高一数学必修5《解三角形》《数列》复习测试题
(word完整版)高中数学必修5解三角形测试题及,文档
高中数学必修 5 解三角形测试题及答案一、选择题:〔每题 5 分,共 60 分〕1.在 VABC 中, AB 3, A 45 , C 75 ,那么 BC=A .33B .2 C .2D .332.以下关于正弦定理的表达或变形中错误 的是..A .在 VABC 中 ,a:b:c=sinA:sinB:sinCB . VABC 中 ,a=bsin2A=sin2B a =b+cC . VABC 中,sinAsinB+sinCD . VABC 中 , 正弦值较大的角所对的边也较大sin Acos B B 的值为 3. VABC 中 , 假设 a,那么bA .30B . 45C . 60D . 90ab c,那么 VABC 是4. 在VABC 中,假设 =cosCcosA cosBA .直角三角形B .等边三角形C .钝角三角形5.以下命题正确的选项是A .当 a=4,b=5,A= 30 时,三角形有一解。
B .当 a=5,b=4,A= 60 时,三角形有两解。
( A 〕( B 〕( B 〕〔 B 〕D .等腰直角三角形( D 〕C .当 a= 3 ,b= 2 ,B= 120 时,三角形有一解。
D .当 a=3 6 ,A= 60 时,三角形有一解。
2 ,b=26. ABC 中 ,a=1,b=3 , ∠A=30 °,那么∠ B 等于〔 B 〕A . 60°B . 60°或 120°C . 30°或 150°D . 120°7 . 符 合 下 列 条 件 的 三 角 形 有 且 只 有 一 个 的 是〔D〕A . a=1,b=2 ,c=3B . a=1,b= 2 ,∠ A=30 °C . a=1,b=2, ∠ A=100 °D . b=c=1, ∠ B=45 °8 . 假设 (a+b+c)(b+c-a)=3abc, 且sinA=2sinBcosC, 那 么 ABC是 〔B〕A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形9.在ABC 中,角 A 、 B 、C 的对边分别为 a 、b 、c , A=,a= 3 ,b=1,3c=那么(B)(A)1(B)2(C)3 -1(D)3uur10 . 〔 2021 重庆理〕设ABC 的 三 个 内 角 A, B, C , 向 量 m( 3 sin A,sin B) ,ruur r1 cos( AB) ,那么 C =〔n (cos B,3 cos A) ,假设 m gn C 〕A .B .2 5C .D .66 3 311.等腰 △ ABC 的腰为底的 2 倍,那么顶角 A 的正切值是〔 D 〕A. 3B. 3C. 15D.1528712.如图: D,C,B 三点在地面同素来线上 ,DC=a, 从 C,D 两点测得A 点仰角分别是β ,α (α <β ),那么 A 点离地面的高度 AB 等于〔 A 〕Aa sin sina sin sin A .) B .)sin(cos(a sin cosacos sin C .)D .)sin(cos(αβBDC题号 123 4567891011 12答案二、填空题:〔每题 5 分,共 20 分〕13.a2 ,那么a b c _______2_______sin Asin Bsin A sin C14.在ABC 1 (a 2+b 2- c 2),那么角∠ C=______.中,假设 S ABC =4415.〔广东 2021 理〕点 A, B, C 是圆 O 上的点, 且AB 4, ACB450 ,那么圆 O 的面积等于8.rrr rr r 16. a2, b4, a 与b 的夹角为3,以 a,b 为邻边作平行四边形,那么此平行四边形的两条对角线中较短的一条的长度为____ 2 3 ________三、解答题:〔 17 题 10 分,其余小题均为 12 分〕17. 在ABC 中 , c 2 ,b2 3 , B 450 ,解三角形 ABC 。
高一数学必修五测试题(解三角形及数列(精华版)
⎧n⎫ ⎬ 的前 n 和 Tn a ⎩ n⎭
认真就是能力,扎实就是水平,落实才是成绩。
2 高一数学试卷
��� � ��� � ��� � ��� � BA + BC = 2 ,求 BAi BC 的取值范围
2 2an ,且对任意的 n ∈ N * 都有 an +1 = . 3 an + 1
19、在数列 {an } 中, a1 =
(1)求证: {
1 − 1} 是等比数列; an
(2)若对任意的 n ∈ N * 都有 an+1 < pan ,求实数 p 的取值范围. (3)求数列 ⎨
)
(理科) 数学试题 数学试题(理科)
第Ⅰ卷(选择题,共50分)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项 是符合题目要求的. 1 、 在 △ ABC 中 , 角 A,B,C 的 对 边 分 别 为 a,b,c , 若
� � � � � � � � � 9、设 a, b, c 是单位向量,且 a ⋅ b = 0, 则 a − b i b − c 的最小值为 (
��� �
����
排列成一个数列,则该数列的通项公式为 (
A. a n =
n(n − 1) 2
B. a n = n( n − 1)
C. a n = n − 1
D. a n = 2 n − 2
���� ��� � AD ⋅ AB =
.
4、在 △ ABC 中,角 A,B,C 的对边分别为 a,b,c ,若 S表示∆ABC的面积 ,若
20 、 已 知 f ( x) 在 ( −1,1) 上 有 定 义 , f ( 1 ) = 1 且 满 足 x, y ∈ ( −1,1) 时 有 15、�函数 y =
必修5《数列》,《解三角形》测试(含答案)
必修5《解三角形》、《数列》单元检测卷班别:________.姓名________.座号________.一、选择题(每题5分)AADBC ABABA1.如果a<0,b>0,那么,下列不等式中正确的是(A )()(()()2211A B C a b D a b a b < << >2.一个等差数列的第5项等于10,前3项的和等于3,那么( A ) A .它的首项是-2,公差是3 B .它的首项是2,公差是-3C .它的首项是-3,公差是2D .它的首项是3,公差是-23.在等比数列{a n }中,a n >0,且a 1+ a 2=1, a 3+a 4=9,则a 4+a 5的值为( D )A .16B .81C .36D .274.在等差数列{a n }中,若a 1+a 2+a 3=32,a 11+a 12+a 13=118,则a 4+a 10=( B )A .45B .50C .75D .605.在△ABC 中,∠A=60°,a=6, b=4,那么满足条件的△ABC ( C )(A)有一个解 (B)有两个解(C)无解 (D)不能确定6.在△ABC 中,a =2bcosC ,则该三角形一定是( A )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形 7.若数列{}n a 的前n 项的和为)1(log 3+=n S n ,则5a 等于( B ) A. 6log 5 B. 56log 3 C. 6log 3 D . 5log 38.公差不为零的等差数列{a n }的前n 项和为Sn .若a 4是a 3与a 7的等比中项,S 8=32,则S 10等于( A )A .60B .24C .18D .909.已知等差数列{a n }中,|a 3|=|a 9|,公差d<0,则使等差数列{a n }前n 项和Sn 取最大值的正整数n 是( B )(A)4或5 (B)5或6 (C)6或7 (D)8或910.数列{an}满足a n =4a n -1+3,a 1=0,则此数列的第5项是( A )A .255B .15C .20D .8二,填空题(每小题5分)11.等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为___31___. 12.等比数列{}n a (81≤≤n )中的中间两项a 4、a 5是方程062932=+-x x 的两个实数根,则=+++822212log log log a a a 91 . 13.=∈+==*+1011n ,,21}{a a N n n a a a n n 则且满足中,数列__ 20__ _. 14.在△ABC 中,A ,B ,C 分别为a,b,c 三条边的对角,如果b=2a,B=A+60°,那么A=____30____。
高一数学必修5《解三角形》《数列》复习测试题
高一数学必修5《解三角形》《数列》复习测试题一、选择题:(每小 题5分,共50分)1.ΔABC 中, a = 1, b =3, ∠A=30°,则∠B 等于 ( )A .60°B .60°或120°C .30°或150°D .120°2.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为( ) A .9 B .18 C .93 D .1833.已知{a n }是等比数列,且公比,240,2100321=++++=a a a a q 若 则=++++1001284a a a a ( )A .15B .128C .30D .604.一个等差数列共有3n 项,若前2n 项的和为100,后2n 项的和为200,则中间n 项的和为( ) A .75B .100C .50D .1255.ABC ∆满足下列条件:①3b =,4c =,o 30B =;②12b =,9c =,o60C =;③b = 6c =,o 60B =;④5a =,8b =,o30A =.其中有两个解的是 ( )A .①②B .①④C .①②③D .②③ 6.在△ABC 中,若3a = 2b sin A , 则B 为( ) A .3π B . 6π C . 6π或65πD .3π或32π7.在ABC ∆中,已知2220b bc c --=,且a =7cos 8A =,则ABC ∆的面积是 ( )A B C .2 D .38.ABC ∆中,a 、b 、c 分别是三内角A 、B 、C 的对边,且4a =,5b c +=,tan tan A B +t a n t a nA B =⋅,则ABC ∆的面积为 ( )A .32 B . C D .52 9.等比数列===302010,10,20,}{M M M M n a n n 则若项乘积记为前 ( )A .1000B .40C .425D .81 10.若数列{a n }满足:a n +1=1-1a n且a 1=2,则a 2011等于( )A .1B .-12C .2 D.1211.在等差数列{a n }中,前n 项和为S n ,若S 16—S 5=165,则912S S -的值是( ) A .90B .90-C .45D .45-12.设数列{}n a 的前n 项和为n S ,令12nn S S S T n+++=,称n T 为数列1a ,2a ,……,n a 的“理想数”,已知数列1a ,2a ,……,500a 的“理想数”为2004,那么数列2, 1a ,2a ,……,500a 的“理想数”为 ( )A .2002B .2004C .2006D .2008 二、填空题:请把答案填在题中横线上(每小题5分,共20分).13.如下图,一蜘蛛沿正北方向爬行x cm 捉到一只小虫,然后向右转o105,爬行10cm 捉到另一只小虫,这时它向右转o 135爬行回它的出发点,那么x =____________.14.如果ABC ∆的面积是222S =C =_________ ___. 15.若a 、b 、c 成等比数列,a 、x 、b 成等差数列,b 、y 、c 成等差数列,则=+ycx a 16.已知数列{a n }中,)(2,12111n n a a a a a +++==+ ,则通项=n a .三、解答题:解答应写出文字说明、证明过程或演算步骤(共80分).17.(12分)a ,b ,c 为△ABC 的三边,其面积S △ABC =123,b c =48,b - c =2,求角A 及边长a .18、(12分)已知数列{}.21,5),2(12211nn n nn n n a b a n a a a -==≥-+=-满足 (1)证明:{}n b 为等差数列; (2)求数列{}n a 的前n 项和S n .(3)求数列项和。
必修5-解三角形-综合复习卷(含答案)
2018年高中数学必修5 解三角形综合复习卷一、选择题:1.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=7,b=5,c=8,则△ABC的面积S等于()2.在△ABC中,内角A,B,C的对边分别为a,b,c,且,则是()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形3.设△ABC的内角A,B,C所对的边分别为a,b,c,若bcos C+ccos B=asin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定4.已知△ABC中,a,b,c分别是角A,B,C的对边,若,则B=()A. B. C. D.5.在△ABC中,已知a=2,则等于()*B.6.△ABC中,三内角A,B,C的对边分别为a,b,c.若△ABC的面积为S,且2S=(a+b)2﹣c2,则等于( ).A. B. C. D.7.在△ABC中,若lg sin A-lg cos B-lg sin C=lg 2,则△ABC是( )A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形8.在△ABC中,内角A,B,C所对边分别是a,b,c,若3a=2b,则值为()A. B. D.9.已知锐角△ABC内角A,B,C对边分别为a,b,c,23cos2A+cos 2A=0,a=7,c=6,则b=()10.在△ABC中,若,,则△ABC的面积等于()-C.11.若△ABC内角A,B,C对边分别为a,b,c,且,则等于()A. B. C. D.12.在△ABC中,a,b,c分别为内角A,B,C所对的边,若,则b+c最大值为()A. C.二、填空题:13.在△ABC中,sin2A≤sin2B+sin2C-sin Bsin C,则A的取值范围是__ _____.14.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=bc,sinC=2sinB,则A角大小为.15.在△ABC中,三个内角A,B,C的对边分别为a,b,c,若,》且,△ABC面积的最大值为 .16.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,,且a=3,则△ABC面积的最大值为 .17.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足,则的最大值是__________.18.在△ABC中,角A,B,C的对边分别为a,b,c,且,若△ABC的面积为,则ab的最小值为 .19.在锐角△ABC中,角A、B、C对边分别为a、b、c,若a2=b2+bc,则取值范围是.20.在△ABC中,内角A,B,C的对应边分别为a,b,c,已知,则△ABC面积的最大值等于 .|三、解答题:21.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为。
