2018版高中数学第三章三角恒等变换导学案新人教A版必修4_149
2018版高中数学 第三章 三角恒等变换 3.2 简单的三角恒等变换学案 新人教A版必修4
3.2 简单的三角恒等变换1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法,以及进行简单的应用.(重点)2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法,能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.(难点、易错点)[基础·初探]教材整理 半角公式阅读教材P 139~P 140例2以上内容,完成下列问题. sin α2=±1-cos α2, cos α2=±1+cos α2, tan α2=±1-cos α1+cos α,tan α2=sin α2cos α2=sin α2·2cosα2cos α2·2cosα2=sin α1+cos α,tan α2=sin α2cos α2=sin α2·2sinα2cos α2·2sinα2=1-cos αsin α.判断(正确的打“√”,错误的打“×”) (1)cos α2=1+cos α2.( ) (2)存在α∈R ,使得cos α2=12cos α.( )(3)对于任意α∈R ,sin α2=12sin α都不成立.( )(4)若α是第一象限角,则tan α2=1-cos α1+cos α.( )【解析】 (1)×.只有当-π2+2k π≤α2≤π2+2k π(k ∈Z ),即-π+4k π≤α≤π+4k π(k ∈Z )时,cos α2=1+cos α2. (2)√.当cos α=-3+1时,上式成立,但一般情况下不成立. (3)×.当α=2k π(k ∈Z )时,上式成立,但一般情况下不成立. (4)√.若α是第一象限角,则α2是第一、三象限角,此时tan α2=1-cos α1+cos α成立.【答案】 (1)× (2)√ (3)× (4)√[小组合作型]化简求值问题(1)已知cos θ=-35,且180°<θ<270°,求tan θ2;(2)化简:+sin α+cos α⎝ ⎛⎭⎪⎫sin α2-cos α22+2cos α(180°<α<360°).【精彩点拨】 (1)①cos θ=-35→tan θ2=±1-cos θ1+cos θ→tan θ2的值;②cos θ=-35→tan θ2=1-cos θsin θ⎝ ⎛⎭⎪⎫或tan θ2=sin θ1+cos θ→tan θ2的值. 对于(1)的思考要注意符号的选择.(2)化α为α2,消去数值1,再升幂判断α2的范围,然后化简得结论.【自主解答】 (1)法一:∵180°<θ<270°,∴90°<θ2<135°,即θ2是第二象限角,∴tan θ2<0,∴tan θ2=-1-cos θ1+cos θ=-1-⎝ ⎛⎭⎪⎫-351+⎝ ⎛⎭⎪⎫-35=-2. 法二:∵180°<θ<270°,即θ是第三象限角, ∴sin θ=-1-cos 2θ=-1-925=-45, ∴tan θ2=1-cos θsin θ=1-⎝ ⎛⎭⎪⎫-35-45=-2.(2)原式=⎝ ⎛⎭⎪⎫2cos 2α2+2sin α2cos α2⎝ ⎛⎭⎪⎫sin α2-cos α22·2cos2α2=2cos α2⎝ ⎛⎭⎪⎫cos α2+sin α2⎝ ⎛⎭⎪⎫sin α2-cos α22⎪⎪⎪⎪⎪⎪cos α2=cosα2-cos α⎪⎪⎪⎪⎪⎪cos α2.∵180°<α<360°,∴90°<α2<180°,∴cos α2<0,∴原式=cos α2-cos α-cosα2=cos α.1.解决给值求值问题的方法及思路(1)给值求值问题,其关键是找出已知式与欲求式之间的角、运算及函数的差异,经过适当变换已知式或变换欲求式解题.(2)给值求值的重要思想是建立已知式与欲求式之间的联系,应注意“配角”方法的应用.2.三角函数化简的思路及原则:(1)在应用和差化积公式时,必须是一次同名三角函数方可施行,若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次.(2)根据实际问题选用公式时,应从以下几个方面加以考虑: ①运用公式之后能否出现特殊角;②运用公式之后能否进行提取公因式,能否约分,能否合并或消项;③运用公式之后能否使三角函数式结构更加简单,各种关系更加明显,从而为下一步选用公式进行变换创造条件.(3)对于三角函数的和差化积,有时因为使用公式不同,或选择题的思路不同,化积结果可能不一致.[再练一题] 1.(1)已知sin α=55,cos α=255,则tan α2等于( ) A.2- 5 B.2+ 5 C.5-2D.±(5-2)(2)已知π<α<3π2,化简:1+sin α1+cos α-1-cos α+1-sin α1+cos α+1-cos α. 【导学号:00680075】【解析】 (1)因为sin α=55>0,cos α=255>0, 所以α的终边落在第一象限,α2的终边落在第一、三象限,所以tan α2>0,故tan α2=1-cos α1+cos α=1-2551+255=5-2. 【答案】 C(2)原式=⎝ ⎛⎭⎪⎫sin α2+cos α222⎪⎪⎪⎪⎪⎪cos α2-2⎪⎪⎪⎪⎪⎪sin α2+⎝ ⎛⎭⎪⎫sin α2-cos α222⎪⎪⎪⎪⎪⎪cos α2+2⎪⎪⎪⎪⎪⎪sin α2.∵π<α<3π2,∴π2<α2<3π4,∴cos α2<0,sin α2>0,∴原式=⎝⎛⎭⎪⎫sin α2+cos α22-2⎝ ⎛⎭⎪⎫sin α2+cos α2+⎝⎛⎭⎪⎫sin α2-cos α222⎝⎛⎭⎪⎫sin α2-cos α2=-sin α2+cos α22+sin α2-cosα22=-2cos α2.三角恒等式的证明(1)求证:1+2cos 2θ-cos 2θ=2; (2)求证:2sin x cos xx +cos x -x -cos x +=1+cos xsin x.【精彩点拨】 (1)可由左向右证:先把左边cos 2θ降幂化为同角后整理可证. (2)可先从左边表达式分母中升幂缩角入手,再通过改变函数结构向右边转化. 【自主解答】 (1)左边=1+2cos 2θ-cos 2θ=1+2×1+cos 2θ2-cos 2θ=2=右边.所以原等式成立. (2)左边=2sin x cos x⎝ ⎛⎭⎪⎫2sin x 2cos x 2-2sin 2x 2⎝ ⎛⎭⎪⎫2sin x 2cos x 2+2sin 2x 2=2sin x cos x4sin 2x 2⎝⎛⎭⎪⎫cos 2x 2-sin 2x 2=sin x2sin 2x 2=cos x2sin x2=2cos2x22sin x 2cosx 2=1+cos xsin x =右边.所以原等式成立.三角恒等式证明的五种常用方法: (1)执因索果法:证明的形式一般化繁为简. (2)左右归一法:证明左右两边都等于同一个式子.(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同.(4)比较法:设法证明“左边-右边=0”或“左边右边=1”.(5)分析法:从被证明的等式出发,逐步探求使等式成立的条件,一直到已知条件或明显的事实为止,就可以断定原等式成立.[再练一题] 2.求证:α+βα-βsin 2αcos 2β=1-tan 2βtan 2α.【证明】 法一:左边 =αcos β+cos αsin βαcos β-cos αsinβsin 2αcos 2β=sin 2αcos 2β-cos 2αsin 2βsin 2αcos 2β=1-cos 2αsin 2βsin 2αcos 2β =1-tan 2βtan 2α=右边, ∴原等式成立.法二:右边=1-cos 2αsin 2βsin 2αcos 2β =sin 2αcos 2β-cos 2αsin 2βsin 2αcos 2β =αcos β+cos αsin βαcos β-cos αsinβsin 2αcos 2β=α+βα-βsin 2αcos 2β=左边,∴原等式成立.三角函数在实际问题中的应用如图321所示,要把半径为R 的半圆形木料截成长方形,应怎样截取,才能使△OAB 的周长最大?图321【精彩点拨】 设∠AOB =α→建立周长l α→求l 的最大值【自主解答】 设∠AOB =α,△OAB 的周长为l ,则AB =R sin α,OB =R cos α, ∴l =OA +AB +OB =R +R sin α+R cos α =R (sin α+cos α)+R =2R sin ⎝ ⎛⎭⎪⎫α+π4+R . ∵0<α<π2,∴π4<α+π4<3π4,∴l 的最大值为2R +R =(2+1)R ,此时,α+π4=π2,即α=π4,即当α=π4时,△OAB 的周长最大.1.解答此类问题,关键是合理引入辅助角α,确定各量之间的关系,将实际问题转化为三角函数问题,再利用三角函数的有关知识求解.2.在求解过程中,要注意三点:(1)充分借助平面几何性质,寻找数量关系;(2)注意实际问题中变量(角α)的范围;(3)重视三角函数有界性的影响.[再练一题]3.有一块以O 为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD 辟为绿地,使其一边AD 落在圆的直径上,另外两点B ,C 落在半圆的圆周上,已知半圆的半径长为a ,如何选择关于点O 对称的点A ,D 的位置,可以使矩形ABCD 的面积最大?【解】 如图所示,设∠AOB =θ⎝⎛⎭⎪⎫θ∈⎝⎛⎭⎪⎫0,π2,则AB =a sin θ,OA =a cos θ.设矩形ABCD 的面积为S ,则S =2OA ·AB ,∴S =2a cos θ·a sin θ=a 2·2sin θcos θ=a 2sin 2θ.∵θ∈⎝⎛⎭⎪⎫0,π2,∴2θ∈(0,π).因此,当2θ=π2,即θ=π4时,S max =a 2.这时点A ,D 到点O 的距离为22a , 矩形ABCD 的面积最大值为a 2.[探究共研型]三角恒等变换与三角函数图象性质的综合探究1 如何求函数y =sin ⎝ ⎛⎭⎪⎫2x -π6+2sin 2⎝ ⎛⎭⎪⎫x -π12(x ∈R )的最小正周期? 【提示】 y =sin ⎝ ⎛⎭⎪⎫2x -π6+1-cos ⎝ ⎛⎭⎪⎫2x -π6=2sin ⎝ ⎛⎭⎪⎫2x -π6-π4+1=2sin ⎝ ⎛⎭⎪⎫2x -512π+1,所以函数的最小正周期T =π.探究2 研究形如f (x )=a sin 2ωx +b sin ωx cos ωx +c cos 2ωx 的性质时应首先把函数f (x )化简成什么形式再解答?【提示】 研究形如f (x )=a sin 2ωx +b sin ωx cos ωx +c cos 2ωx 的性质时,先化成f (x )=a 2+b 2sin(ωx +φ)+c 的形式再解答.已知函数f (x )=4cos ωx ·sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的单调性.【精彩点拨】 利用三角公式化简函数式,写为f (x )=A sin(ωx +φ)+b 的形式,再讨论函数的性质.【自主解答】 (1)f (x )=4cos ωx ·sin ⎝ ⎛⎭⎪⎫ωx +π4 =22sin ωx ·cos ωx +22cos 2ωx=2(sin 2ωx +cos 2ωx )+2=2sin ⎝ ⎛⎭⎪⎫2ωx +π4+ 2. 因为f (x )的最小正周期为π,且ω>0,从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2, 即0≤x ≤π8时,f (x )单调递增;当π2<2x +π4≤5π4, 即π8<x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎢⎡⎦⎥⎤0,π8上单调递增,在区间⎝ ⎛⎦⎥⎤π8,π2上单调递减.三角恒等变换与三角函数图象性质的综合问题的解题策略:运用三角函数的和、差、倍角公式将函数关系式化成y =a sin ωx +b cos ωx +k 的形式,借助辅助角公式化为y =A sin(ωx +φ)+k (或y =A cos(ωx +φ)+k )的形式,将ωx +φ看作一个整体研究函数的性质.[再练一题]4.已知函数f (x )=-2sin ⎝ ⎛⎭⎪⎫2x +π4+6sin x cos x -2cos 2x +1,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.【解】 (1)f (x )=-sin 2x -cos 2x +3sin 2x -cos 2x =2sin 2x -2cos 2x =22sin ⎝ ⎛⎭⎪⎫2x -π4.所以f (x )的最小正周期T =2π2=π. (2)由(1)知f (x )=22sin ⎝ ⎛⎭⎪⎫2x -π4, 由于x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,则sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1, 所以f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值为22,最小值为-2.1.若cos α=23,α∈(0,π),则cos α2的值为( )A.66 B.-66 C.306D.-306【解析】 由题意知α2∈⎝ ⎛⎭⎪⎫0,π2,∴cos α2>0,cos α2=1+cos α2=306. 【答案】 C2.已知cos α=35,α∈⎝ ⎛⎭⎪⎫32π,2π,则sin α2等于( ) A.55B.-55C.45D.255【解析】 由题知α2∈⎝ ⎛⎭⎪⎫34π,π,∴sin α2>0,sin α2=1-cos α2=55. 【答案】 A3.已知sin α-cos α=-54,则sin 2α的值等于( )A.716B.-71611 C.-916D.916【解析】 由sin α-cos α=-54, (sin α-cos α)2=1-2sin αcos α=1-sin 2α=2516,所以sin 2α=-916. 【答案】 C4.函数y =32sin 2x +cos 2x 的最小正周期为________. 【解析】 ∵y =32sin 2x +cos 2x =32sin 2x +12cos 2x +12=sin ⎝ ⎛⎭⎪⎫2x +π6+12,∴函数的最小正周期T =2π2=π. 【答案】 π5.求证:4sin θcos 2θ2=2sin θ+sin 2θ. 【证明】 法一:左边=2sin θ·2cos 2θ2=2sin θ(1+cos θ) =2sin θ+2sin θcos θ=2sin θ+sin 2θ=右边,所以原式成立.法二:右边=2sin θ+2sin θcos θ=2sin θ(1+cos θ)=2sin θ·2cos 2 θ2=4sin θcos 2θ2=左边, 所以原式成立.。
第三章 三角恒等变换复习-高一数学教材配套学案(人教A版必修4)
第三章 三角恒等变换知识④思维导图专题④综合串讲专题1三角函数式的求值【例1】已知0<α<π4,0<β<π4,且3sin β=sin (2α+β),4tan α2=1-tan 2α2,求α+β的值. 【分析】 本题主要考查三角函数式的恒等变换及已知三角函数值求角,因为2α+β=α+(α+β),β=(α+β)-α,可先将条件式3sin β=sin (2α+β)展开后求α+β的正切值.【解】∵3sin β=sin (2α+β),即3sin (α+β-α)=sin (α+β+α),整理得2sin (α+β)cos α=4cos (α+β)sin α.即tan (α+β)=2tan α.又4tan α2=1-tan 2α2, ∴tan α=2tan α21-tan 2α2=12, tan (α+β)=2tan α=2×12=1. 又0<α<π4,0<β<π4, ∴α+β∈⎝⎛⎭⎫0,π2, ∴α+β=π4. 【方法总结】三角函数式求值的类型与方法三角函数式的求值主要有三种类型:一是给角求值;二是给值求值;三是给值求角.1. 给角求值:这类题目的解法相对简单,主要是利用所学的诱导公式、同角三角函数的基本关系式、两角和与差的正弦、余弦、正切公式及二倍角公式等,化非特殊角为特殊角,在转化过程中要注意上述公式的正用及逆用.2. 给值求值:这类题目的解法较上类题目灵活、多变,主要解答方法是利用三角恒等变形中的拆角变形及同角三角函数的基本关系式,和、差、倍、半角公式的综合应用.由于此类题目在解答过程中涉及的数学方法及数学思想相对较多,因此也是平时乃至高考考查的一个热点.3. 已知三角函数值求角问题,通常分两步:(1)先求角的某个三角函数值(由题中已知名称和范围确定),确定求所求角的哪种三角函数值,要根据具体题目,结合所给角的范围确定;(2)根据角的范围确定角及角的范围.必要时,可利用值缩小角的范围.几种形式的题目本质上都是“给值求值”,只不过往往求出的值是特殊角的值,在求出角之前还需结合函数的单调性确定角,必要时还要讨论角的范围.【变式训练1】已知cos ⎝⎛⎭⎫α+π4=35,π2≤α<3π2,求cos ⎝⎛⎭⎫2α+π4的值. 【解】 ∵π2≤α<3π2,∴3π4≤α+π4<7π4. ∵cos ⎝⎛⎭⎫α+π4>0,∴3π2<α+π4<7π4. ∴sin ⎝⎛⎭⎫α+π4=-1-cos 2⎝⎛⎭⎫α+π4 =-1-⎝⎛⎭⎫352=-45. ∴cos 2α=sin ⎝⎛⎭⎫2α+π2=2sin ⎝⎛⎭⎫α+π4cos ⎝⎛⎭⎫α+π4=2×⎝⎛⎭⎫-45×35=-2425, sin 2α=-cos ⎝⎛⎭⎫2α+π2=1-2cos 2⎝⎛⎭⎫α+π4 =1-2×⎝⎛⎭⎫352=725. ∴cos ⎝⎛⎭⎫2α+π4=22cos 2α-22sin 2α =22×⎝⎛⎭⎫-2425-725=-31250. 专题2三角函数式的化简【例2】化简:2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α. 【分析】本题主要考查二倍角公式,同角三角函数的基本关系及角的变换,从角的特点及内在联系上探求.π4-α与π4+α互余,可先用诱导公式减少角的种类.或π4-α与π4+α均化为α的三角函数. 【解】解法一:原式=2cos 2α-12sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α·sin 2⎝⎛⎭⎫π4+α =2cos 2α-12·sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α·cos 2⎝⎛⎭⎫π4-α=2cos 2α-1sin ⎝⎛⎭⎫π2-2α=cos 2αcos 2α=1. 解法二:原式=cos 2α2·1-tan α1+tan α(22sin α+22cos α)2 =cos 2αcos α-sin αcos α+sin α·(sin α+cos α)2=cos 2α(cos α-sin α)(cos α+sin α)=cos 2αcos 2α-sin 2α=cos 2αcos 2α=1. ,【方法总结】三角函数式化简的分类与解题技巧1.三角函数式的化简,主要有以下几类:(1)三角的和式,基本思路是降幂、消项和逆用公式;(2)三角的分式,基本思路是分子与分母的约分和逆用公式,最终变成整式或较简式子;(3)二次根式,则需要运用倍角公式的变形形式.在具体过程中体现的则是化归的思想,是一个“化异为同”的过程,涉及切弦互化,即“函数名”的“化同”;角的变换,即“单角化倍角”“单角化复角”“复角化复角”等具体手段,以实现三角函数式的化简.2. 化简三角函数式时:(1)若切函数、弦函数共存时,可利用切化弦;(2)若含分式三角函数的问题,一般需分子、分母化简后出现公因式,以便于约分.【变式训练2】化简sin ⎝⎛⎭⎫α+π42cos 2α2+2sin α2cos α2-1. 【解】原式=sin αcosπ4+cos αsin π4cos α+sin α=22(sin α+cos α)cos α+sin α=22. 专题3三角恒等式的证明【例3】求证:sin 4x 1+cos 4x ·cos 2x 1+cos 2x ·cos x 1+cos x=tan x 2. 【分析】本题主要考查二倍角公式及其变形应用,因等式右端为tan x 2,故可将左边的角4x ,2x ,x 化为x 2的形式. 【解】∵左边=2sin 2xcos 2x 2cos 22x ·cos 2x 2cos 2x ·cos x 2cos 2x 2=2sin 2x·cos 22x·cos x 2cos 22x·2cos 2x·2cos 2x 2=sin 2x 2cos x·2cos 2x 2=2sin x 2cos x 22cos 2x 2=sin x 2cos x 2=tan x 2=右边, ∴等式成立.【方法总结】三角函数等式的证明策略三角函数等式的证明包括无条件三角函数等式的证明和有条件三角函数等式的证明.对于无条件三角函数等式的证明,要认真分析等式两边三角函数式的特点,找出差异,化异角为同角,化异次为同次,化异名为同名,寻找证明的突破口.对于有条件三角函数等式的证明,要认真观察条件式与被证式的区别与联系,灵活使用条件等式,通过代入法、消元法等方法进行证明.【变式训练3】求证:3-4cos 2A +cos 4A 3+4cos 2A +cos 4A=tan 4 A .【证明】∵左边=3-4cos 2A +2cos 2 2A -13+4cos 2A +2cos 2 2A -1=⎝⎛⎭⎫1-cos 2A 1+cos 2A 2=⎝⎛⎭⎫2sin 2 A 2cos 2 A 2=(tan 2 A )2 =tan 4 A =右边.∴3-4cos 2A +cos 4A 3+4cos 2A +cos 4A=tan 4 A . 专题4三角函数与平面向量的综合应用【例4】设a =(1+cos α,sin α),b =(1-cos β,sin β),c =(1,0),α∈(0,π),β∈(π,2π),a 与c 的夹角为θ1,b 与c 的夹角为θ2,且θ1-θ2=π6,求sin α-β4的值. 【分析】 利用向量的夹角公式得三角函数式,然后利用三角函数知识得出角之间的关系.【解】 由题意知|a |=(1+cos α)2+sin 2α=2cos α2, |b |=(1-cos β)2+sin 2β=2sin β2,|c |=1. 又a·c =1+cos α=2cos 2α2,b·c =1-cos β=2sin 2β2, ∴cos θ1=a·c |a||c|=cos α2,cos θ2=b·c |b||c|=sin β2. ∵α∈(0,π),∴α2∈⎝⎛⎭⎫0,π2,∴θ1=α2. 又β∈(π,2π),∴β2∈⎝⎛⎭⎫π2,π,即0<β2-π2<π2. 由cos θ2=sin β2=cos ⎝⎛⎭⎫β2-π2,得θ2=β2-π2. 由θ1-θ2=π6,得α2-⎝⎛⎭⎫β2-π2=π6, ∴α-β2=-π3,∴α-β4=-π6. ∴sin α-β4=sin ⎝⎛⎭⎫-π6=-12. 【方法总结】三角函数与平面向量的解题策略三角函数与平面向量相结合包括向量与三角函数化简、求值与证明的结合,向量与三角函数的图象与性质的结合等几个方面.此类题目所涉及向量的知识往往比较基础,所涉及的三角函数往往是讨论三角函数的图象与性质,以及三角函数的化简、求值.【变式训练4】在平面直角坐标系xOy 中,已知向量m =(22,-22),n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值. 【解】(1)∵m =(22,-22),n =(sin x ,cos x ),且m ⊥n , ∴m ·n =(22,-22)·(sin x ,cos x )=22sin x -22cos x =sin ⎝⎛⎭⎫x -π4=0. 又x ∈⎝⎛⎭⎫0,π2,∴x -π4∈⎝⎛⎭⎫-π4,π4, ∴x -π4=0,即x =π4,∴tan x =tan π4=1. (2)由(1)知cos π3=m ·n |m |·|n |=sin ⎝⎛⎭⎫x -π4(22)2+(-22)2·sin 2x +cos 2x =sin ⎝⎛⎭⎫x -π4,∴sin ⎝⎛⎭⎫x -π4=12. 又x -π4∈⎝⎛⎭⎫-π4,π4,∴x -π4=π6,即x =5π12.。
【新】版高中数学第三章三角恒等变换3.1.3二倍角的正弦余弦正切公式学案新人教A版必修4
