29.8 解直角三角形的应用(2)

合集下载

解直角三角形(5种题型)(解析版)

解直角三角形(5种题型)(解析版)

解直角三角形(5种题型)【知识梳理】一.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A=∠A的对边斜边=ac,cos A=∠A的邻边斜边=bc,tan A=∠A的对边∠A的邻边=ab.(a,b,c分别是∠A、∠B、∠C的对边)二.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.三.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.四.解直角三角形的应用-仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.在视线与水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角;五.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.【考点剖析】一.解直角三角形1.(2022春•闵行区校级期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,点D在边AC上,且AD =2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余弦值.【分析】(1)根据题意,AC=BC=6,AD=2CD,可得AD的长度,根据等腰直角三角形的性质可得AB=√2AC,由AE=sin45°•AD的长度,则BE=AB﹣AE,计算即可得出答案;(2)过点E作EF⊥BC,垂足为F,如图,根据等腰直角三角形的性质可得,EF=BF=sin45°•BE,则CF=BC﹣BF,根据勾股定理可得CE=√EF2+CF2,在Rt△ECF中,由cos∠ECB=CFCE 计算即可得出答案.【解答】解:(1)∵AC=BC=6,AD=2CD,∴AD=4,∵∠ACB=90°,∴AB=√2AC=6√2,∴∠DAE=45°,DE⊥AB,∴AE=sin45°•AD=√22×4=2√2,∴BE=AB﹣AE=6√2−2√2=4√2;(2)过点E作EF⊥BC,垂足为F,如图,∵∠B=45°,∴EF=BF=sin45°•BE=√22×4√2=4,∴CF=BC﹣BF=2,∴CE=√EF2+CF2=√42+22=2√5,在Rt△ECF中,cos∠ECB=CFCE =2√5=√55.【点评】本题主要考查了解直角三角形及等腰直角三角形形的性质,应用等腰直角三角形性质进行计算是解决本题的关键.2.(2022春•浦东新区校级期中)如图,在△ABC中,CD是边AB上的高,AE是BC边上的中线,已知AD=8,BD=4,cos∠ABC=45.(1)求高CD的长;(2)求tan∠EAB的值.【分析】(1)在Rt△BCD中,由已知条件cos∠ABC=BDBC =45,即可算出BC的长,根据勾股定理即可得出答案;(2)过点E作EF⊥AB,垂足为F,如图,可得CD∥EF,由E为BC的中点,可得EF是△BCD的中位线,即可算出EF=12CD,DF的长度,即可算出AF=AD+DF的长度,在Rt△AEF中,根据tan∠EAB=EFAF即可得出答案.【解答】解:(1)在Rt△BCD中,∵cos∠ABC=BDBC =45,∴4BC =45,∴BC=5,∴CD=√BC2−BD2=√52−42=3;(2)过点E作EF⊥AB,垂足为F,如图,∵EF⊥BD,∴CD∥EF,∵E为BC的中点,∴EF是△BCD的中位线,∴EF=12CD=12×3=32,DF=12BD=12×4=2,∴AF=AD+DF=8+2=10,在Rt△AEF中,∴tan∠EAB=EFAF =3210=15.【点评】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.3.(2022•黄浦区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,sin∠ABC=13,D是边AB上一点,且CD=CA,BE⊥CD,垂足为点E.(1)求AD 的长; (2)求∠EBC 的正切值.【分析】(1)过C 点作CH ⊥AD 于H ,如图,利用等腰三角形的性质得到AH =DH ,再证明∠ACH =∠ABC ,则sin ∠ACH =sin ∠ABC =13,然后利用正弦的定义求出AH ,从而得到AD 的长;(2)在Rt △ABC 中先求出AB =9,则BD =7,再证明∠HCD =∠EBD ,则sin ∠EBD =DE BD =13,利用正弦的定义求出DE =73,接着利用勾股定理计算出BE ,然后根据正切的定义求解.【解答】解:(1)过C 点作CH ⊥AD 于H ,如图, ∵CD =CA , ∴AH =DH ,∵∠ABC+∠BCH =90°,∠ACH+∠BCH =90°, ∴∠ACH =∠ABC , ∴sin ∠ACH =sin ∠ABC =13, 在Rt △ACH 中,sin ∠ACH =AH AC =13,∴AD =2AH =2;(2)在Rt △ABC 中,sin ∠ABC =AC AB=13,∴AB =3AC =9,∴BD =AB ﹣AD =9﹣2=7, ∵∠E =90°, 而∠EDB =∠HDC , ∴∠HCD =∠EBD , ∴sin ∠EBD =DE BD =13,∴DE =13BD =73,∴BE =√72−(73)2=14√23,在Rt △EBC 中,tan ∠EBC =EC EB=3+7314√23=4√27.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质. 二.解直角三角形的应用4.(2022•长宁区二模)冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼前面20米处要盖一栋高25米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)冬至中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市全部采光不受影响,两楼应至少相距多少米?(结果保留整数)【分析】(1)延长光线交CD 于点F ,过点F 作FG ⊥AB ,垂足为G ,根据题意可得∠AFG =29°,GF =BC =20米,GB =FC ,然后在Rt △AGF 中,利用锐角三角函数的定义求出AG ,从而求出GB 的长,进行比较,即可解答;(2)延长光线交直线BC 于点E ,根据题意可得∠AEB =29°,然后在Rt △ABE 中,利用锐角三角函数的定义求出BE 的长,即可解答.【解答】解:(1)冬至中午时,超市以上的居民住房采光有影响,理由:延长光线交CD于点F,过点F作FG⊥AB,垂足为G,则∠AFG=29°,GF=BC=20米,GB=FC,在Rt△AGF中,AG=FG•tan29°≈20×0.55=11(米),∵AB=25米,∴GB=AB﹣AG=25﹣11=14(米),∴FC=GB=14米,∵14米>6米,∴冬至中午时,超市以上的居民住房采光有影响;(2)延长光线交直线BC于点E,则∠AEB=29°,在Rt△ABE中,AB=25米,∴BE=ABtan29°≈250.55≈45(米),∴若要使得超市全部采光不受影响,两楼应至少相距45米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2022•徐汇区二模)激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?【分析】(1)过点A作AD⊥BC于点D,根据题意可得AB=AC,当∠BAC=33°时,当∠BAC=40°时,利用锐角三角函数即可解决问题;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意列出方程即可解决问题.【解答】解:(1)如图,过点A作AD⊥BC于点D,根据题意可知:AB=AC,AD⊥BC,∴BC=2BD,∠BAD=∠CAD=∠BAC,当∠BAC=33°时,∠BAD=∠CAD=16.5°,在△ABD中,BD=AD×tan16.5°≈3.5×0.30=1.05(m),∴BC=2BD=2.10(m),当∠BAC=40°时,∠BAD=∠CAD=20°,在△ABD中,BD=AD×tan20°≈3.5×0.36=1.26(m),∴BC=2BD=2.52m,答:小佳家要选择电视屏幕宽为2.10m﹣2.52m之间的激光电视就能享受黄金观看体验;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意可得:=,解得:x=16000,经检验x=16000是原方程的解,符合题意,答:今年这款激光电视每台的售价是16000元.【点评】本题考查了解直角三角形的应用,分式方程的应用,视点,视角和盲区,解决本题的关键是根据题意找到等量关系准确列出方程.6.(2022•崇明区二模)为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)点在最高位置与最低位置时的高度差.(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?【分析】(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,然后在Rt△BOD中,利用锐角三角函数的定义求出OD的长,进行计算即可解答;(2)先设小杰原计划x小时完成锻炼,然后根据实际每小时的能量消耗﹣原计划每小时的能量消耗=100,列出方程进行计算即可解答.【解答】解:(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,在Rt△BOD中,∠BOA=25°,∴OD=BO•cos25°≈80×0.906=72.48(cm),∴AD=OA﹣OD=80﹣72.48≈7.5(cm),∴踏板中心点在最高位置与最低位置时的高度差约为7.5厘米;(2)设小杰原计划x小时完成锻炼,由题意得:,解得:,经检验:都是原方程的根,但不符合题意,舍去,答:小杰原计划锻炼1小时完成.