一次函数课题学习

合集下载

人教版八年级数学下:19.3 课题学习 选择方案

人教版八年级数学下:19.3 课题学习 选择方案
=____5_0_; (2)写出yA与x之间的函数关系式; (3)选择哪种方式上网学习合算,为什么?
收费 方式 费/元 时间/h (元/min)
A B
月使用 包时上网 超时费
7
25 0.01
m
n 0.01
7(0≤x≤25) 解:(2)yA=0.6x-8(x>25) (3)当 x≤50 时,yB=10;当 x>50 时,yB=0.6x-20.当 0<x≤25 时, yA=7,yB=10,∴yA<yB,∴选择 A 方式上网学习合算;当 25<x≤50 时, 令 yA=yB,即 0.6x-8=10,解得 x=30,∴当 25<x<30 时,yA<yB,选择 A 方式上网学习合算,当 x=30 时,yA=yB,选择 A 或 B 方式上网学习都行, 当 30<x≤50,yA>yB,选择 B 方式上网学习合算;当 x>50 时,∵yA=0.6x -8,yB=0.6x-20,∴yA>yB,∴选择 B 方式上网学习合算,综上所述:当 0<x<30 时,yA<yB,选择 A 方式上网学习合算;当 x=30 时,yA=yB,选 择 A 或 B 方式上网学习都行;当 x>30 时,yA>yB,选择 B 方式上网学习合 算
第十九章 一次函数
19.3 课题学习 选择方案
知识点:方案选择 1.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种 有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间 x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的 是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通 话时间为500分钟时,选择有月租费的收费购买 数量/kg 甲批发店 花费/元 乙批发店花 费/元
30 50 150 … 180 300 900 … 210 350 850 …

一次函数课题学习--选择方案公开课获奖课件百校联赛一等奖课件

一次函数课题学习--选择方案公开课获奖课件百校联赛一等奖课件

问题3 怎样计算两种灯旳费用?
设照明时间是x小时, 节能灯旳费用y1元 表达,白炽灯旳费用y2元表达,则有: y1 =60+0.6×0.01x; y2 =3+0.6×0.06x .
观察上述两个函数
若使用节能灯省钱,它旳含义是什么? y1< y2 若使用白炽灯省钱,它旳含义是什么? y1> y2 若使用两种灯旳费用相等,它旳含义是什么?? y1= y2
化简为: y=120x+1680
问题
根据问题中旳条件,自变量x 旳取值应有几种可能? 为使240名师生有车坐,x不能 不大于_4___;为
使租车费用不超出2300元,X不能超出_6___。综合 起来可知x 旳取值为4_、_5__ 。
在考虑上述问题旳基础上,你能得出几种不同旳 租车方案?为节省费用应选择其中旳哪种方案?试阐 明理由。
(3)假如要使这50台收割机每天取得旳租金最高, 请你为光华农机企业提供一条合理化旳提议
八年级 数学
第十四章 函数
14.4课题学习 选择方案 怎样调水
解:(1)设派往A地域x台乙型收割机, 每天取得旳 租金为y元则,
派往A地域(30-x)台甲型收割机, 派往B地域(30-x)台乙型收割机, 派往B地域(x-10)台甲型收割机, 所以 y=1600x+1200(30-x)+1800(30-x)+1600(x-10)
60+0.6×0.01x =3+0.6×0.06x
解得:x=1900
即当照明时间等于1900小时,购置节能灯、白炽灯均可.
解:设照明时间是x小时, 节能灯旳费用y1元表达,白炽灯旳费用y2 元表达,则有:y1 =60+0.6×0.01x; y2 =3+0.6×0.06x .