3.1.3 二倍角的正弦、余弦、正切公式1.能利用两角和与差的正、余弦公式推导出两角和与差的正切公式.(重点)2.能利用两角和与差的正切公式进行化简、求值、证明.(难点)3.熟悉两角和与差的正切公式的常见变形,并能灵活应用.(易错点)[基础·初探]教材整理 二倍角的正弦、余弦、正切公式 阅读教材P 132~P 133例5以上内容,完成下列问题. 1.二倍角的正弦、余弦、正切公式2.3.正弦的二倍角公式的变形(1)sin αcos α=12sin 2α,cos α=sin 2α2sin α.(2)1±sin 2α=(sin α±cos α)2.1.判断(正确的打“√”,错误的打“×”)(1)二倍角的正弦、余弦、正切公式的适用范围是任意角.( ) (2)存在角α,使得sin 2α=2sin α成立.( ) (3)对于任意的角α,cos 2α=2cos α都不成立.( )【解析】 (1)×.二倍角的正弦、余弦公式对任意角都是适用的,而二倍角的正切公式,要求α≠π2+k π(k ∈Z )且α≠±π4+k π(k ∈Z ),故此说法错误.(2)√.当α=k π(k ∈Z )时,sin 2α=2sin α. (3)×.当cos α=1-32时,cos 2α=2cos α.【答案】 (1)× (2)√ (3)×2.已知cos α=13,则cos 2α等于________.【解析】 由cos α=13,得cos 2α=2cos 2α-1=2×⎝ ⎛⎭⎪⎫132-1=-79.【答案】 -79[小组合作型]利用二倍角公式化简三角函数式化简求值.(1)cos 4 α2-sin 4 α2;(2)sin π24·cos π24·cos π12;(3)1-2sin 2750°;(4)tan 150°+1-3tan 2150°2tan 150°.【精彩点拨】 灵活运用倍角公式转化为特殊角或产生相消项,然后求得.【自主解答】 (1)cos 4 α2-sin 4 α2=⎝⎛⎭⎪⎫cos 2 α2-sin 2 α2⎝ ⎛⎭⎪⎫cos 2 α2+sin 2 α2=cos α.(2)原式=12⎝ ⎛⎭⎪⎫2sin π24cos π24·cos π12=12sin π12·cos π12=14⎝ ⎛⎭⎪⎫2sin π12·cos π12=14sin π6=18.∴原式=18.(3)原式=cos(2×750°)=cos 1 500° =cos(4×360°+60°)=cos 60°=12.∴原式=12.(4)原式=2tan 2150°+1-3tan 2150°2tan 150°=1-tan 2150°2tan 150°=1tan 2×150°=1tan 300°=1tan360°-60°=-1tan 60°=-33.∴原式=-33.二倍角公式的灵活运用:(1)公式的逆用:逆用公式,这种在原有基础上的变通是创新意识的体现.主要形式有: 2sin αcos α=sin 2α,sin αcos α=12sin 2α,cos α=sin 2α2sin α,cos 2 α-sin 2α=cos 2α,2tan α1-tan α=tan 2α. (2)公式的变形:公式间有着密切的联系,这就要求思考时要融会贯通,有目的地活用公式.主要形式有:1±sin 2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2,1+cos 2α=2cos 2α,cos 2 α=1+cos 2α2,sin 2α=1-cos 2α2.[再练一题] 1.求下列各式的值: (1)sin π12cos π12;(2)2tan 150°1-tan 2150°;(3)1sin 10°-3cos 10°; (4)cos 20°cos 40°cos 80°.【解】 (1)原式=2sin π12cos π122=sinπ62=14.(2)原式=tan(2×150°)=tan 300°=tan(360°-60°) =-tan 60°=- 3.(3)原式=cos 10°-3sin 10°sin 10°cos 10°=2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°cos 10°=-2sin 10°cos 10°=4sin 20°sin 20°=4.(4)原式=2sin 20°·cos 20°·cos 40°·cos 80°2sin 20°=2sin 40°·cos 40°·cos 80°4sin 20°=2sin 80°·cos 80°8sin 20°=sin 160°8sin 20°=18.利用二倍角公式解决求值问题(1)已知sin α=3cos α,那么tan 2α的值为( ) A.2 B.-2 C.34D.-34(2)已知sin ⎝ ⎛⎭⎪⎫π6+α=13,则cos ⎝ ⎛⎭⎪⎫2π3-2α的值等于( ) A.79 B.13 C.-79D.-13(3)已知cos α=-34,sin β=23,α是第三象限角,β∈⎝ ⎛⎭⎪⎫π2,π. ①求sin 2α的值;②求cos(2α+β)的值.【精彩点拨】 (1)可先求tan α,再求tan 2α;(2)可利用23π-2α=2⎝ ⎛⎭⎪⎫π3-α及π3-α=π2-⎝ ⎛⎭⎪⎫π6+α求值; (3)可先求sin 2α,cos 2α,cos β,再利用两角和的余弦公式求cos(2α+β). 【自主解答】 (1)因为sin α=3cos α, 所以tan α=3,所以tan 2α=2tan α1-tan 2 α=2×31-32=-34. (2)因为cos ⎝ ⎛⎭⎪⎫π3-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=sin ⎝ ⎛⎭⎪⎫π6+α=13,所以cos ⎝⎛⎭⎪⎫2π3-2α=2cos 2⎝ ⎛⎭⎪⎫π3-α-1=2×⎝ ⎛⎭⎪⎫132-1=-79.【答案】 (1)D (2)C(3)①因为α是第三象限角,cos α=-34,所以sin α=-1-cos 2α=-74, 所以sin 2α=2sin αcos α=2×⎝ ⎛⎭⎪⎫-74×⎝ ⎛⎭⎪⎫-34=378. ②因为β∈⎝ ⎛⎭⎪⎫π2,π,sin β=23, 所以cos β=-1-sin 2β=-53, cos 2α=2cos 2α-1=2×916-1=18, 所以cos(2α+β)=cos 2αcos β-sin 2αsin β=18×⎝ ⎛⎭⎪⎫-53-378×23=-5+6724.直接应用二倍角公式求值的三种类型(1)sin α(或cos α)――→同角三角函数的关系cos α(或sin α)――→二倍角公式sin 2α(或cos 2α).(2)sin α(或cos α)――→二倍角公式cos 2α=1-2sin 2 α(或2cos 2α-1). (3)sin α(或cos α)――→同角三角函数的关系⎩⎨⎧cos α或sin α,tan α――→二倍角公式tan 2α.[再练一题] 2.(1)已知α∈⎝ ⎛⎭⎪⎫π2,π,sinα=55,则sin 2α=______,cos 2α=________,tan 2α=________.(2)已知sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-α=16,且α∈⎝ ⎛⎭⎪⎫π2,π,求tan 4α的值. 【导学号:70512043】【解析】 (1)因为α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55,所以cos α=-255,所以sin 2α=2sin αcos α=2×55×⎝ ⎛⎭⎪⎫-255=-45,cos 2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫552=35,tan 2α=sin 2αcos 2α=-43.【答案】 -45 35 -43(2)因为sin ⎝ ⎛⎭⎪⎫π4-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4+α=cos ⎝ ⎛⎭⎪⎫π4+α, 则已知条件可化为sin ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4+α=16,即12sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4+α=16, 所以sin ⎝ ⎛⎭⎪⎫π2+2α=13,所以cos 2α=13.因为α∈⎝ ⎛⎭⎪⎫π2,π,所以2α∈(π,2π),从而sin 2α=-1-cos 22α=-223,所以tan 2α=sin 2αcos 2α=-22,故tan 4α=2tan 2α1-tan 22α=-421--222=427.利用二倍角公式证明求证:(1)cos 2(A +B )-sin 2(A -B )=cos 2A cos 2B ; (2)cos 2θ(1-tan 2θ)=cos 2θ.【精彩点拨】 (1)可考虑从左向右证的思路:先把左边降幂扩角,再用余弦的和、差角公式转化为右边形式.(2)证法一:从左向右:切化弦降幂扩角化为右边形式; 证法二:从右向左:利用余弦二倍角公式升幂后向左边形式转化. 【自主解答】 (1)左边=1+A +2B2-1-A -2B2=cos2A +2B +cos 2A -2B2=12(cos 2A cos 2B -sin 2A sin 2B +cos 2A cos 2B +sin 2A sin 2B ) =cos 2A cos 2B =右边, ∴等式成立.(2)法一:左边=cos 2θ⎝ ⎛⎭⎪⎫1-sin 2θcos 2θ =cos 2θ-sin 2θ=cos 2θ=右边. 法二:右边=cos 2θ=cos 2θ-sin 2θ=cos 2θ⎝ ⎛⎭⎪⎫1-sin 2θcos 2θ=cos 2θ(1-tan 2θ)=左边.证明问题的原则及一般步骤:观察式子两端的结构形式,一般是从复杂到简单,如果两端都比较复杂,就将两端都化简,即采用“两头凑”的思想.证明的一般步骤是:先观察,找出角、函数名称、式子结构等方面的差异,然后本着“复角化单角”、“异名化同名”、“变量集中”等原则,设法消除差异,达到证明的目的.[再练一题]3.证明:1+sin 2α2cos 2α+sin 2α=12tan α+12. 【导学号:00680072】 【证明】 左边=sin 2α+cos 2α+2sin αcos α2cos 2α+2sin αcos α=α+cos α22cos αα+cos α=sin α+cos α2cos α=12tan α+12=右边.所以1+sin 2α2cos 2α+sin 2α =12tan α+12成立. [探究共研型]倍角公式的灵活运用探究1 请利用倍角公式化简:2+2+2cos α(2π<α<3π). 【提示】 ∵2π<α<3π, ∴π<α2<3π2,π2<α4<3π4,∴2+2+2cos α=2+4cos2α2=2-2cos α2=4sin2α4=2sin α4. 探究2 如何求函数f (x )=2cos 2x -1-23·sin x cos x (x ∈R )的最小正周期? 【提示】 求函数f (x )的最小正周期,可由f (x )=(2cos 2x -1)-3×(2sin x cos x )=cos 2x -3sin 2x =2sin ⎝ ⎛⎭⎪⎫π6-2x ,知其最小正周期为π.求函数f (x )=53cos 2x +3sin 2x -4sin x cos x ,x ∈⎣⎢⎡⎦⎥⎤π4,7π24的最小值,并求其单调减区间.【精彩点拨】 化简f x 的解析式→f x =A ωx +φ+B→ωx +φ的范围→求最小值,单调减区间【自主解答】 f (x )=53·1+cos 2x 2+3·1-cos 2x2-2sin 2x=33+23cos 2x -2sin 2x =33+4⎝⎛⎭⎪⎫32cos 2x -12sin 2x=33+4⎝ ⎛⎭⎪⎫sin π3cos 2x -cos π3sin 2x =33+4sin ⎝⎛⎭⎪⎫π3-2x =33-4sin ⎝⎛⎭⎪⎫2x -π3.∵π4≤x ≤7π24,∴π6≤2x -π3≤π4, ∴sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤12,22,∴当2x -π3=π4,即x =7π24时,f (x )取最小值为33-2 2.∵y =sin ⎝⎛⎭⎪⎫2x -π3在⎣⎢⎡⎦⎥⎤π4,7π24上单调递增,∴f (x )在⎣⎢⎡⎦⎥⎤π4,7π24上单调递减.本题考查二倍角公式,辅助角公式及三角函数的性质.解决这类问题经常是先利用公式将函数表达式化成形如y =Aωx +φ的形式,再利用函数图象解决问题.[再练一题]4.求函数y =sin 4x +23sin x cos x -cos 4x 的最小正周期和最小值,并写出该函数在[0,π]上的单调递减区间.【解】 y =sin 4x +23sin x cos x -cos 4x =(sin 2x +cos 2x )(sin 2x -cos 2x )+23sin x cos x =-cos 2x +3sin 2x =2⎝⎛⎭⎪⎫32sin 2x -12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π6,所以T =2π2=π,y min =-2.由2k π+π2≤2x -π6≤2k π+3π2,k ∈Z ,得k π+π3≤x ≤k π+5π6,k ∈Z ,又x ∈[0,π],所以令k =0,得函数的单调递减区间为⎣⎢⎡⎦⎥⎤π3,5π6.1.sin 22°30′·cos 22°30′的值为( ) A.22 B.24C.-22D.12【解析】 原式=12sin 45°=24.【答案】 B2.已知sin x =14,则cos 2x 的值为( )A.78B.18C.12D.22【解析】 因为sin x =14,所以cos 2x =1-2sin 2x =1-2×⎝ ⎛⎭⎪⎫142=78.【答案】 A3.⎝ ⎛⎭⎪⎫cos π12-sin π12⎝ ⎛⎭⎪⎫cos π12+sin π12的值为( ) 【导学号:00680073】 A.-32B.-12C.12D.32【解析】 原式=cos 2π12-sin 2π12=cos π6=32. 【答案】 D4.已知tan α=-13,则sin 2α-cos 2α1+cos 2α=________.【解析】 sin 2α-cos 2α1+cos 2α=2sin αcos α-cos 2α1+2cos 2α-1=2sin αcos α-cos 2α2cos 2α=tan α-12=-56.小中高 精品 教案 试卷制作不易 推荐下载 11 【答案】 -565.求下列各式的值:(1)cos π5cos 2π5; (2)12-cos 2π8. 【解】 (1)原式=2sin π5cos π5cos 2π52sin π5=sin 2π5cos 2π52sin π5=sin 4π54sin π5=sin π54sin π5=14. (2)原式=1-2cos 2π82=-2cos 2π8-12=-12cos π4=-24.。
2018版高中数学第三章三角恒等变换章末复习课导学案新人教A版必修4
第三章 三角恒等变换学习目标 1.进一步掌握三角恒等变换的方法.2.会运用正弦、余弦、正切的两角和与差公式与二倍角公式对三角函数式进行化简、求值和证明.1.两角和与差的正弦、余弦、正切公式 cos(α-β)=cos αcos β+sin αsin β. cos(α+β)=cos αcos β-sin αsin β. sin(α+β)=sin αcos β+cos αsin β. sin(α-β)=sin αcos β-cos αsin β. tan(α+β)=tan α+tan β1-tan αtan β.tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角公式sin 2α=2sin αcos α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α1-tan 2α. 3.升幂缩角公式 1+cos 2α=2cos 2α. 1-cos 2α=2sin 2α. 4.降幂扩角公式sin x cos x =sin 2x 2,cos 2x =1+cos 2x 2,sin 2x =1-cos 2x 2.5.和差角正切公式变形tan α+tan β=tan(α+β)(1-tan αtan β), tan α-tan β=tan(α-β)(1+tan αtan β). 6.辅助角公式y =a sin ωx +b cos ωx =a 2+b 2sin(ωx +θ).类型一 灵活变角的思想在三角恒等变换中的应用例1 已知α,β为锐角,cos α=45,tan(α-β)=-13,求cos β的值.解 ∵α是锐角,cos α=45,∴sin α=35,tan α=34.∴tan β=tan[α-(α-β)]=tan α-tan (α-β)1+tan αtan (α-β)=139.∵β是锐角,∴cos β=91050.反思与感悟 给值求值的重要思想是探求已知式与待求式之间的联系,常常在进行角的变换时,要注意各角之间的和、差、倍、半的关系,如α=2·⎝ ⎛⎭⎪⎫α2,α=(α+β)-β,α=β-(β-α),α=12[(α+β)+(α-β)],β=12[(α+β)-(α-β)]等.跟踪训练1 如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 的横坐标分别为31010,255.(1)求tan(α-β)的值; (2)求α+β的值. 解 (1)由题可知,cos α=31010,cos β=255. 由于α,β为锐角,则sin α=1010,sin β=55, 故tan α=13,tan β=12,则tan(α-β)=tan α-tan β1+tan αtan β=13-121+16=-17.(2)因为tan(α+β)=13+121-16=1,sin α=1010<22,sin β=55<22, 即α+β<π2,故α+β=π4.类型二 整体换元思想在三角恒等变换中的应用例2 求函数f (x )=sin x +cos x +sin x ·cos x ,x ∈R 的最值及取到最值时x 的值. 解 设sin x +cos x =t , 则t =sin x +cos x =2⎝⎛⎭⎪⎫22sin x +22cos x=2sin ⎝⎛⎭⎪⎫x +π4,∴t ∈[-2,2],∴sin x ·cos x =(sin x +cos x )2-12=t 2-12.∵f (x )=sin x +cos x +sin x ·cos x , ∴g (t )=t +t 2-12=12(t +1)2-1,t ∈[-2,2].当t =-1,即sin x +cos x =-1时,f (x )min =-1, 此时,由sin ⎝⎛⎭⎪⎫x +π4=-22,解得x =2k π-π或x =2k π-π2,k ∈Z .当t =2,即sin x +cos x =2时,f (x )max =2+12,此时,由2sin ⎝ ⎛⎭⎪⎫x +π4=2,即sin ⎝⎛⎭⎪⎫x +π4=1,解得x =2k π+π4,k ∈Z .综上,当x =2k π-π或x =2k π-π2,k ∈Z 时,f (x )取得最小值,f (x )min =-1;当x =2k π+π4,k ∈Z 时,f (x )取得最大值,f (x )max =2+12. 反思与感悟 在三角恒等变换中,有时可以把一个代数式整体视为一个“元”来参与计算和推理,这个“元”可以明确地设出来.跟踪训练2 求函数y =sin x +sin 2x -cos x (x ∈R )的值域. 解 令sin x -cos x =t ,则由t =2sin ⎝⎛⎭⎪⎫x -π4知,t ∈[-2,2].又sin 2x =1-(sin x -cos x )2=1-t 2, ∴y =(sin x -cos x )+sin 2x =t +1-t 2=-⎝ ⎛⎭⎪⎫t -122+54.当t =12时,y max =54;当t =-2时,y min =-2-1. ∴函数的值域为⎣⎢⎡⎦⎥⎤-2-1,54.类型三 转化与化归思想在三角恒等变换中的应用例3 已知函数f (x )=23sin(x -3π)sin ⎝ ⎛⎭⎪⎫x -π2+2sin 2⎝⎛⎭⎪⎫x +5π2-1,x ∈R .(1)求函数f (x )的最小正周期及在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值; (2)若f (x 0)=65,x 0∈⎣⎢⎡⎦⎥⎤π4,π2,求cos 2x 0的值.解 (1)因为f (x )=3(2sin x cos x )+(2cos 2x -1) =3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,所以f (x )的最小正周期为π.又因为x ∈[0,π2],所以2x +π6∈[π6,7π6],所以f (x )的最大值为2,最小值为-1. (2)由(1)可知,f (x 0)=2sin ⎝ ⎛⎭⎪⎫2x 0+π6.又因为f (x 0)=65,所以sin ⎝ ⎛⎭⎪⎫2x 0+π6=35. 由x 0∈⎣⎢⎡⎦⎥⎤π4,π2,得2x 0+π6∈⎣⎢⎡⎦⎥⎤2π3,7π6, 所以cos ⎝⎛⎭⎪⎫2x 0+π6=-1-sin 2⎝⎛⎭⎪⎫2x 0+π6=-45,cos 2x 0=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2x 0+π6-π6=cos ⎝ ⎛⎭⎪⎫2x 0+π6cos π6+sin ⎝⎛⎭⎪⎫2x 0+π6sin π6=3-4310. 反思与感悟 (1)为了研究函数的性质,往往要充分利用三角变换公式转化为正弦型(余弦型)函数,这是解决问题的前提.(2)解答此类题目要充分运用两角和(差)、二倍角公式、辅助角转换公式消除差异,减少角的种类和函数式的项数,将三角函数表达式变形化简,然后根据化简后的三角函数,讨论其图象和性质.跟踪训练3 已知cos ⎝ ⎛⎭⎪⎫π4+x =35,17π12<x <7π4,求sin 2x +2sin 2x 1-tan x 的值. 解 sin 2x +2sin 2x 1-tan x =2sin x cos x +2sin 2x1-sin xcos x=2sin x cos x (cos x +sin x )cos x -sin x=sin 2x (1+tan x )1-tan x=sin 2x ·tan ⎝ ⎛⎭⎪⎫π4+x . ∵17π12<x <7π4,∴5π3<x +π4<2π, 又∵cos ⎝ ⎛⎭⎪⎫π4+x =35,∴sin ⎝ ⎛⎭⎪⎫π4+x =-45.∴tan ⎝ ⎛⎭⎪⎫π4+x =-43.∴cos x =cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+x -π4 =cos ⎝ ⎛⎭⎪⎫π4+x cos π4+sin ⎝ ⎛⎭⎪⎫π4+x sin π4 =22×⎝ ⎛⎭⎪⎫35-45=-210. ∴sin x =sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+x -π4=sin ⎝ ⎛⎭⎪⎫π4+x cos π4-sin π4cos ⎝ ⎛⎭⎪⎫π4+x =-7210, sin 2x =725.∴sin 2x +2sin 2x 1-tan x =-2875.类型四 构建方程(组)的思想在三角恒等变换中的应用 例4 已知sin x +2cos y =2,求2sin x +cos y 的取值范围.解 设2sin x +cos y =a .由⎩⎪⎨⎪⎧sin x +2cos y =2,2sin x +cos y =a ,解得⎩⎪⎨⎪⎧sin x =2a -23,cos y =4-a3,从而⎩⎪⎨⎪⎧-1≤2a -23≤1,-1≤4-a3≤1,解得1≤a ≤52.故2sin x +cos y 的取值范围是⎣⎢⎡⎦⎥⎤1,52. 反思与感悟 在三角恒等变换中,有时可以把某个三角函数式看作未知数,联系已知条件或三角公式,设法建立关于未知数的方程组,从而使问题得以解决.跟踪训练4 已知关于θ的方程3cos θ+sin θ+a =0在区间(0,2π)上有两个不相等的实数解α,β,求cos(α+β)的值.解 设x =cos θ,y =sin θ,则有⎩⎨⎧x 2+y 2=1,3x +y +a =0,消去y ,并整理得4x 2+23ax +a 2-1=0.①由已知得cos α,cos β是①的两个实数解, 由根与系数的关系,得⎩⎪⎨⎪⎧cos α+cos β=-32a ,cos αcos β=a 2-14.∴sin αsin β=(3cos α+a )(3cos β+a ) =3cos αcos β+3(cos α+cos β)a +a 2=a 2-34.∴cos(α+β)=cos αcos β-sin αsin β =a 2-14-a 2-34=12.1.若α是第三象限角,且sin(α+β)cos β-sin βcos(α+β)=-513,则tan α2等于( )A.-5B.-513C.1213 D.5答案 A解析 ∵sin(α+β)cos β-sin βcos(α+β) =sin[(α+β)-β]=sin α=-513,又∵α是第三象限角,∴cos α=-1213.∴tan α2=1-cos αsin α=1-⎝ ⎛⎭⎪⎫-1213-513=-5.2.已知θ是第三象限角,且sin 4θ+cos 4θ=59,则sin 2θ等于( )A.223B.-223C.23D.-23答案 A解析 由59=sin 4θ+cos 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ =1-12sin 22θ,得12sin 22θ=49,即sin 22θ=89. 又∵2k π+π<θ<2k π+3π2(k ∈Z ),∴4k π+2π<2θ<4k π+3π(k ∈Z ), 故sin 2θ=223.故选A.3.已知sin α+cos β=13,sin β-cos α=12,则sin(α-β)= .答案 -5972解析 由(sin α+cos β)2+(sin β-cos α)2=1336,得2sin(α-β)=-5936,即sin(α-β)=-5972.4.设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12的值为 . 答案17250解析 ∵α为锐角且cos ⎝ ⎛⎭⎪⎫α+π6=45, ∴sin ⎝⎛⎭⎪⎫α+π6=35.sin ⎝ ⎛⎭⎪⎫2α+π3=2sin ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6=2425, cos ⎝ ⎛⎭⎪⎫2α+π3=2cos 2⎝ ⎛⎭⎪⎫α+π6-1=725, ∴sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎝ ⎛⎭⎪⎫2α+π3-π4 =22⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫2α+π3-cos ⎝⎛⎭⎪⎫2α+π3=17250. 5.已知函数f (x )=cos x ·sin(x +π3)-3cos 2x +34,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在闭区间[-π4,π4]上的最大值和最小值.解 (1)由已知,有f (x )=cos x ·(12sin x +32cos x )-3cos 2x +34=12sin x ·cos x -32cos 2x +34 =14sin 2x -34(1+cos 2x )+34 =14sin 2x -34cos 2x =12sin(2x -π3). 所以f (x )的最小正周期为T =2π2=π.(2)因为f (x )在区间[-π4,-π12]上是减函数,在区间[-π12,π4]上是增函数,f (-π4)=-14,f (-π12)=-12,f (π4)=14,所以,函数f (x )在闭区间[-π4,π4]上的最大值为14,最小值为-12.本章所学的内容是三角恒等变换重要的工具,在三角函数式求值、化简、证明,进而研究三角函数的性质等方面都是必要的基础,是解答整个三角函数类试题的必要基本功,要求准确,快速化到最简,再进一步研究函数的性质.课时作业一、选择题1.cos 2 017°cos 1 583°-sin 2 017°sin 1 583°等于( ) A.0 B.12 C.22 D.1答案 D解析 原式=cos(2 017°+1 583°)=cos 3 600°=1. 2.函数y =12sin 2x +sin 2x (x ∈R )的值域是( )A.⎣⎢⎡⎦⎥⎤-12,32B.⎣⎢⎡⎦⎥⎤-32,12 C.⎣⎢⎡⎦⎥⎤-22+12,22+12 D.⎣⎢⎡⎦⎥⎤-22-12,22-12 答案 C解析 y =12sin 2x +1-cos 2x2=22(22sin 2x -22cos 2x )+12 =22sin(2x -π4)+12. ∵x ∈R ,∴2x -π4∈R ,∴sin(2x -π4)∈[-1,1],∴函数的值域是⎣⎢⎡⎦⎥⎤-22+12,22+12.3.