【点评】本题考查了解直角三角形的应用,分式方程的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.7.(2022•宝山区二模)某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)【分析】(1)根据每级台阶高度都是0.25米,然后计算出3个台阶的总高度,即可解答;(2)连接BC,根据题意可得:AB=DC,AB∥DC,从而可得四边形ABCD是平行四边形,然后利用平行四边形的性质可得AD=BC,AD∥BC,从而求出∠CBH=66°,最后在Rt△CBH中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)∵每级台阶高度都是0.25米,∴BH=3×0.25=0.75(米),∴点B与点C离地面的高度差BH的长度为0.75米;(2)连接BC,由题意得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAB=∠CBH=66°,在Rt△CBH中,BH=0.75米,∴BC=≈=1.875(米),∴扶手AD的长度约为1.875米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三.解直角三角形的应用-坡度坡角问题8.(2021秋•闵行区期末)如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为.【分析】根据坡度的概念计算,得到答案.【解答】解:斜面AB的坡度为20:30=1:1.5,故答案为:1:1.5.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.9.(2022春•浦东新区校级期中)工厂的传送带把物体从地面送到离地面5米高的地方,如果传送带与地面所成的斜坡的坡度i=1:2.4,那么物体所经过的路程为米.【分析】根据坡度的概念求出AC,根据勾股定理求出AB.【解答】解:∵传送带与地面所成的斜坡的坡度i=1:2.4,∴BCAC =12.4,即5AC=12.4,解得,AC=12,由勾股定理得,AB=√AC2+BC2=√122+52=13(米),故答案为:13.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.10.(2022•黄浦区二模)某传送带与地面所成斜坡的坡度i=1:2.4,如果它把物体从地面送到离地面10米高的地方,那么物体所经过的路程为米.【分析】根据坡度的概念求出水平距离,根据勾股定理计算,得到答案.【解答】解:∵传送带与地面所成斜坡的坡度i=1:2.4,它把物体从地面送到离地面10米高,∴水平距离为:2.4×10=24,∴物体所经过的路程为:√102+242=26(米),故答案为:26.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.11.(2022•浦东新区二模)如图,一个高BE为√3米的长方体木箱沿坡比为1:√3的斜面下滑,当木箱滑至如图位置时,AB=3米,则木箱端点E距地面AC的高度EF为米.【分析】根据坡度的概念求出∠DAF=30°,根据正弦的定义求出DE,进而求出BD,得到答案.【解答】解:设AB、EF交于点D,∵斜坡的坡比为1:√3,∴tan∠DAF=√3=√33,∴∠DAF=30°,∴∠ADF=90°﹣30°=60°,∴∠BDE=60°,在Rt△BDE中,sin∠BDE=BEDE,∴√3DE =√32,解得,DE=2(米),∴BD=1m,∴AD=AB﹣BD=2(米),在Rt△ADF中,∠DAF=30°,∴DF=12AD=1(米),∴EF=DE+DF=3(米),故答案为:3.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.四.解直角三角形的应用-仰角俯角问题12.(2021秋•浦东新区期末)在离旗杆20米处的地方,用测角仪测得旗杆顶的仰角为α,如测角仪的高为1.5米,那么旗杆的高为()米.A.20cotαB.20tanαC.1.5+20tanαD.1.5+20cotα【分析】由题意得,在直角三角形中,知道了已知角的邻边求对边,用正切值计算即可.【解答】解:根据题意可得:旗杆比仪器高20tanα,测角仪高为1.5米,故旗杆的高为(1.5+20tanα)米.故选:C.【点评】本题考查了解直角三角形的应用﹣仰角俯角,熟练掌握解直角三角形的方法是解题的关键.13.(2022•徐汇区二模)如图,小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮板底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为α,已知tanα的值为0.3,则点D到地面的距离CD的长为米.【分析】根据题意可得AE=BC=5米,EC=AB=1.7米,然后在Rt△ADE中,利用锐角三角函数的定义求出DE的长,进行计算即可解答.【解答】解:由题意得:AE=BC=5米,EC=AB=1.7米,在Rt△ADE中,tanα=0.3,∴DE=AE•tanα=5×0.3=1.5(米),∴DC=DE+EC=1.5+1.7=3.2(米),∴点D到地面的距离CD的长为3.2米,故答案为:3.2.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.14.(2022•青浦区二模)小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A点测得古树顶的仰角为α,向前走了100米到B点,测得古树顶的仰角为β,则古树的高度为米.【分析】设CD=x米,用含x的代数式表示出AD和BD的长,再根据AD﹣BD=100可得x的值.【解答】解:设CD=x米,在Rt△ACD中,tanα=CDAD,∴AD=xtanα,在Rt△BCD中,tanβ=CDBD,∴BD=xtanβ,∵AD﹣BD=100,∴xtanα−xtanβ=100,解得x=100⋅tanβ⋅tanαtanβ−tanα,故答案为:100⋅tanβ⋅tanαtanβ−tanα.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.五.解直角三角形的应用-方向角问题15.(2021秋•黄浦区期末)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在距码头西端M的正西方向58千米处有一观测站O,现测得位于观测站O的北偏西37°方向,且与观测站O相距60千米的小岛A处有一艘轮船开始航行驶向港口MN.经过一段时间后又测得该轮船位于观测站O的正北方向,且与观测站O相距30千米的B处.(1)求AB两地的距离;(结果保留根号)(2)如果该轮船不改变航向继续航行,那么轮船能否行至码头MN靠岸?请说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37≈0.75.)【分析】(1)过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.(2)延长AB交l于D,比较OD与OM+MN的大小即可得出结论.【解答】解:(1)过点A作AC⊥OB于点C.由题意,得OA=60千米,OB=30千米,∠AOC=37°.∴AC=OAsin37°≈60×0.60=36(千米).在Rt△AOC中,OC=OA•cos∠AOC≈60×0.8=48(千米).∴BC=OC﹣OB=48﹣30=18(千米).在Rt△ABC中,AB=.(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵∠ABC=∠OBD,∠ACB=∠BOD=90°.∴△ABC∽△DBO,∴,∴,∴OD=60(千米).∵60>58+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.【点评】本题考查了解直角三角形的应用,此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.16.(2021秋•嘉定区期末)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).(参考数据:,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】(1)根据特殊角三角函数即可解决问题;(2)根据三角函数定义可得CN的长,进而可以求该轮船航行的速度.【解答】解:(1)由题意,得∠ACM=∠BDM=90°,AC=3,BD=4,∠CAM=∠DBM=60°,在Rt△ACM中,,∴cos60°=,∴AM=6,在Rt△BDM中,,∴cos60°=,∴BM=8,∴AB=AM+BM=14千米.答:两个灯塔A和B之间的距离为14千米.(2)在Rt△ACM中,,∴,∴,在Rt△BDM中,,∴, ∴, ∴,在Rt △BDN 中,,由题意,得∠DBN =53°∴, ∴DN =4tan53°,∴,设该轮船航行的速度是V 千米/小时,由题意,得,∴V ≈40.7(千米/小时 ),答:该轮船航行的速度是40.7千米/小时. 【点评】本题考查了解直角三角形的应用中的仰角俯角问题、矩形的判定与性质等知识;掌握仰角俯角定义是解题的关键.【过关检测】一、单选题 九年级假期作业)已知在ABC 中,【答案】B 【分析】过点C 作CD AB ⊥,垂足为D ,根据60A ∠=︒,得出30ACD ∠=︒,进而求得CD ,由已知条件得出CD BD =,进而得出45BCD ∠=︒,即可求解.