14.4课题学习选择方案

14.4课题学习选择方案

某学校计划在总费用2300元的限额内,租用6辆汽车送 元的限额内,租用 辆汽车送 辆汽车送234名学生 某学校计划在总费用 元的限额内 名学生 名教师集体外出活动, 名教师负责。 和6名教师集体外出活动,每辆汽车上安排 名教师负责。出租汽车 名教师集体外出活动 每辆汽车上安排1名教师负责 公司现有甲、乙两种大客车,它们的载客量和租金如下表: 公司现有甲、乙两种大客车,它们的载客量和租金如下表: 甲种客车 乙种客车 载客量( 45 30 载客量(人) 租金( 辆 280 租金(元/辆) 400 (1)共需租多少辆汽车? )共需租多少辆汽车? (2)给出最节省费用的租车方案。 )给出最节省费用的租车方案。
电费
= 单价 × 用电量 =
灯的功率
用电量
× 照明时间
照明灯总费用=灯的售价+0.5×灯的功率(千瓦时) ×照明时间(小时)
小明想在两种灯中选购一种,其中一种是10瓦(即是 0.01千瓦)的节能灯,售价60元;另一种是60瓦(即0.06千瓦) 的白炽灯,售价3元.两种灯的照明效果一样,使用寿命也相 同(3000小时以上).节能灯售价高,但是较省电;白炽灯售价 低,但是用电多.如果电费是0.5元/(千瓦时),消费者选用哪 种灯可以节省费用? 两种灯的费用 分别是多少? . 设照明时间为x小时,则
y1 y2 节能灯的总费用为: =0.5×0.01x+60 白炽灯的总费用为: =0.5×0.06x+3.
讨论:
两种灯使用多少时间费用相等?
y1 =y2, 即0.005x+60=0.03x+3 解得:x=2280;
两种灯使用多少时间节能灯的费用小于白炽灯的费用时? y1 < y2 ,即0.005x+60<0.03x+3 解得: x>2280 两种灯使用多少时间使用节能灯的费用大于白炽灯的费用时?