函数f (x )=sin x cos x +32cos 2x 的最小正周期和振幅分别是( ) A.π,1 B.π,2 C.2π,1 D.2π,2答案 A解析 ∵f (x )=12sin 2x +32cos 2x =sin ⎝ ⎛⎭⎪⎫2x +π3, ∴最小正周期T =π,振幅A =1.4.已知tan(α+π4)=-12,且π2<α<π,则sin 2α-2cos 2αsin (α-π4)等于( )A.255B.-255C.-355D.-31010答案 B解析 sin 2α-2cos 2αsin ⎝ ⎛⎭⎪⎫α-π4=2cos α(sin α-cos α)22(sin α-cos α)=22cos α.∵tan ⎝ ⎛⎭⎪⎫α+π4=1+tan α1-tan α=-12, ∴tan α=-3 , ∵α∈⎝⎛⎭⎪⎫π2,π,cos α=-1010. 则sin 2α-2cos 2αsin (α-π4)=22cos α=22×⎝ ⎛⎭⎪⎫-1010=-255. 5.已知向量a =(sin α,1),b =(2,2cos α-2)(π2<α<π),若a ⊥b ,则sin(α-π4)等于( ) A.-32B.-12C.12D.32答案 D 解析 ∵a ⊥b ,∴a ·b =2sin α+2cos α-2=22sin(α+π4)-2=0,∴sin(α+π4)=12.∵π2<α<π, ∴3π4<α+π4<5π4, ∴cos(α+π4)=-32.∴sin(α-π4)=-sin(π4-α)=-cos(α+π4)=32.6.若1tan θ=3,则cos 2θ+12sin 2θ的值是( )A.-65B.-45C.45D.65答案 D解析 由题意知,tan θ=13,则cos 2θ+12sin 2θ=cos 2θ+sin θcos θ=cos 2θ+sin θcos θsin 2θ+cos 2θ=1+tan θtan 2θ+1=65. 7.函数y =sin x cos x +3cos 2x -3的图象的一个对称中心为( ) A.⎝⎛⎭⎪⎫2π3,-32B.⎝⎛⎭⎪⎫5π6,-32C.⎝ ⎛⎭⎪⎫-2π3,32D.⎝ ⎛⎭⎪⎫π3,-3答案 B解析 y =12sin 2x +32(1+cos 2x )- 3=sin ⎝⎛⎭⎪⎫2x +π3-32,令2x +π3=k π(k ∈Z ), x =k π2-π6(k ∈Z ),当k =2时,x =5π6,∴函数图象的一个对称中心为⎝ ⎛⎭⎪⎫5π6,-32.二、填空题8.若点P (cos α,sin α)在直线y =-2x 上,则sin 2α+2cos 2α= . 答案 -2解析 由题意知,tan α=-2,sin 2α+2cos 2α=2sin αcos α+2cos 2α-2sin 2α =2sin αcos α+2cos 2α-2sin 2αsin 2α+cos 2α=2tan α+2-2tan 2αtan 2α+1=-4+2-2×45=-2. 9.函数y =(a cos x +b sin x )cos x 有最大值2,最小值-1,则实数a = ,b = . 答案 1 ±2 2解析 y =a cos 2x +b sin x cos x =b 2sin 2x +a 2cos 2x +a2 =a 2+b 22sin(2x +φ)+a2,a 2+b 22+a2=2,-a 2+b 22+a2=-1, a =1,b =±2 2.10.若(4tan α+1)(1-4tan β)=17,则tan(α-β)= . 答案 4解析 由已知得4(tan α-tan β)=16(1+tan αtan β), 即tan α-tan β1+tan αtan β=4.∴tan(α-β)=4. 三、解答题11.已知函数f (x )=(1+1tan x )sin 2x -2sin ⎝ ⎛⎭⎪⎫x +π4sin ⎝⎛⎭⎪⎫x -π4.(1)若tan α=2,求f (α); (2)若x ∈⎣⎢⎡⎦⎥⎤π12,π2,求f (x )的取值范围.解 (1)f (x )=sin 2x +sin x cos x +cos 2x =1-cos 2x 2+12sin 2x +cos 2x =12(sin 2x +cos 2x )+12, 由tan α=2,得sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45, cos 2α=cos 2α-sin 2αsin 2α+cos 2α =1-tan 2αtan 2α+1=-35, 所以f (α)=12×⎝ ⎛⎭⎪⎫45-35+12=35.(2)由(1)得f (x )=12(sin 2x +cos 2x )+12=22sin ⎝⎛⎭⎪⎫2x +π4+12,由x ∈⎣⎢⎡⎦⎥⎤π12,π2,得2x +π4∈⎣⎢⎡⎦⎥⎤5π12,5π4, 所以sin ⎝ ⎛⎭⎪⎫2x +π4∈⎣⎢⎡⎦⎥⎤-22,1, 从而f (x )=22sin ⎝ ⎛⎭⎪⎫2x +π4+12∈⎣⎢⎡⎦⎥⎤0,1+22. 所以f (x )的取值范围为[0,1+22]. 12.已知△ABC 的内角B 满足2cos 2B -8cos B +5=0,若BC →=a ,CA →=b ,且a ,b 满足:a ·b =-9,|a |=3,|b | =5,θ为a ,b 的夹角.求sin(B +θ). 解 2(2cos 2B -1)-8cos B +5=0, 4cos 2B -8cos B +3=0, 解得cos B =12,sin B =32,cos θ=a·b |a ||b |=-35,sin θ=45,sin(B +θ)=sin B cos θ+cos B sin θ=4-3310.13.设函数f (x )=sin 2x +cos(2x +π3).(1)求函数f (x )的最大值及此时x 的取值集合;(2)设A ,B ,C 为△ABC 的三个内角,已知cos B =13,f (C 2)=-14,且C 为锐角,求sin A 的值.解 (1)∵f (x )=1-cos 2x 2+12cos 2x -32sin 2x=12-32sin 2x , ∴当sin 2x =-1时,f (x )max =1+32,此时2x =2k π-π2(k ∈Z ),x =k π-π4(k ∈Z ),∴x 的取值集合为{x |x =k π-π4,k ∈Z }.(2)∵f (C 2)=12-32sin C =-14,∴sin C =32. ∵C 为锐角,∴C =π3.由cos B =13,得sin B =1-cos 2B =223,∴sin A =sin ⎝ ⎛⎭⎪⎫2π3-B =32cos B +12sin B=3+226. 四、探究与拓展14.若tan(α+π4)=3+22,则1-cos 2αsin 2α= .答案2215.已知向量OA →=(cos α,sin α),α∈[-π,0].向量m =(2,1),n =(0,-5),且m ⊥(OA →-n ). (1)求向量OA →; (2)若cos(β-π)=210,0<β<π,求cos(2α-β)的值. 解 (1)∵OA →=(cos α,sin α), ∴OA →-n =(cos α,sin α+5). ∵m ⊥(OA →-n ),∴m ·(OA →-n )=0, ∴2cos α+sin α+5=0. ① 又sin 2α+cos 2α=1,②由①②得sin α=-55,cos α=-255, ∴OA →=(-255,-55).(2)∵cos(β-π)=210,∴cos β=-210. 又∵0<β<π,∴sin β=1-cos 2β=7210. 又∵sin 2α=2sin αcos α=2×(-55)×(-255)=45,cos 2α=2cos 2α-1 =2×45-1=35,∴cos(2α-β)=cos 2αcos β+sin 2αsin β =35×(-210)+45×7210 =25250=22.。
2018版高中数学第三章三角恒等变换导学案新人教A版必修4
第三章 三角恒等变换1 三角恒等变换中角的变换的技巧三角函数是以角为自变量的函数,因此三角恒等变换离不开角之间的变换.观察条件及目标式中角度间联系,立足消除角之间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是三角恒等变换的一种常用技巧. 一、利用条件中的角表示目标中的角例1 已知cos ⎝ ⎛⎭⎪⎫π6+α=33,求cos ⎝ ⎛⎭⎪⎫5π6-α的值.分析 将π6+α看作一个整体,观察π6+α与5π6-α的关系.解 ∵⎝ ⎛⎭⎪⎫π6+α+⎝ ⎛⎭⎪⎫5π6-α=π,∴5π6-α=π-⎝ ⎛⎭⎪⎫π6+α.∴cos ⎝⎛⎭⎪⎫5π6-α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6+α=-cos ⎝ ⎛⎭⎪⎫π6+α=-33,即cos ⎝ ⎛⎭⎪⎫5π6-α=-33.二、利用目标中的角表示条件中的角 例2 设α为第四象限角,若sin 3αsin α=135,则tan 2α=_______________________________.分析 要求tan 2α的值,注意到sin 3α=sin(2α+α)=sin 2αcos α+cos 2αsin α,代入到sin 3αsin α=135中,首先求出cos 2α的值后,再由同角三角函数之间的关系求出tan 2α.解析 由sin 3αsin α=sin (2α+α)sin α=sin 2αcos α+cos 2αsin αsin α=2cos 2α+cos 2α=135.∵2cos 2α+cos 2α=1+2cos 2α=135.∴cos 2α=45.∵α为第四象限角,∴2k π+3π2<α<2k π+2π(k ∈Z ),∴4k π+3π<2α<4k π+4π(k ∈Z ), ∴2α可能在第三、四象限,又∵cos 2α=45,∴2α在第四象限,∴sin 2α=-35,tan 2α=-34.答案 -34三、注意发现互余角、互补角,利用诱导公式转化角 例3 已知sin ⎝ ⎛⎭⎪⎫π4-x =513,0<x <π4,求cos 2x cos ⎝ ⎛⎭⎪⎫π4+x 的值.分析 转化为已知角⎝⎛⎭⎪⎫π4-x 的三角函数值,求这个角的其余三角函数值,这样可以将所求式子化简,使其出现⎝ ⎛⎭⎪⎫π4-x 这个角的三角函数. 解 原式=sin ⎝ ⎛⎭⎪⎫π2+2x cos ⎝ ⎛⎭⎪⎫π4+x =2sin ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x=2sin ⎝⎛⎭⎪⎫π4+x =2cos ⎝ ⎛⎭⎪⎫π4-x , ∵sin ⎝ ⎛⎭⎪⎫π4-x =513,且0<x <π4,∴π4-x ∈⎝⎛⎭⎪⎫0,π4.∴cos ⎝ ⎛⎭⎪⎫π4-x =1-sin 2⎝ ⎛⎭⎪⎫π4-x =1213,∴原式=2³1213=2413.四、观察式子结构特征,灵活凑出特殊角例4 求函数f (x )=1-32sin(x -20°)-cos(x +40°)的最大值.分析 观察角(x +40°)-(x -20°)=60°,可以把x +40°看成(x -20°)+60°后运用公式展开,再合并化简函数f (x ).解 f (x )=1-32sin(x -20°)-cos[(x -20°)+60°]=12sin(x -20°)-32sin(x -20°)-cos(x -20°)cos 60°+sin(x -20°)sin 60° =12[sin(x -20°)-cos(x -20°)]=22sin(x -65°), 当x -65°=k ²360°+90°,即x =k ²360°+155°(k ∈Z )时,f (x )有最大值22.2 三角恒等变换的几个技巧三角题是高考的热点,素以“小而活”著称.除了掌握基础知识之外,还要注意灵活运用几个常用的技巧.下面通过例题进行解析,希望对同学们有所帮助. 一、灵活降幂例1 3-sin 70°2-cos 210°=________. 解析3-sin 70°2-cos 210°=3-sin 70°2-1+cos 20°2=3-cos 20°3-cos 20°2=2. 答案 2点评 常用的降幂技巧还有:因式分解降幂、用平方关系sin 2θ+cos 2θ=1进行降幂:如cos 4θ+sin 4θ=(cos 2θ+sin 2θ)2-2cos 2θsin 2θ=1-12sin 22θ,等等.二、化平方式 例2 化简求值:12-1212+12cos 2α(α∈(3π2,2π)). 解 因为α∈(3π2,2π),所以α2∈(3π4,π),所以cos α>0,sin α2>0,故原式=12-121+cos 2α2= 12-12cos α= sin2α2=sin α2. 点评 一般地,在化简求值时,遇到1+cos 2α、1-cos 2α、1+sin 2α、1-sin 2α常常化为平方式:2cos 2α、2sin 2α、(sin α+cos α)2、(sin α-cos α)2. 三、灵活变角例3 已知sin(π6-α)=13,则cos(2π3+2α)=________.解析 cos(2π3+2α)=2cos 2(π3+α)-1=2sin 2(π6-α)-1=2³(13)2-1=-79.答案 -79点评 正确快速求解本题的关键是灵活运用已知角“π6-α”表示待求角“2π3+2α”,善于发现前者和后者的一半互余. 四、构造齐次弦式比,由切求弦例4 已知tan θ=-12,则cos 2θ1+sin 2θ的值是________.解析 cos 2θ1+sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ+2sin θcos θ =1-tan 2θ1+tan 2θ+2tan θ=1-141+14+2³(-12)=3414=3. 答案 3点评 解本题的关键是先由二倍角公式和平方关系把“cos 2θ1+sin 2θ”化为关于sin θ和cosθ的二次齐次弦式比. 五、分子、分母同乘以2n sin α求cos αcos 2αcos 4αcos 8α…cos 2n -1²α的值例5 求cos π11cos 2π11cos 3π11cos 4π11cos 5π11的值.解 原式=-cos π11cos 2π11cos 4π11cos 8π11cos 5π11=-24sin π11cos π11cos 2π11cos 4π11cos 8π11cos5π1124sinπ11=-sin 16π11cos 5π1124sin π11=sin 5π11cos 5π1124sin π11=12²sin10π1124sinπ11=sinπ1125sinπ11=132.点评 这类问题的解决方法是分子、分母同乘以最小角的正弦的倍数即可.3 聚焦三角函数最值的求解策略一、化为y =A sin(ωx +φ)+B 的形式求解例1 求函数f (x )=sin 4x +cos 4x +sin 2x cos 2x2-sin 2x 的最值.解 原函数变形得f (x )=(sin 2x +cos 2x )2-sin 2x cos 2x2-sin 2x=1-14sin 22x 2-sin 2x =⎝ ⎛⎭⎪⎫1+12sin 2x ⎝ ⎛⎭⎪⎫1-12sin 2x 2⎝ ⎛⎭⎪⎫1-12sin 2x =14sin 2x +12.∴f (x )max =34,f (x )min =14. 例2 求函数y =sin 2x +2sin x cos x +3cos 2x 的最小值,并写出y 取最小值时x 的集合. 解 原函数化简得y =sin 2x +cos 2x +2 =2sin ⎝⎛⎭⎪⎫2x +π4+2.当2x +π4=2k π+32π,k ∈Z ,即x =k π+58π,k ∈Z 时,y min =2- 2.此时x 的集合为{x |x =k π+58π,k ∈Z }.点评 形如y =a sin 2ωx +b sin ωx cos ωx +c cos 2ωx +d (a ,b ,c ,d 为常数)的式子,都能转化成y =A sin(2ωx +φ)+B 的形式求最值. 二、利用正、余弦函数的有界性求解 例3 求函数y =2sin x +12sin x -1的值域.解 原函数整理得sin x =y +12(y -1).∵|sin x |≤1,∴⎪⎪⎪⎪⎪⎪y +12(y -1)≤1,解出y ≤13或y ≥3.∴函数的值域为{y |y ≤13或y ≥3}.例4 求函数y =sin x +3cos x -4的值域.解 原函数整理得sin x -y cos x =-4y -3,∴y 2+1sin(x +φ)=-4y -3,∴sin(x +φ)=-4y -31+y 2. ∵|sin(x +φ)|≤1,解不等式⎪⎪⎪⎪⎪⎪-4y -31+y 2≤1得-12-2615≤y ≤-12+2615. 点评 对于形如y =a sin x +b c sin x +d 或y =a sin x +bc cos x +d的这类函数,均可利用三角函数中弦函数的有界性去求最值.三、转化为一元二次函数在某确定区间上求最值例5 设关于x 的函数y =cos 2x -2a cos x -2a 的最小值为f (a ),写出f (a )的表达式.解 y =cos 2x -2a cos x -2a =2cos 2x -2a cos x -(2a +1)=2⎝ ⎛⎭⎪⎫cos x -a 22-⎝ ⎛⎭⎪⎫a 22+2a +1. 当a2<-1,即a <-2时,f (a )=y min =1,此时cos x =-1.当-1≤a 2≤1,即-2≤a ≤2时,f (a )=y min =-a 22-2a -1,此时cos x =a2.当a2>1,即a >2时,f (a )=y min =1-4a ,此时cos x =1. 综上所述,f (a )=⎩⎪⎨⎪⎧1(a <-2),-12a 2-2a -1(-2≤a ≤2),1-4a (a >2).点评 形如y =a sin 2x +b sin x +c 的三角函数可转化为二次函数y =at 2+bt +c 在区间[-1,1]上的最值问题解决.例6 试求函数y =sin x +cos x +2sin x cos x +2的最值.解 设sin x +cos x =t ,t ∈[-2, 2 ],则2sin x cos x =t 2-1,原函数变为y =t 2+t +1,t ∈[-2, 2 ],当t =-12时,y min =34;当t =2时,y max =3+ 2.点评 一般地,既含sin x +cos x (或sin x -cos x )又含sin x cos x 的三角函数采用换元法可以转化为t 的二次函数解最值.注意以下结论的运用,设sin x +cos x =t ,则sin x cosx =12(t 2-1);sin x -cos x =t ,则sin x cos x =12(1-t 2).四、利用函数的单调性求解例7 求函数y =(1+sin x )(3+sin x )2+sin x 的最值.解 y =sin 2x +4sin x +3sin x +2=(sin x +2)2-1sin x +2=(sin x +2)-1(sin x +2),令t =sin x +2,则t ∈[1,3],y =t -1t.利用函数单调性的定义易证函数y =t -1t在[1,3]上为增函数.故当t =1,即sin x =-1时,y min =0; 当t =3,即sin x =1时,y max =83.例8 在Rt△ABC 内有一内接正方形,它的一条边在斜边BC 上,设AB =a ,∠ABC =θ,△ABC 的面积为P ,正方形面积为Q .求PQ的最小值.解 AC =a tan θ,P =12AB ²AC =12a 2tan θ.设正方形的边长为x ,AG =x cos θ,BC =acos θ.BC边上的高h =a sin θ, ∵AG AB =h -x h ,即x cos θa =a sin θ-xa sin θ,∴x =a sin θ1+sin θcos θ,∴Q =x 2=a 2sin 2θ(1+sin θcos θ)2. 从而P Q =sin θ2cos θ²(1+sin θcos θ)2sin 2θ =(2+sin 2θ)24sin 2θ=1+⎝ ⎛⎭⎪⎫sin 2θ4+1sin 2θ. 易知函数y =1t +t4在区间(0,1]上单调递减,从而,当sin 2θ=1时,⎝ ⎛⎭⎪⎫P Q min =94. 点评 一些复杂的三角函数最值问题,通过适当换元转化为简单的代数函数后,可利用函数单调性巧妙解决.4 行百里者半九十——《三角恒等变换》一章易错问题盘点一、求角时选择三角函数类型不当而致错 例1 已知sin α=55,sin β=1010,α和β都是锐角,求α+β的值. [错解] 因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010, sin(α+β)=sin αcos β+cos αsin β =55³31010+255³1010=22.因为α,β∈⎝⎛⎭⎪⎫0,π2,则α+β∈(0,π).所以α+β=π4或3π4.[剖析] 由sin α=55,sin β=1010,α和β都是锐角,可以知道α和β都是定值,因此α+β也是定值,因此上述解法出现两个答案,其中就有一个是错误的.这是因为sin(α+β)在第一、第二象限没有区分度,应选择计算cos(α+β)的值. [正解] 因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010,cos(α+β)=cos αcos β-sin αsin β=255³31010-55³1010=22. 因为α,β∈⎝⎛⎭⎪⎫0,π2,所以α+β∈(0,π),所以α+β=π4.二、忽视条件中隐含的角的范围而致错例2 已知tan 2α+6tan α+7=0,tan 2β+6tan β+7=0,α、β∈(0,π),且α≠β,求α+β的值.[错解] 由题意知tan α、tan β是方程x 2+6x +7=0的两根,由根与系数的关系,得⎩⎪⎨⎪⎧tan α+tan β=-6, ①tan αtan β=7, ②∴tan(α+β)=tan α+tan β1-tan αtan β=-61-7=1.∵0<α<π,0<β<π,∴0<α+β<2π, ∴α+β=π4或α+β=54π.[剖析] 由①②知tan α<0,tan β<0,角α、β都是钝角.上述解法忽视了这一隐含条件.[正解] 由⎩⎪⎨⎪⎧tan α+tan β=-6,tan αtan β=7易知tan α<0,tan β<0.∵α、β∈(0,π),∴π2<α<π,π2<β<π,∴π<α+β<2π.又∵tan(α+β)=1,∴α+β=54π.三、忽略三角形内角间的关系而致错例3 在△ABC 中,已知sin A =35,cos B =513,求cos C .[错解] 由sin A =35,得cos A =±45,由cos B =513,得sin B =1213,当cos A =45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.当cos A =-45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =5665.[剖析] 在△ABC 中,三个内角A 、B 、C 的和为π,解题时要充分利用这一定理.本题得到cos A =±45后,没有对cos A =-45这一结果是否合理进行检验,从而导致结论不正确.[正解] 由cos B =513>0,得B ∈⎝ ⎛⎭⎪⎫0,π2,且sin B =1213.由sin A =35,得cos A =±45,当cos A =-45时,cos A <-12,∴A >2π3.∵sin B =1213>32,B ∈⎝⎛⎭⎪⎫0,π2,∴B >π3.故当cos A =-45时,A +B >π,与A 、B 是△ABC 的内角矛盾.∴cos A =45,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.四、忽略三角函数的定义域而致错例4 判断函数f (x )=1+sin x -cos x1+sin x +cos x 的奇偶性.[错解] f (x )=1+sin x -cos x1+sin x +cos x=1+2sin x2cos x 2-⎝⎛⎭⎪⎫1-2sin 2x 21+2sin x2cos x 2+⎝⎛⎭⎪⎫2cos 2x 2-1=2sin x 2⎝ ⎛⎭⎪⎫cos x2+sin x 22cos x 2⎝⎛⎭⎪⎫sin x 2+cos x 2=tan x 2,由此得f (-x )=tan ⎝ ⎛⎭⎪⎫-x 2=-tan x2=-f (x ),因此函数f (x )为奇函数.[剖析] 运用公式后所得函数f (x )=tan x2的定义域为{}x |x ∈R ,x ≠2k π+π,k ∈Z .两函数的定义域不同,变形后的函数定义域扩大致错. [正解] 事实上,由1+sin x +cos x ≠0可得sin x +cos x ≠-1,即2sin ⎝⎛⎭⎪⎫x +π4≠-1,从而sin ⎝⎛⎭⎪⎫x +π4≠-22,所以x +π4≠2k π+5π4且x +π4≠2k π+7π4(k ∈Z ),故函数f (x )的定义域是⎩⎨⎧⎭⎬⎫x |x ≠2k π+π且x ≠2k π+3π2,k ∈Z ,显然该定义域不关于原点对称. 因此,函数f (x )为非奇非偶函数.温馨点评 判断函数的奇偶性,首先要看定义域,若定义域不关于原点对称,则函数一定是非奇非偶函数.上述解法正是由于忽视了对函数定义域这一隐含条件的考虑致错. 五、误用公式a sin x +b cos x =a 2+b 2sin(x +φ)而致错例5 若函数f (x )=sin(x +θ)+cos(x -θ),x ∈R 是偶函数,求θ的值.[错解] ∵f (x )=sin(x +θ)+cos(x -θ), ∴f (0)=sin θ+cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π4. ∵f (x )=sin(x +θ)+cos(x -θ)是偶函数. ∴|f (0)|=f (x )max = 2.∴f (0)=2sin ⎝ ⎛⎭⎪⎫θ+π4=±2,∴sin ⎝ ⎛⎭⎪⎫θ+π4=±1,∴θ+π4=k π+π2,k ∈Z .即θ=k π+π4,k ∈Z .[剖析] ∵x +θ与x -θ是不同的角.∴函数f (x )的最大值不是2,上述解答把f (x )的最大值误当作2来处理. [正解] ∵f (x )=sin(x +θ)+cos(x -θ)是偶函数. ∴f (x )=f (-x )对一切x ∈R 恒成立.即sin(x +θ)+cos(x -θ)=sin(-x +θ)+cos(-x -θ)恒成立. ∴[sin(x +θ)+sin(x -θ)]+[cos(x -θ)-cos(x +θ)]=0. ∴2sin x cos θ+2sin x sin θ=0恒成立. 即2sin x (cos θ+sin θ)=0恒成立. ∴cos θ+sin θ=0.