六年级数学上册全部知识点
六年级上册数学知识点
六年级上册数学知识点第一单元圆1.圆的定义:平面上的一种曲线图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2rr =1/2d用文字表示为:半径=直径÷2直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母表示。
圆周率是一个无限不循环小数。
在计算时,取π≈3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C=πd 或C=2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。
13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。
圆的面积公式:S=πr²。
14.圆的面积公式:S=πr²或者S=π(d/2)²或者S=π(C÷(2π))²≈15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
17.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。
六年级上册人教版数学知识点(通用7篇)
六年级上册人教版数学知识点(通用7篇)六年级上册人教版数学知识点第1篇一、分数乘法(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1、找单位“1”:在分率句中分率的前面; 或“占”、“是”、“比”的后面2、求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数×。
3、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“ = ”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量三、倒数1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。
六年级上册数学知识点(15篇)
六年级上册数学知识点(15篇)六年级上册数学知识点1扇形统计图的意义:1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
2、常用统计图的优点:(1)条形统计图直观显示每个数量的多少。
(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。
(3)扇形统计图直观显示部分和总量的关系。
数学广角——数与形:2+4+6+8+10+12+14+16+18+20=(110)规律:从2开始的n个连续偶数的和等于n×(n+1)。
10×(10+1)=10×11=110从1开始的连续奇数的和正好是这串数个数的平方。
位置与方向:1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
数对的作用:确定一个点的位置。
经度和纬度就是这个原理。
2、确定物体位置的方法:(1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺)。
描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
相对位置:东——西;南——北;南偏东——北偏西。
数学梯形面积与周长公式:梯形的面积公式:(上底+下底)×高÷2。
用字母表示:(a+b)×h÷2梯形的面积公式2:中位线×高用字母表示:l·h(l表示中位线长度)另外对角线互相垂直的梯形:对角线×对角线÷2梯形的周长公式:上底+下底+腰+腰,用字母表示:L=a+b+c+d等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+c+2b。
数学分数的加减法知识点:1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。
六年级数学上册知识点汇总及例题解析
本资料分为简单概括版(上半部分)和重点精析版(下半部分)第一单元位置(1)用数据表示位置的方法:先横着数,看在第几行,这个数就是数据中的第一个数;再竖着数,看在第几列,这个数就是数据中的第二个数。
(第几行,第几列)第二单元分数乘法(1)分数乘以整数:整数与分子的乘积作分子,分母不变。
(能约分的可以先约分,再计算)(2)分数乘以分数:用分子乘以分子的积作分子,分母乘以分母的积做分子。
