∴f(25×3×5×7)=,故答案为:.27.【解答】(1)证明:如图1,∵线段BP绕点B顺时针旋转90°得到线段BQ,∴BP=BQ,∠PBQ=90°.∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°.∴∠ABC=∠PBQ.∴∠ABC﹣∠PBC=∠PBQ﹣∠PBC,即∠ABP=∠CBQ.在△BAP和△BCQ中,∵,∴△BAP≌△BCQ(SAS).∴CQ=AP.(2)解:过点C作CH⊥PQ于H,过点B作BT⊥PQ于T.∵AP=AC,∴可以假设AP=CQ=a,则PC=3a,∵四边形ABCD是正方形,∴∠BAC=∠ACB=45°,∵△ABP≌△CBQ,∴∠BCQ=∠BAP=45°,∴∠PCQ=90°,∴PQ===a,∵CH⊥PQ,∴CH==a,∵BP=BQ,BT⊥PQ,∴PT=TQ,∵∠PBQ=90°,∴BT=PQ=a,∵CH∥BT,∴===,∴=.(3)解:结论:PF=EQ,理由是:如图2,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°,∵∠BPQ=45°,∴∠GPB=45°,∴∠GPB=∠PQB=45°,∵PB=BQ,∠ABP=∠CBQ,∴△PGB≌△QEB,∴EQ=PG,∵∠BAD=90°,∴F、A、G、P四点共圆,连接FG,∴∠FGP=∠FAP=45°,∴△FPG是等腰直角三角形,∴PF=PG,∴PF=EQ.28.【解答】解:(1)将A(﹣1,0)、B(4,0)、C(0,2)代入y=ax2+bx+c得:,解得:.故抛物线的解析式为y=﹣x2+x+2.(2)如图2,设点M的坐标为(0,m),使得△BCM的面积为3,3×2÷4=1.5,则m=2+1.5=,M(0,)∵点B(4,0),C(0,2),∴直线BC的解析式为y=﹣x+2,∴DM的解析式为y=﹣x+,联立抛物线解析式,解得,.∴点D的坐标为(3,2)或(1,3).(3)分两种情况考虑:①当∠DCE=2∠ABC时,取点F(0,﹣2),连接BF,如图3所示.∵OC=OF,OB⊥CF,∴∠ABC=∠ABF,∴∠CBF=2∠ABC.∵∠DCB=2∠ABC,∴∠DCB=∠CBF,∴CD∥BF.∵点B(4,0),F(0,﹣2),∴直线BF的解析式为y=x﹣2,∴直线CD的解析式为y=x+2.联立直线CD及抛物线的解析式成方程组得:,解得:(舍去),,∴点D的坐标为(2,3);②当∠CDE=2∠ABC时,过点C作CN⊥BF于点N,交OB于H.作点N关于BC的对称点P,连接NP交BC于点Q,如图4所示.∵∠OCH=90°﹣∠OHC,∠OBF=90°﹣∠BHN,∠OHC=∠BHN,∴∠OCH=∠OBF.在△OCH与△OBF中,∴△OCH∽△OBF,∴=,即=,∴OH=1,H(1,0).设直线CN的解析式为y=kx+n(k≠0),∵C(0,2),H(1,0),∴,解得,∴直线CN的解析式为y=﹣2x+2.连接直线BF及直线CN成方程组得:,解得:,∴点N的坐标为(,﹣).∵点B(4,0),C(0,2),∴直线BC的解析式为y=﹣x+2.∵NP⊥BC,且点N(,﹣),∴直线NP的解析式为y=2x﹣.联立直线BC及直线NP成方程组得:,解得:,∴点Q的坐标为(,).∵点N(,﹣),点N,P关于BC对称,∴点P的坐标为(,).∵点C(0,2),P(,),∴直线CP的解析式为y=x+2.将y=x+2代入y=﹣x2+x+2整理,得:11x2﹣29x=0,解得:x1=0(舍去),x2=,∴点D的横坐标为.综上所述:存在点D,使得△CDE的某个角恰好等于∠ABC的2倍,点D的横坐标为2或.。
【完整版】四川省内江市2020年中考数学试题2
内江市2020年初中学业程度考试暨高中阶段学校招生考试试卷数学试题A 卷〔共100分〕考前须知:1、答题前,考生务必将将自己的姓名、学号、班级等填写好.2、答A 卷时,每题选出答案后,用钢笔或水笔把答案直接填写在对应题目的后面括号.第一卷〔选择题 共36分〕一、选择题〔本大题共12小题,每题3分,共36分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〕 1.12的倒数是〔 〕 A. B. C. 12 D. 12- 2.以下四个数中,最小的数是〔 〕A. 0B. 12020-C. 5D. 1- 3.以下图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是〔 〕 A .B. C. D. 4.如图,直线//a b ,150∠=︒,那么2∠的度数为〔 〕A. 140︒B. 130︒C. 50︒D. 40︒ 5.小明参加学校举行的“保护环境〞主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,那么这组数据的中位数和众数分别是〔 〕A. 80,90B. 90,90C. 90,85D. 90,95 6.将直线21y x =--向上平移两个单位,平移后直线所对应的函数关系式为〔 〕A. 25y x =--B. 23y x =--C. 21y x =-+D. 23y x =-+7.如图,在ABC ∆中,D 、E 分别是AB 和AC 的中点,15BCED S =四边形,那么ABC S ∆=〔 〕A. 30B. 25C. 22.5D. 208.如图,点A 、B 、C 、D 在⊙O 上,120AOC ∠=︒,点B 是AC 的中点,那么D ∠的度数是〔 〕A. 30B. 40︒C. 50︒D. 60︒9.如图,点A 是反比例函数k y x=图象上的一点,过点A 作AC x ⊥轴,垂足为点C ,D 为AC 的中点,假设AOD ∆的面积为1,那么k 的值为〔 〕A. 43B. 83C. 3D. 410.我国古代数学著作?增删算法统宗?记载“绳索量竿〞问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.〞其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;假如将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺.那么符合题意的方程是〔 〕A. ()1552x x =--B. ()1552x x =++ C. ()255x x =-- D. ()255x x =++11.如图,矩形ABCD 中,BD 为对角线,将矩形ABCD 沿BE 、BF 所在直线折叠,使点A 落在BD 上的点M 处,点C 落在BD 上的点N 处,连结EF .34AB BC ==,,那么EF 的长为〔 〕A. 3B. 5C. 513D. 1312.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,直线22y tx t =++〔0t >〕与两坐标轴围成的三角形区域〔不含边界〕中有且只有四个整点,那么t 的取值范围是〔 〕A. 122t ≤<B.112t <≤ C. 12t <≤D. 122t ≤≤且1t ≠ 第二卷〔非选择题 共64分〕考前须知:1、第二卷共4页,用钢笔或圆珠笔将答案直接答在试卷上.2、答题前将密封线内的工程填写清楚.二、填空题〔本大题共4小题,每题5分,共20分〕13.函数124y x =-中,自变量x 的取值范围是_____ . 14.2020年6月23日9时43分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功发射北斗系统第五十五颗导航卫星,标志着北斗三号卫星导航定位系统正式建成.根据最新数据,目前兼容北斗的终端产品至少有7亿台,其中7亿用科学记数法表示为______________15.关于x 的一元二次方程()221330m x mx -++=有一实数根为1-,那么该方程的另一个实数根为_____________ 16.如图,在矩形ABCD 中,10BC =,30ABD ∠=︒,假设点M 、N 分别是线段DB 、AB 上的两个动点,那么AM MN +的最小值为___________________.三、解答题〔本大题共5小题,共44分,解容许写出必要的文字说明或推演步骤〕17.计算:()1124sin 601232π-⎛⎫---+︒-+- ⎪⎝⎭ 18.如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE =DF ,∠A =∠D .〔1〕求证:AB =CD ;〔2〕假设AB =CF ,∠B =40°,求∠D 的度数.19.我市某中学举行“法制进校园〞知识竞赛,赛后将学生的成绩分为A 、B 、C 、D 四个等级,并将结果绘制成如下图的条形统计图和扇形统计图.请你根据统计图解答以下问题.〔1〕成绩为“B 等级〞的学生人数有 名;〔2〕在扇形统计图中,表示“D 等级〞的扇形的圆心角度数为 ,图中m 的值为 ;〔3〕学校决定从本次比赛获得“A 等级〞的学生中选出2名去参加市中学生知识竞赛.“A 等级〞中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.20.为了维护我国海洋权利,海监部门对我国领海实行了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时60海里的速度向正东方向航行,在A 处测得灯塔P 在北偏东60︒方向上,海监船继续向东航行1小时到达B 处,此时测得灯塔P 在北偏东30方向上.〔1〕求B 处到灯塔P 的间隔 ;〔2〕灯塔P 的周围50海里内有暗礁,假设海监船继续向正东方向航行是否平安?21.如图,AB 是⊙O 的直径,C 是⊙O 上一点,ODBC 于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连结BE .〔1〕求证:BE 是⊙O 的切线;〔2〕设OE交⊙O于点F,假设243DF BC==,,求线段EF的长;〔3〕在〔2〕的条件下,求阴影局部的面积.B卷〔共60分〕四、填空题〔本大题共4小题,每题6分,共24分.〕22.分解因式:4212b b--=_____________23.假设数a使关于x的分式方程2311x ax x++=--的解为非负数,且使关于y的不等式组()3113431220y yy a-+⎧-≥-⎪⎨⎪-<⎩的解集为0y≤,那么符合条件的所有整数a的积为_____________24.如图,在平面直角坐标系中,点A〔-2,0〕,直线33:33l y x=+与x轴交于点B,以AB为边作等边1ABA∆,过点1A作11//A B x轴,交直线l于点1B,以11A B为边作等边112A B A∆,过点2A作22//A B x轴,交直线l于点2B,以22A B为边作等边223A B A∆,以此类推……,那么点2020A的纵坐标是______________25.抛物线214y x x=-+〔如图〕和直线22y x b=+.我们规定:当x取任意一个值时,x对应的函数值分别为1y和2y.