∵cos θ+sin θ=2sin ⎝ ⎛⎭⎪⎫θ+π4=0. ∴θ+π4=k π,即θ=k π-π4,k ∈Z .5 平面向量与三角函数的交汇题型大全平面向量与三角函数的交汇是当今高考命题的一个热点,这是因为此类试题既新颖而精巧,又符合在知识的“交汇处”构题的命题思想.这类试题解答的关键是利用向量的平行、垂直、夹角、模、数量积公式将问题转化为三角问题,然后联想相关的三角函数知识求解. 一、平面向量平行与三角函数交汇例1 已知a =(2cos x +23sin x ,1),b =(y ,cos x ),且a ∥b .若f (x )是y 关于x 的函数,则f (x )的最小正周期为________.解析 由a ∥b 得2cos 2x +23sin x cos x -y =0, 即y =2cos 2x +23sin x cos x =cos 2x +3sin 2x +1 =2sin(2x +π6)+1,所以f (x )=2sin(2x +π6)+1,所以函数f (x )的最小正周期为T =2π2=π.答案 π点评 解答平面向量平行与三角函数的交汇试题一般先用平面向量平行的条件求涉及到三角函数的解析式或某角的函数值,然后再利用三角知识求解. 二、平面向量垂直与三角函数交汇例2 已知向量a =(4,5cos α),b =(3,-4tan α),α∈(0,π2),若a ⊥b ,则cos(2α+π4)=________. 解析 因为a ⊥b ,所以4³3+5cos α³(-4tan α)=0, 解得sin α=35.又因为α∈(0,π2),所以cos α=45.cos 2α=1-2sin 2α=725,sin 2α=2sin αcos α=2425,于是cos(2α+π4)=cos 2αcos π4-sin 2αsin π4=-17250.答案 -17250点评 解答平面向量垂直与三角函数的交汇试题通常先利用平面向量垂直的条件将向量问题转化为三角函数问题,再利用三角函数的知识进行处理.三、平面向量夹角与三角函数交汇例3 已知向量m =(sin θ,1-cos θ)(0<θ<π)与向量n =(2,0)的夹角为π3,则θ=________. 解析 由条件得|m |=sin 2θ+(1-cos θ)2=2-2cos θ,|n |=2,m ²n =2sin θ,于是由平面向量的夹角公式得cos π3=m ²n |m ||n |=2sin θ22-2cos θ=12,整理得2cos 2θ-cos θ-1=0,解得cos θ=-12或cos θ=1(舍去). 因为0<θ<π,所以θ=2π3.答案2π3点评 解答平面向量的夹角与三角函数的交汇试题主要利用平面向量的夹角公式建立某角的三角函数的方程或不等式,然后由三角函数的知识求解. 四、平面向量的模与三角函数交汇例4 若向量a =(cos θ,sin θ),b =(3,-1),则|2a -b |的最大值为________. 解析 由条件可得|a |=1,|b |=2,a ²b =3cos θ-sin θ, 则|2a -b |= |2a -b |2= 4a 2+b 2-4a ²b =8-4(3cos θ-sin θ)= 8-8cos (θ+π6)≤4,所以|2a -b |的最大值为4. 答案 4点评 解答平面向量的模与三角函数交汇一般要用到向量的模的性质|a |2=a 2.如果是求模的大小,则一般可直接求解;如果是求模的最值,则常常先建立模关于某角的三角函数,然后利用三角函数的有界性求解. 五、平面向量数量积与三角函数交汇例5 若函数f (x )=2sin(π6x +π3)(-2<x <10)的图象与x 轴交于点A ,过点A 的直线l 与函数的图象交于B 、C 两点,则(OB →+OC →)²OA →等于( ) A.-32 B.-16 C.16D.32解析 由f (x )=0,解得x =4,即A (4,0),过点A 的直线l 与函数的图象交于B 、C 两点,根据对称性可知,A 是BC 的中点,所以OB →+OC →=2OA →,所以(OB →+OC →)²OA →=2OA →²OA →=2|OA →|2=2³42=32,答案 D点评 平面向量数量积与三角函数的综合主要体现为两类:(1)利用三角函数给出向量的坐标形式,然后求数量积,解答时利用数量积公式可直接解决;(2)给出三角函数图象,求图象上相关点构成的向量之间的数量积,解答时关键是求涉及到的向量的模、以及它们的夹角.6 单位圆与三角恒等变换巧结缘单位圆与三角函数有着密切联系,下面我们通过例题来看看单位圆与三角恒等变换是如何结缘的.一、借助单位圆解决问题例1 已知sin α+sin β=14,cos α+cos β=13,求tan α+β2.(提示:已知A (x 1,y 1),B (x 2,y 2),则AB 中点的坐标为⎝ ⎛⎭⎪⎫⎝⎛⎭⎪⎫x 1+x 22,⎝ ⎛⎭⎪⎫y 1+y 22解 设A (cos α,sin α),B (cos β,sin β)均在单位圆上,如图,则以OA 、OB 为终边的角分别为α、β,由已知,sin α+sin β=14,cos α+cos β=13,用题设所给的中点坐标公式,得AB 的中点C ⎝ ⎛⎭⎪⎫16,18,如图,由平面几何知识知,以OC 为终边的角为β-α2+α=α+β2,且过点C ⎝ ⎛⎭⎪⎫16,18,由三角函数的坐标定义,知tan α+β2=1816=34.点评 借助单位圆使问题简单化,这种思维方法贯穿整个三角函数问题的始终,特别在求值中更能显出它的价值.二、单位圆与恒等变换的交汇例2 已知圆x 2+y 2=R 2与直线y =2x +m 相交于A 、B 两点,以x 轴的正方向为始边,OA 为终边(O 是坐标原点)的角为α,OB 为终边的角为β,则tan(α+β)的值为________. 解析 如图,过O 作OM ⊥AB 于点M ,不妨设α、β∈[0,2π],则∠AOM =∠BOM =12∠AOB=12(β-α), 又因为∠xOM =α+∠AOM =α+β2, 所以tan α+β2=k OM =-1k AB =-12,故tan(α+β)=2tanα+β21-tan2α+β2=-43.答案 -43点评 若是采用先求A 、B 两点的坐标,再求α、β的正切值这一思路就很繁锁甚至做不下去,可见用不同的解决方法繁简程度不同.例3 如图,A ,B 是单位圆O 上的点,OA 为角α的终边,OB 为角β的终边,M 为AB 的中点,连接OM 并延长交圆O 于点C.(1)若α=π6,β=π3,求点M 的坐标;(2)设α=θ(θ∈⎣⎢⎡⎦⎥⎤0,π3),β=π3,C (m ,n ),求y =m +n 的最小值,并求使函数取得最小值时θ的取值.解 (1)由三角函数定义可知,A ⎝⎛⎭⎪⎫32,12,B ⎝ ⎛⎭⎪⎫12,32,由中点坐标公式可得M ⎝⎛⎭⎪⎫3+14,3+14.(2)由已知得∠xOC =12(α+β)=12(θ+π3),即C ⎝ ⎛⎭⎪⎫cos ⎝ ⎛⎭⎪⎫12θ+π6,sin ⎝ ⎛⎭⎪⎫12θ+π6,故m =cos ⎝ ⎛⎭⎪⎫12θ+π6,n =sin ⎝ ⎛⎭⎪⎫12θ+π6,所以y =cos ⎝ ⎛⎭⎪⎫12θ+π6+sin ⎝ ⎛⎭⎪⎫12θ+π6=2sin ⎝ ⎛⎭⎪⎫12θ+5π12,又因为θ∈⎣⎢⎡⎦⎥⎤0,π3,故5π12≤12θ+5π12≤7π12, 当θ=0或π3时,函数取得最小值y min =2sin 5π12=3+12.点评 借助单位圆和点的坐标,数形结合,利用平面几何知识和三角函数的定义使问题简单化.7 教你用好辅助角公式在三角函数中,辅助角公式a sin θ+b cos θ=a 2+b 2²sin(θ+φ),其中角φ所在的象限由a ,b 的符号确定,φ的值由tan φ=ba确定,它在三角函数中应用比较广泛,下面举例说明,以供同学们参考. 一、求最值例1 求函数y =2sin x (sin x -cos x )的最小值. 解 y =2sin x (sin x -cos x )=2sin 2x -2sin x cos x =1-cos2x -sin 2x =1-2⎝ ⎛⎭⎪⎫sin 2x ²22+cos 2x ²22 =1-2⎝ ⎛⎭⎪⎫sin 2x cos π4+cos 2x sin π4 =1-2sin ⎝ ⎛⎭⎪⎫2x +π4, 所以函数y 的最小值为1- 2. 二、求单调区间例2 求函数y =12cos 2x +32sin x cos x +1的单调区间.解 y =12cos 2x +32sin x cos x +1=14(1+cos 2x )+34sin 2x +1 =34sin 2x +14cos 2x +54=12⎝ ⎛⎭⎪⎫32sin 2x +12cos 2x +54 =12sin ⎝⎛⎭⎪⎫2x +π6+54.由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),得k π-π3≤x ≤k π+π6(k ∈Z ).由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z ),得k π+π6≤x ≤k π+2π3(k ∈Z ).所以函数的单调增区间是[k π-π3,k π+π6](k ∈Z );函数的单调减区间是[k π+π6,k π+2π3](k ∈Z ). 三、求周期例3 函数y =cos 22x +4cos 2x sin 2x 的最小正周期是( ) A.2π B.π C.π2 D.π4答案 C解析 y =cos 22x +4cos 2x sin 2x =12cos 4x +2sin 4x +12=172sin(4x +φ)+12(其中sin φ=1717,cos φ=41717),函数的最小正周期为T =2π4=π2.故选C. 四、求参数的值例4 如果函数y =sin 2x +a cos 2x 的图象关于直线x =-π8对称,则实数a 的值为( )A. 2B.- 2C.1D.-1 答案 D解析 y =1+a 2sin(2x +φ)(其中tan φ=a ).因为x =-π8是对称轴,所以直线x =-π8过函数图象的最高点或最低点.即当x =-π8时,y =1+a 2或y =-1+a 2.所以sin ⎝ ⎛⎭⎪⎫-π4+a cos ⎝ ⎛⎭⎪⎫-π4=±1+a 2.即22(a -1)=±1+a 2.所以a =-1.故选D.。
人教A版高中数学必修4第三章三角恒等变换导学案
第三章 三角恒等变换1.三角恒等变换中角的变换的技巧三角函数是以角为自变量的函数,因此三角恒等变换离不开角之间的变换.观察条件及目标式中角度间联系,立足消除角之间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是三角恒等变换的一种常用技巧. 一、利用条件中的角表示目标中的角例1.已知cos ⎝ ⎛⎭⎪⎫π6+α=33,求cos ⎝ ⎛⎭⎪⎫5π6-α的值.分析.将π6+α看作一个整体,观察π6+α与5π6-α的关系.解.∵⎝ ⎛⎭⎪⎫π6+α+⎝ ⎛⎭⎪⎫5π6-α=π,∴5π6-α=π-⎝ ⎛⎭⎪⎫π6+α.∴cos ⎝⎛⎭⎪⎫5π6-α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6+α=-cos ⎝ ⎛⎭⎪⎫π6+α=-33,即cos ⎝ ⎛⎭⎪⎫5π6-α=-33.二、利用目标中的角表示条件中的角 例2.设α为第四象限角,若sin 3αsin α=135,则tan 2α=_______________________________.分析.要求tan 2α的值,注意到sin 3α=sin(2α+α)=sin 2αcos α+cos 2αsin α,代入到sin 3αsin α=135中,首先求出cos 2α的值后,再由同角三角函数之间的关系求出tan2α.解析.由sin 3αsin α=sin (2α+α)sin α=sin 2αcos α+cos 2αsin αsin α=2cos 2α+cos 2α=135.∵2cos 2α+cos 2α=1+2cos 2α=135.∴cos 2α=45.∵α为第四象限角,∴2k π+3π2<α<2k π+2π(k ∈Z ),∴4k π+3π<2α<4k π+4π(k ∈Z ),∴2α可能在第三、四象限, 又∵cos 2α=45,∴2α在第四象限,∴sin 2α=-35,tan 2α=-34.答案.-34三、注意发现互余角、互补角,利用诱导公式转化角 例3.已知sin ⎝ ⎛⎭⎪⎫π4-x =513,0<x <π4,求cos 2x cos ⎝ ⎛⎭⎪⎫π4+x 的值.分析.转化为已知角⎝ ⎛⎭⎪⎫π4-x 的三角函数值,求这个角的其余三角函数值,这样可以将所求式子化简,使其出现⎝ ⎛⎭⎪⎫π4-x 这个角的三角函数. 解.原式=sin ⎝ ⎛⎭⎪⎫π2+2x cos ⎝ ⎛⎭⎪⎫π4+x =2sin ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x=2sin ⎝⎛⎭⎪⎫π4+x =2cos ⎝ ⎛⎭⎪⎫π4-x , ∵sin ⎝ ⎛⎭⎪⎫π4-x =513,且0<x <π4,∴π4-x ∈⎝⎛⎭⎪⎫0,π4.∴cos ⎝ ⎛⎭⎪⎫π4-x =1-sin 2⎝ ⎛⎭⎪⎫π4-x =1213,∴原式=2×1213=2413.四、观察式子结构特征,灵活凑出特殊角例4.求函数f (x )=1-32sin(x -20°)-cos(x +40°)的最大值.分析.观察角(x +40°)-(x -20°)=60°,可以把x +40°看成(x -20°)+60°后运用公式展开,再合并化简函数f (x ).解.f (x )=1-32sin(x -20°)-cos[(x -20°)+60°]=12sin(x -20°)-32sin(x -20°)-cos(x -20°)cos 60°+sin(x -20°)sin 60° =12[sin(x -20°)-cos(x -20°)]=22sin(x -65°),当x -65°=k ·360°+90°,即x =k ·360°+155°(k ∈Z )时,f (x )有最大值22.2.三角恒等变换的几个技巧三角题是高考的热点,素以“小而活”著称.除了掌握基础知识之外,还要注意灵活运用几个常用的技巧.下面通过例题进行解析,希望对同学们有所帮助. 一、灵活降幂例1 3-sin 70°2-cos 210°=________. 解析.3-sin 70°2-cos 210°=3-sin 70°2-1+cos 20°2=3-cos 20°3-cos 20°2=2. 答案.2点评.常用的降幂技巧还有:因式分解降幂、用平方关系sin 2θ+cos 2θ=1进行降幂:如cos 4θ+sin 4θ=(cos 2θ+sin 2θ)2-2cos 2θsin 2θ=1-12sin 22θ,等等.二、化平方式 例2 化简求值:12-1212+12cos 2α(α∈(3π2,2π)). 解.因为α∈(3π2,2π),所以α2∈(3π4,π),所以cos α>0,sin α2>0,故原式=12-121+cos 2α2= 12-12cos α= sin2α2=sin α2. 点评.一般地,在化简求值时,遇到1+cos 2α、1-cos 2α、1+sin 2α、1-sin 2α常常化为平方式:2cos 2α、2sin 2α、(sin α+cos α)2、(sin α-cos α)2. 三、灵活变角例3 已知sin(π6-α)=13,则cos(2π3+2α)=________.解析.cos(2π3+2α)=2cos 2(π3+α)-1=2sin 2(π6-α)-1=2×(13)2-1=-79.答案.-79点评.正确快速求解本题的关键是灵活运用已知角“π6-α”表示待求角“2π3+2α”,善于发现前者和后者的一半互余.四、构造齐次弦式比,由切求弦例4 已知tan θ=-12,则cos 2θ1+sin 2θ的值是________.解析.cos 2θ1+sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ+2sin θcos θ =1-tan 2θ1+tan 2θ+2tan θ=1-141+14+2×(-12)=3414=3. 答案.3点评.解本题的关键是先由二倍角公式和平方关系把“cos 2θ1+sin 2θ”化为关于sin θ和cosθ的二次齐次弦式比. 五、分子、分母同乘以2n sin α求cos αcos 2αcos 4αcos 8α…cos 2n -1·α的值例5 求cos π11cos 2π11cos 3π11cos 4π11cos 5π11的值.解.原式=-cos π11cos 2π11cos 4π11cos 8π11cos 5π11=-24sin π11cos π11cos 2π11cos 4π11cos 8π11cos5π1124sinπ11=-sin 16π11cos 5π1124sin π11=sin 5π11cos 5π1124sin π11=12·sin10π1124sinπ11=sinπ1125sinπ11=132.点评.这类问题的解决方法是分子、分母同乘以最小角的正弦的倍数即可.3.聚焦三角函数最值的求解策略一、化为y =A sin(ωx +φ)+B 的形式求解例1.求函数f (x )=sin 4x +cos 4x +sin 2x cos 2x2-sin 2x的最值.解.原函数变形得f (x )=(sin 2x +cos 2x )2-sin 2x cos 2x2-sin 2x=1-14sin 22x 2-sin 2x =⎝ ⎛⎭⎪⎫1+12sin 2x ⎝ ⎛⎭⎪⎫1-12sin 2x 2⎝ ⎛⎭⎪⎫1-12sin 2x =14sin 2x +12.∴f (x )max =34,f (x )min =14. 例2.求函数y =sin 2x +2sin x cos x +3cos 2x 的最小值,并写出y 取最小值时x 的集合. 解.原函数化简得y =sin 2x +cos 2x +2 =2sin ⎝⎛⎭⎪⎫2x +π4+2.当2x +π4=2k π+32π,k ∈Z ,即x =k π+58π,k ∈Z 时,y min =2- 2.此时x 的集合为{x |x =k π+58π,k ∈Z }.点评.形如y =a sin 2ωx +b sin ωx cos ωx +c cos 2ωx +d (a ,b ,c ,d 为常数)的式子,都能转化成y =A sin(2ωx +φ)+B 的形式求最值. 二、利用正、余弦函数的有界性求解 例3.求函数y =2sin x +12sin x -1的值域.解.原函数整理得sin x =y +12(y -1).∵|sin x |≤1,∴⎪⎪⎪⎪⎪⎪y +12(y -1)≤1,解出y ≤13或y ≥3.∴函数的值域为{y |y ≤13或y ≥3}.例4.求函数y =sin x +3cos x -4的值域.解.原函数整理得sin x -y cos x =-4y -3,∴y 2+1sin(x +φ)=-4y -3,∴sin(x +φ)=-4y -31+y 2. ∵|sin(x +φ)|≤1,解不等式⎪⎪⎪⎪⎪⎪-4y -31+y 2≤1得-12-2615≤y ≤-12+2615. 点评.对于形如y =a sin x +b c sin x +d 或y =a sin x +bc cos x +d的这类函数,均可利用三角函数中弦函数的有界性去求最值.三、转化为一元二次函数在某确定区间上求最值例5.设关于x 的函数y =cos 2x -2a cos x -2a 的最小值为f (a ),写出f (a )的表达式.解.y =cos 2x -2a cos x -2a =2cos 2x -2a cos x -(2a +1)=2⎝ ⎛⎭⎪⎫cos x -a 22-⎝ ⎛⎭⎪⎫a 22+2a +1. 当a2<-1,即a <-2时,f (a )=y min =1,此时cos x =-1.当-1≤a 2≤1,即-2≤a ≤2时,f (a )=y min =-a 22-2a -1,此时cos x =a2.当a2>1,即a >2时,f (a )=y min =1-4a ,此时cos x =1. 综上所述,f (a )=⎩⎪⎨⎪⎧1(a <-2),-12a 2-2a -1(-2≤a ≤2),1-4a (a >2).点评.形如y =a sin 2x +b sin x +c 的三角函数可转化为二次函数y =at 2+bt +c 在区间[-1,1]上的最值问题解决.例6.试求函数y =sin x +cos x +2sin x cos x +2的最值.解.设sin x +cos x =t ,t ∈[-2, 2 ],则2sin x cos x =t 2-1,原函数变为y =t 2+t +1,t ∈[-2, 2 ],当t =-12时,y min =34;当t =2时,y max =3+ 2.点评.一般地,既含sin x +cos x (或sin x -cos x )又含sin x cos x 的三角函数采用换元法可以转化为t 的二次函数解最值.注意以下结论的运用,设sin x +cos x =t ,则sin x cos x =12(t 2-1);sin x -cos x =t ,则sin x cos x =12(1-t 2). 四、利用函数的单调性求解例7.求函数y =(1+sin x )(3+sin x )2+sin x 的最值.解.y =sin 2x +4sin x +3sin x +2=(sin x +2)2-1sin x +2=(sin x +2)-1(sin x +2),令t =sin x +2,则t ∈[1,3],y =t -1t.利用函数单调性的定义易证函数y =t -1t在[1,3]上为增函数.故当t =1,即sin x =-1时,y min =0;当t =3,即sin x =1时,y max =83.例8.在Rt△ABC 内有一内接正方形,它的一条边在斜边BC 上,设AB =a ,∠ABC =θ,△ABC 的面积为P ,正方形面积为Q .求P Q的最小值.解.AC =a tan θ,P =12AB ·AC =12a 2tan θ.设正方形的边长为x ,AG =x cos θ,BC =acos θ.BC 边上的高h =a sin θ,∵AG AB =h -x h ,即x cos θa =a sin θ-xa sin θ,∴x =a sin θ1+sin θcos θ,∴Q =x 2=a 2sin 2θ(1+sin θcos θ)2. 从而P Q =sin θ2cos θ·(1+sin θcos θ)2sin 2θ =(2+sin 2θ)24sin 2θ=1+⎝ ⎛⎭⎪⎫sin 2θ4+1sin 2θ. 易知函数y =1t +t4在区间(0,1]上单调递减,从而,当sin 2θ=1时,⎝ ⎛⎭⎪⎫P Q min =94. 点评.一些复杂的三角函数最值问题,通过适当换元转化为简单的代数函数后,可利用函数单调性巧妙解决.4.行百里者半九十——《三角恒等变换》一章易错问题盘点一、求角时选择三角函数类型不当而致错 例1.已知sin α=55,sin β=1010,α和β都是锐角,求α+β的值. [错解].因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010, sin(α+β)=sin αcos β+cos αsin β=55×31010+255×1010=22. 因为α,β∈⎝⎛⎭⎪⎫0,π2,则α+β∈(0,π).所以α+β=π4或3π4.[剖析].由sin α=55,sin β=1010,α和β都是锐角,可以知道α和β都是定值,因此α+β也是定值,因此上述解法出现两个答案,其中就有一个是错误的.这是因为sin(α+β)在第一、第二象限没有区分度,应选择计算cos(α+β)的值. [正解].因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010,cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22. 因为α,β∈⎝⎛⎭⎪⎫0,π2,所以α+β∈(0,π),所以α+β=π4.二、忽视条件中隐含的角的范围而致错例2.已知tan 2α+6tan α+7=0,tan 2β+6tan β+7=0,α、β∈(0,π),且α≠β,求α+β的值.[错解].由题意知tan α、tan β是方程x 2+6x +7=0的两根,由根与系数的关系,得⎩⎪⎨⎪⎧tan α+tan β=-6, ①tan αtan β=7, ②∴tan(α+β)=tan α+tan β1-tan αtan β=-61-7=1.∵0<α<π,0<β<π,∴0<α+β<2π, ∴α+β=π4或α+β=54π.[剖析].由①②知tan α<0,tan β<0,角α、β都是钝角.上述解法忽视了这一隐含条件.[正解].由⎩⎪⎨⎪⎧tan α+tan β=-6,tan αtan β=7易知tan α<0,tan β<0.∵α、β∈(0,π),∴π2<α<π,π2<β<π,∴π<α+β<2π. 又∵tan(α+β)=1,∴α+β=54π.三、忽略三角形内角间的关系而致错例3.在△ABC 中,已知sin A =35,cos B =513,求cos C .[错解].由sin A =35,得cos A =±45,由cos B =513,得sin B =1213,当cos A =45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.当cos A =-45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =5665.[剖析].在△ABC 中,三个内角A 、B 、C 的和为π,解题时要充分利用这一定理.本题得到cos A =±45后,没有对cos A =-45这一结果是否合理进行检验,从而导致结论不正确.[正解].由cos B =513>0,得B ∈⎝ ⎛⎭⎪⎫0,π2,且sin B =1213.由sin A =35,得cos A =±45,当cos A =-45时,cos A <-12,∴A >2π3.∵sin B =1213>32,B ∈⎝⎛⎭⎪⎫0,π2,∴B >π3.故当cos A =-45时,A +B >π,与A 、B 是△ABC 的内角矛盾.∴cos A =45,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.四、忽略三角函数的定义域而致错例4.判断函数f (x )=1+sin x -cos x 1+sin x +cos x 的奇偶性.[错解].f (x )=1+sin x -cos x1+sin x +cos x=1+2sin x2cos x 2-⎝⎛⎭⎪⎫1-2sin 2x 21+2sin x2cos x 2+⎝⎛⎭⎪⎫2cos 2x 2-1=2sin x 2⎝ ⎛⎭⎪⎫cos x2+sin x 22cos x 2⎝⎛⎭⎪⎫sin x 2+cos x 2=tan x 2,由此得f (-x )=tan ⎝ ⎛⎭⎪⎫-x 2=-tan x2=-f (x ),因此函数f (x )为奇函数.