必修5解三角形和数列测试题及答案
必修五解三角形和数列 【2 】分解演习解三角形一.选择题1.在△ABC 中,三个内角A ,B ,C 的对边分离是a ,b ,c ,若b 2+c 2-a 2=bc ,则角A 等于( ) (A)6π(B)3π(C)32π(D)65π2.在△ABC 中,给出下列关系式:①sin(A +B )=sin C ②cos(A +B )=cos C ③2cos 2sin C B A =+个中准确的个数是( )(A)0(B)1(C)2(D)3 3.在△ABC 中,三个内角A ,B ,C 的对边分离是a ,b ,c .若a =3,sin A =32,sin(A +C )=43,则b 等于( ) (A)4(B)38(C)6(D)8274.在△ABC 中,三个内角A ,B ,C 的对边分离是a ,b ,c ,若a =3,b =4,sin C =32,则此三角形的面积是( )(A)8(B)6(C)4(D)35.在△ABC 中,三个内角A ,B ,C 的对边分离是a ,b ,c ,若(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,则此三角形的外形是( )(A)直角三角形(B)正三角形(C)腰和底边不等的等腰三角形(D)等腰直角三角形二.填空题6.在△ABC 中,三个内角A ,B ,C 的对边分离是a ,b ,c ,若a =2,b =2,B =45°,则角A =________.7.在△ABC 中,三个内角A ,B ,C 的对边分离是a ,b ,c ,若a =2,b =3,c =19,则角C =________.8.在△ABC 中,三个内角A ,B ,C 的对边分离是a ,b ,c ,若b =3,c =4,cos A =53,则此三角形的面积为________.9.已知△ABC 的极点A (1,0),B (0,2),C (4,4),则cos A =________.10.已知△ABC 的三个内角A ,B ,C 知足2B =A +C ,且AB =1,BC =4,那么边BC 上的中线AD 的长为________.三.解答题11.在△ABC 中,a ,b ,c 分离是角A ,B ,C 的对边,且a =3,b =4,C =60°.(1)求c ;(2)求sin B .12.设向量a ,b 知足a ·b =3,|a |=3,|b |=2.(1)求〈a ,b 〉;(2)求|a -b |.13.设△OAB 的极点为O (0,0),A (5,2)和B (-9,8),若BD ⊥OA 于D .(1)求高线BD 的长;(2)求△OAB 的面积.14.在△ABC 中,若sin 2A +sin 2B >sin 2C ,求证:C 为锐角.(提醒:应用正弦定理R C c B b A a 2sin sin sin ===,个中R 为△ABC 外接圆半径)15.如图,两条直路OX 与OY 订交于O 点,且两条路地点直线夹角为60°,甲.乙两人分离在OX .OY 上的A .B 两点,|OA |=3km,| OB |=1km,两人同时都以4km/h 的速度行走,甲沿XO 偏向,乙沿OY 偏向.问:(1)经由t 小时后,两人距离是若干(表示为t 的函数)?(2)何时两人距离比来?16.在△ABC 中,a ,b ,c 分离是角A ,B ,C 的对边,且c a b CB +-=2cos cos . (1)求角B 的值;(2)若b =13,a +c =4,求△ABC 的面积.数列一.选择题1.在等差数列{a n }中,已知a 1+a 2=4,a 3+a 4=12,那么a 5+a 6等于( )(A)16(B)20(C)24(D)362.在50和350间所有末位数是1的整数和( )(A)5880(B)5539(C)5208(D)48773.若a ,b ,c 成等比数列,则函数y =ax 2+bx +c 的图象与x 轴的交点个数为( )(A)0(B)1(C)2(D)不能肯定4.在等差数列{a n }中,假如前5项的和为S 5=20,那么a 3等于( )(A)-2(B)2(C)-4(D)45.若{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大天然数n 是( )(A)4012(B)4013(C)4014(D)4015二.填空题6.已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项a n =________.7.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和S 20=________.8.数列{a n }的前n 项和记为S n ,若S n =n 2-3n +1,则a n =________.9.等差数列{a n }中,公役d ≠0,且a 1,a 3,a 9成等比数列,则1074963a a a a a a ++++=________. 10.设数列{a n }是首项为1的正数数列,且(n +1)a 21+n -na 2n +a n +1a n =0(n ∈N *),则它的通项公式a n =________.三.解答题11.设等差数列{a n }的前n 项和为S n ,且a 3+a 7-a 10=8,a 11-a 4=4,求S 13.12.已知数列{a n }中,a 1=1,点(a n ,a n +1+1)(n ∈N *)在函数f (x )=2x +1的图象上.(1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和S n ;(3)设c n =S n ,求数列{c n }的前n 项和T n .13.已知数列{a n }的前n 项和S n 知足前提S n =3a n +2.(1)求证:数列{a n }成等比数列;(2)求通项公式a n .14.某渔业公司本岁首?年月用98万元购进一艘渔船,用于捕捞,第一年需各类费用12万元,从第二年开端包括维修费在内,每年所需费用均比上一年增长4万元,该船每年捕捞的总收入为50万元.(1)写出该渔船前四年每年所需的费用(不包括购置费用);(2)该渔船捕捞几年开端盈利(即总收入减去成本及所有费用为正值)?(3)若当盈利总额达到最大值时,渔船以8万元卖出,那么该船为渔业公司带来的收益是若干万元?15.已知函数f (x )=412-x (x <-2),数列{a n }知足a 1=1,a n =f (-11+n a )(n ∈N *). (1)求a n ;(2)设b n =a 21+n +a 22+n +…+a 212+n ,是否消失最小正整数m ,使对随意率性n ∈N *有b n <25m 成立?若消失,求出m 的值,若不消失,请解释来由.16.已知f 是直角坐标系平面xOy 到自身的一个映射,点P 在映射f 下的象为点Q ,记作Q =f (P ).设P 1(x 1,y 1),P 2=f (P 1),P 3=f (P 2),…,P n =f (P n -1),….假如消失一个圆,使所有的点P n (x n ,y n )(n ∈N *)都在这个圆内或圆上,那么称这个圆为点P n (x n ,y n )的一个收敛圆.特殊地,当P 1=f (P 1)时,则称点P 1为映射f 下的不动点.若点P (x ,y )在映射f 下的象为点Q (-x +1,21y ).(1)求映射f 下不动点的坐标;(2)若P 1的坐标为(2,2),求证:点P n (x n ,y n )(n ∈N *)消失一个半径为2的收敛圆.解三角形1.B 2.C 3.D 4.C 5.B提醒:5.化简(a +b +c )(b +c -a )=3bc ,得b 2+c 2-a 2=bc ,由余弦定理,得cos A =212222=-+bc a c b ,所以∠A =60°. 因为sin A =2sin B cos C ,A +B +C =180°,所以sin(B +C )=2sin B cos C ,即sin B cos C +cos B sin C =2sin B cos C .所以sin(B -C )=0,故B =C .故△ABC 是正三角形.二.填空题6.30° 7.120° 8.524 9.5510.3三.解答题11.(1)由余弦定理,得c =13;(2)由正弦定理,得sin B =13392.12.(1)由a ·b =|a |·|b |·cos 〈a ,b 〉,得〈a ,b 〉=60°; (2)由向量减法几何意义,知|a |,|b |,|a -b |可以构成三角形,所以|a -b |2=|a |2+|b |2-2|a |·|b |·cos 〈a ,b 〉=7,故|a -b |=7.13.(1)如右图,由两点间距离公式,得29)02()05(22=-+-=OA , 同理得232,145==AB OB .由余弦定理,得,222cos 222=⨯⨯-+=AB OA OB AB OA A所以A =45°.故BD =AB ×sin A =229.(2)S △OAB =21·OA ·BD =21·29·229=29.14.由正弦定理R C c B b A a 2sin sin sin ===,得C R c B R b A R a sin 2,sin 2,sin 2===.因为sin 2A +sin 2B >sin 2C ,所以222)2()2()2(R c R b R a >+, 即a 2+b 2>c 2.所以cos C =ab c b a 2222-+>0,由C ∈(0,π),得角C 为锐角.15.(1)设t 小时后甲.乙分离到达P .Q 点,如图,则|AP |=4t ,|BQ |=4t ,因为|OA |=3,所以t =43h 时,P 与O 重合.故当t ∈[0,43]时,|PQ |2=(3-4t )2+(1+4t )2-2×(3-4t )×(1+4t )×cos60°;当t >43h 时,|PQ |2=(4t -3)2+(1+4t )2-2×(4t -3)×(1+4t )×cos120°.故得|PQ |=724482+-t t (t ≥0).(2)当t =h 4148224=⨯--时,两人距离比来,比来距离为2km . 16.(1)由正弦定理R C c B b A a 2sin sin sin ===,得a =2R sin A ,b =2R sin B ,c =2R sin C .所以等式c a b C B +-=2cos cos 可化为C R A R B R C B sin 2sin 22sin 2cos cos +⋅-=, 即C A B CB sin sin 2sin cos cos +-=, 2sin A cos B +sinC cos B =-cos C ·sin B ,故2sin A cos B =-cos C sin B -sin C cos B =-sin(B +C ),因为A +B +C =π,所以sin A =sin(B +C ),故cos B =-21,所以B =120°.(2)由余弦定理,得b 2=13=a 2+c 2-2ac ×cos120°,即a 2+c 2+ac =13又a +c =4,解得⎩⎨⎧==31c a ,或⎩⎨⎧==13c a .所以S △ABC =21ac sin B =21×1×3×23=433.数列一.选择题1.B 2.A 3.A 4.D 5.C二.填空题6.3·2n -3 7.180 8.a n =⎩⎨⎧≥-=-)2(,42)1(,1n n n 9.76 10.a n =n 1(n ∈N *) 提醒:10.由(n +1)a 21+n -na 2n +a n +1a n =0,得[(n +1)a n +1-na n ](a n +1+a n )=0,因为a n >0,所以(n +1)a n +1-na n =0,即11+=+n n a a nn , 所以n n n a a a a a a a n n n 11322112312=-==⋅⋅⋅⋅⋅⋅- .三.解答题11.S 13=156.12.(1)∵点(a n ,a n +1+1)在函数f (x )=2x +1的图象上,∴a n +1+1=2a n +1,即a n +1=2a n .∵a 1=1,∴a n ≠0,∴n n a a 1+=2,∴{a n }是公比q =2的等比数列,∴a n =2n -1. (2)S n =1221)21(1-=--⋅n n .(3)∵c n =S n =2n -1,∴T n =c 1+c 2+c 3+…+c n =(2-1)+(22-1)+…+(2n -1)=(2+22+…+2n )-n =n n ---⋅21)21(2=2n +1-n -2.13.当n =1时,由题意得S 1=3a 1+2,所以a 1=-1;当n ≥2时,因为S n =3a n +2,所以S n -1=3a n -1+2;两式相减得a n =3a n -3a n -1,即2a n =3a n -1.由a 1=-1≠0,得a n ≠0. 所以231=-n n a a (n ≥2,n ∈N *).由等比数列界说知数列{a n }是首项a 1=-1,公比q =23的等比数列.所以a n =-(23)n -1.14.(1)设第n 年所需费用为a n (单位万元),则a 1=12,a 2=16,a 3=20,a 4=24.