(能约分的可以先约分,再计算)(3)分数乘加、乘减混合运算顺序:Ⅰ、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
Ⅱ、在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法后算加、减法。
Ⅲ、在有括号的算式里,要先算括号里面的,再算括号外面的。
(4)分数乘法运算定律⒈交换两个因数的位置,积不变,这叫做乘法交换律。
a×b=b×a⒉先乘前两个数,再乘第三个数;或者先乘后两个数,再乘第一个数,这叫做乘法结合律。
(a×b)×c=a×( b×c)⒊两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
(a+b)×c=a×c+b×c⒋两个数的差与一个数相乘,可以先把它们与这个数分别相乘,再相减,这叫做乘法分配律。
(a-b)×c=a×c-b×c5.. 25×4=100 125×8=1000 25×8=200 125×4=500(5) 规律(比较大小要用到):1、一个数(0除外)乘以大于1的数,积大于这个数;2、一个数(0除外)乘以小于1的数(0除外),积小于这个数;3、一个数(0除外)乘以1,积等于这个数。
第一个数(6)谁是谁的几分之几,就用第一个数除以第二个数,用分数表示就是第二个数。
(7)求一个数的几倍,一个数×几倍;求一个数的几分之几是多少,一个数×几分之几。
部编版六年级上册数学全册知识点考点归纳
部编版六年级上册数学全册知识点考点归
纳
本文档是针对部编版六年级上册数学全册的知识点和考点进行总结和归纳。
第一章:整数与小数
1. 整数的认识
- 整数的概念及表示方法
- 整数的比较
2. 整数的计算
- 加减法口诀
- 加减法计算练
3. 小数的认识
- 小数的概念及表示方法
- 小数的比较
第二章:数的整体认识
1. 十进制数的认识
- 十进制数的构成及读法
- 十进制数的顺序排列
2. 数的顺序与比较
- 数的顺序排列
- 数的大小比较
3. 数的发现
- 观察数的规律
- 数的特征探究
第三章:比与比例
1. 比的认识
- 比的定义与表示方法
- 比的性质
2. 比的应用
- 比的运算
- 比的变化
3. 比例的认识
- 比例的定义及表示方法
- 比例的基本性质
第四章:图形与运动
1. 单位面积图形
- 长方形与正方形的面积计算- 面积计算的应用
2. 运动的认识
- 相对位置的判断
- 运动的速度计算
3. 运动的应用
- 运动的图形表示
- 运动的问题解决
第五章:数据与图表
1. 数据的统计
- 数据的收集和整理
- 数据的分类与归纳
2. 数据的表示
- 数据的图形表示方法
- 图表的解读与应用
3. 数据的分析
- 数据的特征分析
- 数据分析的方法和步骤
以上是部编版六年级上册数学全册的知识点和考点的归纳总结。
希望对同学们的学习有所帮助!。
309 六年级数学上册重点知识归纳
六年级数学上册重点知识归纳
六年级数学上册的重点知识归纳如下:
圆的周长和面积。
掌握圆的周长公式:C=πd或C=2πr,圆的面积公式:S=πr²。
百分数的应用。
理解各种百分数的意义是解答百分数应用题的基础。
分数乘法。
分数乘法的计算法则,要注意分母不变,分子乘整数,然后约分。
分数乘法是小学数学的重要内容,也是学生学习的难点。
位置与方向。
根据方向和距离确定物体位置的方法是本单元的教学重点。
分数乘法混合运算。
掌握分数乘法混合运算的运算顺序,会进行分数乘法混合运算,并能运用分数乘法运算解决实际问题。
圆面积的应用。
求圆的部分的周长和面积时,可以根据圆的半径、周长和面积公式直接解题。
观察物体。
了解常见的两个垂直方向(正面和上面)观察到的几何图形特点是本单元的教学重点。
可能性。
通过本单元的学习使学生感受并描述简单事件发生的等可能性以及游戏规则的公平性。
这些知识点在六年级数学上册教材中占据着重要的地位,对于学生来说具有一定的难度和重要性,因此需要学生认真学习和掌握。
六年级上册数学知识点大全
六年级上册数学知识点大全1500字六年级上册数学知识点大全一、数的认识:1. 数的读法、写法;2. 形式相同的数与数相等。
二、数的比较:1. 掌握数的大小关系;2. 大于、小于的符号;3. 正整数的比较;4. 数排序。
三、数的组成:1. 两位数的由十位和个位组成;2. 分析两个数的关系;3. 比较两个数的大小。
四、数的运算:1. 了解数的加法和减法;2. 加法和减法的运算规则;3. 加法和减法的口算;4. 加法和减法的综合应用。
五、整数的认识:1. 正整数和零;2. 整数的概念;3. 整数的正负。
