高三数学公开课教案,等差数列的证明与判定
高三数学数列教案5篇

高三数学数列教案5篇高三数学数列教案1等差数列(一)教学目标:明确等差数列的定义,掌握等差数列的通项公式,会解决知道an,a1,d,n中的三个,求另外一个的问题;培养学生观察能力,进一步提高学生推理、归纳能力,培养学生的'应用意识.教学重点: 1.等差数列的概念的理解与掌握. 2.等差数列的通项公式的推导及应用. 教学难点:等差数列“等差”特点的理解、把握和应用. 教学过程:Ⅰ.复习回顾上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式.这两个公式从不同的角度反映数列的特点,下面我们看这样一些例子Ⅱ.讲授新课 10,8,6,4,2,; 21,21,22,22,23,23,24,24,25 2,2,2,2,2,首先,请同学们仔细观察这些数列有什么共同的特点?是否可以写出这些数列的通项公式?(引导学生积极思考,努力寻求各数列通项公式,并找出其共同特点) 它们的共同特点是:从第2项起,每一项与它的前一项的“差”都等于同一个常数. 也就是说,这些数列均具有相邻两项之差“相等”的特点.具有这种特点的数列,我们把它叫做等差数列.1.定义等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式等差数列定义是由一数列相邻两项之间关系而得.若一等差数列{an}的首项是a1,公差是d,则据其定义可得: (n-1)个等式若将这n-1个等式左右两边分别相加,则可得:an-a1=(n-1)d 即:an=a1+(n-1)d 当n=1时,等式两边均为a1,即上述等式均成立,则对于一切n∈N-时上述公式都成立,所以它可作为数列{an}的通项公式. 看来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项. 由通项公式可类推得:am=a1+(m-1)d,即:a1=am-(m-1)d,则: an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d. 如:a5=a4+d=a3+2d=a2+3d=a1+4d请同学们来思考这样一个问题. 如果在a与b中间插入一个数A,使a、A、b 成等差数列,那么A应满足什么条件? 由等差数列定义及a、A、b成等差数列可得:A-a=b-A,即:a=. 反之,若A=,则2A=a+b,A-a=b-A,即a、A、b成等差数列. 总之,A= a,A,b成等差数列. 如果a、A、b成等差数列,那么a叫做a与b 的等差中项. 例题讲解 [例1]在等差数列{an}中,已知a5=10,a15=25,求a25.思路一:根据等差数列的已知两项,可求出a1和d,然后可得出该数列的通项公式,便可求出a25.思路二:若注意到已知项为a5与a15,所求项为a25,则可直接利用关系式an=am+(n-m)d.这样可简化运算. 思路三:若注意到在等差数列{an}中,a5,a15,a25也成等差数列,则利用等差中项关系式,便可直接求出a25的值.[例2](1)求等差数列8,5,2的第20项. 分析:由给出的三项先找到首项a1,求出公差d,写出通项公式,然后求出所要项答案:这个数列的第20项为-49. (2)-401是不是等差数列-5,-9,-13的项?如果是,是第几项? 分析:要想判断-401是否为这数列的一项,关键要求出通项公式,看是否存在正整数n,可使得an=-401. ∴-401是这个数列的第100项.Ⅲ.课堂练习1.(1)求等差数列3,7,11,的'第4项与第10项.(2)求等差数列10,8,6,的第20项. (3)100是不是等差数列2,9,16,的项?如果是,是第几项?如果不是,说明理由. 2.在等差数列{an}中,(1)已知a4=10,a7=19,求a1与d;(2)已知a3=9,a9=3,求a12.Ⅳ.课时小结通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:an-an-1=d(n≥2).其次,要会推导等差数列的通项公式:an=a1+(n-1)d(n≥1),并掌握其基本应用.最后,还要注意一重要关系式:an=am+(n-m)d的理解与应用以及等差中项。
等差数列教案

等差数列教案一、教学目标1.了解等差数列的定义和性质;2.掌握等差数列的通项公式和求和公式;3.能够应用等差数列的知识解决实际问题。
二、教学重点1.等差数列的定义和性质;2.等差数列的通项公式和求和公式。