【详解】解:如图所示,过点C 作CD AB ⊥,垂足为D ,在Rt ADC 中,60A ∠=︒,∴30ACD ∠=︒, ∴sin ,cos CD AD A A AC AC ==sin 602CD =︒∴⨯=11BD AB AD ∴=−=∴CD BD =,在Rt BCD 中,CD BD =45BCD ∴∠=︒75ACB ACD BCD ∴∠=∠+∠=︒故选:B .【点睛】本题考查了解直角三角形,构造直角三角形,掌握直角三角形的边角关系是解题的关键.【答案】D【分析】在直线y=2x 上任取一点P (a ,2a),过点P 作x 轴的垂线,垂足为点B ,则可求得α的正余弦、正余切值,从而可得答案.【详解】如图,在直线y=2x 上任取一点P (a ,2a),过点P作x 轴的垂线,垂足为点B则OB=|a|,PB=2|a| 由勾股定理得:|OPa ==在直角△POB 中,sin 5PB OP α==,cos 5OB OP α===, 2tan =2a PB OB a α==,1cot =22a OB PB a α==故选项D 正确故选:D【点睛】本题考查了正比例函数的图象与性质,锐角三角函数,关键是画出图形,并在直线任取一点,作x 轴的垂线得到直角三角形.【答案】D【分析】先求出120°的补角为60°,然后再把60°放在直角三角形中,所以过点C作CD⊥AB,交BA的延长线于点D,在Rt△ACD中可求出AD与CD的长,最后在Rt△BDC中利用勾股定理求出BC即可解答.【详解】解:过点C作CD⊥AB,交BA的延长线于点D,∵∠BAC=120°,∴∠CAD=180°-∠BAC=60°,在Rt△ACD中,AC=2,∴AD=ACcos60°=2×12=1,CD=ACsin60°=2×∵AB=4,∴BD=AB+AD=4+1=5,∴tanB=CD BD=, 故选:D .【点睛】本题考查了解直角三角形,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键. 4.(2023·上海·九年级假期作业)如图,45ACB ∠=︒,125PRQ ∠=︒,ABC 底边BC 上的高为1h ,PQR 底边QR 上的高为2h ,则有( )A .12h h =B .12h h <C .12h h >D .以上都有可能【答案】B 【分析】由已知可知高所对的斜边都为5,由正弦的定义可得到高关于正弦的表达式,比较正弦值即可得到答案.【详解】解:如图,分别作出两三角形的高12,h h∵45,5ACB AC ∠=︒=∴1sin 455sin 45h AC =⨯︒=︒ ∵125,5PRQ PR ∠=︒=∴()2sin 1801255sin55h PR =︒−︒=︒ ∵sin 55sin 45︒︒>∴21h h > 故选:B .【点睛】本题考查解直角三角形,依题意作高构造直角三角形是解题的关键.5.(2023·上海·九年级假期作业)小杰在一个高为h 的建筑物顶端,测得一根高出此建筑物的旗杆顶端的仰【答案】C 【分析】过A 作AE BC ⊥于E ,在Rt ACE △中,已知了CE 的长,可利用俯角CAE ∠的正切函数求出AE 的值;进而在Rt ABE △中,利用仰角BAE ∠的正切函数求出BE 的长;从而可得答案.【详解】解:如图,过A 作AE BC ⊥于E ,则四边形ADCE 是矩形,CE AD h ==.∵在Rt ACE △中,CE h =,60CAE ∠=︒,∴tan 60CE AE ==︒,∵在Rt ABE △中,30BAE ∠=︒,∴1tan 303BE AE h =︒==,∴1433BC BE CE h h h =+=+=. 即旗杆的高度为43h .故选C .【点睛】本题考查了解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再运用三角函数的定义解题,是中考常见题型,解题的关键是作出高线构造直角三角形.6.(2021·上海·九年级专题练习)如图,把两条宽度都是1的纸条,其中一条对折后再两条交错地叠在一起,相交成角α,则重叠部分的面积是( )【答案】C【分析】根据题意可知:所得图形是菱形,设菱形ABCD,由已知得∠ABE=α,过A作AE⊥BC于E,由勾股定理可求BE、AB、BC的长度,根据菱形的面积公式即可求出所填答案.【详解】解:由题意可知:重叠部分是菱形,设菱形ABCD,则∠ABE=α,过A作AE⊥BC于E,则AE=1,设BE=x,∵∠ABE=α,∴AB=1sin sinAEαα=,∴BC=AB=1sinα,∴重叠部分的面积是:1sinα×1=1sinα.故选:C.【点睛】本题主要考查了菱形的性质,勾股定理,含30°角的直角三角形的性质,菱形的面积公式等知识点,把实际问题转化成数学问题,利用所学的知识进行计算是解此题的关键.二、填空题7.(2023·上海·九年级假期作业)小球沿着坡度为1:1.5i=的坡面滚动了13m,则在这期间小球滚动的水平距离是___________m.【答案】【分析】设高度为x ,根据坡度比可得水平距离为1.5x ,根据勾股定理列方程即可得到答案;【详解】解:设高度为x ,∵坡度为1:1.5i =,∴水平距离为1.5x ,由勾股定理可得,222(1.5)13x x +=,解得:x =∴水平距离为1.5⨯=故答案为:【点睛】本题考查坡度比及勾股定理,解题的关键是根据坡度比得到高度与水平距离的关系.【答案】13【分析】根据斜坡AB 的坡度1i =AB 的值先求出AH ,再根据斜坡AC 的坡度21:2.4i =,求得AC ,即可求解.【详解】解:∵1i =∴tan 3ABH ∠==, ∴30ABH ∠=︒,∴152AH AB ==, ∵21:2.4i =,∴1tan 2.4AH ACB CH ∠==,∵5AH =,∴12=CH ,在Rt ACH 中,13AC ==,故答案为:13.【点睛】本题考查的是解直角三角形的应用,坡度问题,熟知锐角三角函数的定义是解答此题的关键.【答案】10【分析】作BH AC ⊥于H .由四边形ABCD 是矩形,推出OA OC OD OB ===,设5OA OC OD OB a ====,由余切函数,可得4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,求出a 即可解决问题.【详解】解:如图,作BH AC ⊥于H .∵四边形ABCD 是矩形,∴OA OC OD OB ===,设5OA OC OD OB a ====,则10AC a =.∵根据题意得:3cot 4OH BOH BH ∠==, ∴4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,∴1a =,∴10AC =.故答案为10.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题. 10.(2023·上海·九年级假期作业)已知:在ABC 中,60A ∠=︒,45B ∠=︒,8AB =.则ABC 的面积为____(结果可保留根号).【答案】48−【分析】过C 作CD AB ⊥于D ,利用直角三角形的性质求得CD 的长.已知AB 的长,根据三角形的面积公式即可求得其面积.【详解】解:过C 作CD AB ⊥于D ,在Rt ADC 中,90CDA ∠=︒Q ,∴tan tan 60CD DAC AD =∠=︒=即AD 在Rt BDC 中,45B ∠=︒, 45BCD ∴∠=︒, CD BD ∴=.8AB DB DA CD =+==,12CD ∴=−.118(124822ABC S AB CD ∴=⨯=⨯⨯−=−故答案为:48−【点睛】本题考查解直角三角形,直角三角形的性质及三角形的面积公式,熟练掌握通过作三角形的高,构造直角三角形是解题的关键.分别在DEF 的边,ABE 沿直线 【答案】67【分析】根据题意和翻折的性质可得ABCABE 是等腰直角三角形,ABC 是等腰直角三角形,所以AC BE ∥,得23DA AC DE HE ==,设2AC AE x ==,则3HE x =,4AD x =,所以7FE x =,6DE x =,然后根据锐角三角函数即可解决问题.【详解】解:如图所示:90DEF ∠=︒,45EBA ∠=︒,ABE ∴是等腰直角三角形,AE BE ∴=,ABE 沿直线AB 翻折,翻折后的点E 落在DEF 内部的点C ,ABC ∴是等腰直角三角形,∴∥AC BE ,∴23DA AC DE HE ==,FH AD =,设2AC AE x ==,则3HE x =,4AD x =,7FE x ∴=,6DE x =, ∴67DE FE =,6cot 7DE D FE ∴==. 故答案为:67.【点睛】本题考查了翻折变换,解直角三角形,解决本题的关键是掌握翻折的性质. 统考二模)在ABC 中,,那么ABC 的重心到【答案】4【详解】解:如下图所示,设点D 为BC 的中点,点E 为三角形的重心,∵AB AC =,∴AD BC ⊥,∵152BD BC ==,5cos 13B =,cos BD B AB = ∴13AB =,∴12AD ==,∵点E 为三角形的重心,∴21AE ED =, ∴4ED =,∵AD BC ⊥,∴ABC 的重心到底边的距离为4,故答案为:4.【点睛】本题考查解直角三角形、三角形重心的性质和勾股定理,解题的关键是熟知重心到顶点的距离与重心到对边中点的距离之比为2:1. 13.(2023·上海·一模)平面直角坐标系内有一点()1,2P ,那么OP 与x 轴正半轴的夹角为α,tan α=________.【答案】2【分析】过点P 作PA x ⊥轴于点A ,由P 点的坐标得PA 、OA 的长,根据正切函数的定义得结论.【详解】解:过点P 作PA x ⊥轴于点A ,如图:∵点PA x ⊥,∴2PA =,1OA =,∴2an 21t PA OA α===.故答案为:2.【点睛】本题考查了点在平面直角坐标系里的意义及解直角三角形.解决本题的关键是构造直角三角形. 一模)如图,已知在ABC 中, 【答案】95【分析】如图,设AP m =.证明AP MQ m ==,根据3cos cos 5A CMQ =∠=,构建方程求解.。