六、整数的大小比较:1. 整数的大小;2. 整数的绝对值。
七、整数的加法运算:1. 整数的加法运算规则;2. 整数的加法法则;3. 整数的加法口诀;4. 整数的加法计算方法;5. 整数的加法练习;6. 整数的加法的应用。
八、整数的减法运算:1. 整数的减法运算规则;2. 整数减法的性质;3. 整数减法运算的口诀;4. 整数减法计算方法;5. 整数减法的应用。
九、整数的乘法运算:1. 正整数的乘法运算;2. 整数的乘法运算规则;3. 整数的乘法口诀;4. 整数的乘法计算方法;5. 整数的乘法计算应用。
十、整数的除法运算:1. 正整数的除法运算;2. 整数的除法运算规则;3. 带余除法运算;4. 整数的除法运算应用。
十一、数的分数:1. 了解分数的定义;2. 看图分析分数;3. 转化分数为整数;4. 分数的大小比较;5. 分数的简便表示;6. 分数及其十分之一;7. 分数的意义。
十二、分数的加法运算:1. 分数的加法原则;2. 分子之和、分母保持不变;3. 分数的加法口诀;4. 分数的加法计算。
十三、分数字的减法运算:1. 分数的减法原则;2. 分子之差、分母保持不变;3. 分数的减法口诀;4. 分数的减法计算。
十四、分数的乘法运算:1. 分数和整数的乘法原则;2. 分数的乘法口诀;3. 分数乘法的计算方法;4. 分数和分数的乘法;5. 分数的乘法的简化。
六年级数学上册全册知识点
六年级数学上册全册知识点一、内容概括六年级数学上册的内容涵盖了数与代数、空间与几何、统计与概率等多个数学领域的知识点。
主要包括整数、小数、分数的认识与计算,比例与百分数,空间图形的认识与计算,图形的变换,以及简单的统计与概率知识等。
全册知识点按照学生的认知规律进行编排,从基础知识出发,逐渐提高难度,形成完整的知识体系。
也注重数学知识的实际应用,引导学生将数学知识应用于日常生活实际问题中,提高学生的数学应用能力。
在这一部分的学习过程中,学生需要掌握数的概念与运算、几何图形的理解以及概率与统计的基本应用,为将来的数学学习奠定坚实的基础。
二、数的认识与运算自然数的概念:我们生活中的数往往来源于自然物体的数量,包括如水果的数量、物体的长度等。
数学中把这些数量简化为抽象的自然数。
自然数包括正整数和零。
六年级学生应熟练掌握自然数的概念,理解其在实际生活中的应用。
整数的认识:整数包括正整数、零和负整数。
学生应进一步理解正负数的概念,了解负数的应用场景,例如温度、海拔等。
他们还应能够比较和排序整数,理解整数的相对大小关系。
数的运算:六年级学生应熟练掌握基本的四则运算(加、减、乘、除),并能解决一些复杂的运算问题。
他们还应理解分数和小数的概念,掌握分数和小数的运算方法,并能解决相关的实际问题。
混合运算也是六年级学生需要掌握的重要技能之一。
运算定律和性质:六年级学生应了解并掌握基本的运算定律,如加法交换律、乘法分配律等。
他们还应理解运算性质,如分数的通分和约分等。
这些定律和性质在解决复杂问题时非常重要。
六年级学生还应注意避免在运算过程中的计算错误。
在进行运算时,要认真审题、规范步骤和验算结果。
避免出现看错数字、符号错误等问题,以免影响结果的准确性。
培养一定的估算能力也是非常重要的,可以帮助我们快速判断计算结果是否有可能出错。
同时也有助于我们在日常生活中快速做出决策和判断。
1. 整数、小数、分数的认识与性质性质:整数具有封闭性,即两个整数的和或差仍为整数。
小学六年级上册数学知识点总结归纳(绝对经典)
小学六年级上册数学知识点总结归纳第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。
如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。
如:(3,6)和(1,6)都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
六年级上册数学重点知识点归纳
六年级上册数学重点知识点归纳六年级数学上册重要章节知识点总结一、分数乘法一)分数乘法的意义:1.分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
例如,9/8 × 5 表示求5个 9/8 的和是多少?2.分数乘分数是求一个数的几分之几是多少。
例如,83/83 × 94/94 表示求的是多少?二)分数乘法的计算法则:1.分数与整数相乘:分子与整数相乘的积做分子,分母不变,整数和分母约分。
2.分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3.为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
