高考数学总复习教案:函数与方程
江苏高三数学高考一轮复习 函数与方程 教案
江苏高三数学高考一轮复习函数与方程教案江苏高三数学高考一轮复习函数与方程教案江苏高三数学高考一轮复习函数与方程教案一.知识梳理1.一元二次方程与相应二次函数的图象关系如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)y=f(x)在区间(a,b)内有零点,即存c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。
定理推论:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且在闭区间的两个端点上的函数值互异即f(a)·f(b)二.课堂练习1.已知函数满足,且当时,,则当时,方程的实数解的个数为A.0B.1C.2D.32.已知函数与的图象上存在关于x轴对称的点,则a的取值范围是A.B.C.D.3.对于函数和,设,,若存在,使得,则称与互为“零点相邻函数”若函数与互为“零点相邻函数”,则实数a的取值范围是A.B.C.D.4.已知函数,函数有四个不同的零点、、、,且满足:,则的取值范围是A.B.C.D.5.函数的零点个数为.6.若方程有两个不同的实数解,则b的取值范围是_____.7.设函数,若方程有三个相异的实根,则实数k的取值范围是______.8.已知函数,若函数恰有4个零点,则实数a的取值范围是.9.已知函数,且曲线在处的切线经过点.求实数的值;若函数,试判断函数的零点个数并证明.10.已知函数.求函数在上的零点之和;证明:在上只有1个极值点.三.例题选讲[例1]已知函数是自然对数的底数求的单调递减区间;若函数,证明在上只有两个零点.参考数据:[参考]解:,定义域为R.由得,解得Z的单调递减区间为Z证明:,令,当时,当时,.在上单调递增,在上单调递减,又,,,,,使得,,且当或时,当时,,在和上单调递减,在上单调递增.,.,,又,由零点存在性定理得,在和内各有一个零点,函数在上有两个零点.[解析]本题主要考查学生运用导数研究函数的单调性及函数的零点问题[例2]已知函数.当时,判断函数的单调性;讨论零点的个数.[参考]解:因为,所以,又,设,又,所以在为单调递增,在为单调递减,所以的最大值为,所以,所以在单调递减;因为,所以是一个零点,设,所以的零点个数等价于中不等于1的零点个数再加上1,当时,由可知,单调递减,又是零点,所以此时有且只有一个零点;当时,单调递增,又,,又,所以,综上可知,在有一个零点且,所以此时有两个零点;又,所以当,在单调递增,在单调递减,的最大值为,又,,又,所以在有一个零点,在也有一个零点且,所以此时,共有3个零点;又,所以当时,在单调递增,在单调递减,的最大值为,所以没有零点,此时,共有1个零点.综上所述,当时,共有1个零点;当0时,共有3个零点;当时,有两个零点.[解析]本题考查学生利用导数研究函数的单调性,函数的零点与方程根的关系,分类讨论思想,化归与转化思想,考查运算化简的能力和逻辑推理能力[例3]已知,解不等式;若方程有三个不同的解,求实数a的取值范围.[答案]解:,当时,解不等式得:,当时,解不等式得:,综合得:不等式的解集为:.,即.作出函数的图象如图所示:当直线与函数的图象有三个公共点时,方程有三个解,所以.所以实数a的取值范围是.[解析]本题考查了分段函数及数形结合的思想方法四.反思与总结在复习过程中,我掌握了,还存在等问题.自我知识梳理:。
高考数学专题复习函数与方程思想教案
高考数学专题复习——函数与方程思想一、教学目标1. 理解函数与方程的关系,掌握函数与方程的基本思想。
2. 熟练运用函数与方程解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力,提高学生的数学素养。
二、教学内容1. 函数与方程的概念及关系2. 函数与方程的性质3. 函数与方程的解法4. 函数与方程在实际问题中的应用5. 典型例题分析与练习三、教学重点与难点1. 函数与方程的关系及其性质2. 函数与方程的解法3. 实际问题中函数与方程的运用四、教学方法1. 采用讲解、讨论、练习相结合的方式进行教学。
2. 利用多媒体课件辅助教学,提高学生的学习兴趣。
3. 注重启发式教学,引导学生主动探索、积极思考。
五、教学过程1. 导入:回顾函数与方程的基本概念,引导学生思考函数与方程之间的关系。
2. 讲解:详细讲解函数与方程的性质,结合实际例子阐述函数与方程的解法。
3. 讨论:分组讨论实际问题中的函数与方程应用,分享解题心得。
4. 练习:布置针对性的练习题,巩固所学知识。
5. 总结:对本节课的内容进行总结,强调函数与方程在数学中的重要性。
教案仅供参考,具体实施时可根据学生实际情况进行调整。
六、教学评估1. 课后作业:布置相关的习题,巩固课堂所学知识。
2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
3. 小组讨论:评估学生在小组讨论中的表现,包括合作意识、交流能力等。
七、教学拓展1. 引入高等数学中的函数与方程理论,提高学生的数学素养。
2. 组织数学竞赛或讲座,激发学生对函数与方程的兴趣。
3. 推荐相关书籍或网络资源,引导学生深入研究函数与方程。
八、教学反思1. 反思教学内容:是否全面讲解了函数与方程的基本概念、性质和解法。
2. 反思教学方法:是否有效地引导学生思考、探索和解决问题。
3. 反思教学效果:学生对函数与方程的理解程度以及实际应用能力的提升。
九、教学案例1. 案例一:讲解一次函数与一元一次方程的关系,引导学生理解函数与方程的解法。
高中数学单元复习教案
高中数学单元复习教案
主题:函数
目标:通过本次复习,学生能够掌握函数的基本概念、性质和解题方法。
一、函数的基本概念
1. 函数的定义和表示方法
2. 函数的定义域和值域
3. 函数的图像和性质
二、函数的性质
1. 奇函数和偶函数的性质
2. 函数的单调性和最值
3. 函数的周期性和奇偶性
三、函数的解题方法
1. 求函数的导数和导函数
2. 求函数的极值和拐点
3. 求函数的零点和不等式解法
四、综合练习
1. 完成选择题、填空题和解答题
2. 解答实际问题中的函数应用题
五、作业布置
1. 完成课堂上的习题
2. 预习下节课的内容
六、自主学习
1. 利用课外时间复习函数相关知识
2. 尝试解决一些较难的函数题目
备注:本次复习教案主要围绕函数这一重要概念展开,学生需要掌握函数的基本定义和性质,能够熟练运用函数的解题方法。
希望学生能够认真复习,做到知识点全面掌握,能够灵活运用。
高三数学一轮复习教案:函数与方程 必修一
必修Ⅰ—08 函数与方程1、函数的零点与方程的根:一般地,对于函数()f x ,如果存在实数c ,当x c =时,()0f c =,那么把x c = 叫做函数()f x 的零点.解方程()0f x =,即得()f x 的所有零点.2、二分法的基本思想:(1)先找到a b 、,使(),()f a f b 异号,说明在区间()a b 、内一定有零点,然后求()2a b f +. (2)假设()0,()0,f a f b a b <><,如果()2a b f +=0,该点就是零点;如果()2a b f +<0,则在区间(,)2a b b +内有零点,如果()2a b f +>0,则在区间(,)2a b a +内有零点, (3)按上述方法再求该区间中点的函数值,这样就可以不断接近零点.通过每次把()f x 的零点所在小区间收缩一半的方法,使区间的两个端点逐步逼近函数的零点,以求得零点的近似值,这种方法叫做二分法.3、函数的零点存在性:如果函数()f x 在区间(,)a b 上是连续不间断的,且()()0f a f b ⋅<,则函数()f x 在区间(,)a b 上存在实数c ,当x c =时,()0f c =, x c =称为函数()f x 在区间(,)a b 上的一个零点.它只能判定函数在区间上有零点,但不能判定具体个数.例1、 已知函数2()log f x x =,问方程()0f x =在区间1,44⎡⎤⎢⎥⎣⎦上有没有实数根,为什么?例2、 用二分法求函数3()3f x x =-的一个正实数零点(精确到0.1).例3、 若函数2()f x x ax b =++的两零点为—2和3,则方程(2)0f x -=的解是 .例4、 已知二次函数2()f x ax bx c =++.若,a b c >>且(1)0f =,试证明()f x 必有两个零点.。
2025年高考数学总复习课件16第二章第八节函数与方程
核心考点 提升“四能”
课时质量评价
函数零点个数的判断方法 (1)直接求零点:令f (x)=0,有几个解就有几个零点. (2)函数零点存在定理:要求函数f (x)在区间[a,b]上是连续不断的曲线,且f (a)·f (b)<0,再结合函数的图象与性质确定函数的零点个数. (3)利用函数图象:作出两函数的图象,观察其交点个数即得零点个数.
A.(0,1)
B.(1,2)
√C.(2,3)
D.(3,4)
C 解析:(方法一)因为函数f (x)是增函数,且f (2)=ln 2-1<0,f (3)=ln 3>0, 所以由函数零点存在定理,得函数f (x)的零点位于区间(2,3)上.故选C. (方法二)函数f (x)=x+ln x-3的零点所在区间转化为g(x)=ln x,h(x)=-x+3的 图象的交点横坐标所在的范围.如图所示,可知函数f (x)的零点在(2,3)内.
b]上一定有实根
D.“二分法”对连续不断的函数的所有零点都有效
BC 解析:由结论知A错误,B正确,由函数零点存在定理可得C正确.由于
“二分法”是针对连续不断的函数的变号零点而言的,所以D错误.故选BC.
第八节 函数与方程
核心考点
提升“四能”
判断函数零点所在的区间
1.函数f (x)=x+ln x-3的零点所在的区间为( )
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
自查自测 知识点二 函数零点存在定理 1.(教材改编题)下列函数图象与x轴均有交点,其中不能用二分法求图中的函数 零点的是( C )
第八节 函数与方程
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
人教版高考总复习一轮数学精品课件 主题二 函数 第三章 函数与基本初等函数-第八节 函数与方程
2.用二分法求方程 + lg − 3 = 0的近似解,以下区间可以作为初始区间的是() B
A.[1,2]B.[2,3]C.[3,4]D.[4,5]
[解析]设 = + − ,显然函数图象是连续的,且 = − < ,
= − < , = > , = + > , = + > ,
[解析]因为函数 =
−
ቤተ መጻሕፍቲ ባይዱ
− 在区间 , 上单调递增,又函数
= − − 的一个零点在区间 , 内,则有 ⋅ < ,所以
− − − < ,即 − < ,所以 < < .故选C.