假设12y y≠,取1y和2y中较大者为M;假设12y y=,记12M y y==.①当2x=时,M 的最大值为4;②当3b=-时,使2M y>的x的取值范围是13x;③当5b=-时,使3M=的x的值是11x =,23x =;④当1b ≥时,M 随x 的增大而增大.上述结论正确的选项是____〔填写所有正确结论的序号〕五、解答题〔本大题共3小题,每题12分,共36分〕26.我们知道,任意一个正整数x 都可以进展这样的分解:x m n =⨯〔m ,n 是正整数,且m n ≤〕,在x 的所有这种分解中,假如m ,n 两因数之差的绝对值最小,我们就称m n ⨯是x 的最正确分解.并规定:()m f x n=. 例如:18可以分解成118⨯,29⨯或36⨯,因为1819263->->-,所以36⨯是18的最正确分解,所以()311862f ==. 〔1〕填空:()6________f =;()9_________f =;〔2〕一个两位正整数t 〔10t a b =+,19a b ≤≤≤,a ,b 为正整数〕,交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求()f t 的最大值;〔3〕填空:①()22357_____________f ⨯⨯⨯=;②()32357_____________f ⨯⨯⨯=;③()42357_____________f ⨯⨯⨯=;④()52357_____________f ⨯⨯⨯=.27.如图,正方形ABCD 中,P 是对角线AC 上的一个动点〔不与A 、C 重合〕,连结BP ,将BP 绕点B 顺时针旋转90︒到BQ ,连结QP 交BC 于点E ,QP 延长线与边AD 交于点F .〔1〕连结CQ ,求证:AP CQ =;〔2〕假设14AP AC =,求:CE BC 的值; 〔3〕求证:PF EQ =.28.如图,抛物线2y ax bx c =++经过A 〔-1,0〕、B 〔4,0〕、C 〔0,2〕三点,点D 〔x ,y 〕为抛物线上第一象限内的一个动点.〔1〕求抛物线所对应的函数表达式;〔2〕当BCD ∆的面积为3时,求点D 的坐标;〔3〕过点D 作DE BC ⊥,垂足为点E ,是否存在点D ,使得CDE ∆中的某个角等于ABC ∠的2倍?假设存在,求点D 的横坐标;假设不存在,请说明理由.。
2020年四川省内江市中考数学试卷 (解析版)
2020年四川省内江市中考数学试卷一、选择题(共12小题).1.的倒数是()A.2B.C.﹣D.﹣22.下列四个数中,最小的数是()A.0B.﹣C.5D.﹣13.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.4.如图,已知直线a∥b,∠1=50°,则∠2的度数为()A.140°B.130°C.50°D.40°5.小明参加学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是()A.80,90B.90,90C.90,85D.90,956.将直线y=﹣2x﹣1向上平移两个单位,平移后的直线所对应的函数关系式为()A.y=﹣2x﹣5B.y=﹣2x﹣3C.y=﹣2x+1D.y=﹣2x+37.如图,在△ABC中,D、E分别是AB和AC的中点,S四边形BCED=15,则S△ABC=()A.30B.25C.22.5D.208.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是的中点,则∠D的度数是()A.30°B.40°C.50°D.60°9.如图,点A是反比例函数y=图象上的一点,过点A作AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,则k的值为()A.B.C.3D.410.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则符合题意的方程是()A.x=(x﹣5)﹣5B.x=(x+5)+5C.2x=(x﹣5)﹣5D.2x=(x+5)+511.如图,矩形ABCD中,BD为对角线,将矩形ABCD沿BE、BF所在直线折叠,使点A落在BD上的点M处,点C落在BD上的点N处,连结EF.已知AB=3,BC=4,则EF的长为()A.3B.5C.D.12.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t的取值范围是()A.≤t<2B.<t≤1C.1<t≤2D.≤t≤2且t≠1二、填空题(本大题共4小题,每小题5分,共20分)13.在函数y=中,自变量x的取值范围是.14.2020年6月23日9时43分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功发射北斗系统第五十五颗导航卫星,标志着北斗三号卫星导航定位系统正式建成.根据最新数据,目前兼容北斗的终端产品至少有7亿台,其中7亿用科学记数法表示为.15.已知关于x的一元二次方程(m﹣1)2x2+3mx+3=0有一实数根为﹣1,则该方程的另一个实数根为.16.如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB 上的两个动点,则AM+MN的最小值为.三、解答题(本大题共5小题,共44分,解答应写出必要的文字说明或推演步骤)17.计算:(﹣)﹣1﹣|﹣2|+4sin60°﹣+(π﹣3)0.18.如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.19.我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为,图中m的值为;(3)学校决定从本次比赛获得“A等级”的学生只能怪,选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.20.为了维护我国海洋权力,海监部门对我国领海实行了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时60海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,海监船继续向东航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求B处到灯塔P的距离;(2)已知灯塔P的周围50海里内有暗礁,若海监船继续向正东方向航行是否安全?21.如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.(1)求证:BE是⊙O的切线;(2)设OE交⊙O于点F,若DF=2,BC=4,求线段EF的长;(3)在(2)的条件下,求阴影部分的面积.四、填空题(本大题共4小题,每小题6分,共24分.)22.分解因式:b4﹣b2﹣12=.23.若数a使关于x的分式方程+=3的解为非负数,且使关于y的不等式组的解集为y≤0,则符合条件的所有整数a的积为.24.如图,在平面直角坐标系中,点A(﹣2,0),直线l:y=x+与x轴交于点B,以AB为边作等边△ABA1,过点A1作A1B1∥x轴,交直线l于点B1,以A1B1为边作等边△A1B1A2,过点A2作A2B2∥x轴,交直线l于点B2,以A2B2为边作等边△A2B2A3,以此类推……,则点A2020的纵坐标是.25.已知抛物线y1=﹣x2+4x(如图)和直线y2=2x+b.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2.若y1≠y2,取y1和y2中较大者为M;若y1=y2,记M=y1=y2.①当x=2时,M的最大值为4;②当b=﹣3时,使M>y2的x的取值范围是﹣1<x<3;③当b=﹣5时,使M=3的x的值是x1=1,x2=3;④当b≥1时,M随x 的增大而增大.上述结论正确的是.(填写所有正确结论的序号)五、解答题(本大题共3小题,每小题12分,共36分)26.我们知道,任意一个正整数x都可以进行这样的分解:x=m×n(m,n是正整数,且m≤n),在x的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是x的最佳分解.并规定:f(x)=.例如:18可以分解成1×18,2×9或3×6,因为18﹣1>9﹣2>6﹣3,所以3×6是18的最佳分解,所以f(18)==.(1)填空:f(6)=;f(9)=;(2)一个两位正整数t(t=10a+b,1≤a≤b≤9,a,b为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求f (t)的最大值;(3)填空:①f(22×3×5×7)=;②f(23×3×5×7)=;③f(24×3×5×7)=;④f(25×3×5×7)=.27.如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B顺时针旋转90°到BQ,连结QP交BC于点E,QP延长线与边AD交于点F.(1)连结CQ,求证:AP=CQ;(2)若AP=AC,求CE:BC的值;(3)求证:PF=EQ.28.如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(4,0)、C(0,2)三点,点D(x,y)为抛物线上第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当△BCD的面积为3时,求点D的坐标;(3)过点D作DE⊥BC,垂足为点E,是否存在点D,使得△CDE中的某个角等于∠ABC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.的倒数是()A.2B.C.﹣D.﹣2【分析】根据乘积为1的两个数是互为倒数,进行求解即可.解:∵×2=1,∴的倒数是2,故选:A.2.下列四个数中,最小的数是()A.0B.﹣C.5D.﹣1【分析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小得出答案.解:∵|﹣|<|﹣1|,∴﹣>﹣1,∴5>1>﹣>﹣1,因此最小的是﹣1,故选:D.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、既不是轴对称图形,也不是中心对称图形,故本选项不合题意.故选:C.4.如图,已知直线a∥b,∠1=50°,则∠2的度数为()A.140°B.130°C.50°D.40°【分析】由直线a∥b,利用“两直线平行,同位角相等”可求出∠3的度数,再结合∠2和∠3互补,即可求出∠2的度数.解:∵直线a∥b,∴∠3=∠1=50°.又∵∠2+∠3=180°,∴∠2=130°.故选:B.5.小明参加学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是()A.80,90B.90,90C.90,85D.90,95【分析】先将数据重新排列,再根据中位数和众数的定义求解可得.