三)规律:(乘法中比较大小时)一个数(除外)乘大于1的数,积大于这个数。
一个数(除外)乘小于1的数(除外),积小于这个数。
一个数(除外)乘1,积等于这个数。
四)分数混合运算的运算顺序和整数的运算顺序相同。
五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a × (b × c)乘法分配律:(a + b) × c = a × c + b × c = a × c + b × c = (a + b) × c二、分数乘法的解决问题已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1.画线段图:1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。
2.找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面。
3.求一个数的几倍:一个数 ×几倍;求一个数的几分之几是多少:一个数 ×分数。
写数量关系式技巧:几 ÷几 = 分数1)“的”相当于“×”。
六年级上册数学知识点大全
六年级上册数学知识点大全1500字六年级上册数学知识点大全:一、整数运算1.正整数和负整数的概念及表示方法;2.整数的比较与排序;3.整数的加法、减法、乘法和除法运算;4.整数的乘方运算;5.整数的混合运算。
二、分数运算1.分数的概念及表示方法;2.分数的比较与排序;3.分数的加法、减法、乘法和除法运算;4.分数的混合运算。
三、小数运算1.小数的概念及表示方法;2.小数的比较与排序;3.小数的加法、减法、乘法和除法运算;4.小数的混合运算。
四、不等关系及解不等式1.不等关系的概念及符号表示;2.解一元一次不等式;3.解包含绝对值的不等式。
五、算式的变形与等式的解1.算式的相等关系;2.算式的变形与等式的解。
六、数与代数式1.数、代数(变量)和代数式的概念;2.代数式的数值计算和变量计算;3.图形与代数式的关系。
七、几何图形1.平面图形的基本性质;2.平行线、垂直线、相交线的判定;3.平面图形的分类与分析;4.几何图形的投影。
八、图形的轴对称和中心对称1.轴对称图形的性质与判定;2.中心对称图形的性质与判定;3.两种对称关系的联系与区别。
九、运算律和运算法则1.加法和乘法的运算律;2.数的运算律;3.运算法则的应用。
十、数量关系1.相等关系的图象表示;2.比例关系的概念及图象表示;3.百分数的概念及图象表示。
十一、统计与概率1.统计图表的读取和制作;2.统计数据的分析和应用;3.概率的理解和计算;4.概率问题的应用分析。
以上就是六年级上册数学的全部知识点,掌握了这些知识点,学生就能够在数学学习中得心应手,顺利完成各种题目的解答和应用。
小学六年级上册数学各单元知识点
小学六年级上册数学各单元知识点小学六年级上册数学共有十一个单元,每个单元的知识点如下:1. 第一单元:数与代数- 数的认识:数的读法、数的大小比较- 数的加法和减法:竖式计算、交换律和结合律- 乘法口诀表:认识并背诵乘法口诀表2. 第二单元:整数- 正数、负数:了解正数和负数的概念- 整数的加法和减法:正数相加、正数和负数相加、负数相加- 整数的乘法:相乘的规律3. 第三单元:图形与坐标- 点、线、面:了解图形的基本概念- 线段的长度:如何测量线段的长度- 坐标系:认识平面直角坐标系4. 第四单元:图形的变换- 平移、翻转、旋转:了解图形的基本变换操作- 关于对称轴的对称:认识图形的对称性5. 第五单元:小数- 小数的认识:了解小数的概念和读法- 小数的加法和减法:竖式计算- 小数的乘法和除法:带小数点的乘法和除法计算6. 第六单元:百分数- 百分数的认识:了解百分数的概念和读法- 百分数的表示和转化:将百分数转化为小数、将小数转化为百分数- 百分数的加法和减法:竖式计算7. 第七单元:平方与平方根- 平方数:认识平方数和平方根的概念- 计算平方:计算一个数的平方- 开平方:计算一个数的平方根8. 第八单元:长方体的面积和体积- 长方体的面积:计算长方体各个面的面积、计算总面积- 长方体的体积:计算长方体的体积9. 第九单元:圆- 圆的认识:了解圆的概念和相关术语- 圆的面积和周长:计算圆的面积和周长10. 第十单元:时间- 时钟的认识:了解时、分、秒的概念- 时钟的读法:读时、读分、读秒- 时钟的计算:计算时间差、计算时间段11. 第十一单元:数据的处理- 统计图表:了解柱状图和折线图的制作和分析- 数据的整理和处理:收集数据、整理数据、分析数据以上是小学六年级上册数学各单元的知识点,希望对你有帮助!。