[剖析].运用公式后所得函数f (x )=tan x2的定义域为{}x |x ∈R ,x ≠2k π+π,k ∈Z .两函数的定义域不同,变形后的函数定义域扩大致错. [正解].事实上,由1+sin x +cos x ≠0可得sin x +cos x ≠-1,即2sin ⎝⎛⎭⎪⎫x +π4≠-1,从而sin ⎝⎛⎭⎪⎫x +π4≠-22,所以x +π4≠2k π+5π4且x +π4≠2k π+7π4(k ∈Z ),故函数f (x )的定义域是⎩⎨⎧⎭⎬⎫x |x ≠2k π+π且x ≠2k π+3π2,k ∈Z ,显然该定义域不关于原点对称. 因此,函数f (x )为非奇非偶函数.温馨点评.判断函数的奇偶性,首先要看定义域,若定义域不关于原点对称,则函数一定是非奇非偶函数.上述解法正是由于忽视了对函数定义域这一隐含条件的考虑致错.五、误用公式a sin x +b cos x =a 2+b 2sin(x +φ)而致错例5.若函数f (x )=sin(x +θ)+cos(x -θ),x ∈R 是偶函数,求θ的值. [错解].∵f (x )=sin(x +θ)+cos(x -θ), ∴f (0)=sin θ+cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π4. ∵f (x )=sin(x +θ)+cos(x -θ)是偶函数. ∴|f (0)|=f (x )max = 2.∴f (0)=2sin ⎝ ⎛⎭⎪⎫θ+π4=±2,∴sin ⎝ ⎛⎭⎪⎫θ+π4=±1,∴θ+π4=k π+π2,k ∈Z .即θ=k π+π4,k ∈Z .[剖析].∵x +θ与x -θ是不同的角.∴函数f (x )的最大值不是2,上述解答把f (x )的最大值误当作2来处理. [正解].∵f (x )=sin(x +θ)+cos(x -θ)是偶函数. ∴f (x )=f (-x )对一切x ∈R 恒成立.即sin(x +θ)+cos(x -θ)=sin(-x +θ)+cos(-x -θ)恒成立. ∴[sin(x +θ)+sin(x -θ)]+[cos(x -θ)-cos(x +θ)]=0. ∴2sin x cos θ+2sin x sin θ=0恒成立. 即2sin x (cos θ+sin θ)=0恒成立. ∴cos θ+sin θ=0.∵cos θ+sin θ=2sin ⎝ ⎛⎭⎪⎫θ+π4=0. ∴θ+π4=k π,即θ=k π-π4,k ∈Z .5.平面向量与三角函数的交汇题型大全平面向量与三角函数的交汇是当今高考命题的一个热点,这是因为此类试题既新颖而精巧,又符合在知识的“交汇处”构题的命题思想.这类试题解答的关键是利用向量的平行、垂直、夹角、模、数量积公式将问题转化为三角问题,然后联想相关的三角函数知识求解. 一、平面向量平行与三角函数交汇例1 已知a =(2cos x +23sin x ,1),b =(y ,cos x ),且a ∥b .若f (x )是y 关于x 的函数,则f (x )的最小正周期为________.解析.由a ∥b 得2cos 2x +23sin x cos x -y =0, 即y =2cos 2x +23sin x cos x =cos 2x +3sin 2x +1 =2sin(2x +π6)+1,所以f (x )=2sin(2x +π6)+1,所以函数f (x )的最小正周期为T =2π2=π.答案.π点评.解答平面向量平行与三角函数的交汇试题一般先用平面向量平行的条件求涉及到三角函数的解析式或某角的函数值,然后再利用三角知识求解. 二、平面向量垂直与三角函数交汇例2 已知向量a =(4,5cos α),b =(3,-4tan α),α∈(0,π2),若a ⊥b ,则cos(2α+π4)=________. 解析.因为a ⊥b ,所以4×3+5cos α×(-4tan α)=0, 解得sin α=35.又因为α∈(0,π2),所以cos α=45.cos 2α=1-2sin 2α=725,sin 2α=2sin αcos α=2425,于是cos(2α+π4)=cos 2αcos π4-sin 2αsin π4=-17250.答案.-17250点评.解答平面向量垂直与三角函数的交汇试题通常先利用平面向量垂直的条件将向量问题转化为三角函数问题,再利用三角函数的知识进行处理. 三、平面向量夹角与三角函数交汇例3 已知向量m =(sin θ,1-cos θ)(0<θ<π)与向量n =(2,0)的夹角为π3,则θ=________. 解析.由条件得|m |=sin 2θ+(1-cos θ)2=2-2cos θ,|n |=2,m ·n =2sin θ,于是由平面向量的夹角公式得cos π3=m ·n |m ||n |=2sin θ22-2cos θ=12,整理得2cos 2θ-cos θ-1=0,解得cos θ=-12或cos θ=1(舍去). 因为0<θ<π,所以θ=2π3.答案.2π3点评.解答平面向量的夹角与三角函数的交汇试题主要利用平面向量的夹角公式建立某角的三角函数的方程或不等式,然后由三角函数的知识求解. 四、平面向量的模与三角函数交汇例4 若向量a =(cos θ,sin θ),b =(3,-1),则|2a -b |的最大值为________. 解析.由条件可得|a |=1,|b |=2,a ·b =3cos θ-sin θ, 则|2a -b |= |2a -b |2= 4a 2+b 2-4a ·b =8-4(3cos θ-sin θ)= 8-8cos (θ+π6)≤4,所以|2a -b |的最大值为4. 答案.4点评.解答平面向量的模与三角函数交汇一般要用到向量的模的性质|a |2=a 2.如果是求模的大小,则一般可直接求解;如果是求模的最值,则常常先建立模关于某角的三角函数,然后利用三角函数的有界性求解. 五、平面向量数量积与三角函数交汇例5 若函数f (x )=2sin(π6x +π3)(-2<x <10)的图象与x 轴交于点A ,过点A 的直线l 与函数的图象交于B 、C 两点,则(OB →+OC →)·OA →等于(..) A.-32 B.-16 C.16D.32解析.由f (x )=0,解得x =4,即A (4,0),过点A 的直线l 与函数的图象交于B 、C 两点,根据对称性可知,A 是BC 的中点,所以OB →+OC →=2OA →,所以(OB →+OC →)·OA →=2OA →·OA →=2|OA →|2=2×42=32,答案.D点评.平面向量数量积与三角函数的综合主要体现为两类:(1)利用三角函数给出向量的坐标形式,然后求数量积,解答时利用数量积公式可直接解决;(2)给出三角函数图象,求图象上相关点构成的向量之间的数量积,解答时关键是求涉及到的向量的模、以及它们的夹角.6.单位圆与三角恒等变换巧结缘单位圆与三角函数有着密切联系,下面我们通过例题来看看单位圆与三角恒等变换是如何结缘的.一、借助单位圆解决问题例1.已知sin α+sin β=14,cos α+cos β=13,求tan α+β2.(提示:已知A (x 1,y 1),B (x 2,y 2),则AB 中点的坐标为⎝ ⎛⎭⎪⎫⎝⎛⎭⎪⎫x 1+x 22,⎝ ⎛⎭⎪⎫y 1+y 22解.设A (cos α,sin α),B (cos β,sin β)均在单位圆上,如图,则以OA 、OB 为终边的角分别为α、β,由已知,sin α+sin β=14,cos α+cos β=13,用题设所给的中点坐标公式,得AB 的中点C ⎝ ⎛⎭⎪⎫16,18,如图,由平面几何知识知,以OC 为终边的角为β-α2+α=α+β2,且过点C ⎝ ⎛⎭⎪⎫16,18,由三角函数的坐标定义,知tan α+β2=1816=34.点评.借助单位圆使问题简单化,这种思维方法贯穿整个三角函数问题的始终,特别在求值中更能显出它的价值. 二、单位圆与恒等变换的交汇例2.已知圆x 2+y 2=R 2与直线y =2x +m 相交于A 、B 两点,以x 轴的正方向为始边,OA 为终边(O 是坐标原点)的角为α,OB 为终边的角为β,则tan(α+β)的值为________. 解析.如图,过O 作OM ⊥AB 于点M ,不妨设α、β∈[0,2π],则∠AOM =∠BOM =12∠AOB=12(β-α), 又因为∠xOM =α+∠AOM =α+β2, 所以tan α+β2=k OM =-1k AB =-12,故tan(α+β)=2tanα+β21-tan2α+β2=-43.答案.-43点评.若是采用先求A 、B 两点的坐标,再求α、β的正切值这一思路就很繁锁甚至做不下去,可见用不同的解决方法繁简程度不同.例3.如图,A ,B 是单位圆O 上的点,OA 为角α的终边,OB 为角β的终边,M 为AB 的中点,连接OM 并延长交圆O 于点C.(1)若α=π6,β=π3,求点M 的坐标;(2)设α=θ(θ∈⎣⎢⎡⎦⎥⎤0,π3),β=π3,C (m ,n ),求y =m +n 的最小值,并求使函数取得最小值时θ的取值.解.(1)由三角函数定义可知,A ⎝ ⎛⎭⎪⎫32,12,B ⎝ ⎛⎭⎪⎫12,32, 由中点坐标公式可得M ⎝⎛⎭⎪⎫3+14,3+14.(2)由已知得∠xOC =12(α+β)=12(θ+π3),即C ⎝ ⎛⎭⎪⎫cos ⎝ ⎛⎭⎪⎫12θ+π6,sin ⎝ ⎛⎭⎪⎫12θ+π6,故m =cos ⎝ ⎛⎭⎪⎫12θ+π6,n =sin ⎝ ⎛⎭⎪⎫12θ+π6,所以y =cos ⎝ ⎛⎭⎪⎫12θ+π6+sin ⎝ ⎛⎭⎪⎫12θ+π6=2sin ⎝ ⎛⎭⎪⎫12θ+5π12,又因为θ∈⎣⎢⎡⎦⎥⎤0,π3,故5π12≤12θ+5π12≤7π12, 当θ=0或π3时,函数取得最小值y min =2sin 5π12=3+12.点评.借助单位圆和点的坐标,数形结合,利用平面几何知识和三角函数的定义使问题简单化.7.教你用好辅助角公式在三角函数中,辅助角公式a sin θ+b cos θ=a 2+b 2·sin(θ+φ),其中角φ所在的象限由a ,b 的符号确定,φ的值由tan φ=ba确定,它在三角函数中应用比较广泛,下面举例说明,以供同学们参考. 一、求最值例1.求函数y =2sin x (sin x -cos x )的最小值. 解.y =2sin x (sin x -cos x )=2sin 2x -2sin x cos x =1-cos2x -sin 2x =1-2⎝ ⎛⎭⎪⎫sin 2x ·22+cos 2x ·22 =1-2⎝ ⎛⎭⎪⎫sin 2x cos π4+cos 2x sin π4 =1-2sin ⎝ ⎛⎭⎪⎫2x +π4, 所以函数y 的最小值为1- 2. 二、求单调区间例2.求函数y =12cos 2x +32sin x cos x +1的单调区间.解.y =12cos 2x +32sin x cos x +1=14(1+cos 2x )+34sin 2x +1 =34sin 2x +14cos 2x +54=12⎝ ⎛⎭⎪⎫32sin 2x +12cos 2x +54 =12sin ⎝⎛⎭⎪⎫2x +π6+54.由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),得k π-π3≤x ≤k π+π6(k ∈Z ).由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z ),得k π+π6≤x ≤k π+2π3(k ∈Z ).所以函数的单调增区间是[k π-π3,k π+π6](k ∈Z );函数的单调减区间是[k π+π6,k π+2π3](k ∈Z ). 三、求周期例3.函数y =cos 22x +4cos 2x sin 2x 的最小正周期是(..) A.2π B.π C.π2 D.π4答案.C解析.y =cos 22x +4cos 2x sin 2x =12cos 4x +2sin 4x +12=172sin(4x +φ)+12(其中sin φ=1717,cos φ=41717),函数的最小正周期为T =2π4=π2.故选C. 四、求参数的值例4.如果函数y =sin 2x +a cos 2x 的图象关于直线x =-π8对称,则实数a 的值为(..)A. 2B.- 2C.1D.-1 答案.D解析.y =1+a 2sin(2x +φ)(其中tan φ=a ).因为x =-π8是对称轴,所以直线x =-π8过函数图象的最高点或最低点.即当x =-π8时,y =1+a 2或y =-1+a 2.所以sin ⎝ ⎛⎭⎪⎫-π4+a cos ⎝ ⎛⎭⎪⎫-π4=±1+a 2.即22(a -1)=±1+a 2.所以a =-1.故选D.。
2018版高中数学第三章三角恒等变换导学案新人教A版必修4_
( ) ( ) a a2
cos x-
+2a+1
解 y=cos 2x-2acos x-2a=2cos2x-2acos x-(2a+1)=2
2 2- 2
.
a
当2<-1,即 a<-2 时,f(a)=ymin=1,此时 cos x=-1.
a
a2
a
当-1≤2≤1,即-2≤a≤2 时,f(a)=ymin=- 2 -2a-1,此时 cos x=2.
15 ≤y≤ 15 .
asin x+b
asin x+b
点评 对于形如 y=csin x+d或 y=ccos x+d的这类函数,均可利用三角函数中弦函数的
有界性去求最值.
三、转化为一元二次函数在某确定区间上求最值
例 5 设关于 x 的函数 y=cos 2x-2acos x-2a 的最小值为 f(a),写出 f(a)的表达式.
2
2
1- sin22x
4 = 2-sin 2x =
( ) 1
2 1- sin 2x 2
1
1
3
1
=4sin 2x+2.∴f(x)max=4,f(x)min=4.
例 2 求函数 y=sin2x+2sin xcos x+3cos2x 的最小值,并写出 y 取最小值时 x 的集合.
解 原函数化简得 y=sin 2x+cos 2x+2
α,代入到 sin α = 5 中,首先求出 cos 2α 的值后,再由同角三角函数之间的关系求出
tan 2α.
sin 3α sin2α+α sin 2αcos α+cos 2αsin α
解析 由 sin α = sin α =
sin α
13 =2cos2α+cos 2α= 5 .
山东省平邑县高中数学 第三章 三角恒等变换 3.1.3 二倍角的正弦、余弦、正切公式导学案新人教A版4 精
3.1.3二倍角的正弦、余弦、正切公式1.以两角和正弦、余弦和正切公式为基础,了解二倍角正弦、余弦和正切公式的推导;2.会应用二倍角公式进行简单的求值、化简与证明;3.理解二倍角公式在“升幂”“降幂”中的作用.【新知自学】 知识回顾:)=cos(αβ+)=sin(αβ+)=sin ()αβ-=tan ()αβ+=tan ()αβ-= 新知梳理sin 2,cos 2,tan 2ααα的公式呢?sin 2α=cos 2α=tan 2α=注意:2,22k k ππαπαπ≠+≠+ ()k z ∈ 思考感悟cos(αβ-)、cos(αβ+)、sin(αβ+)、sin ()αβ-、tan ()αβ+、tan ()αβ-、α2sin 、α2cos 、α2tan 间的区别与联系?对点练习:(1)已知αcos =-33,且0tan <α,则α2sin 的值等于 ( ) A .322 B .13 C .-322 D .-13(2)若⎪⎭⎫ ⎝⎛∈=ππαα,2,135sin ,则α2tan 的值为 ( )A 、 119120B 、 119120-C 、 120119D 、 120119-(3)已知53)2sin(=-απ,则=α2cos【合作探究】 典例精析:例1、已知5sin 2,,1342ππαα=<<求sin 4,cos 4,tan 4ααα的值.变式练习:1、已知),2(,61)4sin()4sin(ππππ∈=-+x x x ,求x 4sin 的值.例2、在△ABC 中,54cos =A ,。
B A B 的值求)22tan(,2tan +=变式练习:2、已知2tan =x ,则)4(2tan π-x =( ) A. 34 B. 34- C.43 D. 43-*例3、已知的值求)2tan(,31tan ,71tan βαβα+==【课堂小结】【当堂达标】1. 若x = π12 ,则x x 44cos sin -的值为 ( )A .21B .21-C .23- D .232. ︒︒15cos 15sin =︒-︒15sin 15cos 22=3. 已知:()πααα<<=+033cos sin ,求:α2cos 的值.【课时作业】1. =+10sin 1( )A 、5sin 5cos +B 、5sin 5cos -C 、5cos 5sin -D 、5cos 5sin --2. 若24,412sin παπα<<=,则ααsin cos -的值等于( )A 、23B 、43C 、23- D 、43- 3. 52cos 5cos ππ的值等于 ( )A 、 41B 、 21C 、 2D 、 44.已知 sin (x -π4 )= 35 ,则sin2x = ( )A .825B .725C .1625D .-1625*5. 求函数)(2cos 21cos )(R x x x x f ∈-=的最大值.*6. 已知:⎪⎭⎫ ⎝⎛<<=⎪⎭⎫ ⎝⎛-401354sin ππx x ,求:⎪⎭⎫⎝⎛+x x4cos 2cos π的值.*7. 已知:x tan = -2 2 ,求:⎪⎭⎫ ⎝⎛+--x x x 4sin 21sin 2cos 22π的值.【延伸探究】 已知向量1(cos ,)2a x =-, (3sin ,cos2),b x x x R =∈,设函数()f x a b =,(1)求()f x 的最小正周期。
2018版高中数学第三章三角恒等变换3.1.3二倍角的正弦余弦正切公式导学案新人教A版必修4_
3.1.3 二倍角的正弦、余弦、正切公式学习目标 1.会从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式.2.能熟练运用二倍角的公式进行简单的恒等变换并能灵活地将公式变形运用.知识点一 二倍角公式的推导思考1 二倍角的正弦、余弦、正切公式就是用α的三角函数表示2α的三角函数的公式.根据前面学过的两角和与差的正弦、余弦、正切公式,你能推导出二倍角的正弦、余弦、正切公式吗?答案 sin 2α=sin(α+α)=sin αcos α+cos αsin α=2sin αcos α;cos 2α=cos(α+α)=cos αcos α-sin αsin α=cos 2α-sin 2α;tan 2α=tan(α+α)=.2tan α1-tan2α思考2 根据同角三角函数的基本关系式sin 2α+cos 2α=1,你能否只用sin α或cos α表示cos 2α?答案 cos 2α=cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1;或cos 2α=cos 2α-sin 2α=(1-sin 2α)-sin 2α=1-2sin 2α.知识点二 二倍角公式的变形1.公式的逆用2sin αcos α=sin 2α,sin αcos α=sin 2α,12cos 2α-sin 2α=cos 2α,=tan 2α.2tan α1-tan2α2.二倍角公式的重要变形——升幂公式和降幂公式升幂公式1+cos 2α=2cos 2α,1-cos 2α=2sin 2α,1+cos α=2cos 2,1-cos α=2sin 2 .α2α2降幂公式cos 2α=,sin 2α=.1+cos 2α21-cos 2α2类型一 给角求值例1 求下列各式的值:(1)cos 72°cos 36°;(2)-cos 215°;1323(3);(4)-.1-tan275°tan 75°1sin 10°3cos 10°解 (1)cos 36°cos 72°=2sin 36°cos 36°cos 72°2sin 36°===.2sin 72°cos 72°4sin 36°sin 144°4sin 36°14(2)-cos 215°=-(2cos 215°-1)=-cos 30°=-.1323131336(3)=2·=2·=-2.1-tan275°tan 75°1-tan275°2tan 75°1tan 150°3(4)-=1sin 10°3cos 10°cos 10°-3sin 10°sin 10°cos 10°=2(12cos 10°-32sin 10°)sin 10°cos 10°=4(sin 30°cos 10°-cos 30°sin 10°)2sin 10° cos 10°==4.4sin 20°sin 20°反思与感悟 对于给角求值问题,一般有两类:(1)直接正用、逆用二倍角公式,结合诱导公式和同角三角函数的基本关系对已知式子进行转化,一般可以化为特殊角.(2)若形式为几个非特殊角的三角函数式相乘,则一般逆用二倍角的正弦公式,在求解过程中,需利用互余关系配凑出应用二倍角公式的条件,使得问题出现可以连用二倍角的正弦公式的形式.跟踪训练1 求下列各式的值:(1)cos cos cos ;2π74π76π7(2)+.1sin 50°3cos 50°解 (1)原式=2sin 2π7cos 2π7cos 4π7cos 6π72sin 2π7==sin4π7cos 4π7cos 6π72sin 2π7sin 8π7cos 6π74sin 2π7===.sin π7cos π74sin 2π7sin 2π78sin 2π718(2)原式=====4.cos 50°+3sin 50°sin 50°cos 50°2(12cos 50°+32sin 50°)12×2sin 50°cos 50°2sin 80°12sin 100°2sin 80°12sin 80°类型二 给值求值例2 (1)若sin α-cos α=,则sin 2α= .13答案 89解析 (sin α-cos α)2=sin 2α+cos 2α-2sin αcos α=1-sin 2α=2⇒sin 2α=1-2=.(13)(13)89(2)若tan α=,则cos 2α+2sin 2α等于( )34A. B.64254825C.1D.1625答案 A解析 cos 2α+2sin 2α==.cos2α+4sin αcos αcos2α+sin2α1+4tan α1+tan2α把tan α=代入,得34cos 2α+2sin 2α===.1+4×341+(34)2425166425故选A.引申探究在本例(1)中,若改为sin α+cos α=,求sin 2α.13解 由题意,得(sin α+cos α)2=,19∴1+2sin αcos α=,19即1+sin 2α=,19∴sin 2α=-.89反思与感悟 (1)条件求值问题常有两种解题途径:①对题设条件变形,把条件中的角、函数名向结论中的角、函数名靠拢;②对结论变形,将结论中的角、函数名向题设条件中的角、函数名靠拢,以便将题设条件代入结论.(2)一个重要结论:(sin θ±cos θ)2=1±sin 2θ.跟踪训练2 已知tan α=2.(1)求tan 的值;(α+π4)(2)求的值.sin 2αsin2α+sin αcos α-cos 2α-1解 (1)tan ===-3.(α+π4)tan α+tan π41-tan αtan π42+11-2×1(2)sin 2αsin2α+sin αcos α-cos 2α-1=2sin αcos αsin2α+sin αcos α-2cos2α===1.2tan αtan2α+tan α-22×24+2-2类型三 利用倍角公式化简例3 化简.2cos2α-12tan (π4-α)sin2(π4+α)解 方法一 原式=2cos2α-12·sin (π4-α)cos (π4-α)sin2(π4+α)==2cos2α-12·sin (π4-α)cos (π4-α)cos2(π4-α)2cos2α-1sin (π2-2α)==1.cos 2αcos 2α方法二 原式=cos 2α2·1-tan α1+tan α(22sin α+22cos α)2=cos 2αcos α-sin αcos α+sin α(sin α+cos α)2===1.cos 2α(cos α-sin α)(cos α+sin α)cos 2αcos2α-sin2α反思与感悟 (1)对于三角函数式的化简有下面的要求:①能求出值的应求出值;②使三角函数种数尽量少;③使三角函数式中的项数尽量少;④尽量使分母不含有三角函数;⑤尽量使被开方数不含三角函数.(2)化简的方法:①弦切互化,异名化同名,异角化同角.②降幂或升幂.③一个重要结论:(sin θ±cos θ)2=1±sin 2θ.跟踪训练3 化简下列各式:(1)<α<,则= ;π4π21-sin 2α(2)α为第三象限角,则-= .1+cos 2αcos α1-cos 2αsin α答案 (1)sin α-cos α (2)0解析 (1)∵α∈(,),∴sin α>cos α,π4π2∴=1-sin 2α1-2sin αcos α=sin2α-2sin αcos α+cos2α==sin α-cos α.(sin α-cos α)2(2)∵α为第三象限角,∴cos α<0,sin α<0,∴- 1+cos 2αcos α1-cos 2αsin α=-2cos2αcos α2sin2αsin α=-=0.-2cos αcos α-2sin αsin α1.sin cos 的值等于( )12π12π12A.B. 1418C.D.11612答案 B 解析 原式=sin =.14π6182.sin 4-cos 4等于( )π12π12A.- B.- C. D.12321232答案 B解析 原式=·(sin2π12+cos2π12)(sin2π12-cos2π12)=-=-cos =-.(cos2π12-sin2π12)π6323.= .tan 7.5°1-tan27.5°答案 1-32解析 =·tan 7.5°1-tan27.5°122tan 7.5°1-tan27.5°=tan 15°=1-.12324.设sin 2α=-sin α,α∈,则tan 2α的值是 .(π2,π)答案 3解析 ∵sin 2α=-sin α,∴sin α(2cos α+1)=0,又α∈,(π2,π)∴sin α≠0,2cos α+1=0即cos α=-,12sin α=,tan α=-,323∴tan 2α===.2tan α1-tan2α-231-(-3)235.已知sin =,0<x <,求的值.(π4-x )513π4cos 2xcos (π4+x )解 原式=sin (π2+2x )cos (π4+x )==2sin .2sin (π4+x )cos (π4+x )cos (π4+x )(π4+x )∵sin =cos =,且0<x <,(π4-x )(π4+x )513π4∴+x ∈,π4(π4,π2)∴sin = =,(π4+x)1-cos2(π4+x )1213∴原式=2×=.121324131.