《一次函数》数学教案

《一次函数》数学教案

《一次函数》数学教案
标题:《一次函数》数学教案
一、教学目标
1. 知识与技能:理解并掌握一次函数的概念和性质;能够正确地表示一次函数,并进行简单计算。

2. 过程与方法:通过实例引入一次函数,让学生在观察、思考和讨论中理解和掌握一次函数的相关知识。

3. 情感态度与价值观:培养学生对数学的兴趣,提高他们的逻辑思维能力和解决问题的能力。

二、教学内容与重点难点
1. 教学内容:一次函数的概念、图象、性质及应用。

2. 重点:一次函数的概念、图象和性质。

3. 难点:一次函数的应用。

三、教学过程
1. 导入新课:通过生活中的实例(如出租车计费方式)引出一次函数的概念。

2. 新知探索:讲解一次函数的定义、图象和性质,并配以适当的例题进行解析。

3. 巩固练习:设计一系列习题,包括基础题、提高题和挑战题,帮助学生巩固所学知识。

4. 小结与作业:回顾本节课的重点内容,布置相关的课后作业。

四、教学策略
1. 创设情境:通过生活实例引发学生的兴趣,使他们更容易理解和接受新知识。

2. 启发引导:采用问题驱动的教学方式,引导学生主动思考,培养他们的探究精神。

3. 分层教学:针对不同层次的学生,设计不同的学习任务,满足他们的个性化需求。

五、教学评价
1. 形成性评价:通过课堂问答、小组讨论和作业批改等方式,及时了解学生的学习情况,给予反馈和指导。

2. 总结性评价:通过期中、期末考试等,对学生的学习成果进行全面的评估。

六、教学反思
在每次教学结束后,教师应反思自己的教学过程,总结经验,找出不足,以便更好地改进教学。

课题学习 一次函数中的方案选择

课题学习   一次函数中的方案选择
A城有肥料200吨
C乡需要肥料240吨
每吨20元
B城有肥料300吨
D乡需要肥料260吨
每吨24元
思考:影响总运费的变量有哪些?由A、B城分别运往C、D乡的
肥料量共有几个量?这些量之间有什么关系?
情景引入
喜欢打电话的同学可能会遇到下面这种问题,如:
1)还没到月底的时候免费的通话分钟数没有了。
2)月末的时候考虑我该换什么样的套餐合适呢?
x
(3)结合函数解析式及其图像说明水的最佳调运方案。
水的最小调运量为多少?
情景引入
你能在同一直角坐标系中画出它们的图象吗?
(0 x 25)
30,
y1
3x 45. ( x>25)
(0 x 50)
50,
y2
3x 100. ( x>50)
y3=120 (x≥0)
Goodbye~
感谢聆听,下期再会
得的费用相同,每月通话时间少于110分钟时,选择B
类收费比较适当.
课堂测试
某电脑经销商,今年二,三月份型和型电脑的销售情况,如下表所示:
(1)直接写出每台型电脑和型电脑的销售利润分别为____________;
(2)该商店计划一次购进两种型号的电脑共100台,其中型电脑的进货量不超过型电脑的2倍.设购进型电脑
10840·
小值,最小值为
y=4x+10040
(0≤x≤200)
10040·
4×0+10040=10040,
所以这次运化肥的
方案应从A城调往C
乡0吨,调往D乡
200吨;从B城调往
·
C乡240吨,调往D
o
x
200

初二数学教案《一次函数》(优秀10篇)

初二数学教案《一次函数》(优秀10篇)

初二数学教案《一次函数》(优秀10篇)一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。

为您带来了10篇《初二数学教案《一次函数》》,如果能帮助到亲,我们的一切努力都是值得的。

一次函数篇一教学目标:1、知道与正比例函数的意义。

2、能写出实际问题中正比例关系与关系的解析式。

3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。

4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。

教学重点:对于与正比例函数概念的理解。

教学难点:根据具体条件求与正比例函数的解析式。

教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容) 2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。

顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。

教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。

)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。

一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。

特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)(1)列出小丸子的银行存款(不计利息)y与月数x 的函数关系式;(2)多长时间以后,小丸子的银行存款才能买随身听?分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱解:(1)(2)1680=500+90x解得x=13.…所以还需要14个月,小丸子才能买随身听例3、已知函数是正比例函数,求的值分析:本题考察的是正比例函数的概念解:说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上4、小结由学生对本节课知识进行总结,教师板书即可。

一次函数的图象和性质数学教案

一次函数的图象和性质数学教案

一次函数的图象和性质数学教案
标题:一次函数的图象和性质
一、教学目标
1. 学生能够理解并掌握一次函数的基本概念。

2. 学生能够通过解析式画出一次函数的图像,并了解其性质。

3. 学生能够运用一次函数解决实际问题。

二、教学内容
1. 一次函数的定义
2. 一次函数的解析式与图像
3. 一次函数的性质
4. 一次函数的应用
三、教学过程
1. 引入新课:通过生活中的实例引入一次函数的概念,如商品的价格与销售量的关系等。