解直角三角形及其应用--知识讲解

解直角三角形及其应用--知识讲解

解直角三角形及其应用—知识讲解【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.要点二、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,角锐角、对边 (如∠A ,a)∠B=90°-∠A ,,斜边、锐角(如c ,∠A)∠B=90°-∠A ,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键. 解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形. (4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解. 拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念: (1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h 和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA ,PB ,PC 的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA ,OB ,OC ,OD 的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】 类型一、解直角三角形1.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a =4; (2)a =1,3b =. 【答案与解析】(1)∠A =90°-∠B =90°-60°=30°.由tan bB a =知,tan 4tan6043b a B ==⨯=°. 由cos a B c =知,48cos cos 60a c B ===°. (2)由tan 3bB a==得∠B =60°,∴ ∠A =90°-60°=30°.∵ 222a b c +=,∴ 2242c a b =+==.【总结升华】解直角三角形的两种类型是:(1)已知两边;(2)已知一锐角和一边.解题关键是正确选择边角关系.常用口诀:有弦(斜边)用弦(正弦、余弦),无弦(斜边)用切(正切). (1)首先用两锐角互余求锐角∠A ,再利用∠B 的正切、余弦求b 、c 的值;(2)首先用正切求出∠B 的值,再求∠A 的值,然后由正弦或余弦或勾股定理求c 的值. 举一反三:【高清课程名称:解直角三角形及其应用 高清ID 号:395952 关联的位置名称(播放点名称):例1(1)-(3)】【变式】(1)已知∠C=90°,a=23,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ; 【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=252.(2016•包头)如图,已知四边形ABCD 中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC 的延长线与AD 的延长线交于点E . (1)若∠A=60°,求BC 的长; (2)若sinA=,求AD 的长.(注意:本题中的计算过程和结果均保留根号)【思路点拨】(1)要求BC 的长,只要求出BE 和CE 的长即可,由题意可以得到BE 和CE 的长,本题得以解决; (2)要求AD 的长,只要求出AE 和DE 的长即可,根据题意可以得到AE 、DE 的长,本题得以解决. 【答案与解析】解:(1)∵∠A=60°,∠ABE=90°,AB=6,tanA=,∴∠E=30°,BE=tan60°•6=6,又∵∠CDE=90°,CD=4,sinE=,∠E=30°,∴CE==8,∴BC=BE ﹣CE=6﹣8;(2))∵∠ABE=90°,AB=6,sinA==,∴设BE=4x ,则AE=5x ,得AB=3x , ∴3x=6,得x=2,∴BE=8,AE=10, ∴tanE====,解得,DE=,∴AD=AE ﹣DE=10﹣=,即AD 的长是.【总结升华】本题考查解直角三角形,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答.类型二、解直角三角形在解决几何图形计算问题中的应用3.如图所示,BC 是半圆⊙O 的直径,D 是AC 的中点,四边形ABCD 的对角线AC 、BD 交于点E ,(1)求证:△ABE ∽△DBC ; (2)已知BC =52,CD =52,求sin ∠AEB 的值; (3)在(2)的条件下,求弦AB 的长.【答案与解析】(1)∵ AD CD =,∴ ∠1=∠2,又BC 是⊙O 的直径,∴ ∠BAC =∠BDC =90°. ∴ △ABE ∽△DBC .(2)由△ABE ∽△DBC ,∴ ∠AEB =∠DCB . 在Rt △BDC 中,BC =52,CD =52, ∴ BD =225BC CD -=, ∴ sin ∠AEB =sin ∠DCB =525552BD BC ==. (3)在Rt △BDC 中,BD =5,又∠1=∠2=∠3,∠ADE =∠BDA ,∴ △AED ∽△BAD . ∴AD DE DB AD=,∴ 2AD DE DB =.又∵52CD AD==,∴ CD2=(BD-BE)·BD,即25(5)52BE⎛⎫=-⎪⎪⎝⎭,∴354BE=.在Rt△ABE中,AB=BEsin∠AEB=32355452⨯=.【总结升华】本题综合了三角函数、相似三角形、勾股定理、圆等方面知识,尤其涉及三角函数问题,都是通过找出或构造直角三角形来解决问题. (1)根据圆周角定理易证△ABE∽△DBC.(2)利用(1)的结论,将∠AEB转化为Rt△BCD中的DCB∠.(3)在Rt△ABE中求AB.举一反三:【高清课程名称:解直角三角形及其应用高清ID号:395952关联的位置名称(播放点名称):例2】【变式】如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为多少?【答案与解析】解:作DE⊥AB于E,如图,∵∠C=90°,AC=BC=6,∴△ACB为等腰直角三角形,AB=AC=6,∴∠A=45°,在Rt△ADE中,设AE=x,则DE=x,AD=x,在Rt△BED中,tan∠DBE==,∴BE=5x,∴x+5x=6,解得x=,∴AD=×=2.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD 的坡度为1:3i =(i =1:3是指铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案与解析】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==. (2)在Rt △DEC 中,∵ 3tan 3DE C EC ∠==,∴ ∠C =30°.又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AG AFG FG ∠=,即3535FB =+,解得535 3.66(m)FB =-=. 答:改建后需占路面的宽度FB 的长约为3.66 m .【总结升华】(1)解梯形问题常作出它的两条高,构造直角三角形求解.(2)坡度是坡面的铅直高度与水平宽度的比,它等于坡角的正切值.5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3=1.73).【答案与解析】过点C 作CE ⊥AB 于E .∵ ∠D =90°-60°=30°,∠ACD =90°-30°=60°, ∴ ∠CAD =180°-30°-60°=90°.∵ CD =10,∴ AC =12CD =5. 在Rt △ACE 中,AE =AC ·sin ∠ACE =5×sin 30°=52, CE =AC ·cos ∠ACE =5×cos 30°=532, 在Rt △BCE 中,∵ ∠BCE =45°, ∴ 5553(31)222AB AE BE =+=+=+≈6.8(米). ∴ 雕塑AB 的高度约为6.8米.【总结升华】此题将实际问题抽象成数学问题是解题关键,从实际操作(用三角形板测得仰角、俯角)过程中,提供作辅助线的方法,同时对仰角、俯角等概念不能模糊.。

解直角三角形在实际生活中应用

解直角三角形在实际生活中应用

解直角三角形在实际生活中应用直角三角形是一种特殊的三角形,其中一个角为90度,另外两个角则是锐角或钝角。

直角三角形的重要性在于它具有很多实际应用价值。

本文将介绍一些直角三角形在实际生活中的应用。

一、测量高度和距离直角三角形的一条腿可以用作测量高度或距离的工具。

通过测量一个物体的顶部和底部的距离,同时测量观察点到底座的距离,我们可以利用直角三角形的性质计算出物体的高度。

例如,在建筑工地上,工人可以使用测量工具和直角三角形的原理来测量建筑物的高度。

二、解决倾斜和斜率问题直角三角形可以帮助我们解决倾斜和斜率问题。

在地质学和土木工程中,我们经常需要测量地面的倾斜度和斜率。

直角三角形可以帮助我们测量坡度的比例。

通过测量斜坡上某一段的水平距离和相应的垂直距离,我们可以计算出斜坡的斜率。

三、计算不可测量的距离在某些情况下,两个点之间的距离无法直接测量,例如跨越湖泊或河流的距离。

然而,利用直角三角形的性质,我们可以使用三角函数计算出这种不可测量距离。

通过观察两个点之间的角度和某一点到这两个点之间的距离,我们可以使用正切函数计算出这个不可测量的距离。

四、导航和定位直角三角形在导航和定位中也有广泛的应用。

例如,航海员可以使用天文观测和直角三角形的性质来确定船只的位置。

通过测量星体和地平线之间的角度,同时知道船只和地平线之间的距离,我们可以利用正弦和余弦函数计算出船只的位置。

五、解决工程问题在工程领域中,直角三角形常常用于解决一些复杂问题。

例如,自然灾害生态学家可以使用直角三角形的概念来设计保护森林免受火灾侵蚀。

通过构建直角三角形网格,他们可以最大程度地减少火势蔓延的可能性,保护森林资源。

六、解决影子和光线问题在摄影和照明设计领域,直角三角形可以帮助我们解决影子和光线的问题。

通过观察物体和光源之间的角度,并结合直角三角形的性质,我们可以计算出物体产生的影子的长度。

这对于照明设计师来说非常重要,以确保正确照亮目标物体。

解直角三角形的应用题型

解直角三角形的应用题型

解直角三角形的应用题型直角三角形是初中数学中一个重要的概念,也是解决实际问题中常用的基本图形之一。

在应用题中,我们经常需要用到直角三角形的性质和定理,以解决各种实际问题。

下面列举一些常见的直角三角形应用题型。

1. 求斜边长已知直角三角形的一条直角边和另一条边的长度,求斜边长。

这类问题可以用勾股定理解决,即斜边的长度等于直角边长度的平方加上另一条边长度的平方的平方根。

例题:已知直角三角形的一个直角边为3,另一条边长为4,求斜边长。

解:斜边长等于3的平方加上4的平方的平方根,即√(3+4)=√25=5。

2. 求角度已知直角三角形两个角度,求第三个角度。

由于直角三角形的内角和为180度,因此第三个角度可以用90度减去已知的两个角度得到。

例题:已知直角三角形两个角度分别为30度和60度,求第三个角度。

解:第三个角度等于90度减去30度和60度的和,即90-30-60=0度。

3. 求高已知直角三角形的斜边和一条直角边,求高。

我们可以通过求出这个三角形的面积以及底边长度来求出高,也可以利用正弦定理或余弦定理求出高。

例题:已知直角三角形的斜边长为5,直角边长为3,求高。

解:利用勾股定理可求出这个三角形的面积为(3*4)/2=6。

利用面积公式S=1/2*底边长*高,可得高为(2*6)/3=4。

4. 求面积已知直角三角形的两条直角边长度,求面积。

我们可以利用面积公式S=1/2*底边长*高求出面积。

例题:已知直角三角形的两条直角边长分别为4和3,求面积。

解:利用面积公式S=1/2*4*3,可得面积为6。

以上是直角三角形应用题的一些常见类型,希望能对大家的学习有所帮助。

解直角三角形的方法,步骤与应用

解直角三角形的方法,步骤与应用

解直角三角形的方法,步骤与应用
几何学中最常见的形状之一是直角三角形,它的特点是一个锐角90度,三
条边均不等的三角形。

学习有关直角三角形的方法有助于理解和应用几何学。

一、如何确定一个三角形是直角三角形?
若要确定一个三角形是否为直角三角形,可以使用斜边-直角定理:如果一个
三角形的斜边的平方等于另外两边相加的平方,则此三角形正是直角三角形。

另外,我们可以使用勾股定理快速判断一个三角形是否为直角三角形,即两个直角边的平方等于对角边的平方。

二、如何确定一个直角三角形的高度?
要计算直角三角形的高度,可以使用直角三角形高度公式:高度=斜边×正弦
度数,其中斜边是三角形斜边的长度;正弦度数是三角形斜边相对应的角度,也就是直角相对应的角度。