三、教学难点1.应用等差数列的知识解决实际问题。
四、教学内容及方法1. 等差数列的定义和性质(1)定义等差数列是指一个数列中,从第二项开始,每一项与它的前一项之差相等的数列。
这个公差常用字母d表示。
例如,1,3,5,7,9就是一个公差为2的等差数列。
(2)性质[2a1+(n−1)d];•等差数列的前n项和为S n=n2•等差数列的第n项为a n=a1+(n−1)d;•等差数列的前n项平均值为a1+a n。
22. 等差数列的通项公式和求和公式(1)通项公式等差数列的通项公式为a n=a1+(n−1)d。
其中,a n表示等差数列的第n项,a1表示等差数列的首项,d表示等差数列的公差。
(2)求和公式等差数列的前n项和为S n=n2[2a1+(n−1)d]。
其中,S n表示等差数列的前n项和,a1表示等差数列的首项,d表示等差数列的公差。
3. 应用等差数列的知识解决实际问题(1)例题某人从第1天开始每天存5元钱,以后每天比前一天多存2元钱,到第n 天时共存了多少钱?解:这是一个公差为2的等差数列,首项为5,第n项为a n=5+(n−1)2=2n+3。
所以,到第n天时共存了S n=n2[2a1+(n−1)d]=n2[2×5+(n−1)×2]=n2(2n+7)元。
(2)练习题1.某等差数列的首项为3,公差为2,第n项为17,求n。
2.某等差数列的前6项和为42,公差为3,求该等差数列的首项。
4. 教学方法本课程采用讲授、练习、讨论等多种教学方法,注重理论与实践相结合,注重培养学生的分析和解决问题的能力。
五、教学评价本课程的教学目标明确,教学内容丰富,教学方法多样,能够有效地提高学生的数学素养和解决实际问题的能力。
高三数学必修五教案《等差数列》优秀4篇

高三数学必修五教案《等差数列》优秀4篇1. 引言本教案是针对高三数学必修五教材中的《等差数列》内容进行设计的。
《等差数列》是高中数学中的重要概念,对学生理解数列的规律和应用具有重要意义。
本教案旨在通过多种不同的教学方法和活动,帮助学生深入理解等差数列的定义、性质和应用。
2. 教案一:等差数列的定义和性质2.1 教学目标•了解等差数列的定义;•掌握等差数列的通项公式;•理解等差数列的性质。
2.2 教学内容1.等差数列的定义;2.等差数列的通项公式;3.等差数列的性质。
2.3 教学活动•分组讨论:学生分成小组,讨论等差数列的定义和通项公式,并总结出等差数列的性质;•演示教学:教师通过示例,引导学生理解等差数列的定义和通项公式,并帮助学生掌握等差数列的性质;•练习巩固:学生进行一些练习题,巩固对等差数列的理解。
2.4 教学评价教师通过观察学生在讨论和练习中的表现,评价学生对等差数列的理解程度。
3. 教案二:等差数列的求和公式3.1 教学目标•掌握等差数列的求和公式;•理解求和公式的推导过程;•运用求和公式解决实际问题。
3.2 教学内容1.等差数列的求和公式;2.求和公式的推导过程;3.运用求和公式解决实际问题。
3.3 教学活动•演示推导过程:教师通过详细的步骤,演示等差数列求和公式的推导过程,并帮助学生理解每一步的意义;•练习应用:学生进行一些实例练习,运用求和公式解决实际问题;•小组合作:学生分组讨论,互相解答问题,提高合作能力和解决问题的能力。
3.4 教学评价教师通过观察学生在练习和讨论中的表现,评价学生对求和公式的掌握情况。
4. 教案三:等差数列的应用4.1 教学目标•熟练运用等差数列解决实际问题;•发现等差数列在生活和科学中的应用。
4.2 教学内容1.通过例题引入等差数列的应用;2.探究等差数列在生活和科学中的应用。
4.3 教学活动•案例分析:教师通过具体的案例,引导学生发现等差数列在生活和科学中的应用,并分析其规律;•分组讨论:学生分组讨论,提出更多的应用案例,并探究其规律和特点;•学生报告:每个小组选取一个应用案例进行报告,分享给全班同学。
高中数学数列教案:等差数列优秀3篇

高中数学数列教案:等差数列优秀3篇数学等差数列教案篇一一、预习问题:1、等差数列的定义:一般地,如果一个数列从起,每一项与它的前一项的差等于同一个,那么这个数列就叫等差数列,这个常数叫做等差数列的,通常用字母表示。
2、等差中项:若三个数组成等差数列,那么A叫做与的,即或。
3、等差数列的单调性:等差数列的公差时,数列为递增数列;时,数列为递减数列;时,数列为常数列;等差数列不可能是。
4、等差数列的通项公式:。