六年级数学上册知识点整理归纳完整版
六年级数学上册知识点整理归纳完整版六年级上册数学知识点第一单元分数乘法一)分数乘法意义1.分数乘整数的意义与整数乘法相同,即求几个相同加数的和的简便运算。
例如:3/4 × 7 表示求7个3/4的和是多少?2.一个数乘分数的意义是求一个数的几分之几是多少。
例如:5 × 2/3 表示求5的2/3是多少?二)分数乘法计算法则1.分数乘整数的运算法则是:分子与整数相乘,分母不变。
例如:2/3 × 4 = 8/32.分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
例如:2/3 × 1/2 = 2/6 = 1/3三)积与因数的关系一个数(除外)乘大于1的数,积大于这个数。
a ×b = c,当b。
1时,c。
a。
一个数(除外)乘小于1的数,积小于这个数。
a ×b = c,当b < 1时,c < a(b ≠ 0)。
一个数(除外)乘等于1的数,积等于这个数。
a ×b = c,当b = 1时,c = a。
四)分数乘法混合运算1.分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
整数乘法运算定律同样适用于分数乘法,运算定律可使计算更简便。
其中包括乘法交换律、乘法结合律和乘法分配律。
倒数的意义是指乘积为1的两个数互为倒数。
需要注意的是,倒数是两个数的关系,它们互相依存,不能单独存在。
判断两个数是否互为倒数的唯一标准是它们相乘的积是否为1.求倒数的方法包括求分数、整数、带分数和小数的倒数。
1的倒数是它本身,而0没有倒数,因为任何数乘以0的积都是0,且不能作分母。
任意数a(a≠0)的倒数为1/a,非零整数a的倒数为a/1,分数的倒数是倒数的分数。
真分数的倒数是假分数,真分数的倒数大于1,也大于它本身,而假分数的倒数小于或等于1,带分数的倒数小于1.分数乘法可用于解决各种问题。
例如,要求一个数的几分之几是多少,可以用单位“1”的量与分数相乘。
人教版六年级数学上册概念知识点整理
下面是人教版六年级数学上册的概念知识点整理:1.数的认识-认识自然数、整数、分数、小数等概念-认识正数、负数和零的概念-了解数的大小比较和排列2.数的读法和写法-数字的读法和写法-十进制的概念,理解位权和数位-简单数的四则运算3.整数的加法和减法-整数的加减法运算-用数轴表示整数的加减法过程-整数运算的法则和性质-解决实际问题的整数运算4.有理数的加法和减法-有理数的加减法运算-解决实际问题的有理数运算5.小数的认识-认识小数的概念和意义-小数的读法和写法-小数的大小比较和排序6.小数的加法和减法-小数的加减法运算-用模拟算法和抽象算法解决小数运算问题7.分数的认识-分数的概念和意义-分数的读法和写法-分数的比较和排序8.分数的加法和减法-分数的加减法运算-分数运算的法则和性质-解决实际问题的分数运算9.对分数的认识-认识多个单位组成的分数-认识真分数、假分数和带分数10.分数的乘法-分数的乘法运算-解决实际问题的分数乘法11.分数的除法-分数的除法运算-解决实际问题的分数除法12.分数和小数的互化-分数和小数的互化过程-分数和小数的相互转换13.常用分数和小数的计算-分数和小数的计算技巧-解决实际问题的分数和小数的计算14.单位换算-体重、长度、容量等常用单位的换算-解决实际问题的单位换算15.图形的认识-认识直线、射线、线段等几何概念-认识多边形、圆等图形16.直角和直角三角形-认识直角和直角三角形的性质和特征-计算直角三角形的长度17.图形的相似-认识相似图形的概念和性质-判定相似图形的条件-计算相似图形的长度比和面积比。
人教版六年级上册数学全册知识点归纳
一、分数乘法1、一个数乘分数的意义:表示一个数的几分之几是多少。
2、整数乘分数的计算方法:整数乘分子做新的分子,分母不变。
3、分数乘分数的计算方法:分子乘分子做为新的分子,分母乘分母做为新的分母。
4、小数乘分数计算方法:把小数转化成分数,再计算;或者把分数转化成小数再计算注意:结果的分数能约分的要进行约分5、运算定律、乘法交换律:a × b = b ×a乘法结合律:(a×b)×c = a×(b×c )乘法分配律:(a + b)×c = a ×c + b×c注:有加法、乘法和小括号,先算小括号的加法,再算小括号外面的乘法。
6、长方形的面积=长×宽正方形的面积=边长×边长长方形的周长=(长+宽)×2 正方形的周长=边长×47、一个数(0除外)乘小于1的数,积小于这个数;一个数(0除外)乘等于1的数,积等于这个数;一个数(0除外)乘大于1的数,积大于这个数。