解:将数据重新排列为80,85,90,90,95,所以这组数据的中位数是90,众数为90,故选:B.6.将直线y=﹣2x﹣1向上平移两个单位,平移后的直线所对应的函数关系式为()A.y=﹣2x﹣5B.y=﹣2x﹣3C.y=﹣2x+1D.y=﹣2x+3【分析】根据函数图象向上平移加,向下平移减,可得答案.解:直线y=﹣2x﹣1向上平移两个单位,所得的直线是y=﹣2x+1,故选:C.7.如图,在△ABC中,D、E分别是AB和AC的中点,S四边形BCED=15,则S△ABC=()A.30B.25C.22.5D.20【分析】先根据三角形中位线的性质,证得:DE∥BC,DE=BC,进而得出△ADE∽△ABC,又由相似三角形面积的比等于相似比的平方即可求得答案.解:∵D、E分别是AB、AC边上的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=,∴S△ADE:S四边形BCED=1:3,即S△ADE:15=1:3,∴S△ADE=5,∴S△ABC=5+15=20.故选:D.8.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是的中点,则∠D的度数是()A.30°B.40°C.50°D.60°【分析】连接OB,如图,利用圆心角、弧、弦的关系得到∠AOB=∠COB=∠AOC =60°,然后根据圆周角定理得到∠D的度数.解:连接OB,如图,∵点B是的中点,∴∠AOB=∠COB=∠AOC=×120°=60°,∴∠D=∠AOB=30°.故选:A.9.如图,点A是反比例函数y=图象上的一点,过点A作AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,则k的值为()A.B.C.3D.4【分析】根据题意可知△AOC的面积为2,然后根据反比例函数系数k的几何意义即可求得k的值.解:∵AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,∴△AOC的面积为2,∵S△AOC=|k|=2,且反比例函数y=图象在第一象限,∴k=4,故选:D.10.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则符合题意的方程是()A.x=(x﹣5)﹣5B.x=(x+5)+5C.2x=(x﹣5)﹣5D.2x=(x+5)+5【分析】设绳索长x尺,则竿长(x﹣5)尺,根据“将绳索对半折后再去量竿,就比竿短5尺”,即可得出关于x的一元一次方程,此题得解.解:设绳索长x尺,则竿长(x﹣5)尺,依题意,得:x=(x﹣5)﹣5.故选:A.11.如图,矩形ABCD中,BD为对角线,将矩形ABCD沿BE、BF所在直线折叠,使点A落在BD上的点M处,点C落在BD上的点N处,连结EF.已知AB=3,BC=4,则EF的长为()A.3B.5C.D.【分析】求出BD=5,AE=EM,∠A=∠BME=90°,证明△EDM∽△BDA,由相似三角形的性质得出,设DE=x,则AE=EM=4﹣x,得出,解得x=,同理△DNF∽△DCB,得出,设DF=y,则CF=NF=3﹣y,则,解得y=.由勾股定理即可求出EF的长.解:∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠A=∠C=∠EDF=90°,∴BD===5,∵将矩形ABCD沿BE所在直线折叠,使点A落在BD上的点M处,∴AE=EM,∠A=∠BME=90°,∴∠EMD=90°,∵∠EDM=∠ADB,∴△EDM∽△BDA,∴,设DE=x,则AE=EM=4﹣x,∴,解得x=,∴DE=,同理△DNF∽△DCB,∴,设DF=y,则CF=NF=3﹣y,∴,解得y=.∴DF=.∴EF===.故选:C.12.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t的取值范围是()A.≤t<2B.<t≤1C.1<t≤2D.≤t≤2且t≠1【分析】由y=tx+2t+2=t(x+2)+2(t>0),得出直线y=tx+2t+2(t>0)经过点(﹣2,2),如图,当直线经过(0,3)或(0,6)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,当直线经过(0,4)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有三个整点,分别求得这三种情况下的t的值,结合图象即可得到结论.解:∵y=tx+2t+2=t(x+2)+2(t>0),∴直线y=tx+2t+2(t>0)经过点(﹣2,2),如图,当直线经过(0,3)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则3=2t+2,解得t=;当直线经过(0,6)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则6=2t+2,解得t=2;当直线经过(0,4)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有三个整点,则4=2t+2,解得t=1;∴直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t的取值范围是≤t≤2且t≠1,故选:D.二、填空题(本大题共4小题,每小题5分,共20分)13.在函数y=中,自变量x的取值范围是x≠2.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0;解:根据题意得2x﹣4≠0,解得x≠2;∴自变量x的取值范围是x≠2.14.2020年6月23日9时43分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功发射北斗系统第五十五颗导航卫星,标志着北斗三号卫星导航定位系统正式建成.根据最新数据,目前兼容北斗的终端产品至少有7亿台,其中7亿用科学记数法表示为7×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:7亿=700000000=7×108,故答案为:7×108.15.已知关于x的一元二次方程(m﹣1)2x2+3mx+3=0有一实数根为﹣1,则该方程的另一个实数根为﹣.【分析】把x=﹣1代入原方程求出m的值,进而确定关于x的一元二次方程,解出方程的根即可.解:把x=﹣1代入原方程得,(m﹣1)2﹣3m+3=0,即:m2﹣5m+4=0,解得,m=4,m=1(不合题意舍去),当m=4时,原方程变为:9x2+12x+3=0,即,3x2+4x+1=0,解得,x1=﹣1,x2=﹣,故答案为:﹣.16.如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB 上的两个动点,则AM+MN的最小值为15.【分析】作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.首先证明△ABA′是等边三角形,求出A′H,根据垂线段最短解决问题即可.解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,在Rt△ABD中,AB==10,∵A′H⊥AB,∴AH=HB=5,∴A′H=AH=15,∵AM+MN=A′M+MN≤A′H,∴AM+MN≤15,∴AM+MN的最小值为15.故答案为15.三、解答题(本大题共5小题,共44分,解答应写出必要的文字说明或推演步骤)17.计算:(﹣)﹣1﹣|﹣2|+4sin60°﹣+(π﹣3)0.【分析】先计算负整数指数幂、去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得.解:原式=﹣2﹣2+4×﹣2+1=﹣2﹣2+2﹣2+1=﹣3.18.如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.【分析】(1)根据平行线的性质求出∠B=∠C,根据AAS推出△ABE≌△DCF,根据全等三角形的性质得出即可;(2)根据全等得出AB=CD,BE=CF,∠B=∠C,求出CF=CD,推出∠D=∠CFD,即可求出答案.【解答】(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(AAS),∴AB=CD;(2)解:∵△ABE≌△DCF,∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°∵AB=CF,∴CF=CD,∴∠D=∠CFD=(180°﹣40°)=70°.19.我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有5名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为72°,图中m的值为40;(3)学校决定从本次比赛获得“A等级”的学生只能怪,选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.【分析】(1)A等的有3人,占调查人数的15%,可求出调查人数,进而求出B等的人数;(2)D等级占调查人数的,因此相应的圆心角为360°的即可,计算C等级所占的百分比,即可求出m的值;(3)用列表法表示所有可能出现的结果,进而求出相应的概率.解:(1)3÷15%=20(名),20﹣3﹣8﹣4=5(名),故答案为:5;(2)360°×=72°,8÷20=40%,即m=40,故答案为:72°,40;(3)“A等级”2男1女,从中选取2人,所有可能出现的结果如下:共有6种可能出现的结果,其中女生被选中的有4种,∴P(女生被选中)==.20.为了维护我国海洋权力,海监部门对我国领海实行了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时60海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,海监船继续向东航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求B处到灯塔P的距离;(2)已知灯塔P的周围50海里内有暗礁,若海监船继续向正东方向航行是否安全?【分析】(1)在△ABP中,求出∠PAB、∠PBA的度数即可解决问题,根据等腰三角形的性质即可得到结论;(2)作PH⊥AB于H.求出PH的值即可判定.解:(1)∵∠PAB=30°,∠ABP=120°,∴∠APB=180°﹣∠PAB﹣∠ABP=30°,∴PB=AB=60海里;(2)作PH⊥AB于H.∵∠BAP=∠BPA=30°,∴BA=BP=60,在Rt△PBH中,PH=PB•sin60°=60×=30,∵30>50,∴海监船继续向正东方向航行是安全的.21.