2017人教版八年级上册数学第十一章《三角形》复习课ppt
合集下载
第十一章 三角形复习整理 (第1课时 知识要点)数学八年级上册同步教学课件(人教版)
解:延长BC交OD于点M,如图所示.
∵多边形的外角和为360°,
∴∠OBC+∠MCD+∠CDM
=360°-225°=135°.
M
∵∠BOD+∠OBC+∠MCD+∠CDM=180°,
∴∠BOD=45°.
针对练习
1.已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长
为 (C ) A.16
B.20或16
C.20
D.12
2.若(a-1)2+|b-2|=0,则以a,b为边长的等腰三角形的周长为 5 .
考点二 三角形中的重要线段 例3. 如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中
∠1=∠2=(180°-108°)÷2=36° ∠3=∠4=∠1=∠2=36°, ∴ ∠CAD=∠BAE-∠1-∠3=108°-36°-36°=36°.
课堂练习
1.长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木
棒允许连接,但不允许折断),得到的三角形的最长边为( B )
A.4
B.5
知识四 三 角 形 的 高 、 中 线 与 角 平 分 线
2.三角形的中线: ① 两个三角形的面积相等; ② 两个三角形的周长的差等于这两个三角形另两边的差. ③ 三条中线相交于一点(重心)
3.三角形的角平分线 A
B
D
∵ ∠ ABD= ∠ CBD
∴ AD是△ABC的角平分线
B
D
C
A EC
知识五 三 角 形 的 内 角 和 与 外 角 的 性 质
1.三角形的内角和: ① 三角形三个内角的和等于180°. ② 直角三角形的两个锐角互余.
A A
B
C
人教版八年级上册数学第十一章三角形全章课件
B
D
A DC
C
锐角三角形的三条高
每人画一个锐角三角形. (1) 你能画出这个三角形的三条高吗? (2) 这三条高之间有怎样的位置关系?
将你的结果与同伴进行交流.
锐角三角形的三条高是
B
在三角形的内部还是外部?
A
F
OE
C D
锐角三角形的三条高交于同一点. 锐角三角形的三条高都在三角形的内部.
直角三角形的三条高
(2)它们所在的直线交于一点吗? D
将你的结果与同伴进行交流.
钝角三角形的三条高不相交于 一点. 钝角三角形的三条高所在直线 交于一点.
O
F
B
C
E
从三角形中的一个顶点向它的对边所在直线作垂线, 顶点和垂足之间的线段 叫做三角形这边的高.
三角形的三条高的特性:
•锐角三角形 •直角三角形 •钝角三角形
E,F为AB上一点,CF⊥AD于H,判断下列说法哪些是正确的,
哪些是错误的. A
①AD是△ABE的角平分线( × )
②BE是△ ABD边AD上的中线( × ) ③BE是△ ABC边AC上的中线( × ) F
12 E G
④CH是△ ACD边AD上的高( √ ) B
H
D
C
三角形的高、中线与角平分线都是线段.
3.(滨州中考)若某三角形的两边长分别为3和4,则下列
长度的线段能作为其第三边的是(
)
A.1
B.5
C.7
D.9
【解析】选B.设第三边为x,则1<x<7.
4.若△ABC的三边为a,b,c,则化简︱a+b-c︱+︱ba-c︱的结果是( ). A. 2a-2b B.2a+2b+2c C. 2a D. 2a-2c
人教版八年级数学上册第十一章三角形11.1.1三角形的边课件
三角形的概念
问题1:观察下面三角形的形成过程,说一说什么叫三角形?
定义:由不在同一条直线上的三条线段首尾顺次相接
所组成的图形叫做三角形.
A
B
C
问题2:三角形中有几条线段?有几个角?
有三条线段,三个角
边:线段AB,BC,CA是三角形的边. 顶点:点A,B,C是三角形的顶点, 角:∠A,∠B,∠C叫做三角形的内角,简称三角形的角.
2.在同一个三角形中,任意两边之差与第三边有什么大小关系?
3.三角形三边有怎样的不等关系?
通过动手实验同学们可以得到哪些结论?理由是什么?
归纳总结
三角形两边的和大于第三边. 三角形两边的差小于第三边.