(2)设捕捞n 年后,总利润为y 万元,则y =50n -[12n +2)1(-n n ×4]-98=-2n 2+40n -98. 由题意得y >0,∴2n 2-40n +98<0,∴10-51<n <10+51. ∵n ∈N *,∴3≤n ≤17,即捕捞3年后开端盈利.(3)∵y =-2n 2+40n -98=-2(n -10)2+102,∴当n =10时,y 最大=102.即经由10年捕捞盈利额最大,共盈利102+8=110(万元).15.(1)由a n =f (-11+n a ),得411221+=+nn a a (a n +1>0), ∴{21n a }为等差数列,∴21n a =211a +(n -1)·4.∵a 1=1,∴a n =341-n (n ∈N *).(2)由1815411412122221++++++=+++=+++n n n a a a b n n n n ,得b n -b n +1=)981281()581281(981581141+-+++-+=+-+-+n n n n n n n)98)(28(7)58)(28(3+++++=n n n n∵n ∈N *,∴b n -b n +1>0,∴b n >b n +1(n ∈N *),∴{b n }是递减数列.∴b n 的最大值为451423221=+=a a b .若消失最小正整数m ,使对随意率性n ∈N *有b n <25m成立,只要使b 1=254514m <即可,∴m >970.∴对随意率性n ∈N *使b n <25m成立的最小正整数m =8.16.(1)解:设不动点的坐标为P 0(x 0,y 0),由题意,得⎪⎪⎩⎪⎪⎨⎧=+-=0000211y y x x ,解得210=x ,y 0=0,所以此映射f 下不动点为P 0(21,0).(2)证实:由P n +1=f (P n ),得⎪⎩⎪⎨⎧=+-=++n n n n y y x x 21111,所以x n +1-21=-(x n -21),y n +1=21y n .因为x 1=2,y 1=2,所以x n -21≠0,y n ≠0, 所以21,1212111=-=--++n n n n y y x x . 由等比数列界说,得数列{x n -21}(n ∈N *)是公比为-1,首项为x 1-21=23的等比数列,所以x n -21=23×(-1)n -1,则x n =21+(-1)n -1×23.同理y n =2×(21)n -1.所以P n (21+(-1)n -1×23,2×(21)n -1).设A (21,1),则|AP n |=212])21(21[)23(-⨯-+n .因为0<2×(21)n -1≤2,所以-1≤1-2×(21)n -1<1,所以|AP n |≤1)23(2+<2.故所有的点P n (n ∈N *)都在以A (21,1)为圆心,2为半径的圆内,即点P n (x n ,y n )消失一个半径为2的收敛圆.。
必修五解三角形数列测试题
必修五解三角形数列测试题一、填空题:1. {a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9= .2. 设函数f (x )满足f (n+1)=2)(2nn f +(n ∈N *)且f (1)=2,则f (20)= . 3. 设a n =-n 2+10n+11,则数列{a n }中最大的项为 . 4.已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20= . 5.在等差数列{a n }中,若S 9=18,S n =240,4n a -=30,则n= . 6.在ABC ∆中,若2cos sin sin 2AC B =,则ABC ∆是 三角形. 7.数列{a n }满足a 1=1, a 2=32,且nn n a a a 21111=++- (n ≥2),则a n = . 8.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n = 。
9. 已知△ABC 中,AB =1,BC =2,则角C 的取值范围是_______. 10.等差数列{a n },{b n }的前n 项和分别为S n 、T n ,若n n T S =132+n n ,则1111b a=_______.11.数列}{n a 满足⎩⎨⎧>-≤≤=+)1(1)10(21n n n n n a a a a a 且761=a ,则=2010a _______。
12.在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若,,a b c 成等差列,030=B ,ABC ∆的面积为23 ,则b =____.13.在△ABC 中,若B =30°,AB =23,AC =2,则△ABC 的面积是______.14.在圆225x y x +=内,过点53()22,有n 条弦的长度成等差数列,最短弦长为数列的首项1a ,最长弦长为n a ,若该数列的公差1163d ⎛⎤∈ ⎥⎝⎦,,则n 的取值集合为 .三、解答题15.(本小题满分12分)已知数列}{n a 满足:111,2n n a a a n -=-=且.(1)求 (2)求数列}{n a 的通项n a432,a a a ,16.在ABC ∆中,角A 、B 、C 的对边分别为,,a b c ,已知向量33(cos ,sin ),22A A m = (cos ,sin ),22A An = 且满足m n += (1)求角A 的大小;(2)若,b c +=试判断ABC ∆的形状。
高一数学必修5《解三角形》测试题(含答案)
高一数学必修5《解三角形》测试题(含答案)work Information Technology Company.2020YEAR《解三角形》测试题一、选择题(本大题共6小题,每小题6分,共36分)1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( ) A .30° B .30°或150°C .60°D .60°或120°2.在△ABC 中,若BA sin sin >,则A 与B 的大小关系为( ) A. BA > B.B A < C. A ≥B D. A 、B 的大小关系不能确定 3.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为( ) A .9 B .18C .93D .1834.在△ABC 中,sin A :sin B :sin C =3:2:4,则cos C 的值为( )A .23 B .-23 C .14 D .-145.△ABC 中,1c o s 1c o s A aB b-=-,则△ABC 一定是( )A. 等腰三角形B. 直角三角形C. 锐角三角形D. 钝角三角形6. 已知A 、B 、C 是△ABC 的三个内角,则在下列各结论中,不正确的为( )A .sin 2A =sin 2B +sin 2C +2sin B sin C cos(B +C )B .sin 2B =sin 2A +sin 2C +2sin A sin C cos(A +C )C .sin 2C =sin 2A +sin 2B -2sin A sin B cos CD .sin 2(A +B )=sin 2A +sin 2B -2sin B sinC cos(A +B ) 二、填空题(本大题共4小题,每小题6分,共24分)7.一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60,行驶4h 后,船到达C 处,看到这个灯塔在北偏东15,这时船与灯塔的距离为 km .8.在△ABC 中,若AB =5,AC =5,且cos C =109,则BC =________. 9、ABC ∆中,若b=2a , B=A+60°,则A= .10.在△ABC 中,∠C =60°,a 、b 、c 分别为∠A 、∠B 、.C 的对边,则ca bc b a +++=________.三、解答题(本大题共3小题,共40分)11.(本小题共12分)已知a =33,c =2,B =150°,求边b 的长及S △.12. (本小题共14分) 一缉私艇发现在北偏东 45方向,距离12 nmile 的海面上有一走私船正以10 nmile/h 的速度沿东偏南 15方向逃窜.缉私艇的速度为14nmile/h, 若要在最短的时间内追上该走私船,缉私艇应沿北偏东α+45的方向去追,.求追及所需的时间和α角的正弦值.13. (本小题共14分)在∆ABC 中,设,2tan tan bbc B A -=,求A 的值。
高一数学必修5月考试卷《解三角形》与《数列》
高二数学(《解三角形》与《数列》)(满分:150分 时间:120分钟)一、选择题:(本大题共12小题,每小题5分,共60分)1、数列1,-3,5,-7,9,…的一个通项公式为 ( )A 12-=n a nB )21()1(n a nn --= C )12()1(--=n a nn D )12()1(+-=n a nn 2.已知{}n a 是等比数列,41252==a a ,,则公比q =( )A .21-B .2-C .2D .213.若∆ABC 中,sin A :sin B :sin C =2:3:4,那么cos C =( )A. 14-B.14C. 23-D.234.设数}{n a 是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .2±D .45.在各项均为正数的等比数列{}n b 中,若783b b ⋅=,则3132log log b b ++……314log b +等于( ) (A) 5 (B) 6 (C)7 (D)86.在ABC ∆中,根据下列条件解三角形,其中有两个解的是( )A. b=10, A=450, C=600B. a=6, c=5, B=60C. a=7, b=5, A=600D. a=14, b=16, A=4507.在数列{}n a 中,12a =, 11ln (1)n n a a n+=++,则n a =( )A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++ 8.在ABC ∆中,若cos cos a B b A =,则ABC ∆的形状一定是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形9.在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高为( ) AB3C3Dm10.等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且132+=n n T S nn ,则55b a ( )A 32 B 149 C 3120 D9711.已知{}n a 为公比q >1的等比数列,若20052006a a 和是方程24830x x -+=的两根,则20072008a a +的值是( )A 18B 19C 20D 2112.已知数列{}n a 中,11,a =前n 项和为n S ,且点*1(,)()n n P a a n N +∈在直线10x y -+=上,则1231111nS S S S ++++=( )A.(1)2n n + B.2(1)n n + C.21n n + D.2(1)n n +二、填空题:(本大题共4小题,每小题4分,共16分)13.已知{}n a 为等差数列,3822a a +=,67a =,则5a =____________ 14. 已知数列{a n }的前n 项和是21n S n n =++, 则数列的通项a n =__15.在△ABC 中,若a 2+b 2<c 2,且sin C =23,则∠C =16.△ABC 中,a 、b 、c 成等差数列,∠B=30°,ABC S ∆=23,那么b =三、解答题:(本大题分6小题共74分) 17.(本小题满分12分) 在△ABC 中,已知3=a ,2=b ,B=45︒ 求A 、C 及c18.(本小题满分12分)等比数列{}n a 中, 72=S ,916=S ,求4S .19. (本小题满分12分)在A B C △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=.(Ⅰ)若A B C △,求a b ,;(Ⅱ)若sin 2sin B A =,求A B C △的面积.20.(12分)已知{}n a 是等差数列,其中1425,16a a ==(1)求{}n a 的通项;(2)求n a a a a ++++ 321的值。
高一必修5解三角形、数列综合测试题