4.已知函数 = e − e− + 4,若方程 = + 4 > 0 有三个不同的实根1 ,
= 或 = ,作出 的图象,如图所示:
观察图象可知, = − 无解, = 有3个解, = 有1个解.综上所述,函数
的零点个数为4.故答案为4.
[对点训练3](1)已知函数 =
实根个数为() A
A.3
2 +1
൞ 2
−1
B.4
定理得函数 的零点位于区间 , 内.故选C.
法二(数形结合):
函数 = + − 的零点所在区间转化为 = ,
= − + 的图象的交点横坐标所在范围.如图所示,可知
的零点在 , 内.故选C.
[对点训练1] (多选题)下列函数中,在区间[−1,3]上存在唯一零点的有() BCD
高三第一轮复习教案函数与方程
高三第一轮复习教案—函数与方程一.考试说明:1.了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。
2.理解并掌握连续函数在某个区间上存在零点的判定方法。
能利用函数的图象和性质判别函数零点的个数。
二.命题走向函数与方程的理论是高中新课标教材中新增的知识点,特别是“二分法”求方程的近似解也一定会是高考的考点。
从近几年高考的形势来看,十分注重对三个“二次”(即一元二次函数、一元二次方程、一元二次不等式)的考察力度,同时也研究了它的许多重要的结论,并付诸应用。
高考试题中有近一半的试题与这三个“二次”问题有关。
预计高考对本讲的要求是:以二分法为重点、以二次函数为载体、以考察函数与方程的关系为目标来考察学生的能力。
(1)题型可为选择、填空和解答;(2)高考试题中可能出现复合了函数性质与函数零点的综合题,同时考察函数方程的思想。
三.要点精讲1.方程的根与函数的零点(1)函数零点概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。
即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点。
二次函数)0(2≠++=a c bx ax y 的零点:1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点;2)△=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点;3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点。
零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有0)()(<b f a f ,那么函数)(x f y =在区间),(b a 内有零点。
2025版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第8讲函数与方程课件
解法二:(图象法)函数 f(x)的图象如图所示,
由图象知函数 f(x)共有 2 个零点.
2.已知函数y=f(x)是周期为2的周期函数,且当x∈[-1,1]时,f(x)
=2|x|-1,则函数g(x)=f(x)-|lg x|的零点个数是( B )
A.9
B.10
C.11
D.18
[解析] 由函数y=f(x)的性质,画出函数y=f(x)的图象,如图,再
考向 2 函数零点个数的确定——师生共研
x2+x-2,x≤0, 1.函数 f(x)=-1+ln x,x>0 的零点个数为( B )
A.3
B.2
C.7
D.0
[解析] 解法一:(直接法)由 f(x)=0 得
x≤0,
x>0,
x2+x-2=0 或-1+ln x=0,
解得 x=-2 或 x=e.
因此函数 f(x)共有 2 个零点.
2.几个等价关系 方程f(x)=0有实数根⇔函数y=f(x)的图象与__x_轴__有交点⇔函数y= f(x)有__零__点____.
3.函数零点的判定(零点存在性定理)
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并 且有___f_(_a_)f_(_b_)<__0_____,那么函数y=f(x)在区间(a,b)内有零点,即存 在c∈(a,b),使得___f_(c_)_=__0__,这个c也就是方程f(x)=0的根.
点所在的大致区间是( C )
1
A.e,1
C.(2,e)
B.(1,2) D.(e,+∞)
2 [解析] y=f(x)=ln x-x的定义域为(0,+∞),因为 y=ln x 与 y=
2
2
-x在(0,+∞)上单调递增,所以 f(x)=ln x-x在(0,+∞)上单调递增,
函数与方程-高考数学复习课件
内无零点,在(1,e)内有零点.
2. (2024·山东滨州模拟)[ x ]表示不超过 x 的最大整数,例如[3.5]=3,[-
0.5]=-1.已知 x 0是方程ln x +3 x -15=0的根,则[ x 0]=(
A. 2
B. 3
C. 4
D. 5
C )
设 f ( x )=ln x +3 x -15,显然 f ( x )在定义域(0,+∞)上单调递增,
上存在零点,则实数 a 的取值范围是(
B. (-e,+∞)
D. (-∞,e)
D
)
由题意知,函数 y =e- x 与 g ( x )=ln( x + a )的图象在(0,+∞)上有交点.
当 a >0时, g ( x )=ln( x + a )的图象是由函数 y =ln x 的图象向左平移 a
个单位长度得到的,
解得 x =0或 x =1或 x =2,
所以函数 f ( x )=( x 2- x )ln|2 x -3|在区间[-2,2]上的零点个数为3.
(2)设函数 f ( x )是定义在R上的奇函数,当 x >0时, f ( x )=e x + x -3,
则 f ( x )的零点个数为( C )
A. 1
B. 2
- x +1的零点所在的区间是(-2,-1).
4. 函数 f ( x )=e x +3 x 零点的个数为(
A. 0
B. 1
C. 2
D. 4
B )
关键能力的区间
(1)(2024·陕西咸阳模拟)函数 f =log4 x -
C )
−
1
2
的零点所在的区间
过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼
高考数学专题复习函数与方程思想教案
高考数学专题复习函数与方程思想教案第一章:函数与方程引论【教学目标】1. 理解函数与方程的概念及其相互关系。
2. 掌握函数与方程的基本性质和常用解法。
【教学内容】1. 函数与方程的定义及例子。
2. 函数与方程的性质分析。
3. 函数与方程的解法探讨。
【教学过程】1. 引入新课:通过实例介绍函数与方程的重要性。
2. 讲解概念:讲解函数与方程的基本概念,引导学生理解其相互关系。
3. 分析性质:分析函数与方程的性质,如单调性、奇偶性等。
4. 解法探讨:介绍常用的函数与方程解法,如代入法、消元法等。
【作业布置】1. 复习函数与方程的基本概念和性质。
2. 练习解简单的函数与方程题目。
第二章:一次函数与一元一次方程【教学目标】1. 掌握一次函数的图像和性质。
2. 学会解一元一次方程。
【教学内容】1. 一次函数的图像和性质。
2. 一元一次方程的解法。
【教学过程】1. 引入新课:通过实际问题引入一次函数和一元一次方程。
2. 讲解概念:讲解一次函数的图像和性质,如斜率、截距等。
3. 解法讲解:讲解一元一次方程的解法,如加减法、乘除法等。
4. 练习巩固:学生练习解一次函数和一元一次方程的题目。
【作业布置】1. 复习一次函数的图像和性质。
2. 练习解一元一次方程。
第三章:二次函数与一元二次方程【教学目标】1. 掌握二次函数的图像和性质。
2. 学会解一元二次方程。
【教学内容】1. 二次函数的图像和性质。
2. 一元二次方程的解法。
【教学过程】1. 引入新课:通过实际问题引入二次函数和一元二次方程。
2. 讲解概念:讲解二次函数的图像和性质,如开口方向、顶点等。
3. 解法讲解:讲解一元二次方程的解法,如因式分解法、求根公式法等。
4. 练习巩固:学生练习解二次函数和一元二次方程的题目。
【作业布置】1. 复习二次函数的图像和性质。
2. 练习解一元二次方程。
第四章:函数与方程的应用【教学目标】1. 学会运用函数与方程解决实际问题。
2. 培养学生的数学应用能力。
高考数学复习知识点讲解教案第13讲 函数与方程
[解析] 令 = 2 − − 4,则 2 = 4 − 2 − 4 = −2 < 0,
3 = 8 − 3 − 4 = 1 > 0,
由 3
5
2
5
2
5
2
5
2
= 2 − − 4 < 0,
< 0知该解所在的区间为
5
,3
2
.
题组二 常错题
◆ 索引:误解函数零点的定义;忽略限制条件致误.
= 的零点.
(2)
等价关系
零点
方程 = 0有实数解⇔ 函数 = 有_______⇔
函数 = 的图象与
_______有公共点.
轴
(3)
函数零点存在定理
如果函数 = 在区间[, ]上的图象是一条连续不断的曲线,且有
至少有一个
<0
________________,那么,函数
4.函数
2
= 9 − 3 ln − 1 的零点为___.
[解析] 由题知 的定义域为 1, +∞ ,由 = 0,得
即9
− 3 = 0或ln − 1 = 0,解得 =
所以函数 =
9
1
(舍)或
2
− 3 ln − 1 的零点为2.
9
= 2,
− 3 ln − 1 = 0,
1
2
1
2
1
2
= 2 − 1 > 0,
< 0,所以 的零点在区间
1
0,
2
上,故选A.