对于“二倍角”应该有广义上的理解,如:8α是4α的二倍;6α是3α的二倍;4α是2α的二倍;3α是α的二倍;是的二32α2α4倍;是的二倍;=(n ∈N *).α3α6α2n 2·α2n +12.二倍角余弦公式的运用在二倍角公式中,二倍角的余弦公式最为灵活多样,应用广泛.二倍角的常用形式:①1+cos 2α=2cos 2α;②cos 2α=;1+cos 2α2③1-cos 2α=2sin 2α;④sin 2α=.1-cos 2α2课时作业一、选择题1.已知α是第三象限角,cos α=-,则sin 2α等于( )513 A.-B.12131213C.-D.120169120169答案 D解析 由α是第三象限角,且cos α=-,513得sin α=-,所以sin 2α=2sin αcos α=2××=,故选D.1213(-1213)(-513)1201692.若tan θ=-,则cos 2θ等于( )13A.- B.- C. D.45151545答案 D解析 tan θ=-,则cos 2θ=cos 2θ-sin 2θ13===.cos2θ-sin2θcos2θ+sin2θ1-tan2θ1+tan2θ453.已知x ∈(-,0),cos x =,则tan 2x 等于( )π245A. B.- C. D.-724724247247答案 D解析 由cos x =,x ∈(-,0),得sin x =-,45π235所以tan x =-,34所以tan 2x ===-,故选D.2tan x1-tan2x 2×(-34)1-(-34)22474.已知sin 2α=,则cos 2等于( )23(α+π4)A. B.1613C. D.1223答案 A解析 因为cos 2=(α+π4)1+cos [2(α+π4)]2==,1+cos (2α+π2)21-sin 2α2所以cos 2===,故选A.(α+π4)1-sin 2α21-232165.如果|cos θ|=,<θ<3π,则sin 的值是( )155π2θ2A.- B.105105C.-D.155155答案 C解析 ∵<θ<3π,|cos θ|=,5π215∴cos θ<0,cos θ=-.15又∵<<,∴sin <0.5π4θ23π2θ2∴sin 2==,θ21-cos θ235sin =-.θ21556.已知α为第二象限角,sin α+cos α=,则cos 2α等于( )33A.-B.-5359C.D.5953答案 A解析 由题意得(sin α+cos α)2=,13∴1+sin 2α=,sin 2α=-.1323∵α为第二象限角,∴cos α-sin α<0.又∵sin α+cos α>0,∴cos α<0,sin α>0,且|cos α|<|sin α|,∴cos 2α=cos 2α-sin 2α<0,∴cos 2α=- 1-sin22α=-=- =-,故选A.1-(-23)21-49537.若cos =,则sin 2α等于( )(π4-α)35A.B.72515C.-D.-15725答案 D解析 因为sin 2α=cos (π2-2α)=2cos 2-1,(π4-α)又因为cos =,(π4-α)35所以sin 2α=2×-1=-,故选D.925725二、填空题8.2sin 222.5°-1= .答案 -22解析 原式=-cos 45°=-.229.sin 6°sin 42°sin 66°sin 78°= .答案 116解析 原式=sin 6°cos 48°cos 24°cos 12°=sin 6°cos 6°cos 12°cos 24°cos 48°cos 6°===.sin 96°16cos 6°cos 6°16cos 6°11610.设α是第二象限角,P (x ,4)为其终边上的一点,且cos α=x ,则tan 2α= .15答案 247解析 cos α==,xx 2+42x 5∴x 2=9,x =±3.又∵α是第二象限角,∴x =-3,∴cos α=-,sin α=,3545∴tan α=-,tan 2α===432×(-43)1-(-43)2-831-169-83-79==.722124711.已知tan x =2,则tan 2(x -)= .π4答案 3412.若tan α+=,α∈,则sin +2cos cos 2α= .1tan α103(π4,π2)(2α+π4)π4答案 0解析 由tan α+=,1tan α103得tan α=或tan α=3.13又∵α∈,∴tan α=3.(π4,π2)∴sin α=,cos α= .310110∴sin +2cos cos 2α(2α+π4)π4=sin 2αcos +cos 2αsin +2cos cos 2απ4π4π4=×2sin αcos α+(2cos 2α-1)+cos 2α22222=sin αcos α+2cos 2α-2222=××+2×2-23101102(110)22=-=0.521022三、解答题13.已知角α在第一象限且cos α=,求的值.351+2cos (2α-π4)sin (α+π2)解 ∵cos α=且α在第一象限,∴sin α=.3545∴cos 2α=cos 2α-sin 2α=-,725sin 2α=2sin αcos α=,2425∴原式=1+2(cos 2αcosπ4+sin 2αsin π4)cos α==.1+cos 2α+sin 2αcos α145四、探究与拓展14.等腰三角形一个底角的余弦值为,那么这个三角形顶角的正弦值为 .23答案 459解析 设A 是等腰△ABC 的顶角,则cos B =,23sin B ===.1-cos2B 1-(23)253所以sin A =sin(180°-2B )=sin 2B=2sin B cos B =2××=.532345915.已知π<α<π,化简:32+.1+sin α1+cos α-1-cos α1-sin α1+cos α+1-cos α解 ∵π<α<π,∴<<π,32π2α234∴=|cos |=-cos ,1+cos α2α22α2=|sin |=sin .1-cos α2α22α2∴+1+sin α1+cos α-1-cos α1-sin α1+cos α+1-cos α=+1+sin α-2(cosα2+sin α2)1-sin α2(sin α2-cos α2)=+(cos α2+sin α2)2-2(cos α2+sin α2)(sin α2-cos α2)22(sin α2-cos α2)=-cos .2α2。
人教A版高中数学必修四第三章三角恒等变换复习一教案
第三章 三角恒等变换复习(一)教学目标:1. 通过对本章的知识的复习、总结,使学生对本章形成一个知识框架网络.2. 能灵活运用公式进行求值、证明恒等式.教学重点:运用公式求值、证明恒等式.教学难点:证明恒等式教学过程一、基础知识复习(略)二、作业讲评《习案》作业三十五中的第5、6题.三、已知三角函数值求三角函数值.)cos(31sin sin 21cos cos .1的值求,,已知βαβαβα-=+=+.2cos 2sin 2353cos )1(.22的值求,,已知⎪⎭⎫ ⎝⎛-<<-=θθπθπθ .sin 512cos 2sin )2(的值求,已知ααα=-.2sin 95cos sin )3(44的值求,已知θθθ=+.cos sin 932cos )4(44的值求,已知θθθ+=.tan tan 53)cos(51)cos(.3的值,求,已知βαβαβα⋅=-=+.tan 1sin 22sin 471217534cos .42的值,求,已知x x x x x -+<<=⎪⎭⎫ ⎝⎛+πππ.40tan 20tan 120tan 40tan 20tan .5o o oo o 的值求⋅++四、证明恒等式.cos 832cos 44cos .14ααα=++证明:.21tan 212sin cos 22sin 1.22+=++αααα证明:.2cos 2cos 4sin cos sin sin 2cos sin .3222βαβθθαθθ==⋅=+求证:,,已知五、课堂小结给值求角时,先要求所求角的某一三角函数值,需结合角的范围确定角的符号;2. 证明三角恒等式时,要灵活地运用公式.六、课后作业教材P .146第8题第(3)、(4)问; P .146第1、2、3题; P .146第4题第(1)、(2)、(3)问; P .147第3题;。
高中数学 第三章 三角恒等变换 3.1.3 二倍角的正弦、
3.1.3 二倍角的正弦、余弦、正切公式1.知识与技能以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用.2.过程与方法经历二倍角公式的探究过程,培养学生发现数学规律的思维方法,培养学生分析问题和解决问题的能力,并体会化归与转化的思想方法.3.情感、态度与价值观通过对二倍角公式的探究学习,培养学生的探索精神和应用意识,体会数学的科学价值和应用价值,不断提高自身的文化修养.重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式.难点:二倍角的理解及其灵活运用.1.+2的化简结果是()A.2cos 4-4sin 4B.2sin 4C.2sin 4-4cos 4D.-2sin 4解析:原式=+2+2=2|sin 4|+2|sin 4-cos 4|.∵sin 4<0,sin 4<cos 4,∴原式=-2sin 4+2(cos 4-sin 4)=2cos 4-4sin 4.答案:A2.函数f(x)=sin-2sin2x的最小正周期是.解析:f(x)=sin-2sin2x=sin 2x-cos 2x-2=sin 2x+cos 2x-=sin,故该函数的最小周期为=π.答案:π3.如图,以Ox为始边作角α与β(0<β<α<π),它们的终边分别与单位圆相交于P,Q两点,已知点P的坐标为.(1)求的值;(2)若=0,求sin(α+β).解:(1)由三角函数定义得cos α=-,sin α=,∴原式===2cos2α=2×.(2)∵=0,∴α-β=.∴β=α-.∴sin β=sin=-cos α=,cos β=cos=sin α=.∴sin(α+β)=sin αcos β+cos αsin β=.。
高中数学第三章三角恒等变换阶段复习课第4课三角恒等变换课件新人教A版必修
一级达标重点名校中学课件
3.半角公式 1-cos α α sin2=± . 2 1+cos α α cos2=± 2 .
1-cos α sin α 1-cos α α 1+cos α =__________ 1+cos α =__________. sin α tan2=±____________
一级达标重点名校中学课件
1 -2sin xcos x+2 [ 解] (1)原式= π π 2sin4-xcos24-x π cos4-x
2 2
1 1 2 2 21-sin 2x 2cos 2x 1 = π π = π =2cos 2x. 2sin4-xcos4-x sin2-2x
一级达标重点名校中学课件
[ 规律方法] 三角函数式化简的基本技巧 (1)sin α,cos α→凑倍角公式. (2)1±cos α→升幂公式. (3)asin α+bcos α→辅助角公式asin α+bcos α= a2+b2· sin(α+φ),其中tan b a 2 2 φ=a或asin α+bcos α= a +b · cos(α-φ),其中tan φ=b.
一级达标重点名校中学课件
4.辅助角公式
b a +b sin(α+φ)tan φ= (1)asin α+bcos α=_________________________. a
2 2
(2)与特殊角有关的几个结论: π 2sinα± 4 , sin α±cos α=_____________ π α± 2sin 3sin α±cos α=_____________ , 6 π α± 2sin sin α± 3cos α=______________. 3
高中数学 第三章 三角恒等变换 3.1.3 二倍角的正弦、
3.1.3 二倍角的正弦、余弦、正切公式[提出问题]问题1:在公式C (α+β),S (α+β)和T (α+β)中,若α=β,公式还成立吗? 提示:成立.问题2:在上述公式中,若α=β,你能得到什么结论?提示:cos 2α=cos 2α-sin 2α,sin 2α=2sin αcos α,tan 2α=2tan α1-tan 2α. [导入新知]二倍角公式[化解疑难] 细解“倍角公式”(1)要注意公式运用的前提是所含各三角函数有意义.(2)倍角公式中的“倍角”是相对的,对于两个角的比值等于2的情况都成立,如6α是3α的2倍,3α是3α2的2倍.这里蕴含着换元思想.这就是说,“倍”是相对而言的,是描述两个数量之间的关系的.(3)注意倍角公式的灵活运用,要会正用、逆用、变形用.[例1] (1)sin π12cos π12;(2)1-2sin 2750°;(3)2tan 150°1-tan 2150°;(4)1sin 10°-3cos 10°; (5)cos 20°cos 40°cos 80°.[解] (1)原式=2sin π12cos π122=sinπ62=14.(2)原式=cos(2×750°)=cos 1 500° =cos(4×360°+60°)=cos 60°=12.(3)原式=tan(2×150°)=tan 300°=tan(360°-60°)=-tan 60°=- 3. (4)原式=cos 10°-3sin 10°sin 10°cos 10°=2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°cos 10°=4sin 30°cos 10°-cos 30°sin 10°2sin 10°cos 10°=4sin 20°sin 20°=4.(5)原式=2sin 20°·cos 20°·cos 40°·cos 80°2sin 20°=2sin 40°·cos 40°·cos 80°4sin 20°=2sin 80°·cos 80°8sin 20°=sin 160°8sin 20°=18.[类题通法] 化简求值的四个方向三角函数的化简有四个方向,即分别从“角”“函数名”“幂”“形”着手分析,消除差异.[活学活用]化简:(1)11-tan θ-11+tan θ;(2)2cos 2α-12tan ⎝ ⎛⎭⎪⎫π4-αsin 2⎝ ⎛⎭⎪⎫π4+α.答案:(1)tan 2θ (2)1[例2] (1)已知cos ⎝ ⎛⎭⎪⎫α+4=5,2≤α<2,求cos ⎝ ⎛⎭⎪⎫2α+π4的值;(2)已知α∈⎝ ⎛⎭⎪⎫-π2,π2,且sin 2α=sin ⎝⎛⎭⎪⎫α-π4,求α.[解] (1)∵π2≤α<3π2,∴3π4≤α+π4<7π4.∵cos ⎝ ⎛⎭⎪⎫α+π4>0,∴3π2<α+π4<7π4. ∴sin ⎝ ⎛⎭⎪⎫α+π4=-1-cos 2⎝⎛⎭⎪⎫α+π4=-1-⎝ ⎛⎭⎪⎫352=-45.∴cos 2α=sin2α+π2=2sin α+π4cos α+π4=2×-45×35=-2425,sin 2α=-cos ⎝ ⎛⎭⎪⎫2α+π2=1-2cos 2⎝⎛⎭⎪⎫α+π4=1-2×⎝ ⎛⎭⎪⎫352=725.∴cos ⎝ ⎛⎭⎪⎫2α+π4=22cos 2α-22sin 2α =22×⎝ ⎛⎭⎪⎫-2425-725=-31250. (2)∵sin 2α=-cos ⎝ ⎛⎭⎪⎫2α+π2=-⎣⎢⎡⎦⎥⎤2cos 2⎝⎛⎭⎪⎫α+π4-1,sin ⎝ ⎛⎭⎪⎫α-π4=-sin ⎝ ⎛⎭⎪⎫π4-α=-cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-α=-cos ⎝ ⎛⎭⎪⎫π4+α, ∴原方程可化为1-2cos 2α+π4=-cos α+π4,解得cos ⎝ ⎛⎭⎪⎫α+π4=1或cos ⎝ ⎛⎭⎪⎫α+π4=-12.∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α+π4∈⎝ ⎛⎭⎪⎫-π4,3π4,故α+π4=0或α+π4=2π3,即α=-π4或α=5π12.[类题通法]解决条件求值问题的方法条件求值问题,注意寻找已知式与未知式之间的联系,有两个观察方向:(1)有方向地将已知式或未知式化简,使关系明朗化;(2)寻找角之间的关系,看是否适合相关公式的使用,注意常见角的变换和角之间的二倍关系.[活学活用]1.已知sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-α=16,α∈⎝ ⎛⎭⎪⎫π2,π,求sin 4α的值. 答案:-4292.已知sin 22α+sin 2αcos α-cos 2α=1,求锐角α. 答案:π6[例3] A 为锐角. (1)求角A 的大小;(2)求函数f (x )=cos 2x +4cos A sin x (x ∈R)的值域. [解] (1)由题意得a ·b =3sin A -cos A =1,2sin ⎝ ⎛⎭⎪⎫A -π6=1,sin ⎝⎛⎭⎪⎫A -π6=12.由A 为锐角得A -π6=π6,所以A =π3.(2)由(1)知cos A =12,所以f (x )=cos 2x +2sin x =1-2sin 2x +2sin x =-2⎝ ⎛⎭⎪⎫sin x -122+32.因为x ∈R ,所以sin x ∈[-1,1], 因此,当sin x =12时,f (x )有最大值32.当sin x =-1时,f (x )有最小值-3. 所以所求函数f (x )的值域是⎣⎢⎡⎦⎥⎤-3,32.[类题通法]二倍角公式的灵活运用(1)公式的逆用:逆用公式,这种在原有基础上的变通是创新意识的体现.主要形式有: 2sin αcos α=sin 2α,sin αcos α=12sin 2α,cos α=sin 2α2sin α,cos 2α-sin 2α=cos 2α,2tan α1-tan 2α=tan 2α. (2)公式的变形用:公式间有着密切的联系,这就要求思考时融会贯通,有目的地活用公式.主要形式有:1±sin 2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2, 1+cos 2α=2cos 2α,cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.[活学活用](福建高考节选)已知函数f (x )=103sin x 2cos x2+10cos 2x2.(1)求函数f (x )的最小正周期;(2)将函数f (x )的图象向右平移π6个单位长度,再向下平移a (a >0)个单位长度后得到函数g (x )的图象,且函数g (x )的最大值为2.求函数g (x )的解析式.答案:(1)2π (2)g (x )=10sin x -89.二倍角的配凑问题[典例] 已知cos ⎝ ⎛⎭⎪⎫π4+x =35,求sin 2x -2sin 2x 1-tan x 的值.[解] 原式=2sin x cos x -2sin 2x1-sin x cos x=2sin x x -sin xcos x -sin xcos x=2sin x cos x =sin 2x .或原式=sin 2x -2sin x cos x ·sin xcos x1-tan x=sin 2x -sin 2x tan x1-tan x=sin 2x -tan x1-tan x=sin 2x .∵2x =2⎝⎛⎭⎪⎫x +π4-π2,∴sin 2x =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4-π2 =-cos 2⎝ ⎛⎭⎪⎫x +π4. ∵cos ⎝⎛⎭⎪⎫x +π4=35,∴cos 2⎝ ⎛⎭⎪⎫x +π4=2cos 2⎝ ⎛⎭⎪⎫x +π4-1 =2×925-1=-725,∴原式=-⎝ ⎛⎭⎪⎫-725=725.[多维探究]1.解决上面典例要注意角“2x ”与“π4+x ”的变换方法,即sin 2x =-cos ⎝ ⎛⎭⎪⎫π2+2x =-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4+x ;常见的此类变换,还有: (1)sin 2x =cos ⎝ ⎛⎭⎪⎫π2-2x =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-x ;(2)cos 2x =sin ⎝ ⎛⎭⎪⎫π2-2x =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-x ;(3)cos 2x =sin ⎝⎛⎭⎪⎫π2+2x =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4+x .2.倍角公式中的“倍角”是相对的.对于两个角的比值等于2的情况都成立,如8α是4α的二倍角,3α是3α2 的二倍角等.在解决此类问题时,有时二倍角关系不是很明显,需要结合条件和结论中的函数名和角的关系去发现.[活学活用]1.若sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎝ ⎛⎭⎪⎫2π3+2α=________.答案:-792.计算:cos 2π7·cos 4π7·cos 6π7=________.答案:183.计算:sin 10°sin 30°sin 50°sin 70°=________. 答案:1164.求值:+3-cos 20°cos 80°1-cos 20°.答案: 2[随堂即时演练]1.下列各式中,值为32的是( ) A .2sin 15°cos 15° B .cos 215°-sin 215° C .2sin 215° D .sin 215°+cos 215°答案:B2.化简1+sin 100°-1-sin 100°=( ) A .-2cos 50° B .2cos 50° C .-2sin 50° D .2sin 50°答案:B3.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55,则tan 2α=________. 答案:-434.函数f (x )=2cos 2⎝ ⎛⎭⎪⎫x -π4-1的最小正周期为________. 答案:π5.已知α为第二象限角,且sin α=154, 求sin ⎝⎛⎭⎪⎫α+π4sin 2α+cos 2α+1的值. 答案:- 2[课时达标检测]一、选择题 1.若sin ⎝⎛⎭⎪⎫3π2-x =35,则cos 2x 的值为( )A .-725 B.1425C .-1625 D.1925答案:A2.若sin α+cos αsin α-cos α=12,则tan 2α=( )A .-34 B.34C .-43 D.43答案:B3.设-3π<α<-5π2,化简1-α-π2的结果是( )A .sin α2B .cos α2C .-cos α2D .-sin α2答案:C4.若α∈⎝ ⎛⎭⎪⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于( )A.22 B.33C. 2D. 3 答案:D 5.若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( )A.35B.45C.74 D.34答案:D 二、填空题6.函数f (x )=2cos 2x +sin 2x 的最小值是________. 答案:1- 27.已知α∈⎝ ⎛⎭⎪⎫0,π2,sin α=35,则1cos 2α+tan 2α=________. 答案:78.等腰三角形一个底角的余弦为23,那么这个三角形顶角的正弦值为________.答案:459三、解答题9.已知α为锐角,且tan ⎝ ⎛⎭⎪⎫π4+α=2. (1)求tan α的值;(2)求sin 2αcos α-sin αcos 2α的值.解:(1)tan ⎝⎛⎭⎪⎫π4+α=1+tan α1-tan α,所以1+tan α1-tan α=2,1+tan α=2-2tan α,所以tan α=13.(2)sin 2αcos α-sin αcos 2α=2sin αcos 2α-sin αcos 2α=sin α2α-cos 2α=sin αcos 2αcos 2α=sin α.因为tan α=13,所以cos α=3sin α,又sin 2α+cos 2α=1,所以sin 2α=110,又α为锐角,所以sin α=1010, 所以sin 2αcos α-sin αcos 2α=1010.10.已知函数f (x )=23sin x cos x +2cos 2x -1(x ∈R).若f (x 0)=65,x 0∈⎣⎢⎡⎦⎥⎤π4,π2,求cos 2x 0的值.解:∵f (x )=23sin x cos x +2cos 2x -1 =3(2sin x cos x )+(2cos 2x -1) =3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, ∴sin ⎝⎛⎭⎪⎫2x 0+π6=35.又∵x 0∈⎣⎢⎡⎦⎥⎤π4,π2,∴2x 0+π6∈⎣⎢⎡⎦⎥⎤2π3,7π6.∴cos ⎝⎛⎭⎪⎫2x 0+π6=-1-sin 2⎝⎛⎭⎪⎫2x 0+π6=-45.∴cos 2x 0=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2x 0+π6-π6=cos ⎝ ⎛⎭⎪⎫2x 0+π6cos π6+sin ⎝ ⎛⎭⎪⎫2x 0+π6sin π6=-45×32+35×12=3-4310.11.设函数f (x )=53cos 2x +3sin 2x -4sin x cos x . (1)求f ⎝⎛⎭⎪⎫5π12;(2)若f (α)=53,α∈⎝ ⎛⎭⎪⎫π2,π,求角α. 解:f (x )=53cos 2x +3sin 2x -4sin x cos x =53cos 2x +53sin 2x -2sin 2x -43sin 2x =53-2sin 2x -23(1-cos 2x ) =33-2sin 2x +23cos 2x =33-4⎝ ⎛⎭⎪⎫sin 2x ×12-cos 2x ×32=33-4⎝ ⎛⎭⎪⎫sin 2x cos π3-cos 2x sin π3 =33-4sin ⎝ ⎛⎭⎪⎫2x -π3, (1)f ⎝⎛⎭⎪⎫5π12=33-4sin ⎝ ⎛⎭⎪⎫5π6-π3=33-4sin π2=33-4.(2)由f (α)=53,得sin ⎝⎛⎭⎪⎫2α-π3=-32, 由α∈⎝ ⎛⎭⎪⎫π2,π, 得2α-π3∈⎝ ⎛⎭⎪⎫2π3,5π3, ∴2α-π3=4π3,α=5π6.。
高中数学第三章三角恒等变换3.2简单的三角恒等变换知识巧解学案新人教A版必修04
,π<2α< ,求 tanα.