高一必修5解三角形、数列综合测试题班级 姓名一.选择题.(每小题5分,共50分)1. 在ABC ∆中,下列等式总能成立的是( )A. A c C a cos cos =B. A c C b sin sin =C. B bc C ab sin sin =D. A c C a sin sin = 2. 在ABC ∆中,316,38,8===∆ABC S c b ,则A ∠等于( )A.30 B.60 C.30或150 D.60或1203. 已知c b a ,,是ABC ∆三边之长,若满足等式ab c b a c b a =++-+))((,则C ∠等于 A.120 B.150 C.60 D.90 ( ) 4. 在ABC ∆中,若,sin sin cos 2C A B = 则ABC ∆的形状一定是( )A. 等腰直角三角形B.等腰三角形C. 直角三角形D. 等边三角形 5. 两个等差数列}{n a 和}{n b ,其前n 项和分别为n n T S ,,且,327++=n n T S n n 则157202b b a a ++等于 A.49 B. 837 C. 1479 D. 24149( ) 6. 已知等差数列}{n a 的公差为2 , 若431,,a a a 成等比数列, 则32a a +的值为( )A. 6-B. 8-C. 10-D. 12-7. 在3和9之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个正数之和为 ( ) A.227 B. 445 C. 225 D. 4478. 若正数c b a ,,成公比大于1的等比数列, 则当1>x 时, x a log , x b log , x c log A. 依次成等比数列 B. 各数的倒数依次成等比数列 ( )C. 依次成等差数列D. 各数的倒数依次成等差数列9. 等差数列}{n a 中,,0,0,020042003200420031<⋅>+>a a a a a 则使前n 项和0>n S 成立的最大自然数n 为( )A. 4005B. 4006C. 4007D. 4008 10. 已知数列}{a 的前n 项和为)34()1(2117139511--++-+-+-=+n S n ,则312215S S S -+的值是( )A. 76-B. 76C. 46D. 13 二.填空题.(每小题5分,共20分) 11. 在ABC ∆中, 若21cos ,3-==A a ,则ABC ∆的外接圆的半径为 ________________. 12. 已知数列}{n a 的通项公式)1(1+=n n a n , 则前n 项和=n S _____________________.13. 在等差数列}{n a 中, 若,010=a 则有等式n n a a a a a a -+++=+++192121 成立),19(*N n n ∈<. 类比上述性质, 相应地, 在等比数列}{n b 中, 若19=b ,则有等式___________________________________________________成立.14. 已知数列}{n a 满足13211)1(32,1--++++==n n a n a a a a a , )2(≥n ,则当2≥n 时,=n a ___________________.三.解答题. ( 解答应写出必要的文字说明和解题过程, 6小题,共80分) 15. (本小题共12分)已知c b a ,,是ABC ∆中角C B A ,,的对边,S 是ABC ∆的面积.若35,5,4===S b a ,求边c 的长度.16. (本小题共12分)在数列}{n a 中,已知前n 项和n n a S 23+=,求数列的通项公式n a .在等差数列}{n a 中, 13853a a = , 且01>a , n S 为其前n 项和,问n S 取最大值时, n 的值是多少?18. (本小题共14分)一缉私艇发现在北偏东45方向,距离12 nmile 的海面上有一走私船正以10 nmile/h 的速度沿东偏南15方向逃窜.缉私艇的速度为14 nmile/h, 若要在最短的时间内追上该走私船,缉私艇应沿北偏东α+45的方向去追,.求追及所需的时间和α角的正弦值.若钝角三角形的三内角的度数成等差数列,且最大边长与最小边长的比值为m ,求m 的取值范围.20. (本小题共14分)已知二次函数()()100619310222+-+-+=n n x n x x f ,其中*N n ∈。
必修五数列和解三角形专题训练
必修五数列和解三角形专题训练-3一.解答题(共18小题)1.已知f(x)=2sin x,集合M={x||f(x)|=2,x>0},把M中的元素从小到大依次排成一列,得到数列{a n},n∈N*.求数列{a n}的通项公式;2.若数列{a n}的前n项和为S n=n2﹣10n(n∈N*),求此数列的通项公式.3.等差数列{a n}中公差d≠0,a1=3,a1、a4、a13成等比数列.(Ⅰ)求a n;(Ⅱ)设{a n}的前n项和为Sn,求:.4.已知函数f(x)=,数列{a n}是首项等于1且公比等于f(1)的等比数列;数列{b n}首项b1=,=f(b n).满足递推关系b n+1(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)设c n=,求数列{c n}的前n项和T n.5.已知等差数列{a n}的前n项和为S n,且S3=6,S5=15.(1)求数列{a n}的通项公式;(2)令b n=2an,求数列{b n}的前n项和T n.6.已知数列{a n}中,a n=3×()n,试用定义证明数列{a n}是等比数列.7.已知数列{a n}是公差d为正数的等差数列,a1和a3是方程x2﹣8x+7=0的两根.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.8.在△ABC中,若角A、B、C成等差数列.(1)求cosB的值;(2)若a、b、c成等比数列,求sinAsinC的值.9.已知a,b,c分别为△ABC三个内角A,B,C的对边,A为B,C的等差中项.(Ⅰ)求A;(Ⅱ)若a=2,△ABC的面积为,求b,c的值.10.在等差数列{a n}中,a2=3,a8=9.(1)求{a n}的通项公式a n;(2)求的前n项和S n.11.(1)等差数列{a n}的各项均为正数,a1=3,前n项和为S n,S10=120,求a n;(2)已知函数f(x)=2sinxcosx+2cos2x﹣1,﹣≤x≤,求f(x)的值域.12.已知数列{a n}满足a1=1,且点P(a n,a n+1)在直线y=x+2上;数列{b n}的前n项和为S n,满足S n=2b n ﹣2,n∈N*(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)设数列{c n}满足c n=a n b n,数列{c n}的前n项和为T n,求T n的最小值.13.已知f(x)=cos2(﹣x)﹣(cosx﹣sinx)2﹣.(1)求f(x)的单调区间;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,且a=1,求△ABC周长的最大值.14.已知函数f(x)=4cosxsin(x+)+m(m∈R),当x∈[0,]时,f(x)的最小值为﹣1.(Ⅰ)求m的值;(Ⅱ)在△ABC中,已知f(C)=1,AC=4,延长AB至D,使BC=BD,且AD=5,求△ACD的面积.15.设函数f(x)=x.(1)当时,求f(x)的最大值;(2)设A,B,C为△ABC的三个内角,,且C为锐角,c=,求a﹣b的取值范围.16.已知函数f(x)=sin(2x+)+cos(2x+)+sin2x(1)求函数f(x)的单调递减区间;(2)在△ABC中,角A,B,C的对边分别是a,b,c,若f()=,a=2,b=,求c的值.17.已知函数f(x)=sin2x﹣2cos2x﹣1,x∈R.(Ⅰ)求函数f(x)的最小正周期和最小值;(Ⅱ)在△ABC中,A,B,C的对边分别为a,b,c,已知c=,f(C)=0,sinB=2sinA,求a,b的值.18.已知f(x)=sin2x+sinxcosx﹣.(1)求f(x)的单调增区间;(2)已知△ABC中,角A,B,C的对边分别为a,b,c,若A为锐角且f(A)=,b+c=4,求a的取值范围.必修五数列和解三角形专题训练-3参考答案与试题解析一.解答题(共18小题)1.(2017•河南一模)已知f(x)=2sin x,集合M={x||f(x)|=2,x>0},把M中的元素从小到大依次排成一列,得到数列{a n},n∈N*.(1)求数列{a n}的通项公式;(2)记b n=,设数列{b n}的前n项和为T n,求证T n<.【解答】解:(1)f(x)=2sin x,集合M={x||f(x)|=2,x>0},则:解得:x=2k+1(k∈Z),所以M={x|x=2k+1,k∈Z}把M中的元素从小到大依次排成一列,得到数列{a n},∵M={1,3,5,…,2k+1},k∈Z,所以:a n=2n﹣1.证明:(2)记b n=,数列{b n}的前n项和为T n,=所以:T n=b1+b2+…+b n++…+)=2.(2016春•巴彦淖尔校级月考)若数列{a n}的前n项和为S n=n2﹣10n(n∈N*),求此数列的通项公式.【解答】解:由S n=n2﹣10n(n∈N*),得a1=﹣9;当n≥2时,2n﹣11.验证a1=﹣9满足上式,3.(2015•南昌校级二模)等差数列{a n}中公差d≠0,a1=3,a1、a4、a13成等比数列.(Ⅰ)求a n;(Ⅱ)设{a n}的前n项和为Sn,求:.【解答】解:(I)∵a1、a4、a13成等比数列.∴,∴(3+3d)2=3(3+12d),化为d2﹣2d=0,d≠0,解得d=2.∴a n=3+2(n﹣1)=2n+1.(II)由(I)可得:S n==n(n+2),∴.∴=++…+=.=﹣.4.(2015•南昌模拟)已知函数f(x)=,数列{a n}是首项等于1且公比等于f(1)的等比数列;数列{b n}首项b1=,满足递推关系b n+1=f(b n).(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)设c n=,求数列{c n}的前n项和T n.【解答】解:(Ⅰ)函数f(x)=,则:f(1)=由于:数列{a n}是首项等于1且公比等于f(1)的等比数列,所以:数列{b n}首项b1=,满足递推关系b n+1=f(b n).则:整理得:所以:{}是以为首项,3为公差的等差数列.解得:(Ⅱ)则:T n=c1+c2+…+c n=n﹣1①=n②则:①﹣②得:所以:5.(2015秋•昭通校级期末)已知等差数列{a n}的前n项和为S n,且S3=6,S5=15.(1)求数列{a n}的通项公式;(2)令b n=2an,求数列{b n}的前n项和T n.【解答】解:(1)由等差数列的性质可知:S3=3a2=6,S5=5a3=15.∴a2=2,a3=3,∴a1=1,d=1,∴数列{a n}的通项公式a n=n;…(5分)(2),∴数列{b n}的前n项和T n,T n=2+22+23+…+2n,=,=2n+1﹣2,∴数列{b n}的前n项和…(10分)6.(2015春•新疆校级期中)已知数列{a n}中,a n=3×()n,试用定义证明数列{a n}是等比数列.【解答】证明:∵数列{a n}中,a n=3×()n,∴当n≥2时,==,∴数列{a n}是等比数列,首项为2,公比为.7.(2015春•宣城校级月考)已知数列{a n}是公差d为正数的等差数列,a1和a3是方程x2﹣8x+7=0的两根.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.【解答】解:(Ⅰ)∵数列{a n}是公差d为正数的等差数列且a1和a3是方程x2﹣8x+7=0的两根,解方程可得a1=1,a3=7,∴公差d==3,∴数列{a n}的通项公式a n=1+3(n﹣1)=3n﹣2;(Ⅱ)数列{a n}的前n项和S n=n+×3=8.(2015春•义乌市校级月考)在△ABC中,若角A、B、C成等差数列.(1)求cosB的值;(2)若a、b、c成等比数列,求sinAsinC的值.【解答】解:(1)由角A、B、C成等差数列,则2B=A+C,再由三角形内角和A+B+C=180°,则B=60°,即cosB=;(2)由a、b、c成等比数列,则b2=ac,再有余弦定理b2=a2+c2﹣2accosB,可知(a﹣c)2=0,即a=c,再由(1)知B=60°,则三角形△ABC为等边三角形,即A=B=C=60°.则sinAsinC=sin60°sin60°=•=.9.(2014秋•辽宁校级期末)已知a,b,c分别为△ABC三个内角A,B,C的对边,A为B,C的等差中项.(Ⅰ)求A;(Ⅱ)若a=2,△ABC的面积为,求b,c的值.【解答】解:(1)由题意可得2A=B+C,(2)由余弦定理可得22=b2+c2﹣2bc•,化简可得4=(b+c)2﹣3bc,①由面积公式可得bc•sin=,化简可得bc=4,②代入①式可得4=(b+c)2﹣12,解得b+c=4,③联立②③可得b=c=210.(2014春•贵阳期末)在等差数列{a n}中,a2=3,a8=9.(1)求{a n}的通项公式a n;(2)求的前n项和S n.【解答】解:(1)由题意可得等差数列{a n}的公差d==1,故a n=a2+(n﹣2)d=3+n﹣2=n+1…(4分)(2)可得=2n+1,故数列{}为4为首项,2为公比的等比数列,故S n==2n+2﹣4…(8分)11.(2017•凉山州模拟)(1)等差数列{a n}的各项均为正数,a1=3,前n项和为S n,S10=120,求a n;(2)已知函数f(x)=2sinxcosx+2cos2x﹣1,﹣≤x≤,求f(x)的值域.【解答】解:(1)由题意得设数列{a n}的公差为d,此时==120,解得d=2,∴a n=a1+(n﹣1)d=2n+1.(2)∵f(x)=2==2sin(2x+),﹣,又﹣,从而0,∴2x+=0时,f(x)min=0,2x+时,f(x)max=2,故函数f(x)的值域为[0,2].12.(2017•历下区校级三模)已知数列{a n}满足a1=1,且点P(a n,a n+1)在直线y=x+2上;数列{b n}的前n项和为S n,满足S n=2b n﹣2,n∈N*(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)设数列{c n}满足c n=a n b n,数列{c n}的前n项和为T n,求T n的最小值.【解答】解:(Ⅰ)∵点{a n,a n+1)在直线y=x+2上,=a n+2,即a n+1﹣a n=2,又a1=1,∴a n+1∴数列{a n}是以1为首项,2为公比的等差数列,∴a n=1+2(n﹣1)=2n﹣1当n=1,b1=2b1﹣2,则b1=2当n≥2时,b n=S n﹣S n﹣1=2b n﹣2﹣(2b n﹣1﹣2)=2b n﹣2b n﹣1,∴b n=2b n﹣1(n≥2),∴{b n}是等比数列,公比为2,首项b1=2.∴b n=2n,(Ⅱ))∵c n=a n b n=(2n﹣1)•2n,∴T n=1•21+3•22+…+(2n﹣1)•2n,①2T n=1•22+3•23+…+(2n﹣3)•2n+(2n﹣1)•2n+1,②①﹣②得:﹣T n=21+2(22+…+2n)﹣(2n﹣1)•2n+1=﹣2+2×﹣(2n﹣1)•2n+1=﹣6+(3﹣2n)•2n+1,∴T n=(2n﹣3)•2n+1+6,∵该数列T n=(2n﹣3)•2n+1+6为递增数列,∴当n=1时,有最小值为2,13.(2017•彭泽县模拟)已知f(x)=cos2(﹣x)﹣(cosx﹣sinx)2﹣.(1)求f(x)的单调区间;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,且a=1,求△ABC周长的最大值.