)
D. 2,3
(2)
高三一轮复习教案-函数与方程
课题:函数与方程(高三第一轮复习课)教学内容分析:本节课选自人教版必修一第三章第一节《函数与方程》内容。
函数与方程在高中数学中占举足轻重的地位,高考对函数零点的考查有:(1)求函数零点;(2)确定函数零点的个数:(3)根据函数零点的存在情况求参数值或取值范围。
题型既有选择题、填空题,又有解答题,客观题主要考查相应函数的图像和性质,主观题考查较为综合,涉及函数与方程、转化与化归、分类讨论、数形结合的思想方法等。
本节课通过对函数零点的讨论,将函数零点与方程的根、与函数图像三者有机结合起来。
它既揭示了函数与方程之间的内在联系,又对函数知识进行了总结拓展,同时将方程与函数图像联系起来,渗透了“数形结合”、“方程与函数”等重要思想。
学情分析:这是一个理科的普通班,学生基础普遍不扎实,学生具有强烈的畏难情绪,且眼高手低。
通过高一高二的知识积累,学生虽然对本节内容有简单的认识,但是时间较长,知识点大多遗忘。
所以,在本课开始前,先通过简单的知识梳理让学生把知识点贯穿起来,然后根据学生的实际情况进行适当的知识点拓展。
设计思想:教学理念:以第一轮复习为抓手,让学生把各个相关的知识点有机的结合起来。
教学原则:夯实基础,注重各个层面的学生。
教学方法:讲练结合,师生互动。
教学目标:知识与技能:让学生理清函数零点、函数图象与x轴的交点、方程的根三者之间的关系;弄清零点的存在性、零点的个数、零点的求解方法等三个问题。
过程与方法:利用已学过的函数的图像、性质去研究函数的零点。
情感态度与价值观:体会数形结合的数学思想及从特殊到一般的归纳思想,提高辩证思维以及分析问题解决问题的能力。
教学重点难点:重点:函数零点,方程的根,函数图象与x轴交点三者之间的互相联系。
难点:零点个数问题,含参数的零点问题。
教学程序框图:教学环节与设计意图:(一)、知识梳理设计意图:第一部分知识梳理要求学生在课前完成,学生回顾已学过的内容,结合相关知识整理出“函数与方程”的知识体系。
高三数学第二轮数学专题复习全套教案
高三数学第二轮数学专题复习全套教案目标为高三学生提供一套完整的数学专题复教案,帮助他们加深对数学知识的理解和掌握,为高考做好准备。
复内容1. 函数与方程- 函数的概念和性质- 一次函数和二次函数的图像、性质及应用- 方程的根与解的判定- 一元一次方程组和一元二次方程的求解方法- 函数方程的解法和应用2. 三角函数- 三角函数的概念和性质- 常用三角函数的图像、性质及应用- 三角函数的基本关系式和恒等变换- 解三角函数方程和不等式的方法3. 数列与数学归纳法- 数列的概念和性质- 等差数列和等比数列的推导和应用- 数学归纳法的基本原理和应用- 常见数列问题的解法4. 三角比例和相似- 三角比例的性质和应用- 直角三角形和一般三角形的相似性质- 解三角形的基本方法和应用- 四边形的性质和计算教学安排1. 每个教题讲解时长约为30分钟,包括概念讲解和示例演练。
2. 每个专题分为3节课,共计9节课。
3. 每节课后设置10道练题,供学生完成并检查答案。
4. 每周安排一次模拟考试,让学生检验自己的研究成果。
教案编写原则1. 教案内容简明扼要,重点突出,不涉及复杂的法律问题。
2. 尽可能使用清晰简单的语言,避免使用过多的专业术语。
3. 引用的内容必须能够得到确认,并标明出处。
4. 鼓励学生积极参与讨论和解决问题,培养他们的思考能力和解决问题的能力。
结语这份高三数学第二轮数学专题复全套教案旨在帮助学生复数学知识,强化概念和技巧的掌握。
教案内容简明扼要,注重培养学生的思考能力和解决问题的能力。
希望学生能够利用这份教案,全面提升数学水平,为高考取得好成绩做好准备。
> 注意:该文档的内容是根据提供的信息创作的,内容的准确性和可行性需要进一步核实确认。
第8节 函数与方程--2025年高考数学复习讲义及练习解析
第八节函数与方程课标解读考向预测1.理解函数的零点与方程解的联系,掌握函数的零点、方程的根、图象交点(横坐标)三者之间的灵活转化.2.理解函数零点存在定理,并能简单应用.3.会用二分法求方程的近似解.从近三年高考情况来看,函数零点(方程的根)个数的判断、由零点存在定理判断零点(方程的根)是否存在、利用函数零点(方程的根)确定参数的取值范围等是考查的热点.本节内容也可与导数结合考查,难度较大.预计2025年高考函数与方程仍会出题,可能以选择题或填空题考查三种形式的灵活转化,也可能与导数结合考查,难度较大.必备知识——强基础1.函数的零点对于函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的零点.2.方程的根与函数零点的关系方程f (x )=0有实数解⇔函数y =f (x )有零点⇔函数y =f (x )的图象与x 轴有公共点.3.函数零点存在定理如果函数y =f (x )在区间[a ,b ]上的图象是一条连续不断的曲线,且有01f (a )f (b )<0,那么,函数y =f (x )在区间(a ,b )内至少有一个零点,即存在c ∈(a ,b ),使得f (c )=0,c 也就是方程f (x )=0的解.4.二分法对于在区间[a ,b ]上连续不断且02f (a )f (b )<0的函数y =f (x ),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法.求方程f (x )=0的近似解就是求函数y =f (x )零点的近似值.函数零点的相关技巧:(1)若连续函数f (x )在定义域上是单调函数,则f (x )至多有一个零点.(2)连续不断的函数f (x ),其相邻的两个零点之间的所有函数值同号.(3)连续不断的函数f (x )通过零点时,函数值不一定变号.(4)连续不断的函数f (x )在闭区间[a ,b ]上有零点,不一定能推出f (a )f (b )<0.1.概念辨析(正确的打“√”,错误的打“×”)(1)函数的零点就是函数的图象与x轴的交点.()(2)连续函数y=f(x)在区间(a,b)内有零点,则f(a)f(b)<0.()(3)函数y=f(x)为R上的单调函数,则f(x)有且仅有一个零点.()(4)二次函数y=ax2+bx+c(a≠0),若b2-4ac<0,则f(x)无零点.()答案(1)×(2)×(3)×(4)√2.小题热身(1)(人教A必修第一册4.5.1例1改编)已知函数f(x)=23x+1+a的零点为1,则实数a的值为()A.-2B.-12D.2C.12答案B(2)下列函数图象与x轴都有公共点,其中不能用二分法求图中函数零点近似值的是()答案A解析根据题意,利用二分法求函数零点的条件是函数在零点的左、右两侧的函数值符号相反,即图象穿过x轴,据此分析,知选项A中的函数不能用二分法求零点.故选A. (3)(人教A必修第一册习题4.5T2改编)已知函数y=f(x)的图象是一条连续不断的曲线,部分对应关系如表所示,则该函数的零点个数至少为()x123456y126.115.15-3.9216.78-45.6-232.64A.2B.3C.4D.5解析由表可知,f (2)f (3)<0,f (3)f (4)<0,f (4)f (5)<0,所以函数f (x )在区间[1,6]上至少有3个零点.故选B.(4)若函数f (x )=kx +1在[1,2]上有零点,则实数k 的取值范围是________.答案-1,-12考点探究——提素养考点一函数零点所在区间的判断例1(1)(2024·湖南长沙长郡中学高三月考)函数f (x )=5-2x -lg (2x +1)的零点所在的区间是()A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案C解析因为函数f (x )=5-2x -lg (2x +1)-12,+,所以函数f (x )最多只有一个零点,因为f (0)f (1)=5(3-lg 3)>0,f (1)f (2)=(3-lg 3)(1-lg 5)>0,f (2)f (3)=(1-lg 5)(-1-lg 7)<0,f (3)f (4)=(-1-lg 7)×(-3-lg 9)>0,所以函数f (x )=5-2x -lg (2x +1)的零点所在的区间是(2,3).故选C.(2)用二分法求函数f (x )=3x -x -4的一个零点,其参考数据如下:f (1.6000)≈0.200f (1.5875)≈0.133f (1.5750)≈0.067f (1.5625)≈0.003f (1.5562)≈-0.029f (1.5500)≈-0.060据此数据,可得方程3x -x -4=0的一个近似解为________(精确度为0.01).答案 1.56(答案不唯一,在[1.5562,1.5625]上即可)解析注意到f (1.5562)≈-0.029和f (1.5625)≈0.003,显然f (1.5562)f (1.5625)<0,又|1.5562-1.5625|=0.0063<0.01,所以近似解可取1.56.【通性通法】确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.【巩固迁移】1.(2023·广东梅州高三二模)用二分法求方程log 4x -12x=0的近似解时,所取的第一个区间可A.(0,1)B.(1,2) C.(2,3)D.(3,4)答案B解析令f(x)=log4x-12x,因为函数y=log4x,y=-12x在(0,+∞)上都是增函数,所以函数f(x)=log4x-12x在(0,+∞)上是增函数,f(1)=-12<0,f(2)=log42-14=12-14=14>0,所以函数f(x)=log4x-12x在区间(1,2)上有唯一零点,所以用二分法求方程log4x-12x=0的近似解时,所取的第一个区间可以是(1,2).故选B.2.已知2<a<3<b<4,函数y=log a x与y=-x+b的交点为(x0,y0),且x0∈(n,n+1),n∈N*,则n=________.答案2解析依题意,x0为方程log a x=-x+b的解,即为函数f(x)=log a x+x-b的零点,∵2<a<3<b<4,∴f(x)在(0,+∞)上单调递增,又f(2)=log a2+2-b<0,f(3)=log a3+3-b>0,∴x0∈(2,3),即n=2.考点二函数零点个数的判断例2(1)已知函数f(x)2-4,x≤1,2(x-1),x>1,则函数y=f(x)零点的个数为________.答案2解析当x≤1时,由f(x)=x2-4=0,可得x=2(舍去)或x=-2;当x>1时,由f(x)=log2(x -1)=0,可得x=2.综上所述,函数y=f(x)零点的个数为2.(2)方程ln x+cos x=13在(0,1)上的实数根的个数为________.答案1解析解法一:ln x+cos x=13,即cos x-13=-ln x,在同一平面直角坐标系中,分别作出函数y=cos x-13和y=-ln x的大致图象,如图所示,在(0,1)上两函数的图象只有一个交点,即方程ln x+cos x=13在(0,1)上的实数根的个数为1.解法二:令f(x)=ln x+cos x-13,则f′(x)=1x-sin x,显然在(0,1)上f′(x)>0,所以函数f(x)在(0,1)上单调递增,又ln 1e +cos 1e -13=-1-13+cos 1e <0,f (1)=ln 1+cos1-13=0+cos1-13>cos π3-13=12-13>0,所以在(0,1)上函数f (x )的图象和x 轴有且只有一个交点,即方程ln x +cos x =13在(0,1)上的实数根的个数为1.