第三章 函数
初等代数研究( 第3章 函数 )2011.9
2014-7-3
初等代数研究
2
§1 函数的概念
一、函数概念的扩展
最早提出函数(function)概念的是 17 世纪德国数学家莱布尼茨. 1718 年,莱布尼茨的学生、瑞士数学家约翰· 贝努利把函数定义为:“由 某个变量及任意的一个常数结合而成的数量.” 1755 年,瑞士数学家欧拉把函数定义为:“如果某些变量以某一种方式依 赖于另一些变量,即当后面这些变量变化时,前面这些变量也随之变化,我 们把前面的变量称为后面变量的函数.”在欧拉的定义中,就不强调函数要用 公式表示了.由于函数不一定要用公式来表示,欧拉曾把画在坐标系的曲线 也叫函数.他认为:“函数是随意画出的一条曲线.”当时有些数学家对于不用 公式来表示函数感到很不习惯,有的数学家甚至抱怀疑态度.他们把能用公 式表示的函数叫“真函数”,把不能用公式表示的函数叫“假函数”.
2014-7-3 初等代数研究 4
§1 函数的概念
一、函数概念的扩展
19 世纪末,自从德国数学家康托创立了集合论,人们把函数的概念提升到了 更抽象的层次,这个抽象的定义,提炼出了函数概念的精髓,使它去除了各种形 式的束缚,从而有了更广泛的应用. 中文数学书上使用的“函数”一词是转译词。 我国清代数学家李善兰在翻译 《代 数学》 (1895 年)一书时,把“funcion”译成“函数”,中国古代“函”字与“含”字通用, 都有着“包含”的意思,李善兰给出的定义是:“凡式中含天,为天之函数。”中国 古代用天、地、人、物 4 个字来表示 4 个不同的未知数或变量。这个定义的含义 是:“凡是公式中含有变量x,则该式子叫做x的函数。”所以“函数”是指公式里 含有变量的意思。
3.伸缩变换
2014-7-3
y f ( x) y f (kx) y f ( x) y kf ( x)
离散数学 第三章 函数
下面先规定几个标准集合的基数: 1) 空集的基数为0。 2) 设n为一自然数,Nn为从1到n的连贯的自然数集合, Nn={1,2,3,…,n},Nn的基数为n,|Nn|=n 。 3) 设N为自然数的全体,N={1,2,3,…},N的基数为ℵ0(读成 阿列夫零, ℵ是希伯莱文的第一个字母)。 4) 设R为实数的全体,R的基数为ℵ ,|R|= ℵ 。 • • 以上四项规定,对于空集及Nn的基数,实际上就是集 合中元素的个数,关于ℵ0及ℵ,下面将予探讨。 有了标准基数之后,我们可以对各种集合测量其基数。 测量的手段是以双射函数为主体的等价关系一等势。 比如说,一个集合与N等势,那么这个集合的基数为 ℵ0 。
定理6 设A及B为两个可数集,那么A×B为一可数集。 定理 推论1 推论 设A1,A2,A3,…,An为n个可数集,那么 × A是可数集。
i=1 i n
定理7 (0,1)开区间上的实数不是可数集。 定理 定理8 设A为一集Y的函数,若f 是双射函数,则f 的逆关系 f –1是从Y到X的双射函数。 定理2 定理 设f 是从X到Y的函数,g 是从Y到Z的函数,则复合关 系f οg是从 X到Z的函数,将f ο g记为g ο f 。 定理3 定理 设f 是从X到Y的函数,g 是从Y到Z的函数。 1)若f 和g是满射函数,则g ο f 是满射函数; 2)若f 和g是单射函数,则g ο f 是单射函数; 3)若f 和g是双射函数,则g ο f 是双射函数。 定理4 定理 设f 是从X到Y的双射函数, f –1是f 的逆函数,则 1) (f –1) –1 = f 2) f –1 ο f = IX 3) f ο f –1 = IY
定义3 定义 设 |X|=n,P是从X到X的双射函数,称P为X上的置 换,称n为置换的阶。 • 在n个元素的集合中,不同的n阶置换的个数为n!。 • 通常用下面的方法表示置换。 x1 x2 x3 … xn P = p(x ) p(x ) p(x ) … p(x ) 1 2 3 n • 若∀xi∈X 有 p(xi) = xi ,则称P是恒等置换。 • P的逆函数P-1可表示为 p(x1) p(x2) p(x3) … p(xn) P-1 = x1 x2 x3 … xn • 置换的复合与关系的复合相同。 1 2 3 1 2 3 1 2 3 3 2 1 2 1 3 3 1 2