2. 新课讲解:
a) 一次函数的定义:形如y=kx+b(k≠0)的函数称为一次函数,其中k是斜率,b是截距。

b) 一次函数的解析式与图像:学生在教师的指导下,通过坐标系绘制一次函数的图像,并通过观察图像总结一次函数的性质。

c) 一次函数的性质:一次函数的图像是一条直线,直线的斜率决定了一次函数的增长速度,截距决定了函数图像与y轴的交点位置。

d) 一次函数的应用:结合具体例子,让学生学会用一次函数解决实际问题。

3. 练习巩固:设计一些题目,让学生进行练习,以检验他们对一次函数的理解程度。

4. 总结回顾:回顾本节课的主要内容,强调一次函数的定义、图像和性质。

四、作业布置
为学生布置一些一次函数的题目,让他们在课后继续深化理解和掌握一次函数的相关知识。

五、教学反思
对本次教学进行反思,包括教学方法是否有效,学生的学习效果如何等,以便于改进今后的教学。

八年级数学上人教版《一次函数》教案

八年级数学上人教版《一次函数》教案

《一次函数》教案一、教学目标1.掌握一次函数的概念、性质和图像特点,能够根据给定条件求出一次函数的表达式。

2.理解并掌握一次函数的单调性,能够利用单调性解决实际问题。

3.通过实例分析和小组讨论,培养学生分析和解决问题的能力,发展学生的创新思维。

4.通过与同伴合作、交流,培养积极参与和良好的学习习惯。

二、教学重点与难点重点:一次函数的概念、性质和图像特点,以及一次函数的单调性。

难点:根据实际问题中的条件求出一次函数的表达式,并利用一次函数的单调性解决实际问题。

三、教学方法与手段1.借助实例引入一次函数的概念,通过小组讨论和教师点拨,帮助学生理解并掌握一次函数的概念和性质。

2.利用多媒体技术展示一次函数的图像,通过直观的图像帮助学生理解一次函数的单调性。

3.通过小组讨论和教师点拨,引导学生利用一次函数的单调性解决实际问题。

四、教学环节设计1.导入新课:通过实例引入一次函数的概念,引导学生理解一次函数的意义和实际应用。

2.新课学习:通过小组讨论和教师点拨,帮助学生掌握一次函数的概念、性质和图像特点,并通过实例分析帮助学生理解一次函数的单调性及其应用。

3.练习巩固:通过小组活动和教师点拨,引导学生根据实际问题中的条件求出一次函数的表达式,并利用一次函数的单调性解决实际问题。

4.归纳小结:总结本节课所学的知识点,强调重点和难点内容。

5.作业布置:布置相关练习题,帮助学生巩固所学知识。

五、教学反思1.通过本节课的教学,要达到的教学目标是否达到?对于哪些学生需要加强指导?哪些学生需要给予更多的关注?2.在教学过程中,哪些环节处理得比较好?哪些地方需要改进?如何改进?3.在教学过程中,是否有效地运用了多媒体技术?是否有助于提高教学效果?如果有所改进,效果会更好吗?。

一次函数--课题学习--选择方案-调配问题

一次函数--课题学习--选择方案-调配问题

D村需要260吨 解:设A城往C村的化肥有x吨,则往D村的有(200-X )吨,B城往C村 的有(240-X) 吨,剩余的〔300-(240-X)〕 吨运往D 村;若设总运 20x+25(200-X )+15(240-X)+24(60+x) 费为y元,则 y=________________________________________ 整理得:y = 4x+10040 其中 0≤x ≤ 200 由于这个函数是个一次函数,且y随x的增大而增大,而x越小,y也 越小,所以当x=0时,y 最小,此时y=0+10040=10040
其中 3≤x ≤ 15
练习1、 A城有化肥200吨,B城有化肥300吨,现要把化肥运 往C、D两农村,现已知C地需要240吨,D地需要260吨。 如果从A城运往C、D两地运费分别是20元/吨与25元/吨, 从B城运往C、D两地运费分别是15元/吨与24元吨, 怎样调运花钱最少? C村需要240吨
X吨 A城有200吨 (200-X )吨 (240-X) 吨 B城有300吨 〔300-(240-X)〕 吨
课堂小结
这个实际问题的解决过程中是怎样思考的?
设变量
实际问题
找对应关系
函数问题
实际问题的解
解释实 际意义
函数问题的解
A地有16台
(16-X )台
乙地需要13台
〔12-(15-X)〕台
设A地运往甲地x台,运输总费用为y,则: 500x+400(16-X )+300(15-X) +600(x-3) y = ________________________________________
整理得:y = 400x+9100