【通性通法】求解函数零点个数的基本方法(1)直接法:令f (x )=0,方程有多少个解,则f (x )有多少个零点.(2)构造函数法:判断函数的性质,并结合零点存在定理判断.(3)图象法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解,此时需要根据零点个数合理寻找“临界”情况,特别注意边界值的取舍.【巩固迁移】3.(2024·江苏无锡模拟)函数f (x )2-2,x ≤0,x -6+lg x ,x >0的零点的个数为________.答案2解析当x ≤0时,f (x )=x 2-2,根据二次函数的性质可知,此时f (x )单调递减,零点为x =-2;当x >0时,f (x )=2x -6+lg x ,∵y =2x -6单调递增,y =lg x 单调递增,∴f (x )=2x -6+lg x 单调递增.f (1)=-4<0,f (3)=lg 3>0,由零点存在定理知,在区间(1,3)必有唯一零点.综上所述,函数f (x )的零点的个数为2.4.函数f (x )|-|log 2x |的零点有________个.答案2解析f (x )|-|log 2x ||=|log 2x |的根的个数,即为y |与y =|log 2x |图象交点的个数,画出大致图象如图所示,则由图象可知交点有2个,即函数f (x )的零点有2个.考点三函数零点的应用(多考向探究)考向1利用零点比较大小例3已知函数f (x )=3x +x ,g (x )=log 2x +x ,h (x )=x 3+x 的零点分别为a ,b ,c ,则a ,b ,c 的大小顺序为()A .a <c <bB .a <b <cC.b<a<c D.b<c<a答案A解析解法一:因为函数y=3x,y=x均为R上的增函数,故函数f(x)=3x+x为R上的增函数,因为f(-1)=13-1<0,f(0)=1>0,所以-1<a<0.因为函数y=log2x,y=x在(0,+∞)上均为增函数,故函数g(x)=log2x+x在(0,+∞)上为增函数,因为1+12<0,g(1)=1>0,所以12<b<1.由h(c)=c(c2+1)=0可得c=0,因此a<c<b.故选A.解法二:由题设,3a=-a,log2b=-b,c3=-c,所以问题可转化为直线y=-x与y=3x,y=log2x,y=x3的图象的交点问题,函数图象如图所示,由图可知a<c=0<b.故选A.【通性通法】(1)直接利用方程研究零点.(2)利用图象交点研究零点.(3)利用零点存在定理研究零点.【巩固迁移】5.(2023·江西南昌模拟预测)已知函数f(x)=2x+x-4,g(x)=e x+x-4,h(x)=ln x+x-4的零点分别是a,b,c,则a,b,c的大小顺序是()A.a<b<c B.c<b<aC.b<a<c D.c<a<b答案C解析由已知条件得f(x)的零点可以看成y=2x的图象与直线y=4-x的交点的横坐标,g(x)的零点可以看成y=e x的图象与直线y=4-x的交点的横坐标,h(x)的零点可以看成y=ln x 的图象与直线y=4-x的交点的横坐标,在同一坐标系内分别画出函数y=2x,y=e x,y=ln x,y=4-x的图象,如图所示,由图可知b<a<c.故选C.考向2根据零点个数求参数例4(2023·山东济南高三三模)已知函数f (x )x +1)2,x ≤0,x |,x >0,若函数g (x )=f (x )-b 有四个不同的零点,则实数b 的取值范围为()A .(0,1]B .[0,1]C .(0,1)D .(1,+∞)答案A解析依题意,函数g (x )=f (x )-b 有四个不同的零点,即f (x )=b 有四个解,转化为函数y =f (x )与y =b 的图象有四个交点,由函数y =f (x )可知,当x ∈(-∞,-1]时,函数单调递减,y ∈[0,+∞);当x ∈(-1,0]时,函数单调递增,y ∈(0,1];当x ∈(0,1)时,函数单调递减,y ∈(0,+∞);当x ∈[1,+∞)时,函数单调递增,y ∈[0,+∞).结合图象,可知实数b 的取值范围为(0,1].故选A.【通性通法】根据零点个数求参数的方法(1)直接法:直接根据题设条件构建关于参数的不等式(组),再通过解不等式(组)确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数y =g (x ),y =h (x )的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为y =a ,y =g (x )的图象的交点个数问题.【巩固迁移】6.(2024·安徽蚌埠高三摸底)已知函数f (x )=2|x |+x 2+a 有唯一的零点,则实数a 的值为()A .1B .-1C .0D .-2答案B解析函数f (x )=2|x |+x 2+a 的定义域为R ,f (-x )=2|-x |+(-x )2+a =f (x ),即函数f (x )为偶函数,当x ≥0时,f (x )=2x +x 2+a ,则f (x )在[0,+∞)上单调递增,在(-∞,0)上单调递减,则当x =0时,f (x )min =a +1,由函数f (x )=2|x |+x 2+a 有唯一的零点,得a +1=0,解得a =-1,所以实数a 的值为-1.故选B.7.设a ∈R ,对任意实数x ,记f (x )=min{|x |-2,x 2-ax +3a -5}.若f (x )至少有3个零点,则实数a 的取值范围为________.答案[10,+∞)解析设g (x )=x 2-ax +3a -5,h (x )=|x |-2,由|x |-2=0可得x =±2.要使得函数f (x )至少有3个零点,则函数g (x )至少有一个零点,则Δ=a 2-12a +20≥0,解得a ≤2或a ≥10.①当a =2时,g (x )=x 2-2x +1,作出函数g (x ),h (x )的图象如图所示,此时函数f (x )只有2个零点,不符合题意;②当a <2时,设函数g (x )的2个零点分别为x 1,x 2(x 1<x 2),要使得函数f (x )至少有3个零点,则x 2≤-2,-2,-2)=4+5a -5≥0,无解;③当a =10时,g (x )=x 2-10x +25,作出函数g (x ),h (x )的图象如图所示,由图可知,函数f (x )的零点个数为3,符合题意;④当a >10时,设函数g (x )的2个零点分别为x 3,x 4(x 3<x 4),要使得函数f (x )至少有3个零点,则x 3≥2,,=4+a -5≥0,解得a >4,所以a >10.综上所述,实数a 的取值范围是[10,+∞).考向3根据零点范围求参数例5已知函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,则实数m 的取值范围为________.答案-53,解析由于函数y =log 2(x +1),y =m -1x在区间(1,3]上单调递增,所以函数f (x )在(1,3]上单调递增,由于函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,,≥0,<0,+53≥0,解得-53≤m <0.因此实数m 的取值范围是-53,【通性通法】根据零点范围求参数的方法(1)利用零点存在定理构建不等式(组)求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两个熟悉的函数图象的上下关系问题,从而构建不等式(组)求解.【巩固迁移】8.(2024·湖北荆州中学高三月考)已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=|x 2-2x +12|,若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.答案解析作出函数f (x )=|x 2-2x +12|,x ∈[0,3)的图象,可见f (0)=12,当x =1时,f (x )极大值=12,方程f (x )-a =0在[-3,4]上有10个零点,即函数y =f (x )的图象与直线y =a 在[-3,4]上有10个交点,由于函数f (x )的周期为3,因此直线y =a 与函数f (x )=|x 2-2x +12|,x ∈[0,3)的图象有4个交点,则有a课时作业一、单项选择题1.(2024·江苏扬中第二高级中学高三期初检测)函数f (x )=2x +3x 的零点所在的一个区间是()A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)答案B解析因为函数f (x )=2x +3x 在定义域内单调递增,f (-1)=12-3=-52<0,f (0)=1+0=1>0,所以由函数零点存在定理可知,函数f (x )的零点所在的区间为(-1,0).故选B.2.已知函数f (x )x -1,x ≤1,+log 2x ,x >1,则函数f (x )的零点为()A .2B .-2,0C.12D .0答案D解析当x ≤1时,令f (x )=2x -1=0,解得x =0;当x >1时,令f (x )=1+log 2x =0,解得x=12(舍去).综上所述,函数f (x )的零点为0.故选D.3.函数f (x )=e x |ln x |-1的零点个数是()A .1B .2C .3D .4答案B解析令f (x )=e x |ln x |-1=0,即|ln x |=e -x ,则函数f (x )=e x |ln x |-1的零点个数等价于两个函数y =e -x 与y =|ln x |图象的交点个数,y =e -x 与y =|ln x |的图象如图所示,由图可知,两个函数的图象有2个交点,故函数f (x )=e x |ln x |-1的零点个数是2.故选B.4.(2023·河南扶沟期末)若关于x 的方程log 12x =m1-m在区间m 的取值范围是()(1,+∞)答案B解析y =log 12x,则1<y <2,即1<m 1-m<2,解得12<m <23.故选B.5.已知三个函数f (x )=2x -1+x -1,g (x )=e x -1-1,h (x )=log 2(x -1)+x -1的零点依次为a ,b ,c ,则a ,b ,c 的大小关系是()A .a >b >c B .a >c >b C .c >a >b D .c >b >a答案D解析∵函数f (x )=2x -1+x -1为增函数,又f (0)=2-1-1=-12<0,f (1)=1>0,∴a ∈(0,1),由g (x )=e x -1-1=0,得x =1,即b =1,∵h (x )=log 2(x -1)+x -1在(1,+∞)上单调递增,又log +32-1=-12<0,h (2)=log 2(2-1)+2-1=1>0,∴32<c <2,∴c >b >a .故选D.6.若方程m x -x -m =0(m >0,且m ≠1)有两个不同的实数根,则实数m 的取值范围是()A .(0,1)B .(2,+∞)C .(0,1)∪(2,+∞)D .(1,+∞)答案D解析方程m x -x -m =0有两个不同的实数根等价于函数y =m x 与y =x +m 的图象有两个不同的交点,当m >1时,如图1所示,由图可知,当m >1时,函数y =m x 与y =x +m 的图象有两个不同的交点,满足题意;当0<m <1时,如图2所示,由图可知,当0<m <1时,函数y =m x 与y =x +m 的图象有且仅有一个交点,不满足题意.