二、位置与方向(二)1、根据方向和距离确定物体位置的方法(1)确定好方向并用量角器量出被测物体的方位角度(2)明确被测物体和观测点的实际距离(3)根据方向(角度)和距离准确判断或描述被测量物体的位置。
2、描述路线图时,要先按行走路线确定每一个观测点,然后以每一个参照物为观测点,测量好到下一个目标行走的方向(角度)和距离。
3、两地的位置具有相对性,观测点不同,叙述的方向正好相反,角度和距离不变例:甲在乙的北偏东35°200米处;也可以是乙在甲的南偏西35°200米处。
4、同一个观测点,位置的描述有两种说法例:甲在乙的北偏东35°200米处,也可以是甲在乙的东偏北55°200米处三、分数除法1、乘积是1的两个数互为倒数。
2、1的倒数是1;因为0与任何数相乘都不等于1,0没有倒数。
3、分数除以整数,既可以看成把这个分数平均分成整数份;也可以看成已知两个因数的积与其中一个因数,求另一个因数是多少。
六年级数学上册全册知识点
六年级数学上册全册知识点
六年级数学上册全册知识点包括但不限于:
1. 分数乘法:分数乘法的意义、计算法则、规律以及分数乘法解决问题。
2. 分数除法:分数除法的意义、计算法则、规律以及分数除法解决问题。
3. 比和比例:比的意义、计算以及比和除法、分数的区别;比例的概念、性质以及解比例等。
4. 圆:圆的概念、性质、圆周率、圆的面积和周长等。
5. 百分数:百分数的概念、性质、百分数与小数的互化、百分数的加减乘除等。
6. 扇形统计图:扇形统计图的概念、特点以及作图方法等。
7. 圆的面积:圆面积的概念、计算公式以及推导过程等。
8. 圆柱和圆锥:圆柱和圆锥的概念、性质以及表面积和体积的计算等。
9. 正比例和反比例:正比例和反比例的概念、性质以及应用等。
10. 位置与方向:位置与方向的概念、描述方法以及作图方法等。
11. 负数:负数的概念、表示方法以及大小比较等。
12. 综合与实践:包括探索乐园、生活数学和数学游戏等内容,旨在提高学生的数学应用能力和创新能力。
这些知识点是六年级数学上册的主要内容,需要学生掌握和应用。
在学习过程中,学生应该注重理解概念、掌握方法,多做练习题,提高自己的数学素养和能力。
六年级数学上册知识点
六年级数学上册知识点
一、数的概念
1、数的概念:数是用来表示物体数量的符号。
2、整数:正整数、负整数和零。
3、有理数:分数、小数和百分数。
4、数的运算:加、减、乘、除、拆分、因式分解、求和、求积、求余数等。
二、图形
1、平面图形:三角形、矩形、正方形、梯形、菱形、圆形、
椭圆形等。
2、立体图形:正方体、长方体、圆柱体、球体等。
3、图形的属性:边、角、面等。
三、几何
1、几何概念:点、线、面、体等。
2、几何图形:直角坐标系、平行四边形、正多边形、圆、椭
圆等。
3、几何关系:平行、垂直、相交、等边、等腰、等角、等比、等量等。
四、数列
1、数列的概念:数列是由一组有限数构成的有序集合。
2、等差数列:等差数列是每一项与它的前一项之差都相等的
数列。
3、等比数列:等比数列是每一项与它的前一项之比都相等的
数列。
4、数列的性质:等差数列的性质、等比数列的性质、等比数
列的前n项和、数列的通项公式等。
五、概率
1、概率的概念:概率是表示事件发生的可能性的量度。
2、概率的计算:概率的计算方法,包括概率的定义法、概率
的计数法和概率的比例法。
3、概率的公式:概率的乘法公式、加法公式、贝叶斯公式等。
六年级上册数学知识点归纳
六年级上册数学知识点归纳一、分数1. 分数的意义:分数是用来表示整体的一部分,由分子和分母组成,分子表示部分的数量,分母表示整体被分成了几份。
2. 分数的分类:真分数、假分数、带分数。
3. 分数的加减法:同分母分数相加减,分子相加减,分母不变;异分母分数相加减,先通分,再进行加减。
4. 分数的乘除法:分数与整数相乘,分子乘以整数,分母不变;分数与分数相乘,分子相乘,分母相乘;分数除以整数,等于乘以倒数;分数除以分数,等于乘以倒数。
二、百分数1. 百分数的意义:百分数是表示一个数是另一个数的百分之几的数,由百分号“%”表示。
2. 百分数的转换:百分数化为小数,去掉百分号,小数点向左移动两位;小数化为百分数,小数点向右移动两位,添上百分号。
3. 百分数的加减法:同分母百分数相加减,百分数相加减;异分母百分数相加减,先通分,再进行加减。
4. 百分数的乘除法:百分数与整数相乘,去掉百分号,乘以整数;百分数与分数相乘,去掉百分号,乘以分数;百分数除以整数,等于乘以倒数;百分数除以分数,等于乘以倒数。
三、几何图形1. 圆的周长和面积:圆的周长公式C=2πr,圆的面积公式A=πr²。