初中一次函数教案优秀5篇

初中一次函数教案优秀5篇

初中一次函数教案优秀5篇篇一:一次函数的优秀教学设计篇一课题:14.2.2 一次函数课时:57教学目标(一)教学知识点1.掌握一次函数解析式的特点及意义.毛2.知道一次函数与正比例函数关系.3.理解一次函数图象特征与解析式的联系规律.4.会用简单方法画一次函数图象.(二)能力训练要求1.通过类比的方法学习一次函数,体会数学研究方法多样性.2.进一步提高分析概括、总结归纳能力.3.利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.教学重点1.一次函数解析式特点.2.一次函数图象特征与解析式联系规律.3.一次函数图象的画法.教学难点1.一次函数与正比例函数关系.2.一次函数图象特征与解析式的联系规律.教学方法合作─探究,总结─归纳.教具准备多媒体演示.教学过程ⅰ.提出问题,创设情境问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y•与x的关系.分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为:y=15-6x (x≥0)当然,这个函数也可表示为:y=-6x+15 (x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃).这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.ⅱ.导入新课我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(℃)有关,即c•的值约是t的7倍与35的差.2.一种计算成年人标准体重g(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是g的值.3.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取).4.把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化.这些问题的函数解析式分别为:1.c=7t-35.2.g=h-105.3.y=0.01x+22.4.y=-5x+50.篇二:一次函数教案篇二教材分析《一次函数》是人教版的义务教育课程标准实验教科书数学八年级上册第十九章的内容。

一次函数数学教案优秀5篇

一次函数数学教案优秀5篇

一次函数数学教案优秀5篇推文网精心整理一次函数数学教案,希望这份一次函数数学教案优秀5篇能够帮助大家,给予大家在写作上的思路。

更多一次函数数学教案资料,在搜索框搜索一次函数数学教案(精选篇1)教学目标1.知识与技能能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.2.过程与方法经历探索一次函数的应用问题,发展抽象思维.3.情感、态度与价值观培养变量与对应的,形成良好的函数观点,体会一次函数的应用价值.重、难点与关键1.重点:一次函数的应用.2.难点:一次函数的应用.3.关键:从数形结合分析思路入手,提升应用思维.教学方法采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.教学过程一、范例点击,应用所学例5小芳以米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间_(单位:•分)变化的函数关系式,并画出函数图象.y=例6A城有肥料吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D•两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,•怎样调运总运费最少?解:设总运费为y元,A城往运C乡的肥料量为_吨,则运往D乡的肥料量为(-_)吨.B城运往C、D乡的肥料量分别为(240-_)吨与(60+_)吨.y与_的关系式为:y=•20_+25(-_)+15(240-_)+24(60+_),即y=4_+10040(0≤_≤).由图象可看出:当_=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D•乡吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.拓展:若A城有肥料300吨,B城有肥料吨,其他条件不变,又应怎样调运?二、随堂练习,巩固深化课本P119练习.三、课堂,发展潜能由学生自我本节课的表现.四、布置作业,专题突破课本P120习题14.2第9,10,11题.板书设计14.2.2一次函数(4)1、一次函数的应用例:练习:一次函数数学教案(精选篇2)一、课程标准要求:①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。

一次函数课题学习:选择方案

一次函数课题学习:选择方案

鸡西市第十九中学学案
、为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的“便民卡”与“如意卡”在玉溪市范围内每月(
话时间x(min)与通话费y(元)的关系如图所示:
分别求出通话费1y(便民卡)2(如意卡)与通话时间x
系式;(2)请帮用户计算,在一个月内使用哪一种卡便宜?6、如图一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象)
下列问题:
⑴请分别求出表示轮船和快艇行驶过程的函数解析式。

范围)
⑵轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少?
⑶问快艇出发多长时间赶上轮船?
鸡西市第十九中学学案
鸡西市第十九中学学案。

《一次函数的图象和性质》教学设计优秀5篇

《一次函数的图象和性质》教学设计优秀5篇

《一次函数的图象和性质》教学设计优秀5篇一次函数的图象教案篇一一、学生起点分析八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系。