典例精析
例1:判断下列长度的三条线段能否拼成三角形?为什么? (1)3cm、8cm、4cm; (2)5cm、6cm、11cm; (3)5cm、6cm、10cm.
B
C
4米
它只少走 4 步 (1米=2步)
其实我们离 文明很近
1.三角形是指( C) A.由三条线段所组成的封闭图形 B.由不在同一直线上的三条直线首尾顺次相接组成的图形 C.由不在同一直线上的三条线段首尾顺次相接组成的图形 D.由三条线段首尾顺次相接组成的图形 2.判断: (1)一个钝角三角形一定不是等腰三角形.( ×)
第十一章 三角形
11.1.1三角形的边
学习目标
1.认识三角形并会用几何语言表示三角形,了解三角形分类。 2.掌握三角形的三边关系。(难点) 3.运用三角形三边关系解决有关的问题。(重点)
生活中的三角形
生活中的三角形
埃及金字塔
飞机机翼
生活中的三角形
水 分 子 结 构 示 意 图
问题:
数学八年级上人教版第十一章全等三角形复习课件
(A)∠DAB (B) ∠ DBA (C) ∠ DBC (D) ∠ CAD
三、解答题:
1 、 已 知 如 图 △ ABC≌△DFE , ∠A=96º,∠B=25º,DF=10cm。
求 ∠E的度数及AB的长。
A
D
B
CE
F
2 已知如图 CD⊥AB于D,BE⊥AC于E, △ ABE≌△ACD , ∠ C=20º, AB=10 , AD=4,G为AB延长线上的一点。 求 ∠EBG的度数及CE的长。
C E
F
A
D BG
3如图:已知△ABC≌△ADE,BC的延长 线 交 DA 于 F , 交 DE 于 G , ∠ ACB=105º, ∠CAD=10º,∠D=25º。 求 ∠EAC,∠DFE,∠DGB的度数。
D
G FC
E
A
B
寻找对应元素的规律
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)两个全等三角形最大的边是对应边, 最小的边是对应边; (5)两个全等三角形最大的角是对应角, 最小的角是 对应角;
2、引平行线构造全等三角形
例2 如图2,已知△ABC中,AB=AC, D在AB上,E是AC延长线上一点,且 BD=CE,DE与BC交于点F. 求 证:DF=EF.
提示:此题辅助线作法 较多,如: ①作 DG∥AE交BC于G; ②作EH∥BA交BC的延 长线于H; 再通过 证三角形全等得DF= EF.
三角形中常见辅助线的作法
1.延长中线构造全等三角形
例1 如图1,已知△ABC中,AD 是△ABC的中线,AB=8,AC=6, 求AD的取值范围.
提示:延长AD至A',使 A'D=AD,连结 BA'.根据“SAS”易证 △A'BD≌△ACD,得AC =A'B.这样将AC转移 到△A'BA中,根据三角 形三边关系定理可解.
三、解答题:
1 、 已 知 如 图 △ ABC≌△DFE , ∠A=96º,∠B=25º,DF=10cm。
求 ∠E的度数及AB的长。
A
D
B
CE
F
2 已知如图 CD⊥AB于D,BE⊥AC于E, △ ABE≌△ACD , ∠ C=20º, AB=10 , AD=4,G为AB延长线上的一点。 求 ∠EBG的度数及CE的长。
C E
F
A
D BG
3如图:已知△ABC≌△ADE,BC的延长 线 交 DA 于 F , 交 DE 于 G , ∠ ACB=105º, ∠CAD=10º,∠D=25º。 求 ∠EAC,∠DFE,∠DGB的度数。
D
G FC
E
A
B
寻找对应元素的规律
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)两个全等三角形最大的边是对应边, 最小的边是对应边; (5)两个全等三角形最大的角是对应角, 最小的角是 对应角;
2、引平行线构造全等三角形
例2 如图2,已知△ABC中,AB=AC, D在AB上,E是AC延长线上一点,且 BD=CE,DE与BC交于点F. 求 证:DF=EF.
提示:此题辅助线作法 较多,如: ①作 DG∥AE交BC于G; ②作EH∥BA交BC的延 长线于H; 再通过 证三角形全等得DF= EF.