高中数学必修一-第三章-3.1 函数的概念及其表示
第三章函数3.1 函数的概念及其表示知识点一:函数的概念1.函数的有关概念2.函数的三要素一个函数的构成要素:定义域、对应关系和值域.因为值域是由定义域和对应关系决定的,所以两个函数的定义域和对应关系相同时,它们是同一个函数.3.区间的概念:设a,b∈R,a<b.实数集R可以用区间表示为(-∞,+∞).知识点二:函数的表示法1.函数的三种表示法2.分段函数已知函数y=f(x),x∈A,如果自变量x在不同的取值范围内,函数有着不同的对应关系,那么我们称这样的函数为分段函数.【思考】1.函数的定义域和值域是否一定是无限集?2.区间是数集的另一种表示方法,是否任何数集都能用区间表示?3.根据函数的定义,任何一个自变量x是否都有唯一的函数值y与之对应?任何一个函数值y 是否都有唯一的自变量x与之对应?4.如何确定分段函数的定义域和值域?【解析】1.不一定.函数的定义域和值域也可能是有限集,如f(x)=1,x∈{1,2,3}.2.不是.如集合{0,1}就不能用区间表示.3.任何一个自变量x都有唯一的函数值y与之对应,但是函数值y不一定有唯一的自变量x 与之对应。
如f(x)=x2中,函数值4有两个自变量2、-2与之对应。
函数中x,y的对应关系是“一对一”或“多对一”,不能“一对多”.4.分段函数的定义域是每一段自变量取值范围的并集,值域也是每一段函数值取值范围的并集.3.1.1 函数的概念基础练一函数的概念1.(多选题)下面选项中,变量y是变量x的函数的是()A.x表示某一天中的时刻,y表示对应的某地区的气温B.x表示年份,y表示对应的某地区的GDP(国内生产总值)C.x表示某地区学生的某次数学考试成绩,y表示该地区学生对应的考试号D.x表示某人的月收入,y表示对应的个税2.下列四组函数中,表示同一个函数的是()3A.y=|x|与y=√x3B.y=√x2与s=(√t)2C.y=2t+1与y=2u+1D.y=1与y=x03.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示以集合M为定义域,集合N为值域的函数关系的有()A.①②③④B.①②③C.②③D.②④二函数的定义域4.函数f(x)=√x−1的定义域为() x−2A.[1,+∞)B.[1,2)C.[1,2)∪(2,+∞)D.(1,2)∪(2,+∞)5.已知某矩形的周长为定值a,若该矩形的面积S是这个矩形的一边长x的函数,则这个函数的定义域是.6.已知函数y=f(x)的定义域为[-2,3],则函数y=f(2x+1)的定义域为.x+1三函数值及函数的值域7.已知集合P={x|y=√x−1},集合Q={y|y=√x−1},则()A.P=QB.P⫋QC.Q⫋PD.P∩Q=⌀8.函数y=√x2−2x+3的值域为.,则f(x)的值域为.9.已知函数f(x)=1x2−2x10.已知函数f(x)的定义域是[0,1],值域是[1,2],则这样的函数可以是f(x)=.11.已知函数f(x)=x2+x-1.);(1)求f(2), f(1x(2)若f(x)=5,求x的值.3.1.2 函数的表示法基础练一 函数的表示法及其应用 1.函数y =x x+1的图象大致是 ( )A B C D2.某同学从家里到学校,为了不迟到,先匀速跑一段时间,跑累了再匀速走余下的路,设在途中花费的时间为t ,离开家的距离为d ,则下面图象中,能正确表示d 与t 的关系的是( )A B C D3.已知函数y =f (x )的对应关系如表,函数y =g (x )的图象为如图所示的曲线ABC ,则g (f (3))的值为 .二 函数解析式的求法5.已知函数f (x +2)=x 2+6x +8,则函数f (x )的解析式为( ) A.f (x )=x 2+2x B.f (x )=x 2+6x +8 C.f (x )=x 2+4x D.f (x )=x 2+8x +66.函数f (x )满足f (1-2x )=-1x ,则f (2)=( )A.2B.-2C.12 D.-12 7.