如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.(1)求证:BE是⊙O的切线;(2)设OE交⊙O于点F,若DF=2,BC=4,求线段EF的长;(3)在(2)的条件下,求阴影部分的面积.【分析】(1)连接OC,如图,根据垂径定理由OD⊥BC得到CD=BD,则OE为BC 的垂直平分线,所以EB=EC,证明△OCE≌△OBE(SSS),得出∠OBE=∠OCE=90°,根据切线的判定定理得BE与⊙O相切;(2)设⊙O的半径为x,则OD=x﹣2,OB=x,由勾股定理得出(x﹣2)2+(2)2=x2,解得x=4,求出OE的长,则可求出EF的长;(3)由扇形的面积公式可得出答案.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,∵OD⊥BC,∴CD=BD,即OD垂直平分BC,∴EC=EB,在△OCE和△OBE中,∴△OCE≌△OBE(SSS),∴∠OBE=∠OCE=90°,∴OB⊥BE,∴BE与⊙O相切;(2)解:设⊙O的半径为x,则OD=OF﹣DF=x﹣2,OB=x,在Rt△OBD中,BD=BC=2,∵OD2+BD2=OB2,∴(x﹣2)2+(2)2=x2,解得x=4,∴OD=2,OB=4,∴∠OBD=30°,∴∠BOD=60°,∴OE=2OB=8,∴EF=OE﹣OF=8﹣4=4.(3)∵∠BOE=60°,∠OBE=90°,∴在Rt△OBE中,BE=OB=4,∴S阴影=S四边形OBEC﹣S扇形OBC=2××4×4﹣,=16﹣.四、填空题(本大题共4小题,每小题6分,共24分.)22.分解因式:b4﹣b2﹣12=(b+2)(b﹣2)(b2+3).【分析】先利用十字相乘法,再利用平方差公式进行因式分解即可.解:b4﹣b2﹣12=(b2﹣4)(b2+3)=(b+2)(b﹣2)(b2+3),故答案为:(b+2)(b﹣2)(b2+3).23.若数a使关于x的分式方程+=3的解为非负数,且使关于y的不等式组的解集为y≤0,则符合条件的所有整数a的积为40.【分析】解分式方程的得出x=,根据解为非负数得出≥0,且≠1,据此求出a≤5且a≠3;解不等式组两个不等式得出y≤0且y<a,根据解集为y≤0得出a >0;综合以上两点得出整数a的值,从而得出答案.解:去分母,得:x+2﹣a=3(x﹣1),解得:x=,∵分式方程的解为非负数,∴≥0,且≠1,解得a≤5且a≠3,解不等式﹣≥﹣,得:y≤0,解不等式2(y﹣a)<0,得:y<a,∵不等式组的解集为y≤0,∴a>0,∴0<a≤5,则整数a的值为1、2、4、5,∴符合条件的所有整数a的积为1×2×4×5=40,故答案为:40.24.如图,在平面直角坐标系中,点A(﹣2,0),直线l:y=x+与x轴交于点B,以AB为边作等边△ABA1,过点A1作A1B1∥x轴,交直线l于点B1,以A1B1为边作等边△A1B1A2,过点A2作A2B2∥x轴,交直线l于点B2,以A2B2为边作等边△A2B2A3,以此类推……,则点A2020的纵坐标是.【分析】先根据解析式求得B的坐标,即可求得AB=1,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的纵坐标为,A2的纵坐标为,A3的纵坐标为,进而得到A n的纵坐标为,据此可得点A2020的纵坐标.解:∵直线l:y=x+与x轴交于点B,∴B(﹣1,0),∴OB=1,∵A(﹣2,0),∴OA=2,∴AB=1,∵△ABA1是等边三角形,∴A1(﹣,),把y=代入y=x+,求得x=,∴B1(,),∴A1B1=2,∴A2(﹣,+×2),即A2(﹣,),把y=代入y=x+,求得x=,∴B2(,),∴A2B2=4,∴A3(3,+×4),即A3(3,),……,A n的纵坐标为,∴点A2020的纵坐标是,故答案为.25.已知抛物线y1=﹣x2+4x(如图)和直线y2=2x+b.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2.若y1≠y2,取y1和y2中较大者为M;若y1=y2,记M=y1=y2.①当x=2时,M的最大值为4;②当b=﹣3时,使M>y2的x的取值范围是﹣1<x<3;③当b=﹣5时,使M=3的x的值是x1=1,x2=3;④当b≥1时,M随x 的增大而增大.上述结论正确的是②③④.(填写所有正确结论的序号)【分析】①求出y1,y2,求出m的值即可.②求出直线与抛物线的交点坐标,利用图象法解决问题即可.③画出图象,推出M=3时,y1=3,转化为方程求出x的值即可.④当b=1时,由,消去y得到,x2﹣2x+1=0,因为△=0,推出此时直线y=2x+1与抛物线只有一个交点,推出b>1时,直线y=2x+b与抛物线没有交点,由此即可判断.解:①当x=2时,y1=4,y2=4+b,无法判断4与4+b的大小,故①错误.②如图1中,b=﹣3时,由,解得或,∴两个函数图象的交点坐标为(﹣1,﹣5)和(3,3),观察图象可知,使M>y2的x的取值范围是﹣1<x<3,故②正确,③如图2中,b=﹣5时,图象如图所示,M=3时,y1=3,∴﹣x2+4x=3,解得x=1或3,故③正确,④当b=1时,由,消去y得到,x2﹣2x+1=0,∵△=0,∴此时直线y=2x+1与抛物线只有一个交点,∴b>1时,直线y=2x+b与抛物线没有交点,∴M随x的增大而增大,故④正确.五、解答题(本大题共3小题,每小题12分,共36分)26.我们知道,任意一个正整数x都可以进行这样的分解:x=m×n(m,n是正整数,且m≤n),在x的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是x的最佳分解.并规定:f(x)=.例如:18可以分解成1×18,2×9或3×6,因为18﹣1>9﹣2>6﹣3,所以3×6是18的最佳分解,所以f(18)==.(1)填空:f(6)=;f(9)=1;(2)一个两位正整数t(t=10a+b,1≤a≤b≤9,a,b为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求f (t)的最大值;(3)填空:①f(22×3×5×7)=;②f(23×3×5×7)=;③f(24×3×5×7)=;④f(25×3×5×7)=.【分析】(1)仿照样例进行计算便可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10b+a,根据“交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54”的确定出x与y的关系式,进而求出所有的两位数,进而确定出F(t)的最大值即可;(3)根据样例计算便可.解:(1)6可分解成1×6,2×3,∵6﹣1>3﹣2,∴2×3是6的最佳分解,∴f(6)=,9可分解成1×9,3×3,∵9﹣1>3﹣3,∴3×3是9的最佳分解,∴f(9)==1,故答案为:;1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10b+a,根据题意得,t′﹣t=(10b+a)﹣(10a+b)=9(b﹣a)=54,∴b=a+6,∵1≤a≤b≤9,a,b为正整数,∴满足条件的t为:17,28,39;∵F(17)=,F(28)=,F(39)=,∵,∴F(t)的最大值为;(3)①∵22×3×5×7的是最佳分解为20×21,∴f(22×3×5×7)=,故答案为:;②∵23×3×5×7的最佳分解为24×35,∴f(23×3×5×7)=,故答案为;③∵24×3×5×7的最佳分解是35×48,∴f(24×3×5×7)=,故答案为:;④∵25×3×5×7的最佳分解是48×70,∴f(25×3×5×7)=,故答案为:.27.如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B顺时针旋转90°到BQ,连结QP交BC于点E,QP延长线与边AD交于点F.(1)连结CQ,求证:AP=CQ;(2)若AP=AC,求CE:BC的值;(3)求证:PF=EQ.【分析】(1)证明△BAP≌△BCQ(SAS)可得结论.(2)过点C作CH⊥PQ于H,过点B作BT⊥PQ于T.由AP=AC,可以假设AP=CQ=a,则PC=3a,解直角三角形求出CH.BT,利用平行线分线段成比例定理解决问题即可.(3)证明△PGB≌△QEB,推出EQ=PG,再证明△PFG是等腰直角三角形即可.【解答】(1)证明:如图1,∵线段BP绕点B顺时针旋转90°得到线段BQ,∴BP=BQ,∠PBQ=90°.∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°.∴∠ABC=∠PBQ.∴∠ABC﹣∠PBC=∠PBQ﹣∠PBC,即∠ABP=∠CBQ.在△BAP和△BCQ中,∵,∴△BAP≌△BCQ(SAS).∴CQ=AP.(2)解:过点C作CH⊥PQ于H,过点B作BT⊥PQ于T.∵AP=AC,∴可以假设AP=CQ=a,则PC=3a,∵四边形ABCD是正方形,∴∠BAC=∠ACB=45°,∵△ABP≌△CBQ,∴∠BCQ=∠BAP=45°,∴∠PCQ=90°,∴PQ===a,∵CH⊥PQ,∴CH==a,∵BP=BQ,BT⊥PQ,∴PT=TQ,∵∠PBQ=90°,∴BT=PQ=a,∵CH∥BT,∴===,∴=.(3)解:结论:PF=EQ,理由是:如图2,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°,∵∠BPQ=45°,∴∠GPB=45°,∴∠GPB=∠PQB=45°,∵PB=BQ,∠ABP=∠CBQ,∴△PGB≌△QEB,∴EQ=PG,∵∠BAD=90°,∴F、A、G、P四点共圆,连接FG,∴∠FGP=∠FAP=45°,∴△FPG是等腰直角三角形,∴PF=PG,∴PF=EQ.28.如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(4,0)、C(0,2)三点,点D(x,y)为抛物线上第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当△BCD的面积为3时,求点D的坐标;(3)过点D作DE⊥BC,垂足为点E,是否存在点D,使得△CDE中的某个角等于∠ABC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.【分析】(1)根据点A、B、C的坐标,利用待定系数法即可求出抛物线的解析式;(2)根据三角形面积公式可求与BC平行的经过点D的y轴上点M的坐标,再根据待定系数法可求DM的解析式,再联立抛物线可求点D的坐标;(3)分∠DCE=2∠ABC及∠CDE=2∠ABC两种情况考虑:①当∠DCE=2∠ABC时,取点F(0,﹣2),连接BF,则CD∥BF,由点B,F的坐标,利用待定系数法可求出直线BF,CD的解析式,联立直线CD及抛物线的解析式成方程组,通过解方程组可求出点D的坐标;②当∠CDE=2∠ABC时,过点C作CN⊥BF于点N,交OB于H.