三、直角三角形的应用
直角三角形在工程学、护理学、机械学、建筑学等领域都有广泛应用。

在工程学中,直角三角形可以用来计算坡度,从而实现控制俯仰角;在护理学中,直角三角形可以帮助计算肌肉拉伸时的牵力;在机械学中,直角三角形的绘制可以帮助机械工程师确定轴的夹角;在建筑学中,直角三角形可以帮助建筑师设计建筑物的外形和内部空间结构。

综上所述,学习有关直角三角形的方法有助于我们更好地理解几何学知识,并将其应用于各个领域。

解直角三角形的应用

解直角三角形的应用

解直角三角形的应用例1:有一块三角形余料,三个角均为锐角,三边分别为a ,b ,c ,且满足a >b >c ,现要把它加工成正方形的半成品,使其四个顶点都在三角形边上,问两个顶点放在哪一边可使得正方形的面积最大?解:设ΔABC 中,BC =a ,AC =b ,AB =c ,各边上的高分别为h a 、h b 、h c ,在各边上的正方形的边长分别为x a 、x b 、x c ,ΔABC 的面积为S ,则由于ΔAPQ ∽ΔABC , 可得a a a a h x h a x -=,整理得x a =aa a h a s h a ah +=+2 同理得xb =a h b s +2,xc =ah c s +2 用比差法比较x a ,x a 的大小,x a -x b =))(()]()[(222b a a a a a h b h a h h a b s h b s h a S ++-+-=+-+ =))(()1)(sin (2))(()]sin sin ()[(2b a b a h b h a c b a s h b h a c b c a a b s ++--=++-+- ∵ sin c -<0,a ―b >0∴ x a -x b <0,同理,x a -x c <0,∴x a <x b <x c∴ 在最小边C 上的内接正方形的面积最大.例2.已知a ,b ,c ,为ΔABC 中∠A ,∠B ,∠C 的对边,当m>0时,关于x 的方程b(x 2+m)+c(x ―m)―2m ax =0,有两个相等的实数根,且sinC ·cosA ―cosC ·sinA =0,试判断ΔABC 的形状.解:(a +c)x 2―2m a x +m(b ―c)= 0∵ 关于x 的方程有两个相等的实数根∴ Δ=B 2-4AC =(―2m a)2-4m(b +c)(b -c)=4m(a 2―b 2+c 2)=0∵ m >0∴ a 2―b 2+c 2=0∴ b 2=a 2+c 2∴ ΔABC 为直角三角形,且∠=90°,∴∠A 与∠C 互余,∴ cosA =sinC ,cosC =sinA .∵ sinC •cos A -cosC•sin A =0=sin 2C=sin 2A∴∠C =∠A ,∴a =CABC 为等腰直角三角形例3.ΔABCD 中,∠A =60°,最大边与最小边的长分别是方程3x 2―27x +32=0的两实根,求ΔABC 的内切圆的面积.解:∵三角形中最大角不小于60°,最小角不大于60°,而∠A =60°,∠A 必须是最大边与最小边的夹角,设大边为c ,小为b ,由韦达定理b +c =9,bc =332. ∵S ΔABC =21b ·h =21b ·csin A =21×332×33823= 过点C 作CD ⊥AB 交AB 于∵∠ACD =30°,∴AD =21AC =21b CD =2322=-AD AC b BD =AB -AD =C -21b, BC 2=CD 2+DB 2=222123⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛b C b =b 2+c 2-bc =(b +c) 2-3bc =81-3×332=49 ∴a =BC=7设ΔABC 的内切圆半径为r ,圆心为0,∴S ΔABC =S ΔO AB +S ΔO BC +S ΔO CA∴ r =339733822=+⨯=++∆c b a S ABC ∴三角形内切圆面积S =πr 2=π31332=⎪⎪⎭⎫ ⎝⎛π 例4.在梯形ABCD 中,∠A =∠D =90°,CD =m ,AD =n ,AB =p ,以BC 为直径作圆分别交AB 和AD 于E 和H 、F ,(1)求tg ∠DCF +tg ∠DCH 的值.(2)求证:tg ∠DCF 和∠DCH 是方程mx 2-nx +p =0的两个根.解:(1)连接CE ,AE =DC =m ,连结CF ,EH ,则∠DFC =∠CEH ,而∠CEH =∠AHE ,∴∠DFC =∠AHE ,∴Rt ΔAEH ≌Rt ΔDCFDF =AH, AF =DH∵tg ∠DCF=m DF DC DF =, tg ∠DCH mDH DC DH = (1) ∵AH ·AF =AF ·AB∴tg ∠DCF ·tg ∠DCH =m p mmp m AB AE m AF AH m DH DF ==⋅=⋅=⋅2222 ∴mx 2-nx +p =0例5.已知矩形的长大于的2倍,周长为12,从它的一个顶点作一条射线,将矩形分成一个三角形和一个梯形,且这条射线与矩形一边所成的角的正切值等于21,设梯形的面积为S ,梯形中较短的底的长为x ,试写出梯形面积S 关于的函数关系式,并指出自变量x 的取值范围.解:∵矩形ABCD 的长大于宽的2倍,矩形的周长为12,∴AD >4,AB <2,根据题意,可分为以下两种情况第一种情况如(一)图当tg ∠BAE =21时,设CE =x ,BE =m , 则AB =DC =2m ,AD =m +x ,∵AB +AD =6,∴2m +m +x =6,m =36x - S 梯形=21(AD +EC)·DC =21[(m +x)+x] ·2m =m(m +2x)=9535636-=+⋅-x x x 2+38x +4 其中3<x <6,第二种情况如图二当tg ∠DAE =21时,在矩形ABCD 中,AD//BC ,∴∠DAE =∠AEB ,∴tg ∠AEB =21,∴tg ∠AEB =21,设CE =x, AB =CD =n ,则BE =2n ,AD =2n +x ,∵矩形的周长为12,∴AB +AD =6 ∴n +2n +x =6,n =36x - S 梯形ABCD =21 (AD+EC)·DC =21[(2n+x)+x]·n =(n+x)·n =9236326-=-⋅+x x x 2+32x +4 其中0<x <6例6.已知A 是⊙o 上一点,以A 为圆心作圆交⊙o 于B ,C 两点,E 是弦BC 上一点,连结AE ,并延长交⊙o 于D ,连结BD, CD 设∠BDC =2α(1)求证:BD ·CD =AD ·ED(2)若ED ∶AD =43cos 2α,求作一个以AD BD 和ADCD 为根的一元二次方程, 并求出BD ∶CD 的值.证明:(1)连结AB ,AC ,则AB =AC∴AB =AC ,∴∠ADB =∠ADC =α又∴∠BAD =∠BCD ∴ΔABD ∽ΔCED∴BD ∶ED =AD ∶CD BD ·CD =AD ·ED(2)在等腰ΔABC 中,作AF ⊥BC 于F ,F 为BC 的中点,BC =BF +FG =2FC , ∵∠ACB =∠ADB =α,∴FC =AC ·cos αCOS ,BC =2AC ·cos α在ΔABE 和ΔADB 中,∵∠ABE =∠ADB ,∠BAD =∠BAE ,∴ΔABE ∽ΔADB ∴BD ∶AD=BE ∶AB同理ΔAEC ∽ΔACD ,∴CD ∶AD =ED ∶AC由(1)BD ·CD =AD ·ED ∴432==⋅=⋅AD ED ADFD AD AD CD AD BD cos 2α ∴x 2―2cos ·x +43cos 2α=0 解得x 1=21cos α, 当BD <CD 时, 31cos 23cos 21:21===ααx x AD CD AD BD 当BD >CD 时,321==x x CD BD练习:1、已知方程x 2+mx +n =0的两个根是直角三角形的两个锐角的余弦值.(1)求证:m 2=2n +1;(2)若P(m ,n)是一次函数y =―21x ―83图象上一点,求点P 的坐标.2、已知在ΔABC 中,若AC 和BC 边的长是关于x 的方程x 2―(AB +4)x +4AB +8=0的两根,且25BC ·sinA =9AB ,DB 为半圆的直径,0为圆心,AC 切半圆于E ,BC 交半圆于F ,(1)求ΔABC 三边的长.(2)求AD 的长.3、已知ΔABC 内接于⊙o ,弦AE 交BC 于D(1)求证:DEAD BE AC CE AB =⋅ (2)如果AE 是直径,那么DE AD 与tgB 和tgC 具有什么关系?并简要说明理由。