综上所述,实数m的取值范围为(1,+∞).故选D.7.已知函数f (x )x ,x ≤0,x ,x >0,若函数g (x )=f (x )+x -m 恰有两个不同的零点,则实数m 的取值范围是()A .[0,1]B .(-1,1)C .[0,1)D .(-∞,1]答案D解析由题意,函数f (x )x ,x ≤0,x ,x >0,当x ≤0时,函数f (x )=e x 为增函数,其中f (0)=1,当x >0时,函数f (x )=ln x 为增函数,且f (1)=0,又由函数g (x )=f (x )+x -m 恰有两个不同的零点,即为g (x )=0有两个不等的实数根,即y =f (x )与y =-x +m 的图象有两个不同的交点,如图所示,当y =-x +m 恰好过点(1,0),(0,1)时,两函数的图象有两个不同的交点,结合图象,要使得函数g (x )=f (x )+x -m 恰有两个不同的零点,实数m 的取值范围是(-∞,1].故选D.8.已知函数f (x )x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 均不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是()A .(1,10)B .(5,6)C .(10,12)D .(20,24)答案C解析函数f (x )的图象如图所示,不妨设a <b <c ,则-lg a =lg b =-12c +6∈(0,1),所以ab=1,0<-12c +6<1,所以ab =1,10<c <12,所以10<abc <12.故选C.二、多项选择题9.下列说法正确的是()A .函数y =x 2-3x -4的零点是(4,0),(-1,0)B .方程e x =3+x 有两个解C .函数y =3x ,y =log 3x 的图象关于直线y =x 对称D .用二分法求方程3x +3x -8=0在x ∈(1,2)内的近似解的过程中得到f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根落在区间(1.25,1.5)上答案BCD解析对于A ,令y =x 2-3x -4=0,解得x =-1或x =4,所以函数y =x 2-3x -4的零点是-1和4,故A错误;对于B,分别作出y=e x,y=3+x的图象,y=e x与y=3+x的图象有两个交点,即方程e x=3+x有两个解,故B正确;对于C,因为同底数的指数函数和对数函数的图象关于直线y=x对称,所以函数y=3x,y=log3x的图象关于直线y=x对称,故C正确;对于D,因为y=3x+3x-8单调递增,由零点存在定理知,因为f(1)<0,f(1.5)>0,f(1.25)<0,所以方程的根落在区间(1.25,1.5)上,故D正确.故选BCD.10.若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1<x2,则下列结论正确的是()A.当m=0时,x1=2,x2=3B.m>-14C.当m>0时,2<x1<x2<3D.二次函数y=(x-x1)(x-x2)+m的零点为2和3答案ABD解析对于A,易知当m=0时,(x-2)(x-3)=0的根为2,3,故A正确;对于B,设y=(x-2)(x-3)=x2-5x+6-14≥-14,因为y=(x-2)(x-3)的图象与直线y=m有两个交点,所以m>-14,故B正确;对于C,当m>0时,y=(x-2)(x-3)-m的图象由y=(x-2)(x-3)的图象向下平移m个单位长度得到,x1<2<3<x2,故C错误;对于D,由(x-2)(x-3)=m 展开得,x2-5x+6-m=0,利用根与系数的关系求出x1+x2=5,x1x2=6-m,代入y=(x-x1)(x-x2)+m可得y=(x-x1)(x-x2)+m=(x-2)(x-3)-m+m=(x-2)(x-3),所以二次函数y=(x-x1)(x-x2)+m的零点为2和3,故D正确.故选ABD.11.已知函数f(x)x-1|,x<1,4x2+16x-13,x≥1,函数g(x)=f(x)-a,则下列结论正确的是()A.若g(x)有3个不同的零点,则a的取值范围是[1,2)B.若g(x)有4个不同的零点,则a的取值范围是(0,1)C.若g(x)有4个不同的零点x1,x2,x3,x4(x1<x2<x3<x4),则x3+x4=4D.若g(x)有4个不同的零点x1,x2,x3,x4(x1<x2<x3<x4),则x3x4答案BCD解析令g(x)=f(x)-a=0,得f(x)=a,所以g(x)的零点个数即为函数y=f(x)与y=a图象的交点个数,故作出函数y =f (x )的图象如图,由图可知,若g (x )有3个不同的零点,则a 的取值范围是[1,2)∪{0},故A 错误;若g (x )有4个不同的零点,则a 的取值范围是(0,1),故B 正确;若g (x )有4个不同的零点x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4),此时x 3,x 4关于直线x =2对称,所以x 3+x 4=4,故C 正确;由C 项可知x 3=4-x 4,所以x 3x 4=(4-x 4)x 4=-x 24+4x 4,由于g (x )有4个不同的零点,a 的取值范围是(0,1),故0<-4x 24+16x 4-13<1,所以134<-x 24+4x 4<72,故D 正确.故选BCD.三、填空题12.已知函数f (x )=log 2(x -1)+a 在区间(2,3)上有且仅有一个零点,则实数a 的取值范围为________.答案(-1,0)解析由对数函数的性质,可得f (x )为增函数,又函数f (x )在(2,3)上有且仅有一个零点,所以f (2)f (3)<0,即a (a +1)<0,解得-1<a <0,所以实数a 的取值范围是(-1,0).13.已知函数f (x )x -1|+1,x >0,x 2-2x ,x ≤0,若函数y =f (x )-kx -1有m 个零点,函数y =f (x )-1k x-1有n 个零点,且m +n =7,则非零实数k 的取值范围是________.答案,13∪[3,+∞)解析f (x )的图象与直线y =kx +1和y =1kx +1共7个交点,f (x )的图象如图所示,所以①k <3,3,解得0<k ≤13;0<1k <3,≥3,解得k ≥3.综上,非零实数k ,13∪[3,+∞).14.(2024·河北衡水中学高三月考)已知函数f (x )=x -1x -2与g (x )=1-sinπx ,则函数F (x )=f (x )-g (x )在区间[-2,6]内所有零点的和为________.答案16解析令F (x )=f (x )-g (x )=0,得f (x )=g (x ),在同一平面直角坐标系中分别画出函数f (x )=1+1x -2与g (x )=1-sinπx 的图象,如图所示,又f (x ),g (x )的图象都关于点(2,1)对称,结合图象可知f (x )与g (x )的图象在[-2,6]上共有8个交点,交点的横坐标即F (x )=f (x )-g (x )的零点,由对称性可得,所有零点的和为4×2×2=16.15.已知函数f (x )+1x ,x <0,x ,x >0,则方程f (f (x ))+3=0的解的个数为()A .3B .4C .5D .6答案C解析已知函数f (x )+1x ,x <0,x ,x >0,∴令f (x )=-3,则当x >0时,ln x =-3,解得x =1e 3;当x <0时,x +1x =-3,解得x =-3±52.∵f (f (x ))+3=0,即f (f (x ))=-3,则f (x )=1e 3或f (x )=-3±52.由f (x )=1e 3,得ln x =1e 3,此方程只有一个根,∵当x <0时,f (x )=x +1x ≤-2,当且仅当x =-1时,等号成立,∴f (x )=-3+52仅在x >0时有一个根,f (x )=-3-52在x <0时有两个根,在x >0时有一个根.综上,方程f (f (x ))+3=0的解的个数为5.故选C.16.(多选)(2024·湖北荆州模拟)已知函数f (x )|log 12x |,0<x<4,4≤x ≤14,若方程f (x )=m 有四个不等的实根x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则下列结论正确的是()A .0<m <2B .x 1x 2=12C .x 3x 4∈(48,55)D .x 1x 3∈(1,5)答案ACD解析对于A ,当0<x <1时,log 12x >0,则f (x )=log 12x ,易得f (x )在(0,1)上单调递减,且f (x )>f (1)=0,当1≤x <4时,log 12x ≤0,则f (x )=-log 1x ,易得f (x )在[1,4)上单调递增,且f (1)≤f (x )<f (4),即0≤f (x )<2,当4≤x ≤14时,f (x )=则由f (x )=x ∈[4,14]的图象,可知f (x )在[4,8)上单调递减,在[8,14]上单调递增,且f (4)=2,f (5)=0,f (8)=4,f (11)=0,f (14)==4,从而利用对数函数与正弦函数的性质,画出f (x )的图象,如图所示,因为方程f (x )=m 有四个不等实根,所以f (x )与y =m 的图象有四个交点,所以0<m <2,故A 正确;对于B ,结合A 项分析可得log 12x 1=-log 12x 2,所以log 12(x 1x 2)=0,则x 1x 2=1,故B 错误;对于C ,D ,由正弦函数的性质及结合图象可知(x 3,m )与(x 4,m )关于直线x =8对称,所以x 3+x 4=16,又当0<x <1时,f (x )=log 12x ,令f (x )=2,得x =14,所以14<x 1<1,4<x 3<5,所以x 1x 3∈(1,5),x3x 4=x 3(16-x 3)=-x 23+16x 3=-(x 3-8)2+64,因为x 3∈(4,5),所以x 3x 4∈(48,55),故C ,D 正确.故选ACD.17.已知定义在R 上的奇函数y =f (x )满足f (1+x )=f (1-x ),当-1≤x <0时,f (x )=x 2,则方程f (x )+12=0在[-2,6]内的所有根之和为________.答案12解析因为f (1+x )=f (1-x ),所以y =f (x )的图象关于直线x =1对称,又函数y =f (x )在R 上为奇函数,且当-1≤x <0时,f (x )=x 2,由此画出f (x )在区间[-2,6]上的图象如图所示.f (x )+12=0⇒f (x )=-12,由图可知,y =-12与f (x )的图象有4个交点,其中两个关于直线x =1对称,两个关于直线x =5对称,所以方程f (x )+12=0在[-2,6]内的所有根之和为2×1+2×5=12.18.(2024·山东泰安高三期末)已知函数f (x )2(x +1),x >3,x +3|,-9≤x ≤3,若x 1<x 2,x 1<x 3,且f (x 1)=f (x 2),f (x 1)+f (x 3)=4,则x 3x 1+x 2的取值范围是________.答案-52,-12解析对于f (x )2(x +1),x >3,+3|,-9≤x ≤3,当x >3时,f (x )>2,当-9≤x ≤3时,0≤f (x )≤2,并且图象关于直线x =-3对称,函数f (x )的图象如下图所示,如果x 1>3,则f (x 1)=f (x 2)不成立,∴x 1∈[-9,3],x 2∈[-9,3],并且有x 1+x 2=-6,0<f (x 1)≤2.由f (x 1)+f (x 3)=4可知,2≤f (x 3)<4,∴2≤log 2(x 3+1)<4,3≤x 3<15.∴x 3x 1+x 2=-16x 3-52,-12.。