三角形中常见辅助线的作法
1.延长中线构造全等三角形
例1 如图1,已知△ABC中,AD 是△ABC的中线,AB=8,AC=6, 求AD的取值范围.
提示:延长AD至A',使 A'D=AD,连结 BA'.根据“SAS”易证 △A'BD≌△ACD,得AC =A'B.这样将AC转移 到△A'BA中,根据三角 形三边关系定理可解.
八年级数学上册教学课件《第十一章 章末复习》
1.从课后习题中选取; 2.完成练习册本课时的习题。
三
角
三角形的内角和
形
三角形的外角和
边 高 中线 角平分线 多边形的内角和
多边形的外角和
① 三角形的定义
a.边:组成三角形的线段 b.顶点:相邻两边的交点 c.角:相邻两边组成的角 d.表示法:△ABC
② 三角形的分类:
a.按边分:等腰三角形和不等边三角形 b.按角分:锐角三角形、直角三角形、钝角三 角形
解:(1)S△ABC
1 2
AC·BC
1 512 2
30(cm2 ).
S△ABC
1 2
AB·CD,
CD AC·BC 60 (cm).
AB 13
(2)S△ABE
S△BCE
1 2
S△ABC
15(cm2 ).
拓展延伸 3.一轮船由B 处向C处航行,在B 处测得C
处在B 的北偏东75°方向上,在海岛上的观察 所A 测得B 在A 的南偏西30°方向,C 在A的南 偏东25°方向;若轮船行使到C 处,那么从C 处 看A、B 两处的视角∠ACB是多少度?
解:根据题意,画出示意图如图所示: 另求出∠ABC =75°- 30°= 45°, ∠BAC = 30°+25°= 55°, 所以∠ACB =180°- 45°- 55°= 80°.
课堂小结 边
与三角形有关的线段
高 中线
三
角
三角形的内角和
形
角平分线 多边形的内角和
三角形的外角和
多边形的外角和
课后作业
B
DE
C
A 组 复习与三角形有关的线段:
2.如图:
A
(3)若AF =CF,BF 与
三
角
三角形的内角和
形
三角形的外角和
边 高 中线 角平分线 多边形的内角和
多边形的外角和
① 三角形的定义
a.边:组成三角形的线段 b.顶点:相邻两边的交点 c.角:相邻两边组成的角 d.表示法:△ABC
② 三角形的分类:
a.按边分:等腰三角形和不等边三角形 b.按角分:锐角三角形、直角三角形、钝角三 角形
解:(1)S△ABC
1 2
AC·BC
1 512 2
30(cm2 ).
S△ABC
1 2
AB·CD,
CD AC·BC 60 (cm).
AB 13
(2)S△ABE
S△BCE
1 2
S△ABC
15(cm2 ).
拓展延伸 3.一轮船由B 处向C处航行,在B 处测得C
处在B 的北偏东75°方向上,在海岛上的观察 所A 测得B 在A 的南偏西30°方向,C 在A的南 偏东25°方向;若轮船行使到C 处,那么从C 处 看A、B 两处的视角∠ACB是多少度?
解:根据题意,画出示意图如图所示: 另求出∠ABC =75°- 30°= 45°, ∠BAC = 30°+25°= 55°, 所以∠ACB =180°- 45°- 55°= 80°.
课堂小结 边
与三角形有关的线段
高 中线
三
角
三角形的内角和
形
角平分线 多边形的内角和
三角形的外角和
多边形的外角和
课后作业
B
DE
C
A 组 复习与三角形有关的线段:
2.如图:
A
(3)若AF =CF,BF 与
新人教版八年级数学上册课件《第11章 三角形》(全章)PPT教学课件
解:(1)不能,因为3cm+4cm<8cm; (2)不能,因为5cm+6cm=11cm; (3)能,因为5cm+6cm>10cm.
归纳 判断三条线段是否可以组成三角形,只需说明两条较短 线段之和大于第三条线段即可.
针对训练 一根木棒长为7,另一根木棒长为2,那么用长度为4 的木棒能和它们拼成三角形吗?长度为11的木棒呢?若不能拼 成,则第三条边应在什么范围呢? 解:设第三边长为x,则应有
定义:由不在同一条直线上的三条线段首尾顺次相接
所组成的图形叫做三角形.