二、教学任务分析《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节。

本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。

第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质。

本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识。

为此本节课的教学目标是:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象。

2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线。

3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力。

4.理解一次函数的代数表达式与图象之间的一一对应关系。

教学重点是:初步了解作函数图象的一般步骤:列表、描点、连线。

教学难点是:理解一次函数的代数表达式与图象之间的一一对应关系。

三、教学过程设计本节课设计了七个教学环节:第一环节:创设情境引入课题;第二环节:画一次函数的图象;第三环节:动手操作,深化探索;第四环节:巩固练习,深化理解;第五环节:课时小结;第六环节:拓展探究;第七环节:作业布置。

第一环节:创设情境引入课题内容:一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗?S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。

人教版八年级下册数学优秀作业课件(RJ) 第十九章 一次函数 课题学习 选择方案

人教版八年级下册数学优秀作业课件(RJ) 第十九章 一次函数 课题学习 选择方案

6.(20分)在乡村道路建设的过程中,甲、乙两村之间需要修建水泥路,它们准备 合作完成.已知甲、乙村分别需要水泥70 t,110 t,A,B两厂分别可提供100 t,80 t水泥,两厂到两村的运费如下表.设从A厂运往甲村水泥x t,总运费为y元.
(1)求y与x之间的函数关系式; (2)请你设计出运费最低的运送方案,并求出最低运费.
y=20x, y=10x+100,
解得xy= =12000,比较合算;②当入园次数等于 10 次时,选择两种消费卡费用一 样;③当入园次数大于 10 次时,选择乙消费卡比较合算
4.(12分)为了更好地运用信息技术辅助教学,某校计划购买进价分别为3 500 元/台、4 000元/台的A,B两种型号的笔记本电脑共15台.设购进A型笔记本电脑x 台,购买这两种型号的笔记本电脑共需的费用为y元.
数学 八年级下册 人教版
第十九章 一次函数
19.3 课题学习 选择方案
1.(4分)一家电信公司提供了有、无月租费两种上网收费的方式供用户选择, 这两种收费方式所收取的上网费用y(元)与上网时间x(min)之间的关系如图所示, 则下列说法错误的是( C )
A.图象甲描述的是无月租费的收费方式 B.图象乙描述的是有月租费的收费方式 C.当每月的上网时间为350 min时,选择有月租费的收费方式更省钱 D.当每月的上网时间为500 min时,选择有月租费的收费方式更省钱
(1)求y与x之间的函数解析式; (2)若购买的B型笔记本电脑的数量不少于A型笔记本电脑数量的2倍,请你帮该 校设计出一种费用最省的方案,并求出该方案所需的费用. 解:(1)由题意,得y=3 500x+4 000(15-x)=-500x+60 000 (2)由题意,得15-x≥2x,解得x≤5,∵-500<0,∴当x=5时,y有最小值,且 y最小值=-500×5+60 000=57 500,∴当该校购买A型笔记本电脑5台,B型笔记 本电脑15-5=10(台)时费用最省,所需的费用为57 500元

4一次函数概念、图像

4一次函数概念、图像

课题:一次函数概念、图象编制人: 审核人: 包科领导:学习目标:1、理解并掌握一次函数的概念以及解析式中k 、b 的含义和作用;2、能根据一次函数的解析式画出函数图象;3、理解并掌握一次函数的图象特征,并能根据图象特征解决相关问题。

学习重点:一次函数的概念和图象学习难点:一次函数概念及图象特征的相关运用 学习过程:一、课前知识回顾:1、什么是正比例函数?其图象是什么?2、 如果函数122)2(+--=m mx m y 是正比例函数,则m= 。

3、对于正比例函数y=(2m+4)x ,当m 满足 时,函数图象经过第一、三象限;当m 满足 时,函数图象经过第二、四象限。

二、自主探究学习1、自学课本第113至114页的内容,完成下列问题: ①、课本上四个问题中的这些函数有什么共同点?②、一般地,形如 的函数,叫做一次函数。

当b=0时,它就是 函数,所以说 是一种特殊的一次函数,反之,一次函数是正比例函数吗?2、自学课本第115页的内容,完成下列问题:①、一次函数y=kx+b 的图象是 ,我们称它为 ;它可以看作由直线y=kx 平移 个单位长度而得到,当 时,向 平 移 个单位,当 时,向 平移 个单位。