高三数学一轮复习精品教案2:2.8函数与方程教学设计
第八节函数与方程1.函数零点(1)定义:对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.(2)函数零点与方程根的关系:方程f(x)=0有实根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)零点存在性定理:如果函数y=f(x)在区间『a,b』上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在x0∈(a,b),使得f(x0)=0.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系续表3.二分法对于在区间『a,b』上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.1.(人教A 版教材习题改编)用二分法求函数y =f (x )在区间(2,4)上的近似解,验证f (2)·f (4)<0,给定精确度ε=0.01,取区间(2,4)的中点x 1=2+42=3,计算得f (2)·f (x 1)<0,则此时零点x 0所在的区间为( )A .(2,4)B .(3,4)C .(2,3)D .(2.5,3)『解析』 由零点存在性定理知x 0∈(2,3),故选C. 『答案』 C2.在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为( ) A .(-14,0) B .(0,14)C .(14,12)D .(12,34)『解析』 显然f (x )=e x +4x -3的图象连续不间断,又f (12)=e -1>0,f (14)=4e -2<0.∴由零点存在定理知,f (x )在(14,12)内存在零点.『答案』 C3.若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点是( ) A .0,2 B .0,12C .0,-12D .2,-12『解析』 由题意知2a +b =0, 即b =-2a .令g (x )=bx 2-ax =0得x =0或x =a b =-12,故选C.『答案』 C4.(2012·北京高考)函数f (x )=x 12-(12)x 的零点的个数为( )A .0B .1C .2D .3『解析』 在同一平面直角坐标系内作出y 1=x 12与y 2=(12)x 的图象如图所示,易知,两函数图象只有一个交点.因此函数f (x )=x 12-(12)x 只有1个零点.『答案』 B5.(2013·德州调研)已知函数f (x )=x 2+x +a 在区间(0,1)上有零点,则实数a 的取值范围是________.『解析』 函数f (x )=x 2+x +a 在(0,1)上递增. 由已知条件f (0)f (1)<0,即a (a +2)<0,解得-2<a <0. 『答案』 (-2,0)(1)(2012·天津高考)函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( ) A .0 B .1 C .2 D .3(2)(2013·湛江模拟)设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在的区间(端点值为连续整数的开区间)是________.『思路点拨』 (1)先根据零点存在性定理证明有零点,再根据函数的单调性判断零点的个数.(2)画出两个函数的图象寻找零点所在的区间.『尝试解答』 (1)因为f ′(x )=2x ln 2+3x 2>0,所以函数f (x )=2x +x 3-2在(0,1)上递增,且f (0)=1+0-2=-1<0,f (1)=2+1-2=1>0,所以有1个零点.(2)设f (x )=x 3-(12)x -2,则x 0是函数f (x )的零点.在同一坐标系下画出函数y =x 3与y =(12)x-2的图象,如图所示. ∵f (1)=1-(12)-1=-1<0,f (2)=8-(12)0=7>0∴f (1)f (2)<0, ∴x 0∈(1,2).『答案』 (1)B (2)(1,2),确定函数f (x )零点所在区间的常用方法(1)解方程法:当对应方程f (x )=0易解时,可先解方程,再看求得的根是否落在给定区间上;(2)利用函数零点的存在性定理:首先看函数y =f (x )在区间『a ,b 』上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(3)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.(1)函数f (x )=x -cos x 在『0,+∞)内( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点(2)(2013·汕头模拟)函数f (x )=ln(x -2)-2x 的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(3,4)D .(4,5)『解析』 (1)令f (x )=x -cos x =0,则x =cos x ,设函数y =x 和y =cos x ,在同一坐标系下做出它们在『0,+∞)的图象,显然两函数的图象的交点有且只有一个,所以函数f (x )=x -cos x 在『0,+∞)内有且仅有一个零点.(2)由题意知函数f (x )的定义域为{x |x >2},∴排除A. ∵f (3)=-23<0,f (4)=ln 2-12>0,f (5)=ln 3-25>0,∴f (3)·f (4)<0,f (4)·f (5)>0,∴函数f (x )的零点在(3,4)之间,故选C.『答案』(1)B(2)C若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,参考数据如下:那么方程x3+x2-2x-2=0的一个近似根(精确度0.1)为()A.1.25B.1.375C.1.406 25 D.1.5『思路点拨』(1)二分法求近似零点,需将区间一分为二,逐渐逼近;(2)必须满足精确度要求,即|a-b|<0.1.『尝试解答』根据题意知函数的零点在1.406 25至1.437 5之间,又|1.437 5-1.406 25|=0.031 25<0.1,故方程的一个近似根可以是1.406 25.『答案』C,1.解答本题一要从图表中寻找数量信息,二要注意“精确度”的含义,切不可与“精确到”混淆.2.(1)用二分法求函数零点的近似解必须满足①y=f(x)的图象在『a,b』内连续不间断,②f (a )·f (b )<0.(2)在第一步中,尽量使区间长度缩短,以减少计算量及计算次数.在用二分法求方程x 3-2x -1=0的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可断定该根所在的区间为________.『解析』 在(1,2)内取中点x 0=32,令f (x )=x 3-2x -1,∵f (32)=278-4<0,f (2)=8-4-1>0,f (1)<0,∴f (x )=0的根在(32,2)内.『答案』 (32,2)(2013·临沂模拟)已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0). (1)若g (x )=m 有实数根,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.『思路点拨』 解答(1)可用基本不等式求出最值或数形结合法求解,(2)转化为两个函数f (x )与g (x )有两个交点,从而数形结合求解.『尝试解答』 (1)法一 ∵g (x )=x +e 2x ≥2e 2=2e ,等号成立的条件是x =e ,故g (x )的值域是『2e ,+∞),因此,只需m ≥2e ,则g (x )=m 就有零点.故当g (x )=m 有实数根时,m 的取值范围为『2e ,+∞). 法二 作出g (x )=x +e 2x(x >0)的大致图象如图:可知若使g (x )=m 有零点,则只需m ≥2e.故当g (x )=m 有实数根时,m 的取值范围为『2e ,+∞).(2)若g (x )-f (x )=0有两个相异的实根,即g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e 2x(x >0)的大致图象.∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2,∴其图象的对称轴为x =e ,开口向下,最大值为m -1+e 2,故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.∴m 的取值范围是(-e 2+2e +1,+∞).已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.(2013·淮南模拟)函数f (x )=⎩⎪⎨⎪⎧|x 2+2x -1|,x ≤0,2x -1+a , x >0有两个不同的零点,则实数a 的取值范围为________.『解析』 由于当x ≤0,f (x )=|x 2+2x -1|时图象与x 轴只有1个交点,即只有1个零点,故由题意只需方程2x -1+a =0有1个正根即可,变形为2x =-2a ,结合图形只需-2a >1⇒a <-12即可.『答案』 a <-12一个口诀用二分法求函数零点近似值的口诀为:定区间,找中点,中值计算两边看.同号去,异号算,零点落在异号间.周而复始怎么办?精确度上来判断.两个防范1.函数的零点不是点,是方程f (x )=0的实根.2.函数零点的存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.三种方法函数零点个数的判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要求函数在区间『a ,b 』上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.从近两年高考试题看,函数的零点、方程的根的问题是高考的热点,题型以客观题为主,主要考查学生转化与化归及函数与方程的思想.思想方法之五 用函数与方程思想解决图象公共点问题(2012·山东高考)设函数f (x )=1x,g (x )=ax 2+bx (a ,b ∈R ,a ≠0).若y =f (x )的图象与y =g (x )的图象有且仅有两个不同的公共点A (x 1,y 1),B (x 2,y 2),则下列判断正确的是( )A .当a <0时,x 1+x 2<0,y 1+y 2>0B .当a <0时,x 1+x 2>0,y 1+y 2<0C .当a >0时,x 1+x 2<0,y 1+y 2<0D .