【解答】解:(1)=,∴由,得其增区间为:;(2)∵由题意知,∴.又由正弦定理,知:,,则△ABC的周长为=.由,知:,则有,,∴△ABC的周长的最大值为3.14.(2017•泰安一模)已知函数f(x)=4cosxsin(x+)+m(m∈R),当x∈[0,]时,f(x)的最小值为﹣1.(Ⅰ)求m的值;(Ⅱ)在△ABC中,已知f(C)=1,AC=4,延长AB至D,使BC=BD,且AD=5,求△ACD的面积.【解答】解:(Ⅰ)∵f(x)=4cosxsin(x+)+m=4cosx(sinxcos+cosxsin)+m=sin2x+2cos2x+m=sin2x+cos2x+1+m=2sin(2x+)+m+1.∵x∈[0,],2x+∈[,],可得:2sin(2x+)min=﹣1,∴f(x)=﹣1=﹣1+m+1,解得:m=﹣1.(Ⅱ)∵由(Ⅰ)可得:f(x)=2sin(2x+),∴2sin(2C+)=1,∵C∈(0,π),可得:2C+∈(,),∴2C+=,解得:C=,如图,设BD=BC=x,则AB=5﹣x,∵在△ACB中,由余弦定理可得:cosC==,解得x=,∴cosA==,可得:sinA==,=AC•AD•sinA==.∴S△ACD15.(2017•湖南模拟)设函数f(x)=x.(1)当时,求f(x)的最大值;(2)设A,B,C为△ABC的三个内角,,且C为锐角,c=,求a﹣b的取值范围.【解答】解:(1),∵,∴,∴当时,.(2),∴,又∵C为锐角,∴.∵,∴,∴a=2sinA,b=2sinB,又,∴,∴,又∵,∴,∴,即.16.(2017•滨州一模)已知函数f(x)=sin(2x+)+cos(2x+)+sin2x(1)求函数f(x)的单调递减区间;(2)在△ABC中,角A,B,C的对边分别是a,b,c,若f()=,a=2,b=,求c的值.【解答】(本题满分为12分)解:(1)∵f(x)=sin(2x+)+cos(2x+)+sin2x=sin2x+cos2x+cos2x﹣sin2x+sin2x=sin(2x+),∴令2kπ+≤2x+≤2kπ+,k∈Z,解得:kπ+≤x≤kπ+,k∈Z,可得:函数f(x)的单调递减区间为:[kπ+,kπ+],k∈Z.(2)∵f()=sin(A+)=,可得:sin(A+)=1,∵A∈(0,π),可得:A+∈(,),∴可得A+=,解得:A=,∵a=2,b=,∴由余弦定理,a2=b2+c2﹣2bccosA,可得:22=()2+c2﹣2××c×,整理可得:c2﹣2c+2=0,∴解得:c=±1.17.(2017•日照一模)已知函数f(x)=sin2x﹣2cos2x﹣1,x∈R.(Ⅰ)求函数f(x)的最小正周期和最小值;(Ⅱ)在△ABC中,A,B,C的对边分别为a,b,c,已知c=,f(C)=0,sinB=2sinA,求a,b的值.【解答】解:(Ⅰ)f(x)=sin2x﹣(cos2x+1)﹣1=sin2x﹣cos2x﹣2=2sin(2x﹣)﹣2,∵ω=2,﹣1≤sin(2x﹣)≤1,∴f(x)的最小正周期T=π;最小值为﹣4;(Ⅱ)∵f(C)=2sin(2C﹣)﹣2=0,∴sin(2C﹣)=1,∵C∈(0,π),∴2C﹣∈(﹣,),∴2C﹣=,即C=,将sinB=2sinA,利用正弦定理化简得:b=2a,由余弦定理得:c2=a2+b2﹣2abcosC=a2+4a2﹣2a2=3a2,把c=代入得:a=1,b=2.18.(2017•龙岩一模)已知f(x)=sin2x+sinxcosx﹣.(1)求f(x)的单调增区间;(2)已知△ABC中,角A,B,C的对边分别为a,b,c,若A为锐角且f(A)=,b+c=4,求a的取值范围.【解答】解:(1)由题意可知,=,…(3分)令,k∈Z,可得即f(x)的递增区间为,k∈Z.…(6分)(2)由得,,A为锐角,∴,∴,解得,…(8分)由b+c=4和余弦定理得,a2=b2+c2﹣2cbcosA=(b+c)2﹣3bc=16﹣3bc,…(9分)∵=4,当且仅当b=c时取等号,∴a2=16﹣3bc≥16﹣3×4=4,解得a≥2…(11分)又a<b+c=4,∴a的取值范围为2≤a<4.…(12分)。
必修五解三角形数列测试含答案
解三角形数列测试含有答案一.选择题(共12小题)1.△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=()A.B.C.D.2.在△ABC中,若a=2,b=2,A=30°,则B为()A.60°B.60°或120°C.30°D.30°或150°3.在△ABC中,A、B、C所对的边分别为a、b、c,若bcosA+acosB=c2,a=b=2,则△ABC的周长为()A.7.5 B.7 C.6 D.54.在△ABC中,a,b,c为角A,B,C的对边,若A=,cosB=,b=8,则a=()A.B.10 C.D.55.△ABC的内角A,B,C的对边分别为a,b,c,已知cosC=,a=1,c=2,则△ABC 的面积为()A.B.C.D.6.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24 B.﹣3 C.3 D.87.在等差数列{a n}中,a1+3a8+a15=60,则2a﹣a10的值为()A.6 B.8 C.12 D.138.△ABC的内角A,B,C的对边分别为a,b,c,若,bcosA+acosB=2,则△ABC的外接圆的面积为()A.4πB.8πC.9πD.36π9.已知等差数列{a n}满足:a2=2,S n﹣S n﹣3=54(n>3),S n=100,则n=()A.7 B.8 C.9 D.1010.若等差数列{a n}的前n项和S n满足S4=4,S6=12,则S2=()A.﹣1 B.0 C.1 D.311.在△ABC中,已知A,B,C成等差数列,且,则=()A.2 B.C.D.12.在△ABC中,a,b,c分别是角A,B,C的对边,且满足acosA=bcosB,那么△ABC的形状一定是()A.等腰三角形 B.直角三角形C.等腰或直角三角形D.等腰直角三角形二.填空题(共4小题)13.△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.14.在等比数列{a n}中a n∈R,且a3,a11是方程3x2﹣25x+27=0的两根,则a7=.15.一个三角形的三条边长分别为7,5,3,它的外接圆半径是.16.设等差数列{a n}的前n项和为S n,若a2+a5+a8=15,则S9=.三.解答题(共15小题)17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.18.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.19.等差数列{a n}中,a2=8,S6=66(1)求数列{a n}的通项公式a n;(2)设b n=,T n=b1+b2+b3+…+b n,求T n.20.在等比数列{a n}中,a1=2,a4=16(1)求数列{a n}的通项公式;(2)令,n∈N*,求数列{b n}的前n项和S n.21.记等差数列{a n}的前n项和为S n,已知a2+a4=6,S4=10.(1)求数列{a n}的通项公式;(2)令b n=a n•2n(n∈N*),求数列{b n}的前n项和T n.22.在各项均为正数的等比数列{a n}中,已知a2=2a1+3,且3a2,a4,5a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a n,求数列{a n b n}的前n项和S n.23.S n表示等差数列{a n}的前n项的和,且S4=S9,a1=﹣12(1)求数列的通项a n及S n;(2)求和T n=|a1|+|a2|+…+|a n|24.已知{a n}为正项等比数列,a2=3,a6=243,S n为等差数列{b n}的前n项和,b1=3,S5=35.(1)求{a n}和{b n}的通项公式;(2)设T n=a1b1+a2b2+…+a n b n,求T n.25.已知数列{a n}为等差数列,且a1=1.{b n}为等比数列,数列{a n+b n}的前三项依次为3,7,13.求(1)数列{a n},{b n}的通项公式;(2)数列{a n+b n}的前n项和S n.26.在△ABC中,角A,B,C的对边分别为a,b,c,且.(1)求角A的值;(2)若∠B=,BC边上中线AM=,求△ABC的面积.27.在△ABC中,三个内角的对边分别为a,b,c,cosA=,asinA+bsinB﹣csinC=asinB.(1)求B的值;(2)设b=10,求△ABC的面积S.28.在△ABC中,内角A,B,C的对边分别为a,b,c,已知=.(1)求的值(2)若cosB=,b=2,求△ABC的面积S.29.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=5,cosB=.(1)求b的值;(2)求sinC的值.30.在△ABC中,角A、B、C的对边分别为a,b,c,且满足,2bsinA=a,BC边上中线AM的长为.(Ⅰ)求角A和角B的大小;(Ⅱ)求△ABC的面积.31.在△ABC中,角A,B,C的对边分别为a,b,c,已知bcosC+bsinC﹣a﹣c=0.(Ⅰ)求B;(Ⅱ)若b=,求2a+c的取值范围.2017年08月13日151****0951的高中数学组卷参考答案与试题解析一.选择题(共12小题)1.(2017•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA (sinC﹣cosC)=0,a=2,c=,则C=()A.B.C.D.【分析】根据诱导公式和两角和的正弦公式以及正弦定理计算即可【解答】解:sinB=sin(A+C)=sinAcosC+cosAsinC,∵sinB+sinA(sinC﹣cosC)=0,∴sinAcosC+cosAsinC+sinAsinC﹣sinAcosC=0,∴cosAsinC+sinAsinC=0,∵sinC≠0,∴cosA=﹣sinA,∴tanA=﹣1,∵0<A<π,∴A=,由正弦定理可得=,∴sinC=,∵a=2,c=,∴sinC===,∵a>c,∴C=,故选:B.【点评】本题考查了诱导公式和两角和的正弦公式以及正弦定理,属于基础题2.(2017•清城区校级一模)在△ABC中,若a=2,b=2,A=30°,则B为()A.60°B.60°或120°C.30°D.30°或150°【分析】利用正弦定理和题设中两边和一个角的值求得B.【解答】解:由正弦定理可知=,∴sinB==∵B∈(0,180°)∴∠B=60°或120°故选B.【点评】本题主要考查了正弦定理的应用.运用正弦定理a:b:c=sinA:sinB:sinC 来解决边角之间的转换关系.属于基础题.3.(2017•抚顺一模)在△ABC中,A、B、C所对的边分别为a、b、c,若bcosA+acosB=c2,a=b=2,则△ABC的周长为()A.7.5 B.7 C.6 D.5【分析】由已知利用余弦定理可求c的值,进而可得周长的值.【解答】解:∵bcosA+acosB=c2,a=b=2,∴由余弦定理可得:b×+a×=c2,整理可得:2c2=2c3,∴解得:c=1,则△ABC的周长为a+b+c=2+2+1=5.故选:D.【点评】本题主要考查了余弦定理在解三角形中的应用,考查了转化思想,属于基础题.4.(2017•河东区一模)在△ABC中,a,b,c为角A,B,C的对边,若A=,cosB=,b=8,则a=()A.B.10 C.D.5【分析】结合B的范围,由已知及同角三角函数关系式可求sinB,利用正弦定理即可求得a的值.【解答】解:∵cosB=,0<B<π,∴sinB==,∴由正弦定理可得:a===5.故选:D.【点评】本题主要考查了同角三角函数关系式,正弦定理的应用,属于基础题.5.(2017•深圳一模)△ABC的内角A,B,C的对边分别为a,b,c,已知cosC=,a=1,c=2,则△ABC的面积为()A.B.C.D.【分析】由题意cosC=,a=1,c=2,余弦定理求解b,正弦定理在求解sinB,那么△ABC的面积即可.【解答】解:由题意cosC=,a=1,c=2,那么:sinC=,cosC==,解得b=2.那么△ABC的面积S==.或者:由,可得sinB=,那么△ABC的面积=故选A【点评】本题主要考查了余弦定理,正弦定理的运用,属于基础题.6.(2017•新课标Ⅲ)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24 B.﹣3 C.3 D.8【分析】利用等差数列通项公式、等比数列性质列出方程,求出公差,由此能求出{a n}前6项的和.【解答】解:∵等差数列{a n}的首项为1,公差不为0.a2,a3,a6成等比数列,∴,∴(a1+2d)2=(a1+d)(a1+5d),且a1=1,d≠0,解得d=﹣2,∴{a n}前6项的和为==﹣24.故选:A.【点评】本题考查等差数列前6项和的求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.7.(2017•商丘二模)在等差数列{a n}中,a1+3a8+a15=60,则2a﹣a10的值为()A.6 B.8 C.12 D.13【分析】由已知条件利用等差数列的通项公式求解.【解答】解:在等差数列{a n}中,∵a1+3a8+a15=60,∴a1+3(a1+7d)+a1+14d=5(a1+7d)=60,∴a1+7d=12,2a﹣a 10=2(a1+8d)﹣(a1+9d)=a1+7d=12.故选:C.【点评】本题考查数列的两项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.8.(2017•鹰潭二模)△ABC的内角A,B,C的对边分别为a,b,c,若,bcosA+acosB=2,则△ABC的外接圆的面积为()A.4πB.8πC.9πD.36π【分析】由余弦定理化简已知等式可求c的值,利用同角三角函数基本关系式可求sinC 的值,进而利用正弦定理可求三角形的外接圆的半径R的值,利用圆的面积公式即可计算得解.【解答】解:∵bcosA+acosB=2,∴由余弦定理可得:b×+a×=2,整理解得:c=2,又∵,可得:sinC==,∴设三角形的外接圆的半径为R,则2R===6,可得:R=3,∴△ABC的外接圆的面积S=πR2=9π.