②、完成课本第117页的练习;③、归纳一次函数y=kx+b 的图象特征:当 时,直线经过第一、二、三象限; 当 时,直线经过第一、三、四象限; 当 时,直线经过第一、二、四象限; 当 时,直线经过第二、三、四象限;三、小组合作交流:1、下列函数为一次函数的是( ) ①y =-3x ②y=22x - ③y=2 ④xy 2=⑤y=2x+6 A 、①⑤ B 、①②⑤ C 、①②③ D 、①④⑤ 2、在同一坐标系中画出下列函数图象:① y=x+2 ② y=x-2 ③y =-x+13、已知1)4(152++-=-m x m y m是关于x 的一次函数,求当x =-2时y 的值。

4、如果一次函数y=kx+b 的图象不经过第三象限,那么k 、b 的取值是( ) A k >0,b >0 B k <0,b >0 C k <0,b <0 D k <0,b ≥05、已知直线y=(a+1)x-1如图所示,则a 的取值范围是( ) A a >-1 B a <-1 C a >0 D a <06、如果kb <0,且k <0,那么函数y=kx+b 的图象大致是( )A四、当堂检测练习:A 级题目:1、若一次函数y=kx+1经过点A (﹣1,2),则k= ,函数图象经过点B(1, ) 和点C( ,0)2、一次函数y=2x+b 的图象不经过第二象限,则b 的取值范围是 。

《一次函数课题学习-选择方案:怎样选取上网收费方式》第1课时示范课教学课件【人教八数下册】

《一次函数课题学习-选择方案:怎样选取上网收费方式》第1课时示范课教学课件【人教八数下册】

25
0.05
解:设月上网时间为xh,方案A网费为y1元,方案B网费为y2元.
30, (0≤x≤25) y1=
30+ 0超.0时5×费60 ((xx>252)5,)
超时使用价格 × 超时时间
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
思考
化简,得 y1=
30, (0≤x≤25) 3x45, (x25)
;n=
.
(2)写出yA与x之间的函数关系式.
(3)选择哪种方式上网学习合算,为什么?
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习
解:(1)当x=0时,y=10,∴m=10,
∵当x=50时,折线拐弯,∴n=50.
(2)当0<x≤25时,yA=7,
当x≥25时,yA=7+(x‒25)×0.01×60=0.6x‒8.
y1与y3比较
y/元
当 0≤x≤31 2时,方式A省钱;
120
3
结合图象可知:
y1
y3
y2
在 0≤x≤31 2范围内,当取相
3
50
同的自变量时,y1在y3的下方, 30
即y1<y3,故选择方式A最省钱.
o
25 50
x/h
31 2
3
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
思考
(2)再用其中省钱的方式与方案C比大小
方案A: yA=0.1x ,(x≥0)
方案B: yB=
20 ,(0≤x≤500) 200.2+2(x‒950,0)×0.22,(500<x≤1000)
12300+0.22×500 (x>1000)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
果品公司向甲、乙公司支付的总费用分 别为y1(元)、y2 (元)。则根据 题意得: x y(元) y1=1500+6x+ ( —+4) ×300
x y2=700+10x+ ( — +3)×300 100
即:y1 = 11x񫇞
即:y2 = 13x+1600 (2)画出y1 、y2的图象:
由图象可得: 2700● ①当y1 < y2时,解得:x>550 1600● ②当y1 = y2时,解得: x = 550 0 ③当y1 > y2时,解得: 0 ≤x<550 ∴ 当A、B两市的距离大于550千米时,应选择甲公司运输;
X(千米)
550
当A、B两市的距离等于550千米时,选择甲、乙公司运输都一样; 当A、B两市的距离小于550千米时,应选择乙公司运输。
(2)你能说出用哪种运输方式较好吗?
解: (1)根据题意得:
y(元)
y1 y2