当a >0时,x 1+x 2>0,y 1+y 2>0『解析』 由题意知函数f (x )=1x ,g (x )=ax 2+bx (a ,b ∈R ,a ≠0)的图象有且仅有两个公共点A (x 1,y 1),B (x 2,y 2),等价于方程1x =ax 2+bx (a ,b ∈R ,a ≠0)有两个不同的根x 1,x 2,即方程ax 3+bx 2-1=0有两个不同非零实根x 1,x 2,因而可设ax 3+bx 2-1=a (x -x 1)2(x -x 2),即ax 3+bx 2-1=a (x 3-2x 1x 2+x 21x -x 2x 2+2x 1x 2x -x 2x 21),∴b =a (-2x 1-x 2), x 21+2x 1x 2=0,-ax 2x 21=-1,∴x 1+2x 2=0,ax 2>0,当a >0时,x 2>0,∴x 1+x 2=-x 2<0,x 1<0, ∴y 1+y 2=1x 1+1x 2=x 1+x 2x 1x 2>0.当a <0时,x 2<0,∴x 1+x 2=-x 2>0,x 1>0, ∴y 1+y 2=1x 1+1x 2=x 1+x 2x 1x 2<0.『答案』 B易错提示:(1)不能把函数图象的交点问题转化为方程的根的问题,找不到解决问题的切入点.(2)不能把方程根的情况与相应函数的极值大小联系起来,思维受阻,无法解答. 防范措施:(1)明确函数图象的交点、方程的根与函数的零点三者之间的关系是解决问题的关键所在.(2)方程的根的情况与函数的极值的大小有密切的关系,求解时应注意寻找它们之间的关系.1.(2012·湖北高考)函数f (x )=x cos x 2在区间『0,4』上的零点个数为( ) A .4 B .5 C .6 D .7『解析』 根据x 2的范围判断y =cos x 2在区间『0,4』上的零点个数.当x =0时,f (x )=0.又因为x ∈『0,4』,所以0≤x 2≤16.因为5π<16<11π2,所以函数y=cos x 2在x 2取π2,3π2,5π2,7π2,9π2时为0,此时f (x )=0,所以f (x )=x cos x 2在区间『0,4』上的零点个数为6.『答案』 C2.(2013·威海模拟)设方程log 4x -(14)x =0,log 14x -(14)x =0的根分别为x 1、x 2,则( )A .0<x 1x 2<1B .x 1x 2=1C .1<x 1x 2<2D .x 1x 2≥2『解析』 在同一坐标系内画出函数y =(14)x ,y =log 4x ,y =log 14x 的图象,如图所示,则x 1>1>x 2>0,由log 4x 1=(14)x 1,log 14x 2=(14)x 2得log 4x 1x 2=(14)x 1-(14)x 2<0,∴0<x 1x 2<1,故选A. 『答案』 A。
最新[高考]高考数学二轮专题复习教案4:函数与方程的思想方法名师优秀教案
[高考]高考数学二轮专题复习教案4:函数与方程的思想方法函数与方程的思想方法一、知识整合函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x),0的解就是函数y,f(x)的图像与x轴的交点的横坐标,函数y,f(x)也可以看作二元方程f(x)-y,0通过方程进行研究。
就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决。
函数与方程的思想是中学数学的基本思想,也是历年高考的重点1(函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。
函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。
2(方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。
方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题。
方程思想是动中求静,研究运动中的等量关系.3((1) 函数和方程是密切相关的,对于函数y,f(x),当y,0时,就转化为方程f(x),0,也可以把函数式y,f(x)看做二元方程y,f(x),0。
函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x),0,就是求函数y,f(x)的零点。
(2) 函数与不等式也可以相互转化,对于函数y,f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式。
高三数学高考考前复习函数与方程教案
芯衣州星海市涌泉学校第八节函数与方程一、复习目的:1、理解函数零点的概念,结合二次函数的图像,理解函数的零点与方程根的联络。
2、理解并掌握连续函数在某个区间上存在零点的断定方法。
能利用函数的图象和性质判别函数零点的个数。
二、重难点:重点:函数零点的概念,掌握用二分法求函数)(xfy=零点的近似值难点:用二分法求函数)(xfy=的零点近似值三、教学方法:讲练结合,探析归纳。
四、教学过程〔一〕、谈新课标要求及考纲要求和高考命题考察情况,促使学生积极参与。
新课标要求及考纲要求1、结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而理解函数的零点与方程根的联络;2、根据详细函数的图像,可以借助计算器用二分法求相应方程的近似解,理解这种方法是求方程近似解的常用方法。
高考命题考察情况及预测:函数与方程的理论是高中新课标教材中新增的知识点,特别是“二分法〞求方程的近似解和函数有零点的判断也一定会是高考的考点。
预计2021年高考对本节的要求是:以二分法为重点、以二次函数为载体、以考察函数与方程的关系为目的来考察学生的才能。
〔1〕题型可为选择、填空和解答;〔2〕高考试题中可能出现复合了函数性质与函数零点的综合题,同时考察函数方程的思想。
〔二〕、知识梳理整合,方法定位。
〔学生完成复资P23填空题,教师准对问题讲评〕〔Ⅰ〕、函数的零点方程)(=xf的实数根又叫做函数))((Dxxfy∈=的零点。
方程()0f x=有实根⇔函数()y f x=的图像与x轴有交点⇔函数()y f x=有零点;②假设函数()y f x=在区间(,)a b上的图像是连续不断的,且有()()0f a f b⋅<,那么函数()y f x=在区间(,)a b 上有零点。
〔Ⅱ〕、二分法1.假设函数()y f x =在区间],[n m 上的图像是连续不断的一条曲线,且0)()(<⋅n f m f ,通过不断地把函数()y f x =的零点所在区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。
高考数学一轮复习教案第16课函数与方程
一.教学目标1.理解函数零点的概念,函数零点与方程根的关系;.2.利用函数与方程、分类讨论、数形结合、化归等数学思想与方法解决函数、方程、不等式等有关问题. 二.基础知识回顾与梳理1.试判断函数1)(3-+=x x x F 的零点的个数.【教学建议】本题主要帮助学生复习函数零点的概念,以及掌握在解决此类问题时所渗透的数形结合、函数与方程、化归与转化的数学思想方法. 教学中可做如下设问:问题1 函数零点的定义是什么? 问题2 函数的零点与方程的根有何联系?(1)直接法:根据问题1的解答可以引导学生通过导数研究)(x F 的单调性进而画出函数)(x F 图像的草图,寻找)(x F 与x 轴的交点个数来解决问题.(2)间接法:根据问题2的解答可以引导学生将013=-+x x 整理成 x x -=13或者xx 112=+的形式进而化归到两个函数图像⎩⎨⎧-==x x g x x f 1)()(3或者⎪⎩⎪⎨⎧=+=x x g x x f 1)(1)(2的交点个数问题. 【点评】判断函数)(x F 的零点情况一般可以通过数形结合直接研究函数)(x F y =图像与x 轴的交点的横坐标,如若研究)(x F 的图像不易也可以将方程)(x F =0拆分成两个所熟悉函数)(x f 与)(x g 的差的形式即0)()(=-x g x f ,进而研究函数)(x f y =与)(x g y =图像的交点的横坐标.2.已知函数1)(3-+=x x x F 的零点为a ,且N n n n a ∈+∈],5.05.0,5.0[,根据上题结论求n 的值.【教学建议】 本题主要帮助学生复习函数有零点的重要结论:“函数)(x f y =在区间[,]a b 上连续,且0)()(<⋅b f a f ,则函数)(x f y =在区间(a ,b )上有零点”和“二分法”.【点评】1.函数)(x f y =在区间[,]a b 上连续,且0)()(<⋅b f a f ,是函数)(x f y =在区间(a ,b )上有零点的充分不必要条件,可以引导学生举例说明.2.使用二分法找近似解的一般步骤:首先画图像宏观把握(通过图像直观的观察解的个数以及所处的大致区间),其次利用二分法微观精确处理(通过解所在的大致区间用二分法的数值计算). 三、诊断练习1.教学处理:课前由学生自主完成4道小题,并要求将解题过程扼要地写在学习笔记栏.上课前抽查批阅部分同学的解答,了解学生的思路及主要错误.2.结合课件点评。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章函数与导数第10课时函数与方程(对应学生用书(文)、(理)26~27页)考情分析考点新知① 函数与方程中函数的零点及二分法在高考中必将有所考查.②以难度较低的填空题为主,考查函数的图象及根的存在性问题.了解二分法求方程近似解的方法,体会函数的零点与方程根之间的联系,形成用函数观点处理问题的能力.②会利用函数的图象求方程的解的个数以及研究一元二次方程的根的分布.1. (必修1P43练习2改编)若一次函数f(x)=ax+b有一个零点2,那么函数g(x)=bx2-ax的零点是________.答案:0、-12解析:由题意可得,b=-2a且a≠0,由g(x)=-2ax2-ax=0,得x=0或x=-12.2. (必修1P111复习13改编)已知函数f(x)=2x-3x,则函数f(x)的零点个数________.答案:2解析:(解法1)令f(x)=0,则2x=3x,在同一坐标系中分别作出y=2x和y=3x的图象,由图知函数y=2x和y=3x的图象有2个交点,所以函数f(x)的零点个数为2.(解法2)由f(0)>0,f(1)<0,f(3)<0,f(4)>0,…,所以有2个零点,分别在区间(0,1)和(3,4)内.3. (必修1P96练习2改编)方程lgx=2-x在区间(n,n+1)(n∈Z)有解,则n的值为________.答案:1解析:令f(x)=lgx+x-2,由f(1)=-1<0,f(2)=lg2>0,知f(x)=0的根介于1和2之间,即n =1.4. (必修1P97习题8)若关于x的方程7x2-(m+13)x-m-2=0的一个根在区间(0,1)上,另一个在区间(1,2)上,则实数m的取值范围为________.答案:(-4,-2)解析:设f(x)=7x2-(m+13)x-m-2,则⎩⎪⎨⎪⎧f(0)>0,f(1)<0,f(2)>0,解得-4<m<-2.5. (必修1P96练习5改编)若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,其参考数据如下:f(1)=-2 f(1.5) =0.625 f(1.25) =-0.984f(1.375)=-0.260 f(1.4375)=0.162 f(1.40625)=-0.054答案:1.4解析:f(1.40625)=-0.054<0,f(1.4375)=0.162>0且都接近0,由二分法可知其根近似于1.4.1. 