A
B
C
问题2:三角形中有几条线段?有几个角?
有三条线段,三个角
边:线段AB,BC,CA是三角形的边. 顶点:点A,B,C是三角形的顶点, 角:∠A,∠B,∠C叫做三角形的内角,简称三角形的角.
记法:三角形ABC用符号表示_△__A_B__C__.
△BCD的三个角是∠BCD、∠BDC、∠CBD.顶点B所对应的 边为DC,顶点C所对应的边为BD,顶点D所对应的边为BC.
二 三角形的分类
问题1:按照三角形内角的大小,三角形可以分为哪几类? 锐角三角形、直角三角形、钝角三角形.
问题2:如果以三角形边的元素的不同,三角形该如何分类பைடு நூலகம்? (1)等腰三角形和等边三角形的区别是什么?
基本要素: 三角形的边:边AB、BC、CA; 三角形的顶点:顶点A、B、C; 三角形的内角(简称为三角形的角):∠ A、 ∠ B、 ∠ C.
特别规定: 三角形ABC的三边,一般的顶点A所对的边记作a,顶点 B所对的边记作b,顶点C所对的边记作c.
找一找:(1)图中有几个三角形?用符号表示出这些三角形?
7-2<x<7+2, 即5<x<9. 则用长度为4的木棒不能和它们拼成三角形,长度为11的 木棒也不能和它们拼成三角形.第三边长的范围为5<x<9.
归纳 判断三条线段是否可以组成三角形,只需说明两条较短 线段之和大于第三条线段即可.
针对训练 一根木棒长为7,另一根木棒长为2,那么用长度为4 的木棒能和它们拼成三角形吗?长度为11的木棒呢?若不能拼 成,则第三条边应在什么范围呢? 解:设第三边长为x,则应有
定义:由不在同一条直线上的三条线段首尾顺次相接
所组成的图形叫做三角形.
A
B
C
问题2:三角形中有几条线段?有几个角?
有三条线段,三个角
边:线段AB,BC,CA是三角形的边. 顶点:点A,B,C是三角形的顶点, 角:∠A,∠B,∠C叫做三角形的内角,简称三角形的角.
记法:三角形ABC用符号表示_△__A_B__C__.
△BCD的三个角是∠BCD、∠BDC、∠CBD.顶点B所对应的 边为DC,顶点C所对应的边为BD,顶点D所对应的边为BC.
二 三角形的分类
问题1:按照三角形内角的大小,三角形可以分为哪几类? 锐角三角形、直角三角形、钝角三角形.
问题2:如果以三角形边的元素的不同,三角形该如何分类பைடு நூலகம்? (1)等腰三角形和等边三角形的区别是什么?
基本要素: 三角形的边:边AB、BC、CA; 三角形的顶点:顶点A、B、C; 三角形的内角(简称为三角形的角):∠ A、 ∠ B、 ∠ C.
特别规定: 三角形ABC的三边,一般的顶点A所对的边记作a,顶点 B所对的边记作b,顶点C所对的边记作c.
找一找:(1)图中有几个三角形?用符号表示出这些三角形?
7-2<x<7+2, 即5<x<9. 则用长度为4的木棒不能和它们拼成三角形,长度为11的 木棒也不能和它们拼成三角形.第三边长的范围为5<x<9.
人教版八年级上册-第11章-三角形-章末复习-课件(共32张PPT)
1、如图,将∠BAC沿DE向∠BAC内折叠,使AD与A’D重合,A’E与AE重合,
若∠A=300,则∠1+∠2=( B )
A、500
B、600
C、450
D、以上都不对
综合运用
2.如图,△ABC三边的中线AD、BE、CF的公共点为G.若△ = 12,则图中
阴影部分的面积是 4
。
综合运用
3.如图所示是小李绘制的某大桥断裂的现场草图,若∠1=38°,∠2=23°,则桥
1、三角形的高线定义:
顶点和垂足之间 的线
从三角形的一个顶点向它的对边所在直线作垂线,_______________
段叫做三角形的高线.