故选:C.【点评】本题主要考查了余弦定理,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.9.(2017•南关区校级模拟)已知等差数列{a n}满足:a2=2,S n﹣S n﹣3=54(n>3),S n=100,则n=()A.7 B.8 C.9 D.10【分析】由等差数列的性质得a n=18.(n≥2),由此利用等差数列的通项公式能求出﹣1n.【解答】解:∵等差数列{a n}满足:a2=2,S n﹣S n﹣3=54(n>3),S n=100,∴a n+a n﹣1+a n﹣2=54(n>3),又数列{a n}为等差数列,=54(n≥2),∴3a n﹣1∴a n=18.(n≥2),﹣1又a2=2,S n=100,∴S n===100,∴n=10.故选:D.【点评】本题考查等差数列的项数n的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.10.(2017•武汉模拟)若等差数列{a n}的前n项和S n满足S4=4,S6=12,则S2=()A.﹣1 B.0 C.1 D.3【分析】由等差数列的性质得S2,S4﹣S2,S6﹣S4成等差数列,由此能求出结果.【解答】解:∵等差数列{a n}的前n项和S n满足S4=4,S6=12,S2,S4﹣S2,S6﹣S4成等差数列,∴2(S4﹣S2)=S2+(S6﹣S4),即2(4﹣S2)=S2+8,解得S2=0.故选:B.【点评】本题考查等差数列的前两项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(2017春•涪城区校级月考)在△ABC中,已知A,B,C成等差数列,且,则=()A.2 B.C.D.【分析】由等差中项的性质列出方程,结合内角和定理求出B,由条件和正弦定理求出答案.【解答】解:因为A,B,C成等差数列,所以2B=A+C,又A+B+C=π,则B=,由b=,得===2.故选:A.【点评】本题考查了正弦定理,内角和定理,以及等差中项的性质的应用,属于基础题.12.(2016•全国三模)在△ABC中,a,b,c分别是角A,B,C的对边,且满足acosA=bcosB,那么△ABC的形状一定是()A.等腰三角形 B.直角三角形C.等腰或直角三角形D.等腰直角三角形【分析】根据正弦定理把等式acosA=bcosB的边换成角的正弦,再利用倍角公式化简整理得sin2A=sin2B,进而推断A=B,或A+B=90°答案可得.【解答】解:根据正弦定理可知∵bcosB=acosA,∴sinBcosB=sinAcosA∴sin2A=sin2B∴A=B,或2A+2B=180°即A+B=90°,即有△ABC为等腰或直角三角形.故选C.【点评】本题主要考查了正弦定理的应用,考查二倍角公式及诱导公式的运用,考查计算能力,属基础题.二.填空题(共4小题)13.(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.【分析】根据正弦定理和两角和的正弦公式和诱导公式计算即可【解答】解:∵2bcosB=acosC+ccosA,由正弦定理可得,2cosBsinB=sinAcosC+sinCcosA=sin(A+C)=sinB,∵sinB≠0,∴cosB=,∵0<B<π,∴B=,故答案为:【点评】本题考查了正弦定理和两角和的正弦公式和诱导公式,属于基础题14.(2017•新疆一模)在等比数列{a n}中a n∈R,且a3,a11是方程3x2﹣25x+27=0的两根,则a7=3.【分析】由韦达定理得,从而a3>0,a11>0,由等比数列的性质得,由此能求出结果.【解答】解:∵等比数列{a n}中a n∈R,且a3,a11是方程3x2﹣25x+27=0的两根,∴,∴a3>0,a11>0,且,∴a7=3.故答案为:3.【点评】本题考查等比数列的第7项的求法,是基础题,解题时要认真审题,注意等比数列性质及韦达定理的合理运用.15.(2016秋•菏泽期中)一个三角形的三条边长分别为7,5,3,它的外接圆半径是.【分析】根据三角形的三条边长求出对应的余弦值,再根据正弦定理即可求出R的值.【解答】解:三角形的三条边长分别为7,5,3,所以边长为7所对角的余弦值是:cosθ==﹣;又θ∈(0,π),∴θ=;由正弦定理得2R==,所以该三角形外接圆的半径是R=.故答案为:.【点评】本题主要考查了正弦定理和余弦定理的应用问题,是基础题目.16.(2017•徐汇区校级模拟)设等差数列{a n}的前n项和为S n,若a2+a5+a8=15,则S9= 45.【分析】利用等差数列的通项公式将已知条件用首项与公差表示得到首项与公差的关系,利用等差数列的前n项和公式表示出前9项的和,将首项与公差的关系代入求出值.【解答】解:由a2+a5+a8=15,得(a1+d)+(a1+4d)+(a1+7d)=15⇒a1+4d=5,∴.故答案为:45.【点评】解决等差数列、等比数列的问题一般是将已知、待求的问题都用首项、公差、或公比表示来解决也就是所谓的基本量法.三.解答题(共15小题)17.(2016•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.【分析】(1)利用正弦定理将边化角即可得出cosB;(2)求出sinA,利用两角和的正弦函数公式计算.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.【点评】本题考查了正弦定理解三角形,两角和的正弦函数,属于基础题.18.(2013•浙江)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.【分析】(Ⅰ)利用正弦定理化简已知等式,求出sinA的值,由A为锐角,利用特殊角的三角函数值即可求出A的度数;(Ⅱ)由余弦定理列出关系式,再利用完全平方公式变形,将a,b+c及cosA的值代入求出bc的值,再由sinA的值,利用三角形面积公式即可求出三角形ABC的面积.【解答】解:(Ⅰ)由2asinB=b,利用正弦定理得:2sinAsinB=sinB,∵sinB≠0,∴sinA=,又A为锐角,则A=;(Ⅱ)由余弦定理得:a2=b2+c2﹣2bc•cosA,即36=b2+c2﹣bc=(b+c)2﹣3bc=64﹣3bc,∴bc=,又sinA=,则S=bcsinA=.△ABC【点评】此题考查了正弦定理,三角形的面积公式,熟练掌握正弦定理是解本题的关键.19.(2016•长沙二模)等差数列{a n}中,a2=8,S6=66(1)求数列{a n}的通项公式a n;(2)设b n=,T n=b1+b2+b3+…+b n,求T n.【分析】设等差数列{a n}的公差为d,则有,解之可得a1=6,d=2,进而可得通项公式;(2)把(1)的结果代入可得b n的通项,由列项相消法可得答案.【解答】解:(1)设等差数列{a n}的公差为d,则有…(2分)解得:a1=6,d=2,…(4分)∴a n=a1+d(n﹣1)=6+2(n﹣1)=2n+4 …(6分)(2)b n===﹣…(9分)∴T n=b1+b2+b3+…+b n=﹣+﹣+…+﹣=﹣=…(12分)【点评】本题考查等差数列的通项公式和求和公式,设及列项相消法,属基础题.20.(2013•临洮县校级模拟)在等比数列{a n}中,a1=2,a4=16(1)求数列{a n}的通项公式;(2)令,n∈N*,求数列{b n}的前n项和S n.【分析】(1)由“a1=2,a4=16”求得公比q再用通项公式求得通项.(2)先将==﹣转化,再用裂项相消法求其前n项和T n【解答】解:(1)设等比数列{a n}的公比为q依题意a1=2,a4=16,得∴q3=8,q=2,∴a n=2n(2)由(1)得log2a n=n,log2a n+1=n+1,bn==﹣∴Sn=b1+b2+…+bn=(1﹣)+(+)+…+(﹣)=1﹣=.【点评】本题主要考查等比数列的通项公式及前n项和公式及其应用,求和的常用方法有:倒序相加法,错位相减法,裂项相消法,分组求和等.21.(2010•海淀区二模)记等差数列{a n}的前n项和为S n,已知a2+a4=6,S4=10.(1)求数列{a n}的通项公式;(2)令b n=a n•2n(n∈N*),求数列{b n}的前n项和T n.【分析】(1):利用待定系数法,设首项和公差,由a2+a4=6,S4=10,列方程组,可得数列首项和公差,从而得解.(2):由a n=n,b n=a n•2n=n•2n可知,要求{b n}的前n项和,可利用错位相减的方法求得.(一个等差数列和一个等比数列对应项之积组成的数列,可用错位相减法求和)【解答】解:(Ⅰ)设等差数列{a n}的公差为d,由a2+a4=6,S4=10,可得,(2分),即,解得,(4分)∴a n=a1+(n﹣1)d=1+(n﹣1)=n,故所求等差数列{a n}的通项公式为a n=n.(5分)(Ⅱ)依题意,b n=a n•2n=n•2n,∴T n=b1+b2++b n=1×2+2×22+3×23++(n﹣1)•2n﹣1+n•2n,(7分)又2T n=1×22+2×23+3×24+…+(n﹣1)•2n+n•2n+1,(9分)两式相减得﹣T n=(2+22+23++2n﹣1+2n)﹣n•2n+1(11分)==(1﹣n)•2n+1﹣2,(12分)∴T n=(n﹣1)•2n+1+2.(13分)【点评】本题是数列求通项和前n项和的题型,高考常见,其中:(1)可利用利用待定系数法求解,这是解数列题的一般方法,要熟练掌握.(2)对于一个等差数列和一个等比数列对应项之积组成的数列,可用错位相减法求和,这也是教材推导等比数列前n项和公式时的方法.另外数列求和的方法还有倒序相加,裂项相消,分组求和等方法,要熟练掌握.都是高考中常考的知识点.22.(2015•南昌校级三模)在各项均为正数的等比数列{a n}中,已知a2=2a1+3,且3a2,a4,5a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a n,求数列{a n b n}的前n项和S n.【分析】(Ⅰ)根据已知条件建立等式,转化成首项和公比,解之即可求出所求;(II)先求出数列{a n b n}的通项公式,根据通项公式的特点利用错位相消法进行求和,从而求出所求.【解答】解:(Ⅰ)设数列{a n}的公比为q,由题意得q>0,且即解得或(舍去),所以数列{a n}的通项公式为.…(6分)(Ⅱ)由(Ⅰ)可得b n=log3a n=n,所以.所以,所以,两式相减得==,即.…(12分)【点评】本题主要考查了等比数列的通项公式,以及利用错位相消法进行求和,同时考查了计算能力,属于基础题.23.(2014•中山区校级模拟)S n表示等差数列{a n}的前n项的和,且S4=S9,a1=﹣12(1)求数列的通项a n及S n;(2)求和T n=|a1|+|a2|+…+|a n|【分析】(1)由已知结合等差数列前n项和公式,构造关于公差d的方程,求出公差后,可得数列的通项a n及S n;(2)由(1)中数列的通项公式,可得数列前6项为负,故可分n≤6和n≥7时两种情况,结合等差数列前n项和公式求T n.【解答】解:(1)∵S4=S9,a1=﹣12,∴4×(﹣12)+6d=9×(﹣12)+36d解得d=2…(3分)∴…(7分)(2)当n≤6时,a n<0,|a n|=﹣a n,T n=﹣(a1+a2+…=13n﹣n2,…(10分)当n≥7时,a n≥0,T n=﹣(a1+a2+…+a6)+(a7+…=S n﹣2(a1+a2+…+a6)=n2﹣13n+84…(14分)【点评】本题考查的知识点是等差数列的通项公式和前n项公式,其中(2)由于T n 的表达式中出现绝对值,故要分析各项符号.24.(2014•邯郸二模)已知{a n}为正项等比数列,a2=3,a6=243,S n为等差数列{b n}的前n项和,b1=3,S5=35.(1)求{a n}和{b n}的通项公式;(2)设T n=a1b1+a2b2+…+a n b n,求T n.【分析】(1)利用正项等比数列的性质,结合已知条件列出方程组,求出首项和公比,由此能求出.利用等差数列的前n项和公式由已知条件求出公差,由此能求出等差数列{b n}的通项公式.(2)由(1)知a n b n=(2n+1)•3n﹣1,由此利用错位相减法能求出T n=n•3n.【解答】解:(1)∵{a n}为正项等比数列,a2=3,a6=243,∴,解得a1=1,q=3,或a1=﹣1,q=﹣3(舍),∴.∵S n为等差数列{b n}的前n项和,b1=3,S5=35,∴5×3+=35,解得d=2,∴b n=3+(n﹣1)×2=2n+1.(2)由(1)知a n b n=(2n+1)•3n﹣1,∴T n=3+5×3+7×32+9×33+…+(2n+1)×3n﹣1,①3T n=3×3+5×32+7×33+9×34+…+(2n+1)×3n.②①﹣②,得﹣2T n=3+2(3+32+33+34+…+3n﹣1)﹣(2n+1)×3n=3+2×﹣(2n+1)×3n=﹣2n×3n,∴T n=n•3n.【点评】本题考查数列的通项公式和前n项和公式的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.25.(2010•辽宁模拟)已知数列{a n}为等差数列,且a1=1.{b n}为等比数列,数列{a n+b n}的前三项依次为3,7,13.求(1)数列{a n},{b n}的通项公式;(2)数列{a n+b n}的前n项和S n.【分析】(1)∵已知数列{a n}为等差数列,且a1=1.{b n}为等比数列,数列{a n+b n}的前三项依次为3,7,13,所以我们易得到三个关于b1和公差d及公比q的方程,解方程后,易得数列{a n},{b n}的通项公式;(2)由(1)易得数列{a n+b n}的通项公式,利用裂项法易得数列{a n+b n}的前n项和S n.【解答】解:①设公差为d,公比为q∵数列{a n+b n}的前三项依次为3,7,13∴又a1=1∴∴a n=2n﹣1,b n=2n②∵a n=2n﹣1,b n=2n∴a n+b n=(2n﹣1)+2n∴S n=(a1+a2+…+a n)+(b1+b2+…+b n)==n2+2n+1﹣2【点评】方程思想是解决数列问题的基本思想,通过公差(或公比)列方程(组)来求解基本量是数列中最基本的方法,同时在解题中也要注意数列性质的应用.