作点N关于BC的对称点P,连接NP交BC于点Q,由△OCH∽△OBF求出H点坐标,利用待定系数法求出直线CN的解析式,联立直线BF及直线CN成方程组,通过解方程组可求出点N的坐标,利用对称的性质可求出点P的坐标,由点C、P的坐标,利用待定系数法可求出直线CP的解析式,将直线CP的解析式代入抛物线解析式中可得出关于x的一元二次方程,解之取其非零值可得出点D的横坐标.依此即可得解.解:(1)将A(﹣1,0)、B(4,0)、C(0,2)代入y=ax2+bx+c得:,解得:.故抛物线的解析式为y=﹣x2+x+2.(2)如图2,设点M的坐标为(0,m),使得△BCM的面积为3,3×2÷4=1.5,则m=2+1.5=,M(0,)∵点B(4,0),C(0,2),∴直线BC的解析式为y=﹣x+2,∴DM的解析式为y=﹣x+,联立抛物线解析式,解得,.∴点D的坐标为(3,2)或(1,3).(3)分两种情况考虑:①当∠DCE=2∠ABC时,取点F(0,﹣2),连接BF,如图3所示.∵OC=OF,OB⊥CF,∴∠ABC=∠ABF,∴∠CBF=2∠ABC.∵∠DCB=2∠ABC,∴∠DCB=∠CBF,∴CD∥BF.∵点B(4,0),F(0,﹣2),∴直线BF的解析式为y=x﹣2,∴直线CD的解析式为y=x+2.联立直线CD及抛物线的解析式成方程组得:,解得:(舍去),,∴点D的坐标为(2,3);②当∠CDE=2∠ABC时,过点C作CN⊥BF于点N,交OB于H.作点N关于BC的对称点P,连接NP交BC于点Q,如图4所示.∵∠OCH=90°﹣∠OHC,∠OBF=90°﹣∠BHN,∠OHC=∠BHN,∴∠OCH=∠OBF.在△OCH与△OBF中,∴△OCH∽△OBF,∴=,即=,∴OH=1,H(1,0).设直线CN的解析式为y=kx+n(k≠0),∵C(0,2),H(1,0),∴,解得,∴直线CN的解析式为y=﹣2x+2.连接直线BF及直线CN成方程组得:,解得:,∴点N的坐标为(,﹣).∵点B(4,0),C(0,2),∴直线BC的解析式为y=﹣x+2.∵NP⊥BC,且点N(,﹣),∴直线NP的解析式为y=2x﹣.联立直线BC及直线NP成方程组得:,解得:,∴点Q的坐标为(,).∵点N(,﹣),点N,P关于BC对称,∴点P的坐标为(,).∵点C(0,2),P(,),∴直线CP的解析式为y=x+2.将y=x+2代入y=﹣x2+x+2整理,得:11x2﹣29x=0,解得:x1=0(舍去),x2=,∴点D的横坐标为.综上所述:存在点D,使得△CDE的某个角恰好等于∠ABC的2倍,点D的横坐标为2或.。
2020年内江市中考数学试题(含答案解析)
BACD2020年内江市中考数学试题(含答案解析)第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1、21的倒数是( ) A 、2 B 、21 C 、21-D 、2-2、下列四个数中,最小的数是( ) A 、0B 、20201-C 、5D 、1-3、下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )4、如图,已知直线b a //,︒=∠501,则2∠的度数为( ) A 、︒140 B 、︒130 C 、︒50 D 、︒405、小明参加学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是( )A 、80,90B 、90,90C 、90,85D 、90,95 6、将直线12--=x y 向上平移两个单位,平移后的直线所对应的函数关系式为( ) A 、52--=x y B 、32--=x y C 、12+-=x y D 、32+-=x y 7、如图,在ABC ∆中,D 、E 分别是AB 和AC 的中点,15=BCED S 四边形,则=∆ABC S ( ) A 、30 B 、25 C 、22.5 D 、20第7题图EBCD A第8题图OBCDAOxyC DA 1a2 b8、如图,点A 、B 、C 、D 在⊙O 上,︒=∠120AOC ,点B 是⌒AC 的中点,则D ∠的度数是( ) A 、︒30 B 、︒40 C 、︒50 D 、︒60 9、如图,点A 是反比例函数xky =图象上的一点,过点A 作x AC ⊥轴,垂足为点C ,D 为AC 的中点,若AOD ∆的面积为1,则k 的值为( )A 、34 B 、38C 、3D 、410、我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托。
折回索子却量竿,却比竿子短一托。
四川省内江市2020年中考数学试题解析(专业版)
BACD内江市二○二○年初中学业水平考试暨高中阶段学校招生考试试卷数学试题班级: 学号: 姓名: 成绩:本试卷分为A 卷和B 卷两部分。
A 卷1至6页,满分100分;B 卷7至10页,满分60分。
全卷满分160分,考试时间120分钟。
题号A 卷B 卷总分一二三四五17 18 19 20 21 26 27 28 得分A 卷(共100分)注意事项:1、答题前,考生务必将将自己的姓名、学号、班级等填写好。
2、答A 卷时,每小题选出答案后,用钢笔或水笔把答案直接填写在对应题目的后面括号。
第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1、21的倒数是( A ) A 、2B 、21 C 、21-D 、2-2、下列四个数中,最小的数是( D )A 、0B 、20201-C 、5D 、1- 3、下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是(C )4、如图,已知直线b a //,︒=∠501,则2∠的度数为( B )1aA 、︒140B 、︒130C 、︒50D 、︒405、小明参加学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是( B )A 、80,90B 、90,90C 、90,85D 、90,95 6、将直线12--=x y 向上平移两个单位,平移后的直线所对应的函数关系式为( C ) A 、52--=x y B 、32--=x y C 、12+-=x y D 、32+-=x y 7、如图,在ABC ∆中,D 、E 分别是AB 和AC 的中点,15=BCED S 四边形,则=∆ABC S ( D ) A 、30 B 、25 C 、22.5 D 、208、如图,点A 、B 、C 、D 在⊙O 上,︒=∠120AOC ,点B 是⌒AC 的中点,则D ∠的度数是(A ) A 、︒30 B 、︒40 C 、︒50 D 、︒60 9、如图,点A 是反比例函数xky =图象上的一点,过点A 作x AC ⊥轴,垂足为点C ,D 为AC 的中点,若AOD ∆的面积为1,则k 的值为( D )A 、34 B 、38C 、3D 、410、我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内江市2020年初中学业水平考试暨高中阶段学校招生考试试卷数学试题A卷(共100分)注意事项:1、答题前,考生务必将将自己的姓名、学号、班级等填写好.2、答A卷时,每小题选出答案后,用钢笔或水笔把答案直接填写在对应题目的后面括号.第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.12的倒数是()A. B. C. 12D.12-【答案】A【解析】【分析】根据乘积是1的两个数叫做互为倒数,求解.【详解】解:∵12=1 2⨯∴12的倒数是2故选:A.【点睛】本题考查倒数的概念,掌握概念正确计算是解题关键.2.下列四个数中,最小的数是()A. 0B.12020- C. 5 D. 1-【答案】D【解析】【分析】先根据有理数的大小比较法则比较大小,即可得出选项.【详解】∵11052020-<-<<,∴最小的数是1-,故选:D .【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( ) A. B. C. D.【答案】B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A 、C 、D 都不是中心对称图形,只有B 是中心对称图形.故选B.4.如图,已知直线//a b ,150∠=︒,则2∠的度数为( )A. 140︒B. 130︒C. 50︒D. 40︒【答案】B【解析】【分析】 利用平行线的性质即可解决问题.【详解】如图,∵a ∥b ,∴∠1=∠3=50°,∴∠2=180°−50°=130°,故选:B .【点睛】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.5.小明参加学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是( )A. 80,90B. 90,90C. 90,85D. 90,95【答案】B【解析】【分析】根据中位数、众数的定义即可求解.【详解】把分数从小到大排列为:80,85,90,90,95故中位数为90,众数为90故选B .【点睛】此题主要考查中位数、众数,解题的关键是熟知中位数、众数的定义.6.将直线21y x =--向上平移两个单位,平移后的直线所对应的函数关系式为( )A. 25y x =--B. 23y x =--C. 21y x =-+D. 23y x =-+ 【答案】C【解析】【分析】向上平移时,k 的值不变,只有b 发生变化.【详解】解:原直线的k=-2,b=-1;向上平移两个单位得到了新直线,那么新直线的k=-2,b=-1+2=1.∴新直线的解析式为y=-2x+1.故选:C .【点睛】本题主要考查了一次函数图象的变换,求直线平移后的解析式时要注意平移时k 和b 的值发生变化.7.如图,在ABC ∆中,D 、E 分别是AB 和AC 的中点,15BCED S =四边形,则ABC S ∆=( )A. 30B. 25C. 22.5D. 20【答案】D【解析】【分析】首先判断出△ADE ∽△ABC ,然后根据相似三角形的面积比等于相似比的平方即可求出△ABC 的面积.【详解】解:根据题意,点D 和点E 分别是AB 和AC 的中点,则DE ∥BC 且DE=12BC ,故可以判断出△ADE ∽△ABC,根据相似三角形的面积比等于相似比的平方,可知ADE S ∆:ABC S ∆=1:4,则BCED S 四边形:ABC S ∆=3:4,题中已知15BCED S =四边形,故可得ADE S ∆=5,ABC S ∆=20故本题选择D【点睛】本题主要考查相似三角形的判定与性质,解答本题的关键是得出DE 是中位线,从而判断△ADE ∽△ABC ,然后掌握相似三角形的面积比等于相似比的平方即可求解本题.8.