13
2
3
3
解: ∵π<2α< ,∴ <α< .
2
2
4
由 cos 2
1 sin 2
5
1 ( 12 ) 2
5 ,得 tan
1 cos2
1 13
3
13
13
sin 2
12 2
13
马鸣风萧萧整理
》》》》》》》》》积一时之跬步 臻千里之遥程《 《《《《《《《《《《《
或 tan 或 tan
或 tan
2 1 cos
2 sin
可避开符号的讨论 .
③若角α的倍角 2α是特殊角,则可用半角公式求α的函数值,以α为桥梁,可把
的函数值连在一起 .
知识点二 积化和差公式的应用
例 4 求下列各式的值:
5 (1) cos sin ; (2)2cos50° cos70° -cos20° .
12 12
5
15
1
3
.
2
24
(2)原式 =cos(50° +70° )+cos(50°-70° )-cos20°
1
=cos120°+cos20° -cos20° =cos120°=-cos60° = .
2
31
例 5 求证: (1)sin80°cos40° =
sin 40 ;
42
11
(2)sin37.5° sin22.5° = + cos15° .
( 2 3) .
例 2 求 cos , tan 的值 . 8 12
2
解: 由于 cos2
1 cos 1
4
2
1
人教A版高中数学必修四第三章三角恒等变换复习课教案新
《三角恒等变换》复习课(2个课时)一、教学目标进一步掌握三角恒等变换的方法,如何利用正、余弦、正切的和差公式与二倍角公式,对三角函数式进行化简、求值和证明:二、知识与方法:1. 11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用-β代替β、2π±β代替β、α=β等换元法可以推导出其它公式。
你能根据下图回顾推导过程吗?2.化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来;3.求值,要注意象限角的范围、三角函数值的符号之间联系与影响,较难的问题需要根据上三角函数值进一步缩小角的范围。
4.证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等。
5. 三角恒等变换过程与方法,实际上是对三角函数式中的角、名、形的变换,即(1)找差异:角、名、形的差别;(2)建立联系:角的和差关系、倍半关系等,名、形之间可以用哪个公式联系起来;(3)变公式:在实际变换过程中,往往需要将公式加以变形后运用或逆用公式,如升、降幂公式, cos α= cos βcos (α-β)- sin βsin (α-β),1= sin 2α+cos 2α,0030tan 130tan 1-+=000030tan 45tan 130tan 45tan -+=tan (450+300)等。
例题 例1 已知sin (α+β)=32,sin (α-β)=51,求βαtan tan 的值。
例2求值:cos24°﹣sin6°﹣cos72°例3 化简(1)070sin 120sin 3-;(2)sin 2αsin 2β+cos 2αcos 2β-21cos2αcos2β。
例4 设为锐角,且3sin 2α+2sin 2β=1,3sin2α-2sin2β=0,求证:α+2β=2π。
2018版高中数学第三章三角恒等变换3.2简单的三角恒等变换导学案新人教A版必修4
3.2简单的三角恒等变换[学习目标】1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法.2.了解三角恒等变换的特点、 变换技巧,掌握三角恒等变换的基本思想方法 3能利用三角恒等 变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用西问题导学 ----------------------------- 知识点一半角公式思考1我们知道倍角公式中,"倍角是相对的”,那么对余弦的二倍角公式,若用 2a 替换a ,结果怎样?答案 结果是 cos a = 2COS 2专-1= 1 -2sin 2^ = cos 2》-sin 专.思考根据上述结果,试用sin a , cos a 表示 sin 专,cos 专,tan答案2a 1 + cos a 'cos~2…cos同理asin — =±tan思考 答案asin —a7 =—cos3利用tan asin a 和倍角公式又能得到 cos aatan —与 sin a , cosa 怎样的关系?a aasin — sin 丁 • 2cos ~ , a 22 2tan = ------- 2 a cosa _aa 1 + cos a ,c cos 匸• 2cos T"2 2 2sin思考1 a sin x + b cos x 化简的步骤有哪些?0 cos x )).(3)化简、逆用公式得 a sin x + b cos x =a 2+b 2sin( x + 0 )(或 a sin x + b cos x =Q a 2+—0 )).思考2在上述化简过程中,如何确定 0所在的象限?答案 0所在的象限由a 和b 的符号确定. 梳理辅助角公式:a sin x +b cos x = , a 2 + b 2sin( x + 0 ).( 其中 tan题型探究类型一应用半角公式求值45 n 0例 1 已知 sin 0 =,二~v 0 < 3 n ,求 cos 和 tan .tan . a . a 小■ a sin sin • 2si n a ______ 2 - 2 2 1 — cos _______ a 2 a a a cos cos • 2sin222sin a x + cosb 2cos( x0= b )梳理知识点二辅助角公式答案 ⑴ 提常数,提出.a 2+ b 2得到 (2)定角度,确定一个角 0满足: ,则得到.a 2+ b 2(cos 0 sin 殊角-4,才等 x + sin 0 cos x )(或J a 2+ b 2(sin0 sin0为特5 2 2 2证明要证原式,可以证明1+虫 4 0—cos 4 0 =严01 + sin 4 0 + cos 4 01 — tan 0sin 4 0 + (1 — cos 4 0 \•左边 sin 4 0 + 1 + cos 4 04解■/ sin 0=,且50 v 3 n,. • cos 0 =—叮 1 — sin 03 5. 由 cos 0 = 2cos 2 020 1 + cos 0 1cos ==-5 n 0 3 nV ~2 V~2~,…cossin 021 + cos 0 = 2.反思与感悟(1)若没有给出角的范围,则根号前的正负号需要根据条件讨论(2)由三角函数值求其他三角函数式的值的步骤:①先化简所求的式子;②观察已知条件与所求式子之间的联系 (从角和三角函数名称入手).跟踪训练1 已知sin<3y, 求 sinaa “ ,,cos —和 ta n 2 -解■/ sin 17'n < a<—^ …cos 15又•••3n < -acos —a22_=— 4.sin atan类型 三角恒等式的证明1 + sin 4 0 — cos 4例2求证:1 + sin 4 0 + cos 42tan 0 1 — tan 22 2sin 2 0 cos 2 0 + 2sin 2 0—2sin 2 B (cos 2 B + sin 2 B 少 —2cos 2 B (sin 2 B + cos 2 B — tan B ,, 2ta n B 右边一 r — tan 2 B ,1 — tan B •••左边—右边, •••原式得证• 反思与感悟证明三角恒等式的实质是消除等式两边的差异,有目的地化繁为简、左右归一或变更论证.对恒等式的证明,应遵循化繁为简的原则,从左边推到右边或从右边推到左边, 也可以用左右归一,变更论证等方法•常用定义法、化弦法、化切法、拆项拆角法、“1”的代换法、公式变形法,要熟练掌握基本公式,善于从中选择巧妙简捷的方法a2ta n -2 + 1‘ , 2 a1 + ta n —证明 •••左边一 ----------------------a2a 2tan — 1 — tan T1 + ---------- + ----------2a2a1 + tan — 1 + tan 2"2a atan — + 2tan — + 12a a2a1 + tan 亍 + 2tan — + 1 — tan —1 a 1…—^tan — + 2—右边, •原等式成立 .类型三利用辅助角公式研究函数性质例 3 已知函数 f (x ) — -, 3sin |2x —nn + 2sin 2 x —令(x € R). (1) 求函数f (x )的最小正周期;(2) 求使函数f (x )取得最大值的x 的集合• 解(1) T f (x ) —3sin(2 x —自 + 2sin 2x —$跟踪训练2 证明: sin a + 1 1 + sina + cos 1a —尹na 12 + 2.2tan a + 2 21tan12 3. 2 =7cos x — ;sin x 4 41 + cos2 x3 1 — cos 2 x = 8 —8 1 1 =-cos 2 x —:, 2 4 •- f (x )的最小正周期为 T = = n ・1 1(2) h (x ) = f (x ) — g ( x ) = ^cos 2 x — ^sin 2 x2n ~2I n i2x - 3 = 1,5 n•所求x 的集合为{x | x = k n+刁2, k € Z}・反思与感悟 (1)为了研究函数的性质,往往要充分利用三角变换公式转化为正弦型 函数,这是解决问题的前提・⑵ 解此类题时要充分运用两角和 (差)、二倍角公式、辅助角转换公式消除差异, 类和函数式的项数,为讨论函数性质提供保障(余弦型)减少角的种跟踪训练3已知函数(1)求函数f (x )的最小正周期;⑵ 求函数h (x ) = f (x ) — g (x )的最大值,并求使 h (x )取得最大值时x 的集合・(1) f (x )=2cos x —丹 x 如s x + #sin x=2si nf (x )的最小正周期为2 c n=^cos2x+ 7,当2x+n4 = 2k n (k € Z)时,h(x)有最大值-2此时x 的取值集合为jX |x = k n —奇,k € Z, 类型四 三角函数在实际问题中的应用例4如图,ABC [是一块边长为100 m 的正方形地皮,其中 AST 是半径为90 m 的扇形小山, 其余部分都是平地•一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P 在ST 上,相邻两边CQCR 正好落在正方形的边 BC CD 上,求矩形停车场PQCF 面积的最大值和最小值解 如图连接 AP 设/ PAB= 0 (0 ° < 0 < 90° ),延长 RP 交AB 于M 则 AM= 90cos 0 , MP= 90sin 0 . 所以 PQ= MB= 100— 90cos 0 ,PR= MF — MP= 100— 90sin 0 .所以S 矩形PQC = PQ- PR=(100 — 90cos 0 )(100 — 90sin 0 ) =10 000 — 9 000(sin 0 + cos 0 )+ 8 100sin 0 cos 0 .令 t = sin 0 + cos 0 (1 w t w “../2),则sin t 2— 10 cos 0 — 2 .反思与感悟 此类问题关键在于构建函数模型,首先要选准角,有利于表示所需线段,其次 要确定角的范围.跟踪训练4 某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m ,求割出的长方形桌面的最大面积(如图).所以 S 矩形 PQC = 10 000 — 9 000 t + 8 100 - =^^(t —詈)2+ 950.t 2— 1故当t =罟时,S 矩形PQCR 有最小值 950 nf ;当 t = 2时,S 矩形 PQCR 有最大值(14 050 — 9 000 . 2) nf.解连接OC设/ CO B 0 ,则0°< 0 <45°, OC= 1.*•* AB= OB- OA= cos 0 —AD=cos 0 —sin 0 ,S 矩形ABCD B AB- BC=(cos 0 —sin 0 ) - sin 0. 2=—sin 0 + sin 0 cos 01 1=—2(1 —cos 2 0 ) + qsin 2 01 1=2(sin 2 0 + cos 2 0 )—㊁2 1=亍cos(2 0 —45°) —^.当 2 0 —45°= 0°,即卩0 = 22.5 ° 时,S max=—2—(m2).割出的长方形桌面的最大面积为亠~2— m.1 a1. 若cos a = 3,a € (0 , n ),则COS —的值为()A ,B.-' C. 土' D. 土二3 3 3 3答案 A解析由题意知2€ (0,专),a a•••cos 3>o, cos乙=1 + cos aJ 2 = 32. 已知tan 5 = 3,贝U cos 0 等于()当堂训练答案 B20 . 2 0 cos — sin - 2 2 解析 cos 0 = 2 0 ・ 2 0 cos — + sin21 — tan 24 4 4 A - B. —-C. D5 5 15 3 53.函数 f (x ) = sin 2x + 3sin x cos x 在区间, -2上的最大值是(A.1B.2C.lD.3答案 解析 f (x )= 1 — cos 2 x + sin 2,■ 八1 x = sin |2x —~6 + -,•/ x € 5 n "6 ••• sin 2x — nn € _2,1,3 f (x )max = 1+ ,故选 C.4.函数 f (x ) = sin x — cos x , x € 0,—的最小值为答案 —1 • f (x )min = 2sin (1 + sin 5.化简:a + cosa2 — cos2 + 2cos aa2.(180< a <360°)1 — 312 1 + 32=原式= f 2 a a a a a '2cos 卜2sin si 2 -cos - 1 2 3 2 222 a4cos 22cos a2cos2 + sin a2cos2 1A. —B.C.2D. —2a2 cos — a cos— 因为 180°< a <360°,所以 90°<寺<180°, 所以cos -2<0,所以原式=cos a .厂规律与方法■ ----------------------------------- 1.学习三角恒等变换,千万不要只顾死记硬背公式,而忽视对思想方法的理解,要学会借助前面几个有限的公式来推导后继公式,立足于在公式推导过程中记忆公式和运用公式 2. 辅助角公式a sin x + b cos x = a 2+ b 2sin( x +Q ),其中$满足: ①$与点(a , b )同象b b a限; ②tan $=_(或 sin $ = —2 -------------- , cos $ = -2 ----------- ).a y)a +b yj a + b3. 研究形如f (x ) = a sin x + b cos x 的函数性质,都要运用辅助角公式化为一个整体角的正弦 函数或余弦函数的形式•因此辅助角公式是三角函数中应用较为广泛的一个重要公式, 也是高考常考的考点之一.对一些特殊的系数 例如 sin x ±cos x = 2sin i x ±n ;课时作业、选择题a1 + tan 一2a 是第三象限角,贝U 等于(a1 — tan —sin x ± 3cos x = 2sina cos — a ,b 应熟练掌握,.右 cos aa cos y2 a ~2 cos —cos 2COS答案 A解析 •/ a 是第三象限角,COS a =-4,31 — ~1 + sin a 5 cos asinA.1B.2C.3D.4 答案tan asin a cos n+ cos a sin —55.n . nsin a cos — cos a sin -55a3.已知180°< a <360°,则cos —的值等于()答案 C/• sin a3 5,a1 + tan —sin1+—— cos a2a 2a1- tan ~2. a sin — 1 ------------acos —cos a ,. —+ sin a a ,. —+ sin a ~~2 co s co sa . —si a co s a . —sia222 2a acos + sin —a acos — + sin —解析cos3n70sin n7 +a 3n 荷sinsinsin sinA.—C.— 2'cos a 2.若 tan a = 2tan3 10等于(7t=3.tan a —1 ntan -答案 B4.在厶 ABC 中,若 sin A sin B = cos 2C ,则厶 ABC 是 ( )A.等边三角形 C.不等边三角形 D.直角三角形答案 B解析用降幕公式进行求解• 5.设函数 f (x ) = 3cos 2w x + sin w x cos w x + a (其中 w >0, a € R),且 f (x )的图象在 y 轴n右侧的第一个最高点的横坐标是,则w 的值为(依题意得2 wB.等腰三角形 A. — B 2—3 C 答案 A解析 f (x )=-=sin 2 w x +-2 --D. 32n1.w x + ^sin 2 w x +1 1 亍 cos 216.设a= geos b = 2si n 13°cos 13A. c<b<aB.a<b<cC. a<c<bD.b<c<a答案C解析a= sin 30 ° cos 6 ° —cos 30 ° sin 6 ° = sin(30 —6°=sin 24 ° ,b = 2sin 13 ° cos 13 ° = sin 26c = sin 25 ° ,n••• y = sin x在[0 , ^]上是单调递增的,••• a<c<b.7.已知sinm—3 4 —2m n …0 “十0= m+ 5,cos 0 = m+ 5( 2 < 0 < n ),则tan 2 等于()1代-3B.51 C. —5 或31D. —§或5 6°in 6°o1 —cos 50------- 2,则有(答案B” , 2 2m i- 3 2 4- 2m 2 解析 由 sin 0 + cos 0 = 1 得(m ^5)+(7^5)= 1 n 解得rm= 0或8,当rn= 0时,sin 0v 0,不符合—<0 < n .••• m = 0 舍去,故 m = 8,5 12 sin 0=话cos 0=- 13,121 H --1 — cos 0 132 si n 05 13二、填空题0 08.设 5n < 0 <6 n , cosq = a ,贝U sin —的值为10.函数f (x ) = sin(2 x —亍)—2 2sin 2x 的最小正周期是 答案 n解析sin •/ 0 2 0 1 — cos€ (5 n , 3 n 241 — a2 .9.sin 20°+ sin 80 ° • sin 40 ° 的值为3 答案 74 解析 原式=sin 220°+ sin(60 ° + 20° ) • sin(60 ° — 20°) 2 =sin 20°+ (sin 60 ° cos 20 ° + cos 60 ° sin 20° ) • (sin 60 ° • cos 20 ° — cos 60 ° sin 20°) =sin 220°+ sin 260° cos 220°— cos 260° sin 220° 2 3 2 1 2 =sin 20 + - cos 20 — -si n 20 4 4 3 2 3 2 3=—sin 20 ° + —cos 20° = _. 4 4 4 • sin tan解析 T f (x ) n 2 x — ^cos 2 x — 2(1 — cos2 x )亍cos 2 x — 2 = sin(2 x +寸)-寸2,••• T = 2^= n .三、解答题3 f3— 41012.求证: 3xtan - — tancos x + cos 2 x证明 •••左边=tan3x —ta nsin 3x x 3x ycos - — cos ysin 3x cos —cosX -2ln sX -2co s3x 2cos X 2 si n 3X - X}3x cos —cosX -2X -2=fsin 2 x +11.已知sin4 .3,—-n < a <0,求 cos a 的值.解■/sin仏+才+ sin a =sin na cos — + cos3a sin3 . =2sin#sin1 a +2"COS4 5,a <0,.ny<an n +_6<?,…cos a+ nn= |.…cos a =cos=cos a+ nn cosn石 + sin+ ~6 sin4 sin53sin x2s in x cos x + cos 2 x原等式得证• 「农7n13. 已知 cos 2 B =云,片< 0 < n ,252(1)求tan 0的值;22cos — + sin 0 求 -22cos 0 — sin 0n3(2)因为—< 0 < n , tan 0=— 4,4 31 — 一+ - 5十5=一 4 4 3 ■+ - 5 5 四、探究与拓展^2 2 2 .. ,.14. __________________________________________________已知A + B =^厂,那么cos A + cos B 的最大值是 _________________________ ,最小值是的值.解⑴因为cos 2 07 25, 所以 725,n因为■—< 0 < n,所以tan 0 =— 所以sin3 40 = 5, cos 0 =— 5,2cos 2-2 + sin 所以 2sin 0 +亍 1 + cos 0 + sin 0 cos 0 + sin 02sin x3x xcos —cos 2=右边•212 n解析•/ A + B ==2 2 ••• cos A + cos B1=2(1 + cos 2 A + 1 + cos 2 B )1=1 + 2(cos 2 A + cos 2 E )=1 + cos( A + E )cos( A — E )2n=1 + cos-^ • cos( A — E )1=1 — jcos( A- B ,•••当 cos( A — E ) = — 1 时,3原式取得最大值2;当cos( A- B ) = 1时,原式取得最小值115. 已知函数f (x ) = sin 寺—x sin x - 3COS 2X .(1)求f (x )的最小正周期和最大值;解 (1) f (x ) = sin — x sin x — ,3cos 2xX /3=cos x s in x — 2(1 + cos 2 x )1 3 3=尹n 2 x —牙cos 2 x —因此f (x )的最小正周期为 n ,最大值为2 2'31 n 2^1 n 八一 \~6,亍时,0W2 x — — W n ,从而当o<2x —W n^,即专W x <时,f (x )单调递增, n⑵讨论f (x )在X , -2n 6, 3牛上的单调性(2)当 x €n n 5 n 2 n t、,r当—<2x —-3 W n,即12三x 时,f(X)单调递减.22综上可知, f(x)在-6, 12上单调递增;在看,22sin 2 0 cos 2 0 + 2cos 2 01 + tan 2022 2cos 0 + sin 01 —tan23 40 7所以 1 + tan 20 = 25,3解得tan 0=±-,423。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 三角恒等变换1 三角恒等变换中角的变换的技巧三角函数是以角为自变量的函数,因此三角恒等变换离不开角之间的变换.观察条件及目标式中角度间联系,立足消除角之间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是三角恒等变换的一种常用技巧. 一、利用条件中的角表示目标中的角例1 已知cos ⎝ ⎛⎭⎪⎫π6+α=33,求cos ⎝ ⎛⎭⎪⎫5π6-α的值.分析 将π6+α看作一个整体,观察π6+α与5π6-α的关系.解 ∵⎝ ⎛⎭⎪⎫π6+α+⎝ ⎛⎭⎪⎫5π6-α=π,∴5π6-α=π-⎝ ⎛⎭⎪⎫π6+α.∴cos ⎝⎛⎭⎪⎫5π6-α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6+α=-cos ⎝ ⎛⎭⎪⎫π6+α=-33,即cos ⎝ ⎛⎭⎪⎫5π6-α=-33.二、利用目标中的角表示条件中的角 例2设α为第四象限角,若sin 3αsin α=135,则tan 2α=_______________________________.分析 要求tan 2α的值,注意到sin 3α=sin(2α+α)=sin 2αcos α+cos 2αsin α,代入到sin 3αsin α=135中,首先求出cos 2α的值后,再由同角三角函数之间的关系求出tan2α.解析 由sin 3αsin α=sin (2α+α)sin α=sin 2αcos α+cos 2αsin αsin α=2cos 2α+cos 2α=135.∵2cos 2α+cos 2α=1+2cos 2α=135.∴cos 2α=45.∵α为第四象限角,∴2k π+3π2<α<2k π+2π(k ∈Z ),∴4k π+3π<2α<4k π+4π(k ∈Z ),∴2α可能在第三、四象限, 又∵cos 2α=45,∴2α在第四象限,∴sin 2α=-35,tan 2α=-34.答案 -34三、注意发现互余角、互补角,利用诱导公式转化角 例3 已知sin ⎝ ⎛⎭⎪⎫π4-x =513,0<x <π4,求cos 2x cos ⎝ ⎛⎭⎪⎫π4+x 的值.分析 转化为已知角⎝ ⎛⎭⎪⎫π4-x 的三角函数值,求这个角的其余三角函数值,这样可以将所求式子化简,使其出现⎝⎛⎭⎪⎫π4-x 这个角的三角函数.解 原式=sin ⎝ ⎛⎭⎪⎫π2+2x cos ⎝ ⎛⎭⎪⎫π4+x =2sin ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x=2sin ⎝⎛⎭⎪⎫π4+x =2cos ⎝ ⎛⎭⎪⎫π4-x , ∵sin ⎝ ⎛⎭⎪⎫π4-x =513,且0<x <π4,∴π4-x ∈⎝⎛⎭⎪⎫0,π4.