若一个数列的通项可以分解为一个等差数列加上一个等比数列的形式,可用裂项法,将数列的和分为等差和等比两部分,分别代入对应的公式,进行求解.(如第二步)26.(2017•广西模拟)在△ABC中,角A,B,C的对边分别为a,b,c,且.(1)求角A的值;(2)若∠B=,BC边上中线AM=,求△ABC的面积.【分析】(1)利用正弦定理化边为角可求得cosA=,从而可得A;(2)易求角C,可知△ABC为等腰三角形,在△AMC中利用余弦定理可求b,再由三角形面积公式可求结果;【解答】解:(1)∵.∴由正弦定理,得,化简得cosA=,∴A=;(2)∵∠B=,∴C=π﹣A﹣B=,可知△ABC为等腰三角形,在△AMC中,由余弦定理,得AM2=AC2+MC2﹣2AC•MCcos120°,即7=,解得b=2,∴△ABC的面积S=b2sinC==.【点评】该题考查正弦定理、余弦定理及三角形的面积公式,属基础题,熟记相关公式并灵活运用是解题关键.27.(2017•潮南区模拟)在△ABC中,三个内角的对边分别为a,b,c,cosA=,asinA+bsinB﹣csinC=asinB.(1)求B的值;(2)设b=10,求△ABC的面积S.【分析】(1)利用正弦定理把已知等式中的边转化成角的正弦,整理后可求得cosC的值,进而求得C,进而求得sinA和sinC,利用余弦的两角和公式求得答案.(2)根据正弦定理求得c,进而利用面积公式求得答案.【解答】解:(1)∵,∴.∴.又∵A、B、C是△ABC的内角,∴.∵,又∵A、B、C是△ABC的内角,∴0<A+C<π,∴.∴.(2)∵,∴.∴△ABC的面积.【点评】本题主要考查了正弦定理和余弦定理的运用.注意对这两个公式的灵活运用来解决三角形问题.28.(2017•尖山区校级四模)在△ABC中,内角A,B,C的对边分别为a,b,c,已知=.(1)求的值(2)若cosB=,b=2,求△ABC的面积S.【分析】(1)由正弦定理,三角形内角和定理,两角和的正弦函数公式化简已知可得sinC=2sinA,即可得解=2.(2)由正弦定理可求c=2a,由余弦定理解得a=1,从而c=2.利用同角三角函数基本关系式可求sinB的值,进而利用三角形面积公式即可计算得解.【解答】(本题满分为12分)解:(1)由正弦定理,则=,所以=,即(cosA﹣2cosC)sinB=(2sinC﹣sinA)cosB,化简可得sin(A+B)=2sin(B+C).因为A+B+C=π,所以sinC=2sinA.因此=2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)由=2,得c=2a,由余弦定理b2=a2+c2﹣2accosB,及cosB=,b=2,得4=a2+4a2﹣4a2×.解得a=1,从而c=2.因为cosB=,且sinB==,因此S=acsinB=×1×2×=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题主要考查了正弦定理,三角形内角和定理,两角和的正弦函数公式,余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,熟练应用相关公式定理是解题的关键,属于基础题.29.(2015•兰州模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=5,cosB=.(1)求b的值;(2)求sinC的值.【分析】(1)由余弦定理代入数据计算可得;(2)由cosB=可得sinB=,由正弦定理=,代值计算即可.【解答】解:(1)由余弦定理b2=a2+c2﹣2accosB,代入数据可得b2=4+25﹣2×2×5×=17,∴b=;(2)∵cosB=,∴sinB==由正弦定理=,即=,解得sinC=【点评】本题考查正余弦定理的简单应用,属基础题.30.(2015•郑州一模)在△ABC中,角A、B、C的对边分别为a,b,c,且满足,2bsinA=a,BC边上中线AM的长为.(Ⅰ)求角A和角B的大小;(Ⅱ)求△ABC的面积.【分析】(Ⅰ)利用余弦定理表示出cosA,将已知等式变形后代入求出cosA的值,确定出角A的度数,将2bsinA=a利用正弦定理化简求出sinB的值,即可确定出角B的大小;(Ⅱ)由A=B,利用等角对等边得到AC=BC,设AC=BC=x,利用余弦定理列出关于x的方程,求出方程的解得到x的值,确定出AC与BC的长,再由sinC的值,利用三角形面积公式即可求出三角形ABC面积.【解答】解:(Ⅰ)由a2﹣b2﹣c2+bc=0得:a2﹣b2﹣c2=﹣bc,即b2+c2﹣a2=bc,∴由余弦定理得:cosA==,∵A为三角形内角,∴A=,由2bsinA=a,利用正弦定理化简得:2sinBsinA=sinA,即sinB=,则B=;(Ⅱ)由A=B,得到AC=BC=x,可得C=,由余弦定理得AM2=x2+﹣2x••(﹣)=14,解得:x=2,=AC•BC•sinC=×2×2×=2.则S△ABC【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.31.(2014•杭州三模)在△ABC中,角A,B,C的对边分别为a,b,c,已知bcosC+bsinC ﹣a﹣c=0.(Ⅰ)求B;(Ⅱ)若b=,求2a+c的取值范围.【分析】(1)已知等式利用正弦定理化简,整理后求出sin(B﹣)的值,根据B为三角形内角,确定出B的度数即可;(2)由b,sinB的值,利用正弦定理求出2R的值,2a+c利用正弦定理化简,把2R的值代入并利用两角和与差的正弦函数公式化为一个角的正弦函数,由正弦函数的值域确定出范围即可.【解答】解:(1)由正弦定理知:sinBcosC+sinBsinC﹣sinA﹣sinC=0,把sinA=sin(B+C)=sinBcosC+cosBsinC代入上式得:sinBsinC﹣cosBsinC﹣sinC=0,∵sinC≠0,∴sinB﹣cosB﹣1=0,即sin(B﹣)=,∵B为三角形内角,∴B=;(2)由(1)得:2R===2,∴2a+c=2R(2sinA+sinC)=4sinA+2sin(﹣A)=5sinA+cosA=2sin(A+θ),其中sinθ=,cosθ=,∵A∈(0,),即有A+θ=处取得最大值2.∴2sin(A+θ)∈(,2],则2a+c的范围为(,2].【点评】此题考查了正弦定理,两角和与差的正弦函数公式,以及正弦函数的定义域与值域,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.。
高一数学必修5《解三角形》测试卷(含答案)
《解三角形》测试卷考试时间:120分钟 满分:150分一.选择题.(本大题共12小题,每小题5分,共60分) 1.在△ABC 中,已知1,2,60a b C === ,则c =( ) A.3 B.3 C.5 D.5 2.在△ABC 中,15,10,60a b A ===,则cos B =( ) A.63 B.223 C.63- D.223- 3.设甲、乙两楼相距20m ,从乙楼底望甲楼顶的仰角为60 ,从甲楼顶望乙楼顶的俯角为30 ,则甲、乙两楼的高分别是( )A.40203,33m m B.203,103m m C.10(32),203m m - D.15203,323m m 4.在△ABC 中,::4:5:6a b c =,那么△ABC 是( )A.锐角三角形B.直角三角形C.钝角三角形D.形状不能确定 5.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( )A.518 B.34 C.32D .78 6.在△ABC 中,2cos a b C =,则这个三角形一定是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形 7.在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )A.0,6π⎛⎤ ⎥⎝⎦B.,6ππ⎡⎫⎪⎢⎣⎭C.0,3π⎛⎤ ⎥⎝⎦D.,3ππ⎡⎫⎪⎢⎣⎭8.在△ABC 中,若cos sin a A b B =,则2sin cos cos A A B +=( )A.12-B.12C.1-D.19.如图,在△ABC 中,D 是边AC 上的 点,且,23,2AB CD AB BD BC BD ===, 则sin C 的值为( )A.33B.36C.63D.6610.在△ABC 中,2,,3BC B π==当△ABC 的面积等于32时,sin C =( ) A.32 B.12 C.33 D.3411.E 、F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ECF ∠=( ) A.1627B.23 C.33D.34 12.如图,1l 、2l 、3l 是同一平面内的三条平行直线,1l 与2l 间的距离是1,2l 与3l 间的距离 是2,正三角形ABC 的三顶点分别在1l 、2l 、3l 上,则△ABC 的边长是( )A.23B.463 C.3174 D.2213二.填空题.(本大题共4小题,每小题5分,共20分) 13.△ABC 中,若1,7,3a b c ===,则B = .14.在△ABC 中,3,13,4AB BC AC ===,则边AC 上的高为 . 15.在△ABC 中,120,7,5,B AC AB === 则△ABC 的面积为 .16.在△ABC 中,222()ABC S a b c =+-△,则tan C = .三.解答题.(本大题共6小题,其中17题10分,其余5个小题每题12分,共70分)17.在△ABC 中,已知():():()4:5:6b c c a a b +++=,求△ABC 的最大内角.18.在△ABC 中,已知2B A C =+. (Ⅰ)求角B 的大小;(Ⅱ)若2b ac =,试确定△ABC 的形状.19.在△ABC 中,,a b 是方程22320x x -+=的两个根,2cos()1A B +=. (Ⅰ)求角C 的大小; (Ⅱ)求c 的长度.20.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D .现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB .21.已知,,a b c 分别为△ABC 三个内角,,A B C 的对边,3sin cos c a C c A =-. (Ⅰ)求A ;(Ⅱ)若2a =,△ABC 的面积为3,求,b c .22.在△ABC 中,角,,A B C 所对的对边分别为,,a b c ,已知sin sin sin (),A C p B p R +=∈且214ac b =.(Ⅰ)当5,14p b ==时,求,a c 的值;(Ⅱ)若角B 为锐角,求p 的取值范围.《三角函数》答案解析一.选择题.(本大题共12小题,每小题5分,共60分)AAAAD A C D D B DD二.填空题.(本大题共4小题,每小题5分,共20分)13.56π 14.332 15.153416.43- 三.解答题.(本大题共6小题,其中17题10分,其余5个小题每题12分,共70分)2224,5,6(0)753,,2221cos 2223b c k c a k a b k k k k k a b c a ABC A b c a A bc A π+=+=+=>===∴+-==-∴=17.解:设则 为△的最大边,为最大角22218.23sin sin sin 323sin sin()34133sin sin cos 22411cos 233sin 222243sin 2cos 22B A C B B b acB AC B A A A A A A A A A ππππ=+=-∴==∴==∴-=∴+=-∴⨯+=∴-= 解:(Ⅰ) (Ⅱ) sin(2)162626A A A ABC ππππ∴-=∴-=∴=∴ △为正三角形2222219.()2cos()11cos()cos[()]cos 21cos 2(0,)23(),23202322cos ()10A B A B A B C C C C a b x x a b ab c b a ab C a b ab c πππ+=∴+=-+=-=∴=-∈∴=-+=⎧+=⎪∴⎨=⎪⎩∴=+-=+-=∴ 解:Ⅰ 又 Ⅱ是方程的两个根 10=20.sin sin sin sin sin sin()tan sin tan sin()BCD CBD BC CDBDC CBDCD BDC s BC CBD s Rt ABC AB BC ACB παββαβθβαβ∠=--=∠∠∠⋅∴==∠+⋅=∠=+解:△中, △中,21.3sin cos sin 3sin sin sin cos sin (3sin cos 1)03sin cos 1sin()16331sin 324c a C c AC A C C A C A A A A A A ABC bc A bc ππ=-∴=-∴--=∴-=∴-=∴=∴=∴= 解:(Ⅰ) (Ⅱ)△的面积为 ①222222cos 82a b c bc Ab c b c =+-∴+=== 又 ② 由①和②解得22222225422()14114114()sin sin sin ()(0)14()2cos 232202a c ac a a c c A C p B p R a c pb p ac b a c b a c ac b B p ac acB p ⎧+=⎪⎪⎨⎪=⎪⎩=⎧⎧=⎪⎪⎨⎨=⎪⎪=⎩⎩+=∈∴+=>=+-+--∴===-∴< .解:Ⅰ由题意得 解得或 Ⅱ 又 为锐角 231622p -<∴<<。
人教A版高中数学必修五高一《解三角形》《数列》复习测试题.doc