解直角三角形的应用

解直角三角形的应用

解直角三角形的应用1.如果点B 在点A 的北偏西35度方向上,点C 在点A 的东北方向、点B 的南偏东75度方向上,那么∠C = 度.2. 数学兴趣小组想测量电线杆AB 的高度,他们发现电线杆的影子恰好落在土坡的坡面CD 和地面BC 上,量得CD =4米,BC =10米,CD 与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度约为 米.3.小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C 处测得树AB 顶端A 的仰角为30°,沿着CB 方向向大树行进10米到达点D ,测得树AB 顶端A 的仰角为45°,又测得树AB 倾斜角∠1=75°.(1)求AD 的长.. (2)求树长AB .4. 已知,如图,在坡顶A 处的同一水平面上有一座古塔BC ,数学兴趣小组的同学在斜坡底P 处测得该塔的塔顶B 的仰角为45°,然后他们沿着坡度为1∶2.4的斜坡AP 攀行了26米,在坡顶A 处又测得该塔的塔顶B 的仰角为76°. 求:(1)坡顶A 到地面PQ 的距离;(2)古塔BC 的高度(结果精确到1米).(参考数据:sin 76°≈0.97,cos 76°≈0.24,tan 76°≈4.01)5. 如图,一架飞机由A 向B 沿水平直线方向飞行,在航线AB 的正下方有两个山头C 、D .飞机在A 处时,测得山头C 、D 在飞机的前方,俯角分别为60°和30°.飞机飞行了6千米到B 处时,往后测得山头C 的俯角为30°,而山头D 恰好在飞机的正下方.求山头C 、D 之间的距离.A B CD A BC Dl东北45°60°ACBP6. 如图,在一笔直的海岸线l 上有A 、B 两个观测站,A 在B 的正东方向,AB =2 (单位:km).有一艘小船在点P 处,从A 测得小船在北偏西︒60的方向上,从B 测得小船在北偏东︒45的方向上.(1)求点P 到海岸线l 的距离;(2)小船从点P 处沿射线AP 的方向航行一段时间后,到达点C 处,此时,从B 测得小船在北偏西︒15的方向上.求点C 与点B 之间的距离. (上述两小题的结果都保留根号)7.在东西方向的海岸线l 上有一长为1千米的码头MN (如图),在码头西端M 的正西19.5千米处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于A 的北偏西30°,且与A 相距40千米的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东60°,且与A 相距83千米的C 处. (1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN 靠岸?请说明理由.8. 在南北方向的海岸线MN 上,有A 、B 两艘巡逻船,现均收到来自故障船C 的求救信号.已知A 、B 相距)(13100+海里,C 在A 的北偏东60°方向上,C 在B 的东南方向上,MN 上有一观测点D ,测得C 正好在观测点D 的南偏东75°方向上. (1)求AC 和AD (运算结果若有根号,保留根号);(2)已知距观测点D 处100海里范围内有暗礁,若巡逻船A 沿直线AC 去营救船C ,在去营救的途中有无触礁的危险?(参考数据:2 ≈1.41,3 ≈1.73)9. 由于环境恶化,近年来我国部分地区频频遭受沙尘暴的袭击. A 市气象局预测沙尘暴中心B 在A 市南偏西30°相距1202千米处,正以30千米/小时的速度向正北方向移动,由于防护林的作用,沙尘暴中心移至C 处时改沿北偏西15°的方向以25千米/小时的速度移动,已知C 处在A 市的西南方向上,距沙尘暴中心607千米的范围内是受沙尘暴影响的地区. 试问:A 市是否受这次沙尘暴的影响?若不受影响,请说明理由;若受影响,求出A 市受沙尘暴影响的时间.(参考数据:5 2.2,2 1.4,6 2.4≈≈≈)10.如图,某天晚上8点时,一台风中心位于点O 正北方向160千米点A 处,台风中心以每小时202的速度向东南方向移动,在距台风中心小于等于120千米的范围内将受到台风影响,同时,在点O 有一辆汽车以每小时40千米的速度向东行驶.(1)汽车行驶了多少小时后受到台风影响? (2)汽车受到台风影响的时间有多长?11.某海域有一灯塔A ,在以灯塔A 为中心8海里的范围内有暗礁,有一轮船正向正东方向航行,航行至B 点是测的灯塔A 在东偏北m°的方向上,又航行了10海里后到C 点测得灯塔A 在东偏北n°的方向上,经计算得31tan =︒m ,43tan =︒n . 问:(1)如果轮船继续向正东方向航行,是否有触礁危险?(2)如果有触礁危险,轮船在C 点改变方向,向东偏南(CD 方向)绕道航行,如果改变的角度度数至少是α,求αtan .AOABCD12. 某厂家新开发的一种摩托车如图所示,它的大灯A 射出的光线AB 、AC 与地面MN 的夹角分别为8°和10°,大灯A 离地面距离1 m .(1)该车大灯照亮地面的宽度BC 约是多少?(不考虑其它因素)(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2 s ,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60 km/h 的速度驾驶该车,从60 km/h 到摩托车停止的刹车距离是314m ,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:2548sin ≈ ,718tan ≈ ,50910sin ≈ ,28510tan ≈)13. 如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成37°角的楼梯AD 、BE 和一段水平平台DE 构成.已知天桥高度BC ≈4.8米,引桥水平跨度AC =8米. (1)求水平平台DE 的长度; (2)若与地面垂直的平台立柱MN 的高度为3米,求两段楼梯AD 与BE 的长度之比. (参考数据:取sin37°=0.60,cos37°=0.80,tan37°=0.75)14. 城市规划期间,欲拆除一电线杆AB (如图).已知距电线杆AB 水平距离14米的D 处有一大坝,背水坡CD 的坡度i =2∶1,坝高CF 为2米,在坝顶C 处测得杆顶A 的仰角为30°,D 、E 之间是宽为2米的人行道.试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心、以AB 长为半径的圆形区域为危险区域).(414.12732.13==,)15.如图,信号塔PQ 座落在坡度i =1∶2的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成60°角时,测得信号塔PQ 落在斜坡上的影子QN 长为52米,落在警示牌上的影子MN 长为3米,求信号塔PQ 的高.(结果不取近似值)AM B C NA CBE D MN A B CD F 人行道E。

九年级数学解直角三角形的应用2

九年级数学解直角三角形的应用2

2×AC×B1D×sin(180°-150°)
= 2×30×20×2 =150(平方米)
∴购买这种草皮至少需要150a元。故选足球、篮球••••••)的直径.某
校研究性学习小组,通过实验发现下面测量方法:如图将球放
在水平的桌面上,在阳光的斜射下,得到球的影子AB,设光
A
°B
24.9 25(cm),
即EF25cm.
答:球的直径约为25cm.
例5 为了申办2010年冬奥会,须改变哈尔滨市的交通状况。
在大直街拓宽工程中,要伐掉一棵树AB,在地面上事先划定
以B为圆心,半径与AB等长的圆形危险区。现在某工人站在
离B点3米远的D处测得树的顶端A点的仰角为60°,树的底部
B点的俯角为30°。问距离 B点8米远的保护物是否在危险区
故填上26。
例3 某市在“旧城改造”中计划在市内一块如图所示的三角形 空地上种植某种草皮以美化环境,已知这种草皮每平方米售价 a元,则购买这种草皮至少需要( )
A、450a元
B、225a元 C、150a元 D
A
h 20米 150°
D、300a元
30米
B
C
解:如图所示,作出此三角形的高h。
1
则S△= 1
中考专题复习
解直角三角形的应用
江宁高级中学 刁一建
一、利用解直角三角形的知识来解决实际应用问题,是 中考的一大类型题,主要涉及测量、航空、航海、工程等 领域,解答好此类问题要先理解以下几个概念:
1 仰角、俯角; 2 方向角; 3 坡角、坡度; 4 水平距离、垂直距离等。 再依据题意画出示意图,根据条件求解。
线DA、CB分别与球相切于点E、F,则EF即为球的直径,若