5、判断正误:①1,2,3,4,5是等差数列;()②1,1,2,3,4,5是等差数列;()③数列6,4,2,0是公差为2的等差数列;()④数列是公差为的等差数列;()⑤数列是等差数列;()⑥若,则成等差数列;()⑦若,则数列成等差数列;()⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列;()⑨等差数列的公差是该数列中任何相邻两项的差。
()6、思考:如何证明一个数列是等差数列。
二、实战操作:例1、(1)求等差数列8,5,2,的第20项。
(2)是不是等差数列中的项?如果是,是第几项?(3)已知数列的公差则例2、已知数列的通项公式为,其中为常数,那么这个数列一定是等差数列吗?例3、已知5个数成等差数列,它们的和为5,平方和为求这5个数。
数学等差数列教案篇二[教学目标]1、知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。
2、过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。
通过阶梯性的强化练习,培养学生分析问题解决问题的能力。
3、情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。
[教学重难点]1、教学重点:等差数列的概念的理解,通项公式的推导及应用。
05等差数列的判定与性质教学设计

等差数列的判定与性质教学设计课题名称等差数列的判定与性质课时计划:1课时第1课时授课日期:教学目标1.掌握等差数列的判定与证明的方法.2.掌握等差数列的性质及应用.3.能根据实例抽象出等差数列进行简单的应用.重点难点1.掌握等差数列的判定与证明的方法.2.掌握等差数列的性质及应用.3.能根据实例抽象出等差数列进行简单的应用.教学方法教师讲授,学生主导,师生互动科组模式板书设计作业布置课后反思证明或判定等差数列的方法(1)定义法:二、等差数列的性质问题2如果{a n}是等差数列,a3=5,d=2,不求首项,你能求数列的通项公式吗?问题3若数列{a n}是等差数列,公差为d,m+n=p+q(m,n,p,q∈N*),则a m,a n,a p,a q这四项之间有什么样的关系?知识梳理1.设等差数列{a n}的首项为a1,公差为d,则(1)a n=dn+(a1-d)(n∈N*);(2)a n=a m+____________(m,n∈N*);(3)d=__________(m,n∈N*,且m≠n).2.下标性质:在等差数列{a n}中,若m+n=p+q(m,n,p,q∈N*),则a m+a n=________________________________________________________________________.特别地,若m+n=2p(m,n,p∈N*),则有a m+a n=____________.例2(1)已知{a n}为等差数列,a15=8,a60=20,求a75.(2)已知数列{a n}是等差数列,若a1-a9+a17=7,则a3+a15等于()A.7B.14C.21D.7(n-1)延伸探究在等差数列{a n}中,a3+a7+2a15=40,求a10.反思感悟(1)灵活利用等差数列的性质,可以减少运算.令m=1,a n=a m+(n-m)d即变为a n=a1+(n-1)d,可以减少记忆负担.(2)等差数列运算的两种常用思路①基本量法:根据已知条件,列出关于a1,d的方程(组),确定a1,d,然后求其他量.②巧用性质法:观察等差数列中项的序号,若满足m+n=p+q=2r(m,n,p,q,r∈N*),则a m+a n=a p+a q=2a r.跟踪训练2(1)已知{b n}为等差数列,若b3=-2,b10=12,则b8=________.(2)数列{a n}满足3+a n=a n+1且a2+a4+a6=9,则log6(a5+a7+a9)的值是()A.-2B.-12C.2D.12三、由等差数列构造新数列问题4若数列{a n}是等差数列,首项为a1,公差为d,在{a n}中每相邻两项之间都插入4个数,若要使之构成一个新的等差数列,你能求出它的公差吗?知识梳理若{a n},{b n}分别是公差为d,d′的等差数列,则有数列结论{c+a n}公差为d的等差数列(c为任一常数){c·a n}公差为cd的等差数列(c为任一常数){a n+a n+k}公差为2d的等差数列(k为常数,k∈N*){pa n+qb n}公差为pd+qd′的等差数列(p,q为常数)例3在无穷等差数列{a n}中,首项a1=3,公差d=-5,依次取出序号能被4除余3的项组成数列{b n}.