如图,点A 、B 、C 、D 在⊙O 上,120AOC ∠=︒,点B 是AC 的中点,则D ∠的度数是( )A. 30B. 40︒C. 50︒D. 60︒【答案】A【解析】【分析】 根据圆心角、弧、弦的关系定理得到∠AOB =12∠AOC ,再根据圆周角定理解答. 【详解】连接OB ,∵点B 是AC 的中点, ∴∠AOB =12∠AOC =60°, 由圆周角定理得,∠D =12∠AOB =30°, 故选:A .【点睛】本题考查的是圆心角、弧、弦的关系定理、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.9.如图,点A 是反比例函数k y x=图象上的一点,过点A 作AC x ⊥轴,垂足为点C ,D 为AC 的中点,若AOD ∆的面积为1,则k 的值为( )A. 43B. 83C. 3D. 4【答案】D【解析】【分析】先设出点A 的坐标,进而表示出点D 的坐标,利用△ADO 的面积建立方程求出2mn =,即可得出结论.【详解】点A 的坐标为(m ,2n ),∴2mn k =,∵D 为AC 的中点,∴D (m ,n ),∵AC ⊥x 轴,△ADO 的面积为1, ∴()ADO 11121222S AD OC n n m mn =⋅=-⋅==, ∴2mn =,∴24k mn ==,故选:D .【点睛】本题考查反比例函数系数k 的几何意义、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答.10.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺.则符合题意的方程是( ) A. ()1552x x =-- B. ()1552x x =++ C. ()255x x =--D. ()255x x =++【答案】A【解析】【分析】 设索为x 尺,杆子为(5x -)尺,则根据“将绳索对半折后再去量竿,就比竿短5尺”,即可得出关于x 一元一次方程.【详解】设索为x 尺,杆子为(5x -)尺,根据题意得:12x =(5x -)5-. 故选:A . 【点睛】本题考查了一元一次方程的应用,找准等量关系是解题的关键.11.如图,矩形ABCD 中,BD 为对角线,将矩形ABCD 沿BE 、BF 所在直线折叠,使点A 落在BD 上的点M 处,点C 落在BD 上的点N 处,连结EF .已知34AB BC ==,,则EF 的长为( )A. 3B. 5C. 5136D. 13【答案】C【解析】【分析】由矩形的性质和已知求出BD=5,根据折叠的性质得△ABE ≌△MBE ,设AE 的长度为x ,在Rt △EMD 中,由勾股定理求出DE 的长度,同理在Rt △DNF 中求出DF 的长度,在Rt △DEF 中利用勾股定理即可求出EF 的长度.【详解】解:∵四边形ABCD 是矩形,AB=3,BC=4,∴2234+,设AE 的长度为x ,由折叠可得:△ABE ≌△MBE ,∴EM=AE=x ,DE=4-x ,BM=AB=3,DM=5-3=2,在Rt △EMD 中,EM 2+DM 2=DE 2,∴x 2+22=(4-x )2,解得:x=32,ED=4-32=52, 设CF 的长度为y ,由折叠可得:△CBF ≌△NBF ,∴NF=CF=y ,DF=3-y ,BN=BC=4,DN=5-4=1,在Rt △DNF 中,DN 2+NF 2=DF 2,∴y 2+12=(3-y )2,解得:x=43,DF=3-43=53, 在Rt △DEF 中,==, 故答案为:C .【点睛】本题考查矩形的性质、折叠的性质、全等三角形的判定与性质和勾股定理,运用勾股定理求出DE 和DF 的长度是解题的关键.12.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t 的取值范围是( ) A. 122t ≤< B. 112t <≤ C . 12t <≤ D. 122t ≤≤且1t ≠ 【答案】D【解析】【分析】画出函数图象,利用图象可得t 的取值范围.【详解】∵22y tx t =++,∴当y=0时,x=22t--;当x=0时,y=2t+2,∴直线22y tx t =++与x 轴的交点坐标为(22t --,0),与y 轴的交点坐标为(0,2t+2), ∵t>0,∴2t+2>2,当t=12时,2t+2=3,此时22t--=-6,由图象知:直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,如图1,当t=2时,2t+2=6,此时22t--=-3,由图象知:直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,如图2,当t=1时,2t+2=4,22t--=-4,由图象知:直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有三个整点,如图3,∴122t ≤≤且1t ≠, 故选:D.【点睛】此题考查一次函数的图象的性质,一次函数图象与坐标轴交点坐标,根据t 的值正确画出图象理解题意是解题的关键.第Ⅱ卷(非选择题 共64分)注意事项:1、第Ⅱ卷共4页,用钢笔或圆珠笔将答案直接答在试卷上.2、答题前将密封线内的项目填写清楚.二、填空题(本大题共4小题,每小题5分,共20分)13.函数124y x =-中,自变量x 的取值范围是_____ . 【答案】2x ≠【解析】【详解】根据函数可知:240x -≠,解得:2x ≠.故答案为:2x ≠.14.2020年6月23日9时43分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功发射北斗系统第五十五颗导航卫星,标志着北斗三号卫星导航定位系统正式建成.根据最新数据,目前兼容北斗的终端产品至少有7亿台,其中7亿用科学记数法表示为______________【答案】8710⨯【解析】【分析】科学记数法的表示形式为:10n a ⨯,其中1≤∣a ∣﹤10,n 为整数,确定a 值和n 值即可解答.【详解】7亿=700000000=8710⨯,故答案为:8710⨯.【点睛】此题考查科学记数法的表示,正确确定a 的值和n 的值是解答的关键.15.已知关于x 的一元二次方程()221330m x mx -++=有一实数根为1-,则该方程的另一个实数根为_____________ 【答案】13-【解析】【分析】根据一元二次方程的解的定义把x=-1代入原方程得到关于m 的一元二次方程,解得m 的值,然后根据一元二次方程的定义确定m 的值.【详解】解:把x=-1代入()221330m x mx -++=得m 2-5m+4=0,解得m 1=1,m 2=4,∵(m-1)2≠0,∴m ≠1.∴m=4.∴方程为9x 2+12x+3=0.设另一个根为a,则-a=39. ∴a=-13. 故答案为: -13. 【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以一元二次方程的解也称为一元二次方程的根.也考查了一元二次方程的定义.16.如图,在矩形ABCD 中,10BC =,30ABD ∠=︒,若点M 、N 分别是线段DB 、AB 上的两个动点,则AM MN +的最小值为___________________.【答案】15.【解析】【分析】如图,过A 作AG BD ⊥于G ,延长AG ,使AG EG =,过E 作EN AB ⊥于N ,交BD 于M ,则AM MN EN +=最短,再利用矩形的性质与锐角三角函数求解EN 即可得到答案.【详解】解:如图,过A 作AG BD ⊥于G ,延长AG ,使AG EG =,过E 作EN AB ⊥于N ,交BD 于M ,则AM MN EN +=最短,四边形ABCD 为矩形,10BC =,30ABD ∠=︒,10,20,cos303,AD BD AB BD ∴===•︒=,AG BD AD AB •=•2010103,AG ∴=⨯53,2103,AG AE AG ∴===,,,AE BD EN AB EMG BMN ⊥⊥∠=∠30,E ABD ∴∠=∠=︒3cos3010315,2EN AE ∴=•︒==15,AM MN ∴+=即AM MN +的最小值为15.故答案为:15.【点睛】本题考查的是矩形的性质,锐角三角函数的应用,同时考查利用轴对称与垂线段最短求线段和的最小值问题,掌握以上知识是解题的关键.三、解答题(本大题共5小题,共44分,解答应写出必要的文字说明或推演步骤)17.计算:()10124sin 601232π-⎛⎫---+︒- ⎪⎝⎭ 【答案】-3【解析】【分析】根据负整数指数幂、绝对值、特殊角的三角函数值、二次根式和零次幂的运算法则分别对每项进行化简,再进行加减计算即可. 【详解】解:()10124sin 601232π-⎛⎫---+︒- ⎪⎝⎭ 2223231=--+3=-【点睛】本题考查实数的混合运算、熟练掌握负整数指数幂、绝对值、特殊角的三角函数值、二次根式和零次幂的运算法则是解题的关键.18.如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE =DF ,∠A =∠D . (1)求证:AB =CD ;(2)若AB =CF ,∠B =40°,求∠D 的度数.【答案】(1)AB=CD(2)70°【解析】【分析】(1)根据平行线的性质求出∠B=∠C,根据AAS推出△ABE≌△CDF,根据全等三角形的性质得出即可;(2)根据全等得出AB=CD,BE=CF,∠B=∠C,求出CF=CD,推出∠D=∠CFE,即可求出答案.【详解】(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△CDF中,∠B=∠C,AE=DF ,∠A=∠D.∴△AEB≌△DFC.∴AB=CD.(2)∵AB=CD,AB=CF,∴CD=CF,∵∠B=∠C=40°,∴∠D=(180°-40°)÷2=70°.【点睛】本题考查了全等三角形的性质和判定,平行线的性质,三角形内角和定理的应用,能根据全等三角形的判定求出△ABE≌△CDF是解此题的关键.19.我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为,图中m的值为;(3)学校决定从本次比赛获得“A等级”的学生中选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.【答案】(1)5(2)72°;40(3)2 3【解析】【分析】(1)先根据“A等级”的人数及占比求出学生总人数,再减去各组人数即可求出成绩为“B等级”的学生人数;(2)根据“D等级”的占比即可求出其圆心角度数,根据“C等级”的人数即可求出m的值;(3)根据题意画树状图,再根据概率公式即可求解.【详解】(1)学生总人数为3÷15%=20(人)∴成绩为“B等级”的学生人数有20-3-8-4=5(人)故答案为:5;(2)“D等级”的扇形的圆心角度数为43607220⨯︒=︒m=81004020⨯=,故答案为:72°;40;(3)根据题意画树状图如下:∴P(女生被选中)=4263=.