(2)画出y1 、y2的图象: 由图象可得:
x — =9x+2000 y1=2000+540× 60 x y2=4100+200× — =2x+4100 4700 100 4100 ●
①当y1 < y2时,0 ≤ x < 300 ②当y1 = y2时, x = 300 ③当y1 > y2时,x > 300
活动四:巩固提高
某蔬菜基地要把一批新鲜蔬菜运往外地,有两 种运输方式可供选择,主要参考数据如下:
运输速度 运输方式 (km/h) 汽车 火车 60 100 装卸费用(元) 2000 4100 途中综合费用(元/时) 540 200
(1)请分别写出汽车、火车运输的总费用 y1(元)、 y2(元)与运输路程 x(km)之间的函数关系。
运输 运输速度 运输费用 包装与装卸 包装与装卸 公司 (千米/时)(元/千米) 时间(小时) 费用(元)
甲公司
乙公司
60 100
6 10
4 3
1500 700
问题:(1)若A、B两市的距离为x千米,且这批水果在包装
与装卸以及运输过程中的损耗为300元/小时,果品公司选 择甲、乙公司支付的总费用分别为y1(元)、y2 (元),求y1、 y2与x的函数关系式。 (2)要使果品公司支付的总费用最少,应选择哪家公司?
提示:(总费用 = 包装与装卸费、运输费及损耗三项之和)
活动三:新课讲解
运输 运输速度 运输费用 包装与装卸 包装与装卸 (元/千米)时间 (小时) 费用(元) 公司 (千米/时) 甲公司 乙公司
60 100
6 10
4 3
1500 700
包装与装卸费
A市
运输费 损耗
B市
活动三:新课讲解
运输 公司 甲公司 乙公司 运输速度 运输费用 包装与装卸 包装与装卸 (千米/时) (元/千米)时间 (小时) 费用(元)
建立函数 实际问题 解函数问题 数学问题
数学问 题的解
活动六:课后作业
完成学案中的课堂作业
(提示:运费=运输单价×运程)
2、枣阳面粉厂现急需小麦用于生产面粉,现 从800千米外的九集购买了一批面粉,已 知运输车的速度为x千米/时,需要 800 小 — x 时才能运到。 (提示:时间=路程÷速度)
环节
A市
B市
活动二:引入新课
某果品公司急需将一批不易存放的水果从A市运到 B市销售,现有两家运输公司可供选择,这两家运输 公司提供的信息如下:
60 100
6 10
4 3
1500 700
包装与装卸费
A市
运输费 损耗
B市
计算果品公司支付的总费用
选甲公司总费用y1 包装与装卸费 选乙公司总费用y2 包装与装卸费
1500
运输费 6x 损耗 5x+1200
700
运输费 10x 损耗 3x+900
活动三:新课讲解
解:(1) 若A、B两市的距离为x千米,
y
y = kx+b
x
授课人: 肖保花 授课班级:八(11)
学习目标
1、能从表格中获得所需要的信息,找 出数量关系,列出等量关系式。 2、能用函数模型在实际问题中
选择最佳方案。
活动一:知识准备
1、某车从九集粮站调运一定量的小麦到800千 米外的枣阳面粉厂,已知这辆车的运输费用 为8元/千米,则司机应得的费用为 6400 元。
2000 ●
0
X(千米)
300
∴ 当运输路程小于300千米时,应选择汽车运输; 当运输路程等于300千米时,选择汽车和火车运输都一样; 当运输路程大于300千米时,应选择火车运输。
活动五:课堂小结
通过这节课的学习,你有什 么收获? 你完成学习目标了吗?
活动五:课堂小结
1、表格能具体地反映两个变量之间的关系,善 于捕捉表格中的所有信息,并能够熟练地把 实际问题转化成数学(函数)问题。 2、能用一次函数模型在实际问题中选择最佳方案。
相关文档
最新文档