(1)求b1和b2;(2)求数列{b n}的通项公式.(3)数列{b n}中的第503项是{a n}中的第几项?跟踪训练3已知两个等差数列{a n}:5,8,11,…,与{b n}:3,7,11,…,它们的公共项组成数列{c n},则数列{c n}的通项公式c n=________;若数列{a n}和{b n}的项数均为100,则{c n}的项数是________.1.知识清单:(1)证明等差数列的方法.(2)等差数列的项与项之间的性质及应用.(3)由等差数列构造新的数列.2.方法归纳:定义法、公式法、构造法、解方程组法.3.常见误区:(1)不注意运用性质而出错或解法烦琐.(2)实际问题中项数的确定.。
§2.2等差数列公开课教案

公开课课题:§ 2.2等差数列(第一课时)授课时间:2012. 9.18上午第3节授课班级:高二(6)班授课教师:邱丹三维目标知识与技能:1. 通过实例,理解等差数列的概念,能根据定义判断一个数列是等差数列;2. 探索并掌握等差数列的通项公式,及通项公式的简单应用。
3. 了解等差数列的函数特征。
过程与方法:1. 让学生对生活中实际问题分析,引导学生通过观察,推导,归纳抽象出等差数列的概念。
2. 通过探索,推导等差数列的通项公,并解决相应的问题。
3. 通过类比函数概念、性质、表达式得到对等差数列相应问题的研究。
情感态度与价值观:通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识。
教学重点、难点1. 重点:理解等差数列的概念,探索并掌握等差数列的通项公式。
2. 难点:等差数列通项公式推导教学过程一.创设情境,课题导入上两节课我们学习了数列的定义及给出数列和表示的数列的几种方法一一列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点。
下面我们看这样一些例子。
课本P41页的4个例子:①0, 5, 10, 15, 20, 25,…②48, 53, 58, 63③18, 15.5 , 13, 10.5 , 8, 5.5④10072, 10144, 10216, 10288, 10366思考1:请同学们仔细观察一下,看看以上四个数列有什么共同特征?共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);(误:每相邻两项的差相等--- 应指明作差的顺序是后项减前项),我们给具有这种特征的数列一个名字----- 等差数列二•探究新知1 •等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。
⑴.公差d 一定是由后项减前项所得,而不能用前项减后项来求;⑵.对于数列{ a n},若a n—a n 1=d (与n无关的数或字母),n>2, n€ N,则此数列是等差数列,d为公差。
高三数学公开课教案,等差数列的证明与判定

让知识带有温度。
高三数学公开课教案,等差数列的证明与判定等差数列及其前n 项和(二)什邡中学数学组廖美重点:等差数列的判定与证实.难点:①如何挑选恰当的办法来证实或者判定等差数列;①证实或者判定过程中如何按照已知条件化简.教学目标:教会同学把握容易的等差数列的证实与判定办法. 相关学问点:1.证实等差数列的办法①定义法:d n d a a n d a a n n n n )(2()1(11≥=-≥=--+或为常数)①等差中项法:)2(2)1(21112≥=+≥=+-+++n a a a n a a a n n n n n n 或2.判定等差数列的办法①定义法:d n d a a n d a a n n n n )(2()1(11≥=-≥=--+或为常数)①等差中项法:)2(2)1(21112≥=+≥=+-+++n a a a n a a a n n n n n n 或①通项公式法:是常数)b a b an a n ,(+=①前n 项和公式法:是常数)b a bn an S n ,(2+=例1.在数列{}n a 中,),2.(12,53*11N n n a a a n n ①≥-==-,数列{}n b 满足11-=n n a b )(*N n ① (1)求证:数列{}n b 是等差数列;第1页/共3页千里之行,始于足下(2)求数列{}n a 中的最大项和最小项,并说明理由.训练1.(01天津,2)设n S 是数列{}n a 的前n 项和,且2n S n =,则{}n a 是()A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列训练2.数列{}n a 中,),2(112.1,2*1121N n n a a a a a n n n ①≥+===-+,则其通项公式为=n a_________.训练3.数列{}n a 的前n 项和为n S ,若31=a ,点),(1+n n S S 在直线11+++=n x n n y ()*N n ①上. (1)求证:数列??n S n 是等差数列;(2)求n S .训练4.若数列{}n a 满足.27),2,(1223*第2页/共3页让知识带有温度。