解直角三角形的应用

解直角三角形的应用

解直角三角形的应用利用直角三角形中的已知元素(至少有一条是边)求得其余元素的过程叫做解直角三角形,解直角三角形有以下两方面的应用:1.为线段、角的计算提供新的途径.解直角三角形的基础是三角函数的概念,三角函数使直角三角形的边与角得以转化,突破纯粹几何关系的局限.2.解实际问题.测量、航行、工程技术等生活生产的实际问题,许多问题可转化为解直角三角形获解,解决问题的关键是在理解有关名词的意义的基础上,准确把实际问题抽象为几何图形,进而转化为解直角三角形.【例题】【例1】 如图,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上,如果CD 与地面成45°,∠A =60°,CD =4m,BC =(2264-)m,则电线杆AB 的长为 .【例2】 如图,在四边形ABCD 中,AB=24-,BC -1,CD=3,∠B=135°,∠C =90°,则∠D 等于( )A .60°B .67.5°C .75°D .无法确定注:因直角三角形元素之间有很多关系,故用已知元素与未知元素的途径常不惟一,选择怎样的途径最有效、最合理呢?请记住:有斜用弦,无斜用切,宁乘勿除.在没有直角的条件下,常通过作垂线构造直角三角形;在解由多个直角三角形组合而成的问题时,往往先解已具备条件的直角三角形,使得求解的直角三角形最终可解.【例3】 如图,在△ABC 中,∠=90°,∠BAC=30°,BC=l,D 为BC 边上一点,tan ∠ADC 是方程2)1(5)1(322=+-+x x xx 的一个较大的根?求CD 的长.【例4】 如图,自卸车车厢的一个侧面是矩形ABCD,AB=3米,BC=0.5米 ,车厢底部距离地面1.2米,卸货时,车厢倾斜的角度θ=60°.问此时车厢的最高点A 距离地面多少米?(精确到1米)【例5】 如图,甲楼楼高16米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°,此时,求:(1)如果两楼相距20米,那么甲楼的影子落在乙楼上有多高?(2)如果甲楼的影子刚好不落在乙楼上,那么两楼的距离应当是多少米?注:在解决一个数学问题后,不能只满足求出问题的答案,同时还应对解题过程进行多方面分析和考察,思考一下有没有多种解题途径,每种途径各有什么优点与缺陷,哪一条途径更合理、更简捷,从中又能给我们带来怎样的启迪等. 若能养成这种良好的思考问题的习惯,则可逐步培养和提高我们分析探索能力.练习巩固1.如图,在△ABC 中,∠A=30°,tanB=31,BC=10,则AB 的长为 . 2.如图,在矩形ABCD 中.E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若tan ∠AEH=34,四边形EFGH 的周长为40cm,则矩形ABCD 的面积为 .3.如图,旗杆AB,在C 处测得旗杆顶A 的仰角为30°,向旗杆前北进10m,达到D,在D 处测得A 的仰角为45°,则旗杆的高为 .4.上午9时,一条船从A 处出发,以每小时40海里的速度向正东方向航行,9时30分到达B 处,从A 、B 两处分别测得小岛M 在北偏东45°和北偏东15°方向,那么B 处船与小岛M 的距离为( )A .20海里B .20海里C .315海里D .3205.已知a 、b 、c 分别为△ABC 中∠A 、∠B 、∠C 的对边,若关于x 的方程02)(2=-+-+b c ax x c b 有两个相等的实根,且sinB ·cosA —cosB ·sinA =0,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形6.如图,在四边形ABCD 中,∠A =135°,∠B=∠D=90°,BC=32,AD=2,则四边形ABCD 的面积是( )A .24B .34C . 4D .67.如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D,CD=1,已知AD 、BD 的长是关于x 的方程02=++q px x 的两根,且tanA —tanB=2,求p 、q 的值.8.如图,某电信部门计划修建一条连结B 、C 两地的电缆,测量人员在山脚A 点测得B 、C 两地的仰角分别为30°、45°,在B 地测得C 地的仰角为60°.已知C 地比A 地高200米,则电缆BC 至少长多少米?(精确到0.1米)9.如图,在等腰Rt △ABC 中,∠C=90°,∠CBD =30,则DCAD = .10.如图,正方形ABCD 中,N 是DC 的中点.M 是AD 上异于D 的点,且∠NMB=∠MBC,则tan ∠ABM = .11.在△ABC 中,AB=26-,BC=2,△ABC 的面积为l,若∠B 是锐角,则∠C 的度数是 .12.已知等腰三角形的三边长为 a 、b 、c,且c a =,若关于x 的一元二次方程022=+-c bx x 的两根之差为2,则等腰三角形的一个底角是( )A . 15°B .30°C .45°D .60°13.如图,△ABC 为等腰直角三角形,若AD=31AC,CE=31BC,则∠1和∠2的大小关系是( ) A .∠1>∠2 B .∠1<∠2 C .∠1=∠2 D .无法确定14.如图,在正方形ABCD 中,F 是CD 上一点,AE ⊥AF,点E 在CB 的延长线上,EF 交AB 于点G .(1)求证:DF ×FC =BG ×EC ;(2)当tan ∠DAF=31时,△AEF 的面积为10,问当tan ∠DAF=32时,△AEF 的面积是多少?15.在一个三角形中,有一边边长为16,这条边上的中线和高线长度分别为10和9,求三角形中此边所对的角的正切值.16.台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220千米B 处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正在以15千米/时的速度沿北偏东30°方向往C 处移动,且台风中心风力不变,若城市所受风力达到或超过四级,则称为受台风影响.(1)该城市是否会受到这次台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?17.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H.可供使用的测量工具有皮尺、测角器.(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG的方案.具体要求如下:①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D间距离,用m表示;如果测D、C间距离,用n表示;如果测角,用α、β、γ等表示.测角器高度不计).(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示).。

解直角三角形的应用

解直角三角形的应用

1、热气球的探测器显示,从热气球看一栋高楼顶部的仰 角为30°,看这栋高楼底部的俯角为60°,热气球与高 楼的水平距离为120米,这栋楼房有多高? B A
BC=BD+CD
ADtan30° ADtan60°
30° 60120 ° D
C
2、建筑物BC上有一旗杆AB,由距BC40m的D处观察 旗杆顶部A的仰角为60°,观察底部B的仰角为45°, 求旗杆的高度。 A

西

3 ≈1.732,结果保留整数)


1、某船自西向东航行,在A出测得某岛在北偏东60° 的方向上,前进8千米测得某岛在船东北方向 上,问(1)轮船行到何处离小岛距离最近? B (2)轮船要继续前进多少千米?
解:

3 ≈1.732,结果保留整数)
30º A
45º
8千米
D
C
2、如图所示,某船以每小时36海里的速度向 正东航行,在A点测得某岛C在北偏东60°方向 上,航行半小时后到B点,测得该岛在北偏30° 方向上,已知该岛周围16海里内有暗礁. (1)试说明B点是 否在暗礁区域外. (2)若继续向东 航行,有无触礁危 险?请说明理由.
4.应用解直角三角形知识解应用题时,可按以下思维过程进行:
⑴寻找直角三角形,若找不到,可构造; ⑵找到的直角三角形是否可解,若不可直接求解,业:
必做题: 总复习第70页19、20、21题
选做题:
总复习第71页23、24题
•再见
C
x
二、方位角
北 58
北偏东 58° A 东
西 28
南偏西 28° B
1、某船自西向东航行,在A出测得某岛在北偏东 60°的方向上,前进8千米测得某岛在船东北方向 上,问(1)轮船行到何处离小岛距离最近? (2)轮船要继续前进多少千米?

解直角三角形的应用

解直角三角形的应用

解直角三角形的应用【知识要点】1.解直角三角形实际问题中我们常会遇见这样几个名词,明白他们的含义吗? 仰角,俯角,坡度(坡比),坡角,方向角2.知道海船是怎样避免触礁的吗?深圳时常会出现台风,我们是怎样知道它是否会对我们产生影响,影响时间多久?你能解释吗?3.你能总结我们是怎样将实际问题转化为平面三角形,通过解直角三角形知识,来解决实际问题吗?【典型例题】例1. 如图所示,水坝的横断面是梯形ABCD ,迎水坡DA 的坡度为1:2.5,背水坡CB 的坡度为1:2,坝高DE 为8米,坝顶宽DC 为6米.求(1)坝底的宽AB ;(2)1米长的堤坝所需的土石方(体积).南东 西北BA︒60 ︒45CD铅垂线视水平视线C垂 直 距 离 水平距lhlh i =αE例2. 如图所示,从塔底同一水平线上的测量仪上,测得塔顶的仰角为︒45,向塔前进了10米(两次测量在塔的同侧),又测得塔顶的仰角为︒60,测量仪器的高为1.5米,求塔高 (精确到0.1米)例3. 如图所示,在东西方向的海岸线上,有A 、B 两个码头,相距()13100-米,由码头A 测得一只船K 在北偏东︒30,由码头B 测得K 在北偏西︒15.求船只K 到海岸线AB 的距离.(tan75°=2+3)例4. 如图所示,已知海岛P 的周围18千米的范围内有暗礁,一艘海轮在点A 处测得海岛P 在北偏东︒30方向,向正北航行12千米到达点B 处,又测得海岛P 在北偏东︒45的方向,如果海轮不改变航向,继续向北航行,有没有触礁的危险?C北东例5 . 如图,在湖边高出水面50m 的建筑物顶A 处望见一艘飞艇停留在湖面上空某处,观察到飞艇底部标志P 处的仰角为45,观察其在湖中之像的俯角为60,试求飞艇离开湖面的 高度h.例6. 在建筑梯时,设计者要考虑楼梯的安全程度.如图,在虚线为楼梯的斜度线,斜度线与地板的夹角倾角θ.一般情况下,倾角θ越小,楼梯的安全程度越高.如图,设计者为提高楼梯的安全程度,要把楼梯的倾角由1θ减至2θ,这样楼梯占用地板的长度由1d 增加到2d .已知 36,40,4211=∠=∠=θθm d ,求楼梯占用地板的长度增加了多少?(精确到0.01m ) (参考数据:,8090.036cos ,5878.036sin ≈≈ ,7265.036tan ≈ ,7660.040cos ,6428.040sin ≈≈ 8391.040tan ≈ )APB P 'O湖面45︒30︒BAD C 例7. 据气象台预报,一强台风的中心位于A 市的东南方向()km 2108636+的海面上P 处.目前台风中心以20km/h 的速度向北偏西 60的方向移动,距台风中心50km 的圆形区域均会受到袭击.已知B 市位于A 市的正南方向72km 处,C 市位于B 市的北偏东 60方向56km 处.则A ,B ,C 是否会受这次台风的强袭击?如果会,请求出受强龚击的时间;如果不会,请说明理由. (请画出示意图).[随堂练习]1.某人上坡走了60米,他升高了230米,这坡的坡度是( )A 、︒30B 、1:1C 、︒45D 、222.在距电视塔S 米的地面测得塔顶的仰角是α,则塔高是( )A 、αsin SB 、αcos SC 、αcot ⋅SD 、αtan ⋅S3.如图,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A 、82米B 、163 米C 、52米D 、70米4.如图,轮船航行到C 处时,观测到小岛B 的方向是北偏西35︒,那么同时从B 观测到轮船的方向是( ) A 、南偏西35︒ B 、东偏西35︒C 、南偏东55︒D 、南偏东35︒5.身高相同的三个小朋友甲、乙、丙放风筝,他们放出的线长分别是300m,260m ,200m,线与地面所成的角分别为︒︒︒60,45,30,则三人所放风筝( )A 、甲的最高B 、乙的最低C 、丙的最低D 、乙的最高北BC6.1日上午8时到12时,若太阳光线与地面所成的角由︒30增大到︒45,一棵树的高为10m ,则树在地面上影长h 的范围是( )A 、310≤hB 、31010≤≤hC 、1510<<hD 、310>h7.一艘轮船由海平面上A 地出发向南偏西40º的方向 行驶40海里到达B 地,再由B 地向北偏西20º的方向 行驶40海里到达C 地,则A 、C 两地相距( ).A 、30海里B 、40海里C 、50海里D 、60海里8.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )A 、350mB 、100mC 、150mD 、3100m9.如图,在某建筑物AC 上,挂着“多彩深圳”的宣传条幅BC ,小明站在点F 处,看条幅顶端B ,测的仰角为︒30,再往条幅方向前行20米到达点E 处,看到条幅顶端B ,测的仰角为︒60,求宣传条幅BC 的长,(小明的身高不计,结果精确到0.1米)10.如图所示,已知:在山脚C 处测得出顶A 的仰角是︒45,沿着斜角为︒30的斜坡前进300m 到达D ,在D 点测得山顶A 的仰角为︒60.求山高AB .ADC11.如图所示,已知沿水库拦水坝的背水坡将顶面加宽2.5m ,坡面由原来的1:1改为3:1,原背水坡长BD=16.8m ,坝长100m ,求完成这项工程需要多少方土 (保留两个有效数字)?12.如图,一条小船从港口A 出发,沿北偏东40方向航行20海里后到达B 处,然后又沿北偏西30方向航行10海里后到达C 处.问此时小船距港口A 多少海里?(结果精确到1海里)友情提示:以下数据可以选用:sin 400.6428≈,cos 400.7660≈, tan 400.8391≈1.732.13.兰州市城市规划期间,欲拆除黄河岸边的一根电线杆AB(如图),已知距电线杆AB 水平距离14米处是河岸,即BD =14米,该河岸的坡面CD 的坡角∠CDF 的正切值为2,岸高CF 为2米,在坡顶C 处测得杆顶A 的仰角为30°,D 、E 之间是宽2米的人行道,请你通过计算说明在拆除电线杆AB 时,为确保安全,是否将此人行道封上?(在地面上以点B为圆心,以AB长为半径的圆形区域为危险区域)EA P 北4030例8 经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得 68=∠ACB .(1)求所测之处江的宽度(.48.268tan ,37.068cos ,93.068sin ≈≈≈ );(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.。