函数零点的定义(1) 方程f(x)=0的实数根又叫y=f(x)的零点.(2) 方程f(x)=0有实根函数y=f(x)的图象与x 轴有交点对函数f(x)=0有零点.2. 函数零点的判定如果函数y=f(x)在区间(a,b)上的图象是一条不间断的曲线,且f(a)·f(b)<0,则函数y=f(x)在区间上有零点,即存在x0∈(a,b),使得f(x0)=0,这个x0也就是函数f(x)=0的零点.我们不妨把这一结论称为零点存在性定理.3. 与零点的关系Δ=b2-4ac Δ>0Δ=0 Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴的交点两个交点一个交点无交点零点个数 2 1 0第一步,确定区间(a,b),验证f(a)f(b)<0;第二步,求区间(a,b)的中点x1;第三步,计算f(x1);①若f(x1)=0,则x1就是函数的零点;②若f(x1)f(a)<0,则令b=x1 (此时零点x0∈(a,x1));③若f(x1)f(a)>0,则令a=x1 (此时零点x0∈(x1,b));第四步,判断是否满足要求的条件,否则重复第二、三、四步.[备课札记]题型1零点的求法及零点的个数例1 (1) 求函数f(x)=x3-2x2-x +2的零点;(2) 已知函数f(x)=ln(x +1)-1x ,试求函数的零点个数.解:(1) ∵ f(x)=x3-2x2-x +2=x2(x -2)-(x -2)=(x -2)(x +1)(x -1).令f(x)=0,得x =±1,2,∴ 函数f(x)的零点是-1,1,2.(2) 令f(x)=0,即ln(x +1)=1x ,在同一坐标系中画出y =ln(x +1)和y =1x 的图象,可知两个图象有两个交点,所以f(x)有两个零点.备选变式(教师专享)(1) 已知函数f(x)=x2+ax +b 的两个零点是-2和3,解不等式bf(ax)>0; (2) 已知f(x)=2x ,g(x)=3-x2,试判断函数y =f(x)-g(x)的零点个数. 解:(1)由题意,得f ()x =(x +2)(x -3)=x2-x -6,所以a =-1,b =-6,所以不等式bf(ax)>0,即为f(-x)<0,即x2+x -6<0,解得-3<x<2,所以解集为(-3,2). (2)在同一坐标系内作出函数f(x)=2x 与g(x)=3-x2的图象,两图象有两个交点, ∴ 函数y =f(x)-g(x)有两个零点. 题型2 二次函数的零点问题例2 (1) 已知α、β是方程x2+(2m -1)x +4-2m =0的两个实根,且α<2<β,求m 的取值范围;(2) 若方程x2+ax +2=0的两根都小于-1,求a 的取值范围. 解:(1) 设f(x)=x2+(2m -1)x +4-2m.∵ α、β是方程f(x)=0的两个根,且α<2<β, ∴ f(2)<0,即22+2(2m -1)+4-2m<0,得m<-3.(2) 设f(x)=x2+ax +2, f(-1)=1-a +2,Δ=a2-8.由题意,得⎩⎪⎨⎪⎧f (-1)>0,Δ≥0,-a 2<-1,∴ 22≤a<3.变式训练已知关于x 的二次方程x2+2mx +2m +1=0.(1) 若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求实数m 的取值范围;(2) 若方程两根均在区间(0,1)内,求实数m 的取值范围.解:设二次方程x2+2mx +2m +1=0所对应的函数为f(x)=x2+2mx +2m +1.(1) 要使方程的一根在区间(-1,0)内,另一根在区间(1,2)内,则结合函数图象(如图),有⎩⎪⎨⎪⎧f (0)=2m +1<0,f (-1)=2>0,f (1) =4m +2<0,f (2)=6m +5>0,解得-56<m<-12.(2) 要使方程两根均在区间(0,1)内,则结合函数图象(如图),有⎩⎪⎨⎪⎧f (0)=2m +1>0,f (1)=4m +2>0,Δ≥0,0<-m<1,解得⎩⎪⎨⎪⎧m>-12,m ≤1-2或m≥1+2,-1<m<0,即-12<m ≤1- 2.题型3 函数与方程的相互转换例3 设函数f(x)=|x|x +2-ax2,a ∈R.(1) 当a =2时,求函数f(x)的零点;(2) 当a>0时,求证:函数f(x)在(0,+∞)内有且仅有一个零点; (3) 若函数f(x)有四个不同的零点,求a 的取值范围.(1) 解:当x≥0时,由f(x)=0,得xx +2-2x2=0,即x(2x2+4x -1)=0,解得x =0或x =-2±62(舍负);当x<0时,由f(x)=0,得-xx +2-2x2=0,即x(2x2+4x +1)=0(x≠-2),解得x =-2±22.综上所述,函数f(x)的零点为0,x =-2+62,x =-2+22,x =-2-22. (2) 证明:当a>0且x>0时,由f(x)=0,得x x +2-ax2=0,即ax2+2ax -1=0.记g(x)=ax2+2ax -1,则函数g(x)的图象是开口向上的抛物线. 又g(0)=-1<0,所以函数g(x)在(0,+∞)内有且仅有一个零点, 即函数f(x)在区间(0,+∞)内有且仅有一个零点. (3) 解:易知0是函数f(x)的零点.对于x>0,由(2)知,当a>0时,函数f(x)在区间(0,+∞)内有且仅有一个零点; 当a≤0时,g(x)=ax2+2ax -1<0恒成立,因此函数f(x)在区间(0,+∞)内无零点.于是,要使函数f(x)有四个不同的零点,函数f(x)在区间(-∞,0)内就要有两个不同的零点. 当x<0时,由f(x)=0,得-xx +2-ax2=0,即ax2+2ax +1=0(x≠-2).①因为a =0不符合题意,所以①式可化为x2+2x +1a =0(x≠-2),即x2+2x =-1a =0. 作出函数h(x)=x2+2x(x<0)的图象便知-1<-1a <0,得a>1,综上所述,a 的取值范围是(1,+∞). 备选变式(教师专享)设a 是实数,讨论关于x 的方程lg(x -1)+lg(3-x)=lg(a -x)的实数解的个数.解:原方程等价于方程组⎩⎪⎨⎪⎧1<x<3,(x -1)(3-x )=a -x ,即⎩⎪⎨⎪⎧1<x<3,a =-x2+5x -3.在同一坐标系下作直线y =a 与抛物线y =-x2+5x -3(1<x<3)的图象,由图可知,当1<a≤3或a =134时,原方程只有一个实数解;当3<a<134时,原方程有两个不同的实数解.1. (2013·天津)函数f ()x =2x ||log0.5x -1的零点个数是________. 答案:2解析:令f(x)=2x|log0.5x|-1=0,可得|log0.5x|=⎝⎛⎭⎫12x.设g(x)=|log0.5x|,h(x)=⎝⎛⎭⎫12x,在同一坐标系下分别画出函数g(x)、h(x)的图象,可以发现两个函数图象一定有2个交点,因此,函数f(x)有2个零点. 2. (2013·南通二模)函数f(x)=(x -1)sin πx -1(-1<x <3)的所有零点之和为________. 答案:4解析:令f(x)=(x -1)sin πx -1=0,则sin πx =1x -1,在同一坐标系中作出函数y =sin πx 与y=1x -1的图象如图所示,易知此两函数的图象都关于点(1,0)中心对称,且它们有四个交点,即函数f(x)有四个零点,又对称的两交点横坐标之和为2,故四个零点之和为4.3. 若{}x =x -[]x ([]x 表示不超过x 的最大整数),则方程12 013-2 013x ={}x 的实数解的个数是________. 答案:2解析:方程可化为12 013+[x]=2 013x ,可以构造两个函数:y =12 013+[x],y =2 013x ,由图可知,两函数图象有2个交点,故方程有两个根.4. (2013·常州期末)已知函数f(x)=⎩⎪⎨⎪⎧2x ,x ≥2,(x -1)3,0<x <2,若关于x 的方程f(x)=kx 有两个不同的实根,则实数k 的取值范围是________.答案:⎝⎛⎭⎫0,12 解析:在同一个直角坐标系中作出函数y =f(x)、y =kx 的图象,函数y =f(x)图象最高点坐标为A(2,1),过点O 、A 的直线斜率为2,x ≥2时,f(x)=2x 单调减且f(x)>0,直线y =kx 过原点,所以斜率0<k <2时,两个函数的图象恰有两个交点.1. 函数f(x)=2x +x3-2在区间(0,1)内的零点个数是________. 答案:1解析:因为函数f(x)=2x +x3-2的导数为f′(x)=2xln2+3x2≥0,所以函数f(x)单调递增,f(0)=1-2=-1<0,f(1)=2+1-2=1>0,所以根据根的存在定理可知在区间(0,1)内函数的零点个数为1个.2. 若关于x 的方程|x|x -1=kx2有四个不同的实数根,则实数k 的取值范围是________.答案:k<-4解析:显然,x =0是方程的一个实数根.当x≠0时,方程可化为1k =|x|(x -1),设f(x)=1k ,g(x)=|x|(x -1),题意即为f(x)与g(x)图象有三个不同的交点,由g(x)=⎩⎪⎨⎪⎧x (x -1),x>0,-x (x -1),x<0,结合图象知,-14<1k <0,所以k<-4.3. 已知关于x 的方程x2+2alog2(x2+2)+a2-3=0有唯一解,则实数a 的值为________. 答案:1解析:设f(x)=x2+2alog2(x2+2)+a2-3,由f(-x)=f(x),知f(x)是偶函数.若方程f(x)=0有唯一解,则f(0)=0,代入得a =1或a =-3.令t =x2,则f(x)=g(t)=t +2alog2(t +2)+a2-3.当a=1时,g(t)=t+2log2(t+2)-2,由于g(t)≥g(0)=0,当且仅当x=0时取等号,符合条件;当a=-3时,g(t)=t-6log2(t+2)+6,由g(30)=30-6×5+6>0,g(14)=14-6×4+6<0,知f(x)至少有三个根,不符合.所以,符合条件的实数a的值为1.4. 对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点,已知函数f(x)=ax2+(b+1)x+b-1(a≠0).(1) 当a=1,b=-2时,求f(x)的不动点;(2) 若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.解:(1) 当a=1,b=-2时,f(x)=x2-x-3,由题意可知x=x2-x-3,得x1=-1,x2=3,故当a=1,b=-2时,f(x)的不动点是-1,3.(2) ∵ f(x)=ax2+(b+1)x+b-1(a≠0)恒有两个不动点,∴x=ax2+(b+1)x+b-1,即ax2+bx +b-1=0恒有两相异实根,∴Δ=b2-4ab+4a>0(b∈R)恒成立.于是Δ′=(4a)2-16a<0,解得0<a<1,故当b∈R,f(x)恒有两个相异的不动点时,0<a<1.1. 一元二次方程根的分布问题通常有两种解法:一是方程思想,利用根与系数的关系;二是函数思想,构造二次函数利用其图象分析,但要重视条件的严谨.2. 涉及函数零点的问题,通常有三种转化:一是用零点的定义转化为方程问题;二是利用零点存在性定理转化为函数问题;三是利用数形结合思想转化为函数图象问题.请使用课时训练(A)第10课时(见活页).[备课札记]。