∴cos ⎝ ⎛⎭⎪⎫π4-x =1-sin 2⎝ ⎛⎭⎪⎫π4-x =1213,∴原式=2×1213=2413.四、观察式子结构特征,灵活凑出特殊角例4 求函数f (x )=1-32sin(x -20°)-cos(x +40°)的最大值.分析 观察角(x +40°)-(x -20°)=60°,可以把x +40°看成(x -20°)+60°后运用公式展开,再合并化简函数f (x ).解 f (x )=1-32sin(x -20°)-cos[(x -20°)+60°]=12sin(x -20°)-32sin(x -20°)-cos(x -20°)cos 60°+sin(x -20°)sin 60° =12[sin(x -20°)-cos(x -20°)]=22sin(x -65°),当x -65°=k ·360°+90°,即x =k ·360°+155°(k ∈Z )时,f (x )有最大值22.2 三角恒等变换的几个技巧三角题是高考的热点,素以“小而活”著称.除了掌握基础知识之外,还要注意灵活运用几个常用的技巧.下面通过例题进行解析,希望对同学们有所帮助. 一、灵活降幂例1 3-sin 70°2-cos 210°=________. 解析3-sin 70°2-cos 210°=3-sin 70°2-1+cos 20°2=3-cos 20°3-cos 20°2=2. 答案 2点评 常用的降幂技巧还有:因式分解降幂、用平方关系sin 2θ+cos 2θ=1进行降幂:如cos 4θ+sin 4θ=(cos 2θ+sin 2θ)2-2cos 2θsin 2θ=1-12sin 22θ,等等.二、化平方式 例2 化简求值:12-1212+12cos 2α(α∈(3π2,2π)). 解 因为α∈(3π2,2π),所以α2∈(3π4,π),所以cos α>0,sin α2>0,故原式=12-121+cos 2α2= 12-12cos α= sin2α2=sin α2. 点评 一般地,在化简求值时,遇到1+cos 2α、1-cos 2α、1+sin 2α、1-sin 2α常常化为平方式:2cos 2α、2sin 2α、(sin α+cos α)2、(sin α-cos α)2. 三、灵活变角例3 已知sin(π6-α)=13,则cos(2π3+2α)=________.解析 cos(2π3+2α)=2cos 2(π3+α)-1=2sin 2(π6-α)-1=2×(13)2-1=-79.答案 -79点评 正确快速求解本题的关键是灵活运用已知角“π6-α”表示待求角“2π3+2α”,善于发现前者和后者的一半互余.四、构造齐次弦式比,由切求弦例4 已知tan θ=-12,则cos 2θ1+sin 2θ的值是________.解析 cos 2θ1+sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ+2sin θcos θ =1-tan 2θ1+tan 2θ+2tan θ=1-141+14+2×(-12)=3414=3. 答案 3点评 解本题的关键是先由二倍角公式和平方关系把“cos 2θ1+sin 2θ”化为关于sin θ和cosθ的二次齐次弦式比. 五、分子、分母同乘以2n sin α求cos αcos 2αcos 4αcos 8α…cos 2n -1·α的值例5 求cos π11cos 2π11cos 3π11cos 4π11cos 5π11的值.解 原式=-cos π11cos 2π11cos 4π11cos 8π11cos 5π11=-24sin π11cos π11cos 2π11cos 4π11cos 8π11cos5π1124sinπ11=-sin 16π11cos 5π1124sin π11=sin 5π11cos 5π1124sin π11=12·sin10π1124sinπ11=sinπ1125sinπ11=132.点评 这类问题的解决方法是分子、分母同乘以最小角的正弦的倍数即可.3 聚焦三角函数最值的求解策略一、化为y =A sin(ωx +φ)+B 的形式求解例1 求函数f (x )=sin 4x +cos 4x +sin 2x cos 2x2-sin 2x的最值.解 原函数变形得f (x )=(sin 2x +cos 2x )2-sin 2x cos 2x2-sin 2x=1-14sin 22x 2-sin 2x =⎝ ⎛⎭⎪⎫1+12sin 2x ⎝ ⎛⎭⎪⎫1-12sin 2x 2⎝ ⎛⎭⎪⎫1-12sin 2x =14sin 2x +12.∴f (x )max =34,f (x )min =14. 例2 求函数y =sin 2x +2sin x cos x +3cos 2x 的最小值,并写出y 取最小值时x 的集合. 解 原函数化简得y =sin 2x +cos 2x +2 =2sin ⎝⎛⎭⎪⎫2x +π4+2.当2x +π4=2k π+32π,k ∈Z ,即x =k π+58π,k ∈Z 时,y min =2- 2.此时x 的集合为{x |x =k π+58π,k ∈Z }.点评 形如y =a sin 2ωx +b sin ωx cos ωx +c cos 2ωx +d (a ,b ,c ,d 为常数)的式子,都能转化成y =A sin(2ωx +φ)+B 的形式求最值. 二、利用正、余弦函数的有界性求解 例3 求函数y =2sin x +12sin x -1的值域.解 原函数整理得sin x =y +12(y -1).∵|sin x |≤1,∴⎪⎪⎪⎪⎪⎪y +12(y -1)≤1,解出y ≤13或y ≥3.∴函数的值域为{y |y ≤13或y ≥3}.例4 求函数y =sin x +3cos x -4的值域.解 原函数整理得sin x -y cos x =-4y -3,∴y 2+1sin(x +φ)=-4y -3,∴sin(x +φ)=-4y -31+y 2. ∵|sin(x +φ)|≤1,解不等式⎪⎪⎪⎪⎪⎪-4y -31+y 2≤1得-12-2615≤y ≤-12+2615. 点评 对于形如y =a sin x +b c sin x +d 或y =a sin x +bc cos x +d的这类函数,均可利用三角函数中弦函数的有界性去求最值.三、转化为一元二次函数在某确定区间上求最值例5 设关于x 的函数y =cos 2x -2a cos x -2a 的最小值为f (a ),写出f (a )的表达式.解 y =cos 2x -2a cos x -2a =2cos 2x -2a cos x -(2a +1)=2⎝ ⎛⎭⎪⎫cos x -a 22-⎝ ⎛⎭⎪⎫a 22+2a +1. 当a2<-1,即a <-2时,f (a )=y min =1,此时cos x =-1.当-1≤a 2≤1,即-2≤a ≤2时,f (a )=y min =-a 22-2a -1,此时cos x =a2.当a2>1,即a >2时,f (a )=y min =1-4a ,此时cos x =1. 综上所述,f (a )=⎩⎪⎨⎪⎧1(a <-2),-12a 2-2a -1(-2≤a ≤2),1-4a (a >2).点评 形如y =a sin 2x +b sin x +c 的三角函数可转化为二次函数y =at 2+bt +c 在区间[-1,1]上的最值问题解决.例6 试求函数y =sin x +cos x +2sin x cos x +2的最值.解 设sin x +cos x =t ,t ∈[-2, 2 ],则2sin x cos x =t 2-1,原函数变为y =t 2+t +1,t ∈[-2, 2 ],当t =-12时,y min =34;当t =2时,y max =3+ 2.点评 一般地,既含sin x +cos x (或sin x -cos x )又含sin x cos x 的三角函数采用换元法可以转化为t 的二次函数解最值.注意以下结论的运用,设sin x +cos x =t ,则sin x cosx =12(t 2-1);sin x -cos x =t ,则sin x cos x =12(1-t 2).四、利用函数的单调性求解例7 求函数y =(1+sin x )(3+sin x )2+sin x 的最值.解 y =sin 2x +4sin x +3sin x +2=(sin x +2)2-1sin x +2=(sin x +2)-1(sin x +2),令t =sin x +2,则t ∈[1,3],y =t -1t.利用函数单调性的定义易证函数y =t -1t在[1,3]上为增函数.故当t =1,即sin x =-1时,y min =0;当t =3,即sin x =1时,y max =83.例8 在Rt△ABC 内有一内接正方形,它的一条边在斜边BC 上,设AB =a ,∠ABC =θ,△ABC 的面积为P ,正方形面积为Q .求P Q的最小值.解 AC =a tan θ,P =12AB ·AC =12a 2tan θ.设正方形的边长为x ,AG =x cos θ,BC =acos θ.BC 边上的高h =a sin θ,∵AG AB =h -x h ,即x cos θa =a sin θ-xa sin θ,∴x =a sin θ1+sin θcos θ,∴Q =x 2=a 2sin 2θ(1+sin θcos θ)2. 从而P Q =sin θ2cos θ·(1+sin θcos θ)2sin 2θ =(2+sin 2θ)24sin 2θ=1+⎝ ⎛⎭⎪⎫sin 2θ4+1sin 2θ. 易知函数y =1t +t4在区间(0,1]上单调递减,从而,当sin 2θ=1时,⎝ ⎛⎭⎪⎫P Q min =94. 点评 一些复杂的三角函数最值问题,通过适当换元转化为简单的代数函数后,可利用函数单调性巧妙解决.4 行百里者半九十——《三角恒等变换》一章易错问题盘点一、求角时选择三角函数类型不当而致错 例1 已知sin α=55,sin β=1010,α和β都是锐角,求α+β的值. [错解] 因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010, sin(α+β)=sin αcos β+cos αsin β=55×31010+255×1010=22. 因为α,β∈⎝⎛⎭⎪⎫0,π2,则α+β∈(0,π).所以α+β=π4或3π4.[剖析] 由sin α=55,sin β=1010,α和β都是锐角,可以知道α和β都是定值,因此α+β也是定值,因此上述解法出现两个答案,其中就有一个是错误的.这是因为sin(α+β)在第一、第二象限没有区分度,应选择计算cos(α+β)的值. [正解] 因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010,cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22. 因为α,β∈⎝⎛⎭⎪⎫0,π2,所以α+β∈(0,π),所以α+β=π4.二、忽视条件中隐含的角的范围而致错例 2 已知tan 2α+6tan α+7=0,tan 2β+6tan β+7=0,α、β∈(0,π),且α≠β,求α+β的值.[错解] 由题意知tan α、tan β是方程x 2+6x +7=0的两根,由根与系数的关系,得⎩⎪⎨⎪⎧tan α+tan β=-6, ①tan αtan β=7, ②∴tan(α+β)=tan α+tan β1-tan αtan β=-61-7=1.∵0<α<π,0<β<π,∴0<α+β<2π, ∴α+β=π4或α+β=54π.[剖析] 由①②知tan α<0,tan β<0,角α、β都是钝角.上述解法忽视了这一隐含条件.[正解] 由⎩⎪⎨⎪⎧tan α+tan β=-6,tan αtan β=7易知tan α<0,tan β<0.∵α、β∈(0,π),∴π2<α<π,π2<β<π,∴π<α+β<2π. 又∵tan(α+β)=1,∴α+β=54π.三、忽略三角形内角间的关系而致错例3 在△ABC 中,已知sin A =35,cos B =513,求cos C .[错解] 由sin A =35,得cos A =±45,由cos B =513,得sin B =1213,当cos A =45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.当cos A =-45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =5665.[剖析] 在△ABC 中,三个内角A 、B 、C 的和为π,解题时要充分利用这一定理.本题得到cos A =±45后,没有对cos A =-45这一结果是否合理进行检验,从而导致结论不正确.[正解] 由cos B =513>0,得B ∈⎝ ⎛⎭⎪⎫0,π2,且sin B =1213.由sin A =35,得cos A =±45,当cos A =-45时,cos A <-12,∴A >2π3.∵sin B =1213>32,B ∈⎝⎛⎭⎪⎫0,π2,∴B >π3.故当cos A =-45时,A +B >π,与A 、B 是△ABC 的内角矛盾.∴cos A =45,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.四、忽略三角函数的定义域而致错例4 判断函数f (x )=1+sin x -cos x1+sin x +cos x 的奇偶性.[错解] f (x )=1+sin x -cos x1+sin x +cos x=1+2sin x2cos x 2-⎝⎛⎭⎪⎫1-2sin 2x 21+2sin x2cos x 2+⎝⎛⎭⎪⎫2cos 2x 2-1=2sin x 2⎝ ⎛⎭⎪⎫cos x2+sin x 22cos x 2⎝⎛⎭⎪⎫sin x 2+cos x 2=tan x 2,由此得f (-x )=tan ⎝ ⎛⎭⎪⎫-x 2=-tan x2=-f (x ),因此函数f (x )为奇函数.[剖析] 运用公式后所得函数f (x )=tan x2的定义域为{}x |x ∈R ,x ≠2k π+π,k ∈Z .两函数的定义域不同,变形后的函数定义域扩大致错. [正解] 事实上,由1+sin x +cos x ≠0可得sin x +cos x ≠-1,即2sin ⎝⎛⎭⎪⎫x +π4≠-1,从而sin ⎝⎛⎭⎪⎫x +π4≠-22,所以x +π4≠2k π+5π4且x +π4≠2k π+7π4(k ∈Z ),故函数f (x )的定义域是⎩⎨⎧⎭⎬⎫x |x ≠2k π+π且x ≠2k π+3π2,k ∈Z ,显然该定义域不关于原点对称. 因此,函数f (x )为非奇非偶函数.温馨点评 判断函数的奇偶性,首先要看定义域,若定义域不关于原点对称,则函数一定是非奇非偶函数.上述解法正是由于忽视了对函数定义域这一隐含条件的考虑致错.五、误用公式a sin x +b cos x =a 2+b 2sin(x +φ)而致错例5 若函数f (x )=sin(x +θ)+cos(x -θ),x ∈R 是偶函数,求θ的值. [错解] ∵f (x )=sin(x +θ)+cos(x -θ), ∴f (0)=sin θ+cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π4. ∵f (x )=sin(x +θ)+cos(x -θ)是偶函数. ∴|f (0)|=f (x )max = 2.∴f (0)=2sin ⎝ ⎛⎭⎪⎫θ+π4=±2,∴sin ⎝ ⎛⎭⎪⎫θ+π4=±1,∴θ+π4=k π+π2,k ∈Z .即θ=k π+π4,k ∈Z .[剖析] ∵x +θ与x -θ是不同的角.∴函数f (x )的最大值不是2,上述解答把f (x )的最大值误当作2来处理. [正解] ∵f (x )=sin(x +θ)+cos(x -θ)是偶函数. ∴f (x )=f (-x )对一切x ∈R 恒成立.即sin(x +θ)+cos(x -θ)=sin(-x +θ)+cos(-x -θ)恒成立. ∴[sin(x +θ)+sin(x -θ)]+[cos(x -θ)-cos(x +θ)]=0. ∴2sin x cos θ+2sin x sin θ=0恒成立. 即2sin x (cos θ+sin θ)=0恒成立. ∴cos θ+sin θ=0.∵cos θ+sin θ=2sin ⎝ ⎛⎭⎪⎫θ+π4=0. ∴θ+π4=k π,即θ=k π-π4,k ∈Z .5 平面向量与三角函数的交汇题型大全平面向量与三角函数的交汇是当今高考命题的一个热点,这是因为此类试题既新颖而精巧,又符合在知识的“交汇处”构题的命题思想.这类试题解答的关键是利用向量的平行、垂直、夹角、模、数量积公式将问题转化为三角问题,然后联想相关的三角函数知识求解. 一、平面向量平行与三角函数交汇例1 已知a =(2cos x +23sin x ,1),b =(y ,cos x ),且a ∥b .若f (x )是y 关于x 的函数,则f (x )的最小正周期为________.解析 由a ∥b 得2cos 2x +23sin x cos x -y =0, 即y =2cos 2x +23sin x cos x =cos 2x +3sin 2x +1 =2sin(2x +π6)+1,所以f (x )=2sin(2x +π6)+1,所以函数f (x )的最小正周期为T =2π2=π.答案 π点评 解答平面向量平行与三角函数的交汇试题一般先用平面向量平行的条件求涉及到三角函数的解析式或某角的函数值,然后再利用三角知识求解. 二、平面向量垂直与三角函数交汇例2 已知向量a =(4,5cos α),b =(3,-4tan α),α∈(0,π2),若a ⊥b ,则cos(2α+π4)=________. 解析 因为a ⊥b ,所以4×3+5cos α×(-4tan α)=0, 解得sin α=35.又因为α∈(0,π2),所以cos α=45.cos 2α=1-2sin 2α=725,sin 2α=2sin αcos α=2425,于是cos(2α+π4)=cos 2αcos π4-sin 2αsin π4=-17250.答案 -17250点评 解答平面向量垂直与三角函数的交汇试题通常先利用平面向量垂直的条件将向量问题转化为三角函数问题,再利用三角函数的知识进行处理. 三、平面向量夹角与三角函数交汇例3 已知向量m =(sin θ,1-cos θ)(0<θ<π)与向量n =(2,0)的夹角为π3,则θ=________. 解析 由条件得|m |=sin 2θ+(1-cos θ)2=2-2cos θ,|n |=2,m ·n =2sin θ,于是由平面向量的夹角公式得cos π3=m ·n |m ||n |=2sin θ22-2cos θ=12,整理得2cos 2θ-cos θ-1=0,解得cos θ=-12或cos θ=1(舍去). 因为0<θ<π,所以θ=2π3.答案2π3点评 解答平面向量的夹角与三角函数的交汇试题主要利用平面向量的夹角公式建立某角的三角函数的方程或不等式,然后由三角函数的知识求解. 四、平面向量的模与三角函数交汇例4 若向量a =(cos θ,sin θ),b =(3,-1),则|2a -b |的最大值为________. 解析 由条件可得|a |=1,|b |=2,a ·b =3cos θ-sin θ, 则|2a -b |= |2a -b |2= 4a 2+b 2-4a ·b =8-4(3cos θ-sin θ)= 8-8cos (θ+π6)≤4,所以|2a -b |的最大值为4. 答案 4点评 解答平面向量的模与三角函数交汇一般要用到向量的模的性质|a |2=a 2.如果是求模的大小,则一般可直接求解;如果是求模的最值,则常常先建立模关于某角的三角函数,然后利用三角函数的有界性求解. 五、平面向量数量积与三角函数交汇例5 若函数f (x )=2sin(π6x +π3)(-2<x <10)的图象与x 轴交于点A ,过点A 的直线l 与函数的图象交于B 、C 两点,则(OB →+OC →)·OA →等于( ) A.-32 B.-16 C.16D.32解析 由f (x )=0,解得x =4,即A (4,0),过点A 的直线l 与函数的图象交于B 、C 两点,根据对称性可知,A 是BC 的中点,所以OB →+OC →=2OA →,所以(OB →+OC →)·OA →=2OA →·OA →=2|OA →|2=2×42=32,答案 D点评 平面向量数量积与三角函数的综合主要体现为两类:(1)利用三角函数给出向量的坐标形式,然后求数量积,解答时利用数量积公式可直接解决;(2)给出三角函数图象,求图象上相关点构成的向量之间的数量积,解答时关键是求涉及到的向量的模、以及它们的夹角.6 单位圆与三角恒等变换巧结缘单位圆与三角函数有着密切联系,下面我们通过例题来看看单位圆与三角恒等变换是如何结缘的.一、借助单位圆解决问题例1 已知sin α+sin β=14,cos α+cos β=13,求tan α+β2.(提示:已知A (x 1,y 1),B (x 2,y 2),则AB 中点的坐标为⎝ ⎛⎭⎪⎫⎝⎛⎭⎪⎫x 1+x 22,⎝ ⎛⎭⎪⎫y 1+y 22解 设A (cos α,sin α),B (cos β,sin β)均在单位圆上,如图,则以OA 、OB 为终边的角分别为α、β,由已知,sin α+sin β=14,cos α+cos β=13,用题设所给的中点坐标公式,得AB 的中点C ⎝ ⎛⎭⎪⎫16,18,如图,由平面几何知识知,以OC 为终边的角为β-α2+α=α+β2,且过点C ⎝ ⎛⎭⎪⎫16,18,由三角函数的坐标定义,知tan α+β2=1816=34.点评 借助单位圆使问题简单化,这种思维方法贯穿整个三角函数问题的始终,特别在求值中更能显出它的价值. 二、单位圆与恒等变换的交汇例2 已知圆x 2+y 2=R 2与直线y =2x +m 相交于A 、B 两点,以x 轴的正方向为始边,OA 为终边(O 是坐标原点)的角为α,OB 为终边的角为β,则tan(α+β)的值为________. 解析 如图,过O 作OM ⊥AB 于点M ,不妨设α、β∈[0,2π],则∠AOM =∠BOM =12∠AOB=12(β-α), 又因为∠xOM =α+∠AOM =α+β2, 所以tan α+β2=k OM =-1k AB =-12,故tan(α+β)=2tanα+β21-tan2α+β2=-43.答案 -43点评 若是采用先求A 、B 两点的坐标,再求α、β的正切值这一思路就很繁锁甚至做不下去,可见用不同的解决方法繁简程度不同.例3 如图,A ,B 是单位圆O 上的点,OA 为角α的终边,OB 为角β的终边,M 为AB 的中点,连接OM 并延长交圆O 于点C.(1)若α=π6,β=π3,求点M 的坐标;(2)设α=θ(θ∈⎣⎢⎡⎦⎥⎤0,π3),β=π3,C (m ,n ),求y =m +n 的最小值,并求使函数取得最小值时θ的取值.解 (1)由三角函数定义可知,A ⎝ ⎛⎭⎪⎫32,12,B ⎝ ⎛⎭⎪⎫12,32, 由中点坐标公式可得M ⎝⎛⎭⎪⎫3+14,3+14.(2)由已知得∠xOC =12(α+β)=12(θ+π3),即C ⎝ ⎛⎭⎪⎫cos ⎝ ⎛⎭⎪⎫12θ+π6,sin ⎝ ⎛⎭⎪⎫12θ+π6,故m =cos ⎝ ⎛⎭⎪⎫12θ+π6,n =sin ⎝ ⎛⎭⎪⎫12θ+π6,所以y =cos ⎝ ⎛⎭⎪⎫12θ+π6+sin ⎝ ⎛⎭⎪⎫12θ+π6=2sin ⎝ ⎛⎭⎪⎫12θ+5π12,又因为θ∈⎣⎢⎡⎦⎥⎤0,π3,故5π12≤12θ+5π12≤7π12, 当θ=0或π3时,函数取得最小值y min =2sin 5π12=3+12.点评 借助单位圆和点的坐标,数形结合,利用平面几何知识和三角函数的定义使问题简单化.7 教你用好辅助角公式在三角函数中,辅助角公式a sin θ+b cos θ=a 2+b 2·sin(θ+φ),其中角φ所在的象限由a ,b 的符号确定,φ的值由tan φ=ba确定,它在三角函数中应用比较广泛,下面举例说明,以供同学们参考. 一、求最值例1 求函数y =2sin x (sin x -cos x )的最小值. 解 y =2sin x (sin x -cos x )=2sin 2x -2sin x cos x =1-cos2x -sin 2x =1-2⎝ ⎛⎭⎪⎫sin 2x ·22+cos 2x ·22 =1-2⎝⎛⎭⎪⎫sin 2x cos π4+cos 2x sin π4=1-2sin ⎝ ⎛⎭⎪⎫2x +π4, 所以函数y 的最小值为1- 2. 二、求单调区间例2 求函数y =12cos 2x +32sin x cos x +1的单调区间.解 y =12cos 2x +32sin x cos x +1=14(1+cos 2x )+34sin 2x +1 =34sin 2x +14cos 2x +54=12⎝ ⎛⎭⎪⎫32sin 2x +12cos 2x +54 =12sin ⎝⎛⎭⎪⎫2x +π6+54.由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),得k π-π3≤x ≤k π+π6(k ∈Z ).由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z ),得k π+π6≤x ≤k π+2π3(k ∈Z ).所以函数的单调增区间是[k π-π3,k π+π6](k ∈Z );函数的单调减区间是[k π+π6,k π+2π3](k ∈Z ). 三、求周期例3 函数y =cos 22x +4cos 2x sin 2x 的最小正周期是( ) A.2π B.π C.π2 D.π4答案 C解析 y =cos 22x +4cos 2x sin 2x =12cos 4x +2sin 4x +12=172sin(4x +φ)+12(其中sin φ=1717,cos φ=41717),函数的最小正周期为T =2π4=π2.故选C. 四、求参数的值例4 如果函数y =sin 2x +a cos 2x 的图象关于直线x =-π8对称,则实数a 的值为( )A. 2B.- 2C.1D.-1 答案 D解析 y =1+a 2sin(2x +φ)(其中tan φ=a ).因为x =-π8是对称轴,所以直线x =-π8过函数图象的最高点或最低点.即当x =-π8时,y =1+a 2或y =-1+a 2.所以sin ⎝ ⎛⎭⎪⎫-π4+a cos ⎝ ⎛⎭⎪⎫-π4=±1+a 2.即22(a -1)=±1+a 2.所以a =-1.故选D.。