2、三角形角平分线的定义:
三角形一个角的平分线与它的对边相交,这个角的 顶点和交点之间 之间的线
段叫做三角形的角平分线。
3、三角形的中线定义
连结三角形一个 顶点与它对边中点
1. 三角形的三边关系:
(1) 三角形两边的和大于第三边
(2) 三角形两边的差小于第三边
2. 判断三条已知线段a、b、c能否组成三角形.
当a最长,且有b+c>a时,就可构成三角形.
3. 确定三角形第三边的取值范围:
两边之差<第三边<两边之和.
讲练结合
1、下列条件中能组成三角形的是( C )
A、 5cm, 13cm, 7cm
(−3)
(n>3)
2
1.多边形对角线条数:
2.多边形内角和等于(n-2) ×180°
3.多边形外角和等于360°
讲练结合
1.如果一个多边形的对角线的条数是边数的一半,那么这个多边形是( B )
A.三角形
B.四边形
若∠A=300,则∠1+∠2=( B )
A、500
B、600
C、450
D、以上都不对
综合运用
2.如图,△ABC三边的中线AD、BE、CF的公共点为G.若△ = 12,则图中
阴影部分的面积是 4
。
综合运用
3.如图所示是小李绘制的某大桥断裂的现场草图,若∠1=38°,∠2=23°,则桥
1、三角形的高线定义:
顶点和垂足之间 的线
从三角形的一个顶点向它的对边所在直线作垂线,_______________
段叫做三角形的高线.
2、三角形角平分线的定义:
三角形一个角的平分线与它的对边相交,这个角的 顶点和交点之间 之间的线
段叫做三角形的角平分线。
3、三角形的中线定义
连结三角形一个 顶点与它对边中点
1. 三角形的三边关系:
(1) 三角形两边的和大于第三边
(2) 三角形两边的差小于第三边
2. 判断三条已知线段a、b、c能否组成三角形.
当a最长,且有b+c>a时,就可构成三角形.
3. 确定三角形第三边的取值范围:
两边之差<第三边<两边之和.
讲练结合
1、下列条件中能组成三角形的是( C )
A、 5cm, 13cm, 7cm
(−3)
(n>3)
2
1.多边形对角线条数:
2.多边形内角和等于(n-2) ×180°
3.多边形外角和等于360°
讲练结合
1.如果一个多边形的对角线的条数是边数的一半,那么这个多边形是( B )
A.三角形
B.四边形
人教版八年级数学上册第十一章三角形课件 本章复习课
4.若 a,b,c 为三角形的三边,且 a,b 满足 a2-9+(b-2)2=0,则第三 边 c 的取值范围是
1<c<5
.
5. 若三角形三边长分别为2x,3x,10,其中x为正整数,且周长不超过30, 求x的取值范围,写出这个三角形的三边长. 解:2x+3x+10≤30,x≤4,即x可取1,2,3,4. 当x等于1时,三边长为2,3,10,不能构成三角形;
(3)以OC为一边的三角形有△OCD,△OCE,△OCF,共3个;
(4)以OD为一边的三角形有△ODE,△ODF,共2个; (5)以OE为一边的三角形有△OEF,共1个. ∴图中共有三角形5+4+3+2+1=15个.
类型之二
三角形的三边关系
3.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( D ) A.3,4,8 C.5,5,11 B.8,7,15 D.13,12,20
(3)在△ OBC 中,∠ BOC= 180° - (∠OBC+∠ OCB) 1 = 180° - (∠ DBC+∠ ECB) n 1 = 180° - (∠ A+∠ ACB+∠ A+∠ ABC) n 1 = 180° - (∠ A+ 180° ) n n- 1 α = × 180° - . n n
图 11-7
解: (1)如图 (1),∵∠ ABC 与∠ ACB 的平分线相交于点 O, 1 1 ∴∠ OBC= ∠ ABC,∠ OCB= ∠ ACB, 2 2 1 ∴∠ OBC+∠ OCB= (∠ ABC+∠ ACB), 2 在△ OBC 中,∠ BOC= 180° - (∠OBC+∠ OCB) 1 = 180° - (∠ ABC+∠ ACB) 2 1 = 180° - (180° -∠ A) 2 1 = 90° + ∠A 2 1 = 90° + α; 2
相关主题