【点睛】此题主要考查统计调查的应用,解题的关键是根据题意求出学生总人数及概率的求解方法.20.为了维护我国海洋权力,海监部门对我国领海实行了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时60海里的速度向正东方向航行,在A处测得灯塔P在北偏东60︒方向上,海监船继续向东航行1小时到达B处,此时测得灯塔P在北偏东30方向上.(1)求B处到灯塔P的距离;(2)已知灯塔P的周围50海里内有暗礁,若海监船继续向正东方向航行是否安全?【答案】(1)B 处到灯塔P 的距离为60海里;(2)海监船继续向正东方向航行是安全的【解析】【分析】(1)作PD ⊥AB 于D .求出∠PAB 、∠PBA 、∠P 的度数,证得△ABP 为等腰三角形,即可解决问题; (2)在Rt △PBD 中,解直角三角形求出PD 的值即可判定.【详解】(1)过点P 作PD ⊥AB 于点D ,由题意得,AB=60(海里),∠PAB=30°,∠PBD=60°,∴∠APB=∠PBD-∠PAB=60°-30°=30°=∠PAB ,∴PB=AB=60(海里),答:B 处到灯塔P 的距离为60海里;(2)由(1)可知∠APB=∠PAB=30°,∴PB=AB=60(海里)在Rt △PBD 中,PD=BPsin60°=603303=, ∵30350>, ∴海监船继续向正东方向航行是安全的.【点睛】本题考查了解直角三角形的应用-方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.21.如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD BC 于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连结BE .(1)求证:BE 是⊙O 的切线;(2)设OE 交⊙O 于点F ,若243DF BC ==,EF 的长;(3)在(2)的条件下,求阴影部分的面积.【答案】(1)见解析;(2)EF=4;(3)161633π-【解析】【分析】 (1)连接OC ,如图,根据垂径定理由OD ⊥BC 得到CD=BD ,则OE 为BC 的垂直平分线,所以EB=EC ,根据等腰三角形的性质得∠EBC=∠ECB ,加上∠OBC=∠OCB ,则∠OBE=∠OCE ;再根据切线的性质得∠OCE=90°,所以∠OBE=90°,然后根据切线的判定定理得BE 与⊙O 相切;(2)设⊙O 的半径为R ,则OD=R-DF=R-2,OB=R ,在Rt △OBD ,利用勾股定理解得R=4,再利用含30º角的直角三角形边角关系可求得OE ,利用EF=OE-OF 即可解答;(3)利用(2)中可求得∠BOC=120º,然后利用=S OBEC S S -阴影四边形扇形OBC 代入数值即可求解. 【详解】(1)证明:连接OC ,如图,∵OD ⊥BC ,∴CD=BD ,∴OE 为BC 的垂直平分线,∴EB=EC ,∴∠EBC=∠ECB ,∵OB=OC ,∴∠OBC=∠OCB ,∴∠OBC+∠EBC=∠OCB+∠ECB ,即∠OBE=∠OCE ,∵CE 为⊙O 的切线,∴OC ⊥CE ,∴∠OCE=90°,∴∠OBE=90°,∴OB ⊥BE ,∴BE 与⊙O 相切.(2)设⊙O 的半径为R ,则OD=R-DF=R-2,OB=R ,在Rt △OBD 中,BD=12BC=23 ∵OD 2+BD 2=OB 2,∴222(2)(23)R R -+=,解得R=4,∴OD=2,OB=4,∴∠OBD=30°,∴∠BOD=60°,∴在Rt △OBE 中,∠BEO=30º,OE=2OB=8,∴EF=OE-OF=8-4=4,即EF=4;(3)由∠OCD=∠OBD=30º和OD ⊥BC 知:∠COD=∠BOD=60º,∴∠BOC=120º,又BC=43,OE=8,∴=S OBEC S S -阴影四边形扇形OBC =2112048432360π⨯⨯- 161633π=-,【点睛】本题考查了切线的判定与性质、垂径定理、扇形面积的计算、含30º角的直角三角形边角关系、勾股定理等知识,熟练掌握每个知识点是解答的关键.B 卷(共60分)四、填空题(本大题共4小题,每小题6分,共24分.)22.分解因式:4212b b --=_____________【答案】()()()2322b b b ++- 【解析】【分析】先根据十字相乘法,再利用平方差公式即可因式分解.【详解】4212b b --=()()()()()22234322b b b b b +-=++- 故答案为:()()()2322b b b ++-. 【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.23.若数a 使关于x 的分式方程2311x a x x ++=--的解为非负数,且使关于y 的不等式组()3113431220y y y a -+⎧-≥-⎪⎨⎪-<⎩的解集为0y ≤,则符合条件的所有整数a 的积为_____________【答案】40【解析】【分析】根据分式方程的解为正数即可得出a ≤5且a≠3,根据不等式组的解集为0y ≤,即可得出a>0,找出0<a ≤5且a≠3中所有的整数,将其相乘即可得出结论. 【详解】解:分式方程2311x a x x ++=--的解为x=52a -且x≠1, ∵分式方程2311x a x x++=--的解为非负数, ∴502a -≥且52a -≠1. ∴a ≤5且a≠3.()3113431220y y y a -+⎧-≥-⎪⎨⎪-<⎩①② 解不等式①,得0y ≤.解不等式②,得y<a.∵关于y 的不等式组()3113431220y y y a -+⎧-≥-⎪⎨⎪-<⎩的解集为0y ≤,∴a>0.∴0<a ≤5且a≠3.又a 为整数,则a 的值为1,2,4,5.符合条件的所有整数a 的积为124540⨯⨯⨯=.故答案为:40.【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为0y ≤,找出a 的取值范围是解题的关键.24.如图,在平面直角坐标系中,点A (-2,0),直线33:l y x =+与x 轴交于点B ,以AB 为边作等边1ABA ∆,过点1A 作11//A B x 轴,交直线l 于点1B ,以11A B 为边作等边112A B A ∆,过点2A 作22//A B x 轴,交直线l 于点2B ,以22A B 为边作等边223A B A ∆,以此类推……,则点2020A 的纵坐标是______________202031)- 【解析】【分析】 如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),且与x 轴夹角为30º,则有AB=1,然后根据平行线的性质、等边三角形的性质、含30º的直角三角形的性质,分别求的A 1、A 2、A 3、的纵坐标,进而得到A n 的纵坐标,据此可得A 2020的纵坐标,即可解答.【详解】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),与y 轴交于点D (03, ∴OB=1,OD=33,∴∠DBO=30º由题意可得:∠A 1B 1B=∠A 2B 2B 1=30º,∠B 1A 1B=∠B 2A 2B 1=60º ∴∠A 1BB 1=∠A 2B 1B 2=90º,∴AB=1,A 1B 1=2A 1B=21,A 2B 2=2A 2B 1=22,A 3B 3=2A 3B 2=23,…A n B n =2n∴A 11,A 111)-;A 2C 11B 112,A2的纵坐标为21+122⨯=012)2+=32=21)2-;A 3C 2=2A 2B 2=222,A 3×1+122⨯22=012(222)2++7=3(21)2-; …由此规律可得:A n C n-112n -,A n 0121222)n -++++1)n -,∴A 2020=20201)2-,故答案为:2020(21)2-【点睛】本题是一道点的坐标变化规律探究,涉及一次函数的图象、等边三角形的性质、含30º角的直角三角形的性质,数字型规律等知识,解答的关键是认真审题,观察图象,结合基本图形的有关性质,找到坐标变化规律.25.已知抛物线214y x x =-+(如图)和直线22y x b =+.我们规定:当x 取任意一个值时,x 对应的函数值分别为1y 和2y .若12y y ≠,取1y 和2y 中较大者为M ;若12y y =,记12M y y ==.①当2x =时,M 的最大值为4;②当3b =-时,使2M y >的x 的取值范围是13x ;③当5b =-时,使3M =的x 的值是11x =,23x =;④当1b ≥时,M 随x 的增大而增大.上述结论正确的是____(填写所有正确结论的序号)【答案】②③④【解析】【分析】根据题目中的较大者M 的定义逐个分析即可.【详解】解:对于①:当2x =时,212424=-+⨯=y ,222=4+=⨯+y b b ,显然只要0b >,则M 的值为4+b ,故①错误;对于②:当3b =-时,在同一直角坐标系内画出12,y y 的图像,如下图所示,其中红色部分即表示M ,联立12,y y 的函数表达式,即2423-+=-x x x ,求得交点横坐标为3和1-,观察图形可知2M y >的x 的取值范围是13x ,故②正确;对于③:当5b =-时,在同一直角坐标系内画出12,y y 的图像,如下图所示,其中红色部分即表示M ,联立12,y y 的函数表达式,即2425-+=-x x x ,求得其交点的横坐标为1+6和16-,故M=3时分类讨论:当2143=-+=y x x 时,解得13x =或21x =,当2253=-=y x 时,解得3416=>+x (舍),故③正确;对于④:当1b ≥时,函数21y y ≥,此时2y 图像一直在1y 图像上方,如下图所示,故此时M=2y ,故M 随x 的增大而增大,故④正确.故答案为:②③④.【点睛】本题考查了二次函数与一次函数的图像性质及交点坐标,本题的关键是要能理解M 的含义,学会用数形结合的方法分析问题.五、解答题(本大题共3小题,每小题12分,共36分)26.我们知道,任意一个正整数x 都可以进行这样的分解:x m n =⨯(m ,n 是正整数,且m n ≤),在x 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m n ⨯是x 的最佳分解.并规定:()m f x n=. 例如:18可以分解成118⨯,29⨯或36⨯,因为1819263->->-,所以36⨯是18的最佳分解,所以()311862f ==. (1)填空:()6________f =;()9_________f =;(2)一个两位正整数t (10t a b =+,19a b ≤≤≤,a ,b 为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求()f t 的最大值;(3)填空:①()22357_____________f ⨯⨯⨯=;②()32357_____________f ⨯⨯⨯=;③()42357_____________f ⨯⨯⨯=;④()52357_____________f ⨯⨯⨯=. 