高中教案数学等差数列

高中教案数学等差数列
教学目标:学生能够理解等差数列的概念,掌握等差数列的性质、通项公式和求和公式,
能够解决相关问题。
教学重点:等差数列的概念和性质,通项公式和求和公式的运用。
教学难点:对等差数列通项公式和求和公式的理解和应用。
教学准备:教材《高中数学》,黑板、粉笔、教案PPT。
教学过程:
一、导入(5分钟)
1.引入等差数列的概念,简单介绍等差数列的性质。
2.通过一个例子,让学生理解等差数列的特点。
二、讲解等差数列的概念和性质(15分钟)
1.定义等差数列,并介绍等差数列的特点。
2.讲解等差数列的通项公式和求和公式,说明其推导过程和应用方法。
三、练习(20分钟)
1.进行一些简单的例题演练,让学生掌握等差数列的解题方法。
2.提供一些挑战性的题目,培养学生的解决问题的能力。
四、总结和拓展(10分钟)
1.总结等差数列的知识点和解题方法。
2.拓展讨论等比数列与等差数列之间的关系。
五、作业布置(5分钟)
布置相关的练习题,巩固等差数列的知识点。
教学反思:本节课主要讲解等差数列的概念、性质、通项公式和求和公式,让学生掌握解
题方法和应用技巧。
通过丰富的练习题目,培养学生的思维能力和解决问题的能力。
同时,通过拓展讨论等比数列与等差数列之间的关系,拓宽学生的数学视野,提高他们的学习兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列及其前n 项和(二)
什邡中学数学组 廖美
重点:等差数列的判定与证明.
难点:①如何选择恰当的方法来证明或者判定等差数列;
②证明或者判定过程中如何根据已知条件化简.
教学目标:教会学生掌握简单的等差数列的证明与判定方法. 相关知识点:
1.证明等差数列的方法
①定义法:d n d a a n d a a n n n n )(2()1(11≥=-≥=--+或为常数) ②等差中项法: )2(2)1(21112≥=+≥=+-+++n a a a n a a a n n n n n n 或
2.判定等差数列的方法
①定义法:d n d a a n d a a n n n n )(2()1(11≥=-≥=--+或为常数) ②等差中项法: )2(2)1(21112≥=+≥=+-+++n a a a n a a a n n n n n n 或 ③通项公式法:是常数)b a b an a n ,(+=
④前n 项和公式法:是常数)b a bn an S n ,(2+=
例1.在数列{}n a 中,),2.(12,53*11N n n a a a n n ∈≥-==-,数列{}n b 满足1
1-=n n a b )(*N n ∈ (1) 求证:数列{}n b 是等差数列;
(2) 求数列{}n a 中的最大项和最小项,并说明理由.
训练1.(01天津,2)设n S 是数列{}n a 的前n 项和,且2
n S n =,则{}n a 是( ) A.等比数列,但不是等差数列
B.等差数列,但不是等比数列
C.等差数列,而且也是等比数列
D.既非等比数列又非等差数列
训练2.数列{}n a 中,),2(112.1,2*1
121N n n a a a a a n n n ∈≥+===-+, 则其通项公式为=n a _________.
训练3.数列{}n a 的前n 项和为n S ,若31=a ,点),(1+n n S S 在直线11+++=
n x n n y ()*N n ∈上. (1)求证:数列⎭
⎬⎫⎩⎨
⎧n S n 是等差数列; (2)求n S .
训练4.若数列{}n a 满足.27),2,(1223*
1=≥∈++=-a n N n a a n n n (1)求21,a a 的值;
(2)记))((2
1*N n t a b n n n ∈+=,是否存在一个实数t ,使数列{}n b 为等差数列? 若存在,求出t ;若不存在,请说明理由.
小结:。