2. 扇形的周长和面积:扇形的周长公式C=πr,扇形的面积公式A=πr²θ/360,其中θ为扇形的圆心角。
3. 三角形的面积:三角形的面积公式A=底×高/2。
4. 平行四边形的面积:平行四边形的面积公式A=底×高。
5. 梯形的面积:梯形的面积公式A=(上底+下底)×高/2。
四、统计图表1. 条形统计图:用长短不同的直条表示数据,适用于展示不同类别的数据对比。
2. 折线统计图:用不同位置的点表示数据,适用于展示数据随时间或其他变量的变化趋势。
3. 饼图统计图:用不同扇形的大小表示数据,适用于展示各部分数据占总数据的比例。
五、方程与比例1. 简单方程:含有一个未知数的方程,如2x+3=7。
六年级上册数学知识重点、难点
六年级上册数学知识点第一单元地点(用数对确立点物体的地点)1.数用有序的两个数表示一个确立的地点就是数对。
2.用数对表示物体地点的方法。
数对的前一个数表示第几列,后一个数表示第几行。
在书写时要用小括号将两个数括起来,并用逗号将两个数分开。
如:数对( 3,2)表示第三列,第二行。
3.在平面直角坐标系中,一个图形向左右平移,对应点的数对不过列数变,行数不变。
向上下平移,不过行数变,列数不变。
第二单元分数乘法1.分数乘法意义(1)能改写成加法算式的分数乘法算式意义与整数乘法的意义同样。
是求几个同样加数的和的简易运算。
1 1 1 1 11如:2×4=2 +2 + 2 +2那么×4 表示 4 个2相加的和是多少。
(2)不可以改写成加法算式的分数乘法算式意义就是求一个数的几分之几是多少。
1313如:2×5表示2的5是多少。
2.分数乘法的计算方法:(1)分数与整数相乘,用分子与整数相乘的积做分子,分母不变。
(2)分数与分数相乘,用分子相乘的积做分子,分母相乘的积做分母。
注意:在计算分数乘法时,分子和分母能约分的尽量先约分,再计算,这样能够简易。
3.倒数的认识(1)倒数的定义:乘积为 1 的两个数互为倒数。
重申:互为倒数,即倒数是两个数的关系,它们相互依存,倒数不可以独自存在。
(2)求倒数的方法:①求分数的倒数是互换分子分母的地点。
②求整数的倒数是把整数看做分母是 1 的分数,再互换分子分母的地点。
1③求 a(a≠0)的倒数就用 1÷ a=a。
( 3) 1 的倒数是它自己;0 没有倒数。
4.解决问题求一个数的几分之几是多少要用乘法计算。
【单位“ 1”的量×分率】第三单元分数除法1.?????分数除法的意义是已知两个数的积与此中一个因数,求另一个因数的运算。
(除法是乘法的逆运算)1313如:2÷5表示已知两个因数的积是2与此中一个因数是5,求另一个因数是多少。
小学六年级上册数学知识点和题型
小学六年级上册数学知识点和题型第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘的积作分子,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:①如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
②分数化简的方法是:分子、分母同时除以它们的最大公因数。
③在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)④分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
3、小数乘分数的运算法则是:(1)把小数化成分数计算;(2)如果所乘分数可以化成有限小数,也可以把分数化成小数计算;(3)小数和分母能约分的,先约分在计算比较方便。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a (b≠0). 一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a .注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青岛版六年级数学上册全部知识点
第一部分????数与代数
第一单元:分数乘法
(1)分数乘法的计算法则:?
分子乘分子做分子,分母乘分母做分母,能约分先约分。
分子和整数与分母约分,因倍关系的先约分。
?
(2)列乘法算式的原理:
“1”是已知量,求“1”的几分之几是多少,用乘法。
?
(3)积与因数的大小比较:?
(4)倒数:
乘积是1的两个数互为倒数,两数互为倒数乘积是1。
? 1的倒数是1,0没有倒数。
求一个数倒数的方法:把这个数的分子与分母交换位置。
? 第二单元:分数除法
(5)分数除法的计算法则:?
法1:画图(基本方法)。
?