解直角三角形基本类型及其应用习题精选

解直角三角形基本类型及其应用习题精选

BCABC A解直角三角形的基本类型及其应用专题练习精选1.定义:由直角三角形中的___________,求出所有____________的过程,叫做解直角三角形.2.解直角三角形依据的关系式:________________________________________________________________________________________________________________________________________________________3.解直角三角形的必备条件:除直角外,知道两个元素(至少有一个是边),就可以求出另三个元素.4.解直角三角形的类型:_________________________________________________________________________. 解直角三角形练习一、依据下列条件解直角三角形1、在Rt △ABC 中,∠C=90°,∠ A=60 °,c=4,解这个直角三角形.2、在Rt △ ABC 中,∠C=90°,∠ A=30 °,a=5,解这个直角三角形.3、在Rt △ABC 中,∠C=90°,∠B=60°,a=10,解这个直角三角形.ABCDBCABC ABCA4、在Rt △ABC 中,∠C=90°,a=52,b=56,解这个直角三角形.5、已知:在Rt △ABC 中,∠C=90°,b=22,c=4,解这个直角三角形.6、在Rt △ABC 中,∠C=90°,∠A-∠B=30°c-a=2-3,解这个直角三角形.7、在Rt △ABC 中,∠C=90°,∠B=60°a+b=1+3,解这个直角三角形.四、解答题8、如图,在四边形ABCD 中,∠B=∠D=90°, ∠A=150°,AB=5,CD=15,求AD 、BC 长.9、在RtΔABC中,CD是斜边上的高.若AC=8,cosA=45,求ΔABC的面积.10、在Rt△ABC中,∠C=90°,a、b分别为∠A、∠B的对边,sinA=13,a=2,求b与 cosA 的值.11、已知:如图,在ΔABC中,∠ACB=90°,CD⊥AB,垂足为D,若∠B=30°,CD=6,求AB的长.12、实验中学有一块三角形形状的花圃ABC,现可直接测到∠A=30°,AC=40米,BC=25米,请你求出这块花圃可能的面积(结果保留根号).13、如图,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD =3316求∠B 的度数及边BC 、AB 的长.14、已知:如图,在△ABC 中,∠B=45°,∠C=60°,AB=6。

解直角三角形在实际问题中的运用优秀课件 (2)

解直角三角形在实际问题中的运用优秀课件 (2)
确到 1 m3)
第七页,共三十一页。
解:(1)作 BE⊥AD,CF⊥AD.
在 Rt△CDF 中,tan D= ∴∠D ≈ 21°48′,
CF =10.4, DF 2.5
∴CF=CD·sin D=60×sin 21°48′≈22.28(m),
DF= CD·cos D= 60×cos 21°48′≈55.71(m).
∴250 (1+ 3) ÷3×60 ≈14 000(m/h).
答:船的航速约为 14 km/h.
第二十四页,共三十一页。
做一做
某船自西向东航行,在 A 处测得某岛在北偏东 60°的方向上,前进
8 千米测得某岛在船北偏东 45°的方向上,问:
(1)轮船行到何处离小岛距离最近; (2)轮船要继续前进多少千米.
第二十九页,共三十一页。
思考:当三角形变成平行四边形时,若平行四 边形的两邻边分别为 a,b,这组邻边所夹的锐角 为 α ,则它的面积能否用这三个已知量来表示 呢?
第三十页,共三十一页。
回顾整理 归纳小结
1. 通过实践了解仰角和俯角在解直角三角形中的作用.
2. 解直角三角形的应用是数学中的应用问题,反映 现实领域特征的问题情景,它包含着一定的数学概 念、方法和结果. 3. 通过对实际问题的抽象提炼,分辨出解直角三角形 的基本模式,用常规的代数方法解决问题.
∴AB=BC·tan∠ACB=24×tan 60°=24 . 3 在 △ADE 中,∠ADE=∠DAF=30°,DE=BC=24,
∴AE=DE·tan∠ADE=24×tan 30°=8 .
∴CD=AB-AE=24 - 8 =16
3
3
答:两座建筑物的高分别为 24
.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

29.8 解直角三角形的应用(2)
基本题
1.一轮船向正东方向航行,在A处测得灯塔C在北偏东600的方向上,前进101海里后,在B处测得灯塔C在船北偏东300处,问船继续前进多少米路程与灯塔C的距离最近?最近的距离是多少?
2.一船在A处测得小岛B在北偏东300处,与A的距离为33海里,此船从A处沿南偏
东600的方向行驶21
2
小时后,到达C处,此时测得小岛在C的北偏西300处,求船航行的
速度。

3.如图,海中有一灯塔A,它的周围12海里内有暗礁,渔船
跟踪鱼群,由西向东航行,在B点测得灯塔A在北偏东600,航行
20海里到达D点,这时测得灯塔A在北偏东300。

如果渔船不改变
航向和航行速度,继续向东捕捞,有没有触礁的危险?为什么?
4.A市在台风期间为了防灾抗灾,密切关注台风动向,A市的
气象台测得台风中心在A市的正东方向300千米的B处以
米/时的速度向北偏西600的BF方向移动,距离台风中心200千米
的范围内是受台风影响区域。

问(1)A市是否会受这次台风影响?
为什么?(2)如果受影响,那么A市遭受台风的时间有多长?
提高题
5.小岛A在船正西方6海里处,小岛B在船正南方向,船沿南偏东某方向行驶了6海里到达C处,测得A、B、C正好在一直线上,且B、C相距1海里,求小岛A、B间的距离。

参考答案
29.8解直角三角形的应用(2)
1.过点C作CD⊥AB于点D,得AB=BC=101海里,BD=1
2
BC=50.5海里,CD

2.由意题得∠BAC=900,∠ACB=300,cot300=
AC
AB
里,
2
2
v== 2.由题意得∠ABD=∠BAD=300,AD=BD=20海里,AC

海里>12海里,所以没有触礁危险 4.(1)过点A作AC⊥BF垂足为C,以∠CBA=300,AB=300千米,AC=150千米<200千米,所以A市受到台风影响;(2)以A为圆心,200千米为半径作圆,与BF交于D、E两点,以CE
=千米,DE=2CE =
=10小时 5.过点C作AC⊥CE与AO(O
为船最初所在地方)
延长线交于点E ,证得AO =OC =OE =6海里,又ΔABO ∽ΔAEC ,得AB AO AE AC =,所以6121
AB AB =+,AB =8海里。

相关文档
最新文档