【答案】(1)23;1;(2)t 为39,28,17;()f t 的最大值47;(3)20141514,,,21152815【解析】【分析】 (1)6=1×6=2×3,由已知可求()6f =23;9=1×9=3×3,由已知可求()9f =1; (2)由题意可得:交换后的数减去交换前的数的差为:10b +a−10a−b =9(b−a )=54,得到b−a =6,可求t 的值,故可得到()f t 的最大值;(3)根据()m f x n=的定义即可依次求解. 【详解】(1)6=1×6=2×3, ∵6−1>3−2,∴()6f =23; 9=1×9=3×3,∵9−1>3−3,∴()9f =1, 故答案为:23;1; (2)由题意可得:交换后的数减去交换前的数的差为:10b +a−10a−b =9(b−a )=54,∴b−a =6,∵1≤a ≤b ≤9,∴b =9,a =3或b =8,a =2或b =7,a =1,∴t 为39,28,17;∵39=1×39=3×13,∴()39f =313; 28=1×28=2×14=4×7,∴()28f =47;∴()11717f =; ∴()f t 的最大值47. (3)①∵22357⨯⨯⨯=20×21 ∴()220235721f ⨯⨯⨯=; ②32357⨯⨯⨯=28×30∴()3281423573015f ⨯⨯⨯==; ③∵42357⨯⨯⨯=56×30∴()4301523575628f ⨯⨯⨯==; ④∵52357⨯⨯⨯=56×60 ∴()5561423576015f ⨯⨯⨯==, 故答案为:20141514,,,21152815. 【点睛】本题考查因式分解的应用;理解题意,从题目中获取信息,列出正确的代数式,再由数的特点求解是解题的关键.27.如图,正方形ABCD 中,P 是对角线AC 上的一个动点(不与A 、C 重合),连结BP ,将BP 绕点B 顺时针旋转90︒到BQ ,连结QP 交BC 于点E ,QP 延长线与边AD 交于点F .(1)连结CQ ,求证:AP CQ =;(2)若14AP AC =,求:CE BC 的值; (3)求证:PF EQ =.【答案】(1)见解析;(2) 38;(3)见解析【分析】(1)由旋转知△PBQ 为等腰直角三角形,得到PB=QB ,∠PBQ=90°,进而证明△APB ≌△CQB 即可;(2)设AP=x ,则AC=4x ,PC=3x ,由(1)知CQ=AP=x ,又△ABC 为等腰直角三角形,所以BC=2AC ,,再证明△BQE ∽△BCQ ,由此求出BE ,进而求出CE:BC 的值;(3)在CE 上截取CG ,并使CG=FA ,证明△PFA ≌△QGC ,进而得到PF=QG ,然后再证明∠QGE=∠QEG 即可得到QG=EQ ,进而求解.【详解】解:∵四边形ABCD 为正方形,∴AB=BC ,∠ABC=90°,∵BP 绕点B 顺时针旋转90︒到BQ ,∴BP=BQ ,∠PBQ=90°,∴∠ABC-∠PBC=∠PBQ-∠PBC,∴∠ABP=∠CBQ ,在△APB 和△CQB 中,=⎧⎪∠=∠⎨⎪=⎩AB BCABP CBQ BP QB,∴△APB ≌△CQB(SAS),∴AP=CQ .(2) 设AP=x ,则AC=4x ,PC=3x ,由(1)知CQ=AP=x ,△ABC 为等腰直角三角形,∴BC=2AC ,Rt △PCQ中,由勾股定理有:===PQ ,且△PBQ 为等腰直角三角形,∴2==BQ PQ ,又∠BCQ=∠BAP=45°,∠BQE=45°,∴∠BCQ=∠BQE=45°,且∠CBQ=∠CBQ ,∴△BQE ∽△BCQ ,∴=BQ BE BC BQ ,代入数据:5=225x x x, ∴BE=524x ,∴CE=BC-BE=324x , ∴3234:=822=CE BC , 故答案为:38. (3) 在CE 上截取CG ,并使CG=FA ,如图所示:∵∠FAP=∠GCQ=45°,且由(1)知AP=CQ ,且截取CG=FA ,故有△PFA ≌△QGC(SAS),∴PF=QG ,∠PFA=∠CGQ ,又∵∠DFP=180°-∠PFA ,∠QGE=180°-∠CGQ , ∴∠DFP=∠QGE ,∵DA //BC ,∴∠DFP=∠CEQ ,∴∠QGE=∠CEQ ,∴△QGE 为等腰三角形,∴GQ=QE ,故PF=QE .【点睛】本题考查了正方形的性质、旋转的性质、三角形全等的判定和性质、相似三角形判定和性质的综合,具有一定的综合性,本题第(3)问关键是能想到在CE 上截取CG ,并使CG=FA 这条辅助线. 28.如图,抛物线2y ax bx c =++经过A (-1,0)、B (4,0)、C (0,2)三点,点D (x ,y )为抛物线上第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当BCD ∆的面积为3时,求点D 的坐标;(3)过点D 作DE BC ⊥,垂足为点E ,是否存在点D ,使得CDE ∆中的某个角等于ABC ∠的2倍?若存在,求点D 的横坐标;若不存在,请说明理由.【答案】(1)213222y x x =-++;(2)(3,2)或(1,3);(3)存在,2或2911. 【解析】【分析】 (1)根据点A 、B 、C 的坐标,利用待定系数法即可求出抛物线的解析式;(2)根据三角形面积公式可求与BC 平行的经过点D 的y 轴上点M 的坐标,再根据待定系数法可求DM 的解析式,再联立抛物线可求点D 的坐标;(3)分∠DCE =2∠ABC 及∠CDE =2∠ABC 两种情况考虑:①当∠DCE =2∠ABC 时,取点F (0,−2),连接BF ,则CD ∥BF ,由点B ,F 的坐标,利用待定系数法可求出直线BF ,CD 的解析式,联立直线CD 及抛物线的解析式组成方程组,通过解方程组可求出点D 的坐标;②当∠CDE =2∠ABC 时,过点C 作CN ⊥BF 于点N ,交OB 于H .作点N 关于BC 的对称点P ,连接NP 交BC 于点Q ,由△OCH ∽△OBF 求出H 点坐标,利用待定系数法求出直线CN 的解析式,联立直线BF 及直线CN 成方程组,通过解方程组可求出点N 的坐标,利用对称的性质可求出点P 的坐标,由点C 、P 的坐标,利用待定系数法可求出直线CP 的解析式,将直线CP 的解析式代入抛物线解析式中可得出关于x 的一元二次方程,解之取其非零值可得出点D 的横坐标.依此即可得解.【详解】解答:解:(1)将A (−1,0)、B (4,0)、C (0,2)代入y =ax 2+bx +c 得:016402a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:1 2 3 22abc⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩故抛物线的解析式为213222y x x=-++.(2)如图2,过点D作DM∥BC,交y轴于点M,设点M的坐标为(0,m),使得△BCM的面积为3,CM=3×2÷4=1.5,则m=2+1.5=72,M(0,72)∵点B(4,0),C(0,2),∴直线BC的解析式为y=−12x+2,∴DM的解析式为y=−12x+72,联立抛物线解析式2172213222y xy x x⎧=-+⎪⎪⎨⎪=-++⎪⎩,解得1232xy=⎧⎨=⎩,2213xy=⎧⎨=⎩.∴点D的坐标为(3,2)或(1,3).(3)分两种情况考虑:①当∠DCE=2∠ABC时,取点F(0,−2),连接BF,如图3所示.∵OC =OF ,OB ⊥CF ,∴∠ABC =∠ABF ,∴∠CBF =2∠ABC .∵∠DCB =2∠ABC ,∴∠DCB =∠CBF ,∴CD ∥BF .∵点B (4,0),F (0,−2),∴直线BF 的解析式为y =12x−2, ∴直线CD 的解析式为y =12x +2. 联立直线CD 及抛物线的解析式成方程组得:212213222y x y x x ⎧=+⎪⎪⎨⎪=-++⎪⎩, 解得:1102x y =⎧⎨=⎩(舍去),2223x y =⎧⎨=⎩, ∴点D 的坐标为(2,3);②当∠CDE =2∠ABC 时,过点C 作CN ⊥BF 于点N ,交OB 于H .作点N 关于BC 的对称点P ,连接NP 交BC 于点Q ,如图4所示.∵∠OCH =90°−∠OHC ,∠OBF =90°−∠BHN , ∠OHC =∠BHN ,∴∠OCH =∠OBF .在△OCH 与△OBF 中90COH BOF OCH OBF∠=∠=︒⎧⎨∠=∠⎩, ∴△OCH ∽△OBF , ∴OH OC OF OB =,即224OH =, ∴OH =1,H (1,0).设直线CN 的解析式为y =kx +n (k ≠0), ∵C (0,2),H (1,0),∴20n k n =⎧⎨+=⎩,解得22k n =-⎧⎨=⎩, ∴直线CN 的解析式为y =−2x +2. 连接直线BF 及直线CN 成方程组得:12222y x y x ⎧=-⎪⎨⎪=-+⎩, 解得:8565x y ⎧=⎪⎪⎨⎪=-⎪⎩, ∴点N 的坐标为(86,55-). ∵点B (4,0),C (0,2),∴直线BC 的解析式为y =−12x +2. ∵NP ⊥BC ,且点N (86,55-), ∴直线NP 的解析式为y =2x−225. 联立直线BC 及直线NP 成方程组得:1222225y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩, 解得:64251825x y ⎧=⎪⎪⎨⎪=⎪⎩,∴点Q 的坐标为(6418,2525). ∵点N (86,55-),点N ,P 关于BC 对称, ∴点P 的坐标为(8866,2525-). ∵点C (0,2),P (8866,2525-), ∴直线CP 的解析式为y =211x +2. 将y =211x +2代入213222y x x =-++整理,得:11x2−29x =0, 解得:x 1=0(舍去),x 2=2911, ∴点D 的横坐标为2911. 综上所述:存在点D ,使得△CDE 的某个角恰好等于∠ABC 的2倍,点D 的横坐标为2或2911. 【点睛】本题是二次函数综合题,考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、勾股定理、等腰三角形的性质、平行线的判定与性质、相似三角形的判定与性质、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线的解析式;(2)根据三角形面积公式和待定系数法求出点D 的坐标;(3)分∠DCE =2∠ABC 及∠CDE =2∠ABC 两种情况求出点D 的横坐标.更多微信扫上方二维码码获取。