法2:分数除以整数:
分子是整数的倍数,分母不变,分子除以整数。
?
法3:?a ÷b=a ×b 1
(b ≠0)?
(6)列除法算式的原理:
“1”是未知量,已知“1”的几分之几是多少,求“1”是多少用除法。
?
(7)商与被除数大小的比较:
(8)解决分数应用题的方法:
第三单元:比
(9)比的定义:两个数相除又叫两个数的比。
?(10)求比值的方法:前项÷后项?
(11)化简比的方法:?
1、依据比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
这叫做比的基本性质。
?
2、化简整数比:找前项和后项的最大公因数,前项后项同时除以最大公因数,化成最简整数比。
?
化简分数比:找前项和后项分母的最小公倍数,前项后项同时乘最小公倍数,再化简整数比。
?
化简小数比:把小数转化成整数,再化简整数比。
?
(12)按比例分配:找总量,找出部分量是总量的几分之几,用乘法计算。
甲:乙=a:b,甲是乙的a/b,乙是甲的b/a,甲是全部的a/a+b,乙是全部的b/a+b?
常见题型:
长方形、长方体、分书、分点心……
第五单元:分数四则混合运算
13)混合运算顺序:先乘除,后加减。
有括号,先括号,括号内先小后中。
?
(14)运用运算律进行简便运算:
?加法运算律:
1)加法交换律:a+b=b+a?????????????
2)加法结合律:(a+b)+c=a+(b+c)?
乘法运算律:
1)乘法交换律:a·b=b·a???????????????
?2)乘法结合律:(a·b)·c=a·(b·c)??????????
???3)乘法分配律:a·(b+c)=a·b+a·c?
(15)去括号的方法:括号外有加号、乘号,去括号,括号内不变号。
括号外有减号、除号,去括号,括号内要变号。
? (16)鸡兔同笼:算术法——假设问题。
假设全部为鸡,找出假设鸡的总脚数与实际总脚数的差,除以一只兔子与一只鸡脚数的差,就是兔子的只数,用总只数减兔子只数就是鸡的只数。
或用方程解。
?
第八单元:百分数
(17)百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。
?
(18)百分数与分数小数的互化:?
1、小数化百分数:添%,小数点向右移两位???
???2、分数a/b化百分数:化成小数,再化成百分数?
3、百分数化分数:先化成分母是100的分数,再约分???????
4、百分数化小数:去%,把小数点向左移两位?
(19)求a是b的百分之几的方法:a÷b×100%(b≠0)?
(20)合格率=合格数÷抽查总数×100%?
5、万能公式:
第二部分空间与图形?第五单元:圆
(21)基本定义:?
1、圆心:画圆时固定的一点叫做圆心。
圆心确定圆的位置。
?
2、半径:连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。
半径确定圆的大小。
?
3、直径:通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。
直径是圆的对称轴,用点划线画。
?
4、在长方形里画最大的圆,长方形的宽等于圆的直径;在正方形里画最大的圆,正方形的边长等于圆的直径;?
(22)周长:?
1、圆周率:任意一个圆的周长和它的直径的比值是一个固定的数,这个比值就叫做圆周率,用字母π表示。
?
2、圆的周长:?
已知d,C=πd;已知?r,C=2πr;已知C,d=C÷π;已知C,r=C÷2÷π
?3、其它图形的周长:?
已知d,C圆半=1/2πd;已知?r,?C圆半=πr;?
已知?d,?C半圆=(1/2π+1)d=2.57d?
已知r,?C半圆=?(π+2)r=5.14?r;C跑道=πd+2m(m是直道的长度)
?1、圆面积计算公式的推导过程:?
????把圆等分成若干个小扇形,分割后拼成一个长方形,长方形的长等于圆周长的一半,长方形的宽等于圆的半径,因为,长方形的面积=长×宽,所以圆的面积=C/2×r=πr2?
2、圆的面积:已知r,S=πr2;已知d,S=1/4πd2
?3、其它图形的面积:????
S半圆=
1πr2;S环=π(R2-r2)??
2
4、如果r1:r2=a:b,那么
d1:d2=a:b
c1:c2=a:b
S1:S2=a:b?
当半径扩大a倍,则直径扩大a倍,则周长扩大a倍,则面积扩大a2倍。
?
常见题型:
环形面积:花坛扩建石子路
减去边角料
阴影部分的面积
半圆的周长。