惠州一中高一数学必修5《解三角形》《数列》复习测试题一、选择题:(每小题5分,共50分)1.ΔABC 中, a = 1, b =3, ∠A=30°,则∠B 等于 ( )A .60°B .60°或120°C .30°或150°D .120°2.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为( ) A .9 B .18 C .93 D .1833.已知{a n }是等比数列,且公比,240,2100321=++++=a a a a q 若 则=++++1001284a a a a ( )A .15B .128C .30D .604.一个等差数列共有3n 项,若前2n 项的和为100,后2n 项的和为200,则中间n 项的和为( ) A .75B .100C .50D .1255.△ABC 中,∠A 、∠B 的对边分别为a 、b ,5,4a b ==,且∠A=60°,那么满足条件的△ABC ( ) A .有一个解B .有两个解C .无解D .不能确定6.在△ABC 中,若3a = 2b sin A , 则B 为( ) A .3π B . 6π C . 6π或65πD .3π或32π7.等比数列===302010,10,20,}{M M M M n a n n 则若项乘积记为前 ( )A .1000B .40C .425D .81 8.某人朝正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰 好3km ,那么x 的值为( ) A .3 B . 23 C . 23或3D . 39.在等差数列{a n }中,前n 项和为S n ,若S 16—S 5=165,则1698a a a ++的值是( )A .90B .90-C .45D .45-10.设数列{}n a 的前n 项和为n S ,令12nn S S S T n+++=,称n T 为数列1a ,2a ,……,n a 的“理想数”,已知数列1a ,2a ,……,500a 的“理想数”为2004,那么数列2, 1a ,2a ,……,500a 的“理想数”为( )A .2002B .2004C .2006D .2008二、填空题:请把答案填在题中横线上(每小题5分,共20分).11.一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60,行驶4h后,船到达C 处,看到这个灯塔在北偏东15,这时船与灯塔的距离为 km .12. 已知△ABC 的三边分别是a, b ,c ,且面积S =4222c b a -+,则角C =___ __13.若a 、b 、c 成等比数列,a 、x 、b 成等差数列,b 、y 、c 成等差数列,则=+ycx a 14.已知数列{a n }中,)(2,12111n n a a a a a +++==+ ,则通项=n a .三、解答题:解答应写出文字说明、证明过程或演算步骤(共80分).15.(12分)a ,b ,c 为△ABC 的三边,其面积S △ABC =123,b c =48,b - c =2,求角A 及边长a .16、(12分)已知数列{}.21,5),2(12211nn n nn n n a b a n a a a -==≥-+=-满足 (Ⅰ)证明:{}n b 为等差数列; (Ⅱ)求数列{}n a 的前n 项和S n .17.(14分) 在△ABC 中,a b c <<,60B =,面积为103cm 2,周长为20 cm ,求此三角形的各边长.18、已知正项数列{}n a 满足:()()()2*113,2122181,n n a n a n a n n n N -=-+=++>∈ . (1)求数列{}n a 的通项n a ; (2)设,1nn a b =求数列{}n b 的前n 项的和n S .19.(14分)△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2b ac =,43cos =B . (Ⅰ)求CA tan 1tan 1+的值; (Ⅱ)设c a BC BA +=⋅求,23的值。
必修五解三角形、数列基础练习
A.B.-C.D.-
41.一个等比数列的前三项的积为3,最后三项的积为9,且所有项的积为729,则该数列的项数是()
A.13B.12C.11D.10
47.(2013·课标全国Ⅰ)若数列{an}的前n项和Sn=an+,则{an}的通项公式是an=________.
42.数列{an}中,an=,若Sn=7,则n=________.
26.Sn为等差数列{an}的前n项和,S2=S6,a4=1,则a5=________.
27.若等差数列{an}的前5项和S5=25,且a2=3,则a7等于()
A.12B.13C.14D.15
28.记等差数列{an}的前n项和为Sn,若a1=,S4=20,则S6等于()
A.16B.24C.36D.48
20.等差数列{an}的前n项和为Sn,若S2=4,S4=20,则该数列的公差为()
A.7B.6C.3D.2
21.已知等差数列{an}的前n项和为Sn,且S10=10,S20=30,则S30=________.
22.等差数列{an}中,a3+a4+a5=12,那么a1+a2+…+a6+a7=()
A.21B.28C.32D.35
A.13B.12C.10D.9
17.设数列{an}的通项公式为an=20-4n,前n项和为Sn,则Sn中最大的是()
A.S3B.S4或S5C.S5D.S6
18.1,,,,…的一个通项公式是________.
19.已知数列{an}的前4项为1,3,7,15,写出数列{an}的一个通项公式an=________.
A.16B.11C.-11D.±11
35.已知数列{an}是各项均为正整数的等比数列,a1=3,前3项和为21,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修5《解三角形》《数列》复习测试题一、选择题:(每小题5分,共50分)1.ΔABC 中, a = 1, b =3, ∠A=30°,则∠B 等于 ( )A .60°B .60°或120°C .30°或150°D .120°2.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为( )A .9B .18C .93D .1833.已知{a n }是等比数列,且公比,240,2100321=++++=a a a a q 若则=++++1001284a a a a ( )A .15B .128C .30D .604.一个等差数列共有3n 项,若前2n 项的和为100,后2n 项的和为200,则中间n 项的和为( )A .75B .100C .50D .1255.△ABC 中,∠A 、∠B 的对边分别为a 、b ,5,4a b ==,且∠A=60°,那么满足条件的△ABC ( )A .有一个解B .有两个解C .无解D .不能确定6.在△ABC 中,若3a = 2b sin A , 则B 为( )A . 3πB . 6πC . 6π或65πD . 3π或32π 7.等比数列===302010,10,20,}{M M M M n a n n 则若项乘积记为前 ( )A .1000B .40C .425D .81 8.某人朝正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰 好3km ,那么x 的值为( )A . 3B . 23C . 23或3D . 39.在等差数列{a n }中,前n 项和为S n ,若S 16—S 5=165,则1698a a a ++的值是( )A .90B .90-C .45D .45-10.设数列{}n a 的前n 项和为n S ,令12n n S S S T n+++= ,称n T 为数列1a ,2a ,……,n a 的“理想数”,已知数列1a ,2a ,……,500a 的“理想数”为2004,那么数列2, 1a ,2a ,……,500a 的“理想数”为 ( )A .2002B .2004C .2006D .2008二、填空题:请把答案填在题中横线上(每小题5分,共20分). 11.一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60 ,行驶4h后,船到达C 处,看到这个灯塔在北偏东15 ,这时船与灯塔的距离为 km .12. 已知△ABC 的三边分别是a, b ,c ,且面积S =4222c b a -+,则角C =___ __ 13.若a 、b 、c 成等比数列,a 、x 、b 成等差数列,b 、y 、c 成等差数列,则=+yc x a 14.已知数列{a n }中,)(2,12111n n a a a a a +++==+ ,则通项=n a .三、解答题:解答应写出文字说明、证明过程或演算步骤(共80分).15.(12分)a ,b ,c 为△ABC 的三边,其面积S △ABC =123,b c =48,b - c =2,求角A 及边长a .16、(12分)已知数列{}.21,5),2(12211nn n n n n n a b a n a a a -==≥-+=-满足 (Ⅰ)证明:{}n b 为等差数列;(Ⅱ)求数列{}n a 的前n 项和S n .17.(14分) 在△ABC 中,a b c <<,60B = ,面积为2,周长为20 cm ,求此三角形的各边长.18、已知正项数列{}n a 满足:()()()2*113,2122181,n n a n a n a n n n N -=-+=++>∈ . (1)求数列{}n a 的通项n a ;(2)设,1nn a b =求数列{}n b 的前n 项的和n S .19.(14分)△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2b ac =,43cos =B . (Ⅰ)求CA tan 1tan 1+的值; (Ⅱ)设c a +=⋅求,23的值。
20、设数列}{n a 的前n 项和为n S ,101=a ,1091+=+n n S a .⑴求证:}{lg n a 是等差数列.⑵设n T 是数列⎭⎬⎫⎩⎨⎧+))(lg (lg 31n n a a 的前n 项和,求使)5(412m m T n -> 对所有的*∈N n 都成立的最大正整数m 的值.高一数学必修5《解三角形》《数列》复习测试题参考答案一、选择题1-5、BCBAA 6-10、DDCCA二、填空题11、 12、450 13、2 14、⎩⎨⎧∈≥⋅=*-)2(,32)1(,12N n n n n 且 三、解答题 15、解:由S △ABC =21b c sin A ,得 123=21×48×sin A ∴ sin A =23 ∴ A =60°或A =120° a 2=b 2+c 2-2bc cos A =(b -c )2+2bc (1-cos A )=4+2×48×(1-cos A )当A =60°时,a 2=52,a =213; 当A =120°时,a 2=148,a =23716、(Ⅰ)证明:1111212222221-----+=-+=-=n n n n n n n n n a a a b ),2(1121111≥+=+-=---n b a n n n ),2(11≥=-∴-n b b n n {}n b ∴是公差为1,首项为22111=-=a b 的等差数列 (Ⅱ)解:由(Ⅰ)知,11)1(2+=⋅-+=n n b n 即12)1(,121++=∴+=-n n n nn a n a , ,]2)1(242322[32n n S n n ++++⋅+⋅+⋅=∴ 令,2)1(2232212n n n n n T ++⋅++⋅+⋅=-,2)1(222212+++⋅++⋅=∴n n n n n T122)1(212122++-⋅++⋅+⋅=-∴n n n n T112)1(21)21(44+-+---+=n n n ,2224241111++++⋅-=-⋅--+=n n n n n n,21+⋅=∴n n n T .21n n S n n +⋅=∴+17、解:依题意得, 1sin 60402ac ac == ;b c a c b a -=+⇒=++2020 由余弦定理得,2222cos60b a c ac =+- ,即22()22cos60b a c ac ac =+--21402402)20(22⨯⨯-⨯--=∴b b 解锝 7=b 13720=-=+∴c a 又 40=ac 且a b c <<解得5a =, 8c = ∴5a =,7b =,8c =.18、解:(1)∵()()21212218n n n a n a n --+=++∴()()21212182n n n a n a n ---+=-∴ ∵1121a =+,∴21n a n ⎧⎫⎨⎬+⎩⎭是以1为首项,2为公差的等差数列 ∴()1122121n a n n n =+-⨯=-+ ∴241n a n =- (*∈N n ) (2)∵()()211111141212122121n a n n n n n ⎛⎫===- ⎪--+-+⎝⎭(*∈N n ) ∴12111111111123352121n a a a n n ⎛⎫+++=-+-++- ⎪-+⎝⎭12)1211(21+=+-=n n n 即.12+=n n S n 19.解:(Ⅰ)由,47)43(1sin ,43cos 2=-==B B 得 由b 2=a c 及正弦定理得 .s i n s i ns i n 2C A B = 于是B C A C A A C A C C C A A C A 2sin )sin(sin sin sin cos cos sin sin cos sin cos tan 1tan 1+=+=+=+ .774sin 1sin sin 2===B B B (Ⅱ)由.2,2,43cos ,23cos 232====⋅=⋅b ca B B ca BC BA 即可得由得 由余弦定理 b 2=a 2+c 2-2a ccosB 得a 2+c 2=b 2+2a c ·cos B=5. 3,9452)(222=+=+=++=+c a ac c a c a 20、解:⑴依题意,10010912=+=a a ,故1012=a a , 当2≥n 时,1091+=-n n S a ① 又1091+=+n n S a ② ②―①整理得:101=+nn a a ,故}{n a *∈N n 为等比数列, 且n n n q a a 1011==-,n a n =∴lg1)1(lg lg 1=-+=-∴+n n a a n n ,即}{lg n a 是等差数列. ⑵由⑴知,))1(1321211(3+++⋅+⋅=n n T n =133)1113121211(3+-=+-++-+-n n n 23≥∴n T ,依题意有)5(41232m m ->,解得61<<-m , 故所求最大正整数m 的值为5()*∈N n。