已知函数f (2x -1)=3x -5,若f (x 0)=4,则x 0= .8.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )= .9.(1)已知函数g (√x +1)=2x +1,求g (x )的解析式;(2)已知f (x )为二次函数,且f (0)=2, f (2)=f (-1)=0,求f (x )的解析式.三 分段函数问题10.已知函数f (x )={√x,x >0,|x +1|,x ≤0,则f (f (-3))=( )A.√3B.1C.2D.√2 11.已知f (x )={x +2,x ≤−1,x 2,−1<x <2,2x,x ≥2,若f (x )=3,则x 的值是( )A.1B.1或32C.1,32或±√3 D.√312.函数f (x )=x +|x |x 的图象是( )A B C D13.(2022山西大同期中)已知函数f (x )={x 2,x ≤0,4−2x,x >0.(1)画出函数f (x )的图象;(2)当f (x )≥2时,求实数x 的取值范围.。
新人教版高中数学必修第一册第三章函数的概念
函数的概念
函数的三要素
具体函数的定义域
定义域
值域
对应关系fຫໍສະໝຸດ 相等函数对应关系相同
定义域相同
总结提升:
素养作业·提技能
P67 1,2P72 2,5,6
新课讲授
x 叫做自变量,x的取值范围构成的集合A叫做函数的定义域;与x的值相对应的 y值 叫做函数值, 所有函数值组成的集合叫做函数的值域.
函数的概念
“函数”由德国数学家莱布尼茨于17世纪后期首次采用
例1.下列对应关系下由A到B是函数关系吗?
123
A
B
456
f
A
B
f
(1)
创设问题·引出概念
若两个函数的定义域和对应关系完全一致,则这两个函数相等。
相等函数
即学即用 感悟新知
题型2 相等函数的判断
不是
是
不是
不是
是
旧知新解
一次函数、二次函数、反比例函数的定义域、对应关系和值域
持续探究 更上层楼
(1)
(2)
所以y=1是集合A到集合B的一个函数
1. 在集合的观点下函数是如何定义?2. 函数有哪三要素? 3. 相等函数是指什么样的函数?
阅读课本P60给出的4个实例,讨论下列问题:
自主探究
问题1 某“复兴号”高速列车加速到350km/h后保持匀速运行半小时。这段时间内,列车行进的路程S(单位:km)与运行时间t(单位:h)的关系可以表示为
③对于集合A中的任意一个元素x,在B中都有唯一确定的y 与之对应
显然,值域是集合B的子集.在问题①和问题②中,定义域就是A,值域就是B.
一般地,设A,B是非空数集,如果集合A中的任意一个实数x,按照某种对应关系 f ,在集合B中都有唯一确定的数y和它对应,就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.
高一上数学必修一第三章《3.1函数的概念与性质》知识点梳理
高一上必修一第三章《函数》知识点梳理3.1.1函数及其表示方法学习目标:(1)在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用;(2)了解构成函数的要素,能求简单函数的定义域、值域;(3)通过具体问题情境总结共性,抽象出函数概念,积累从具体到抽象的活动经验,发展数学抽象的核心素养。
【重点】1.了解构成函数的要素,会求一些简单函数的定义域和值域.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).【难点】1、求函数的定义域和值域回顾初中所学的函数,在情境与问题中感受高中函数表达方式与初中的不同。
一、函数的概念我们已经学习过一些函数的知识,例如已经总结出:在一个变化过程中,数值发生变化的量称为变量;在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么就称y是x的函数.再例如,我们知道y=2x是正比例函数,y=-3x-1是一次函数,y=-2是反比例函数,y=x2+2x-3是二次函数,等等。
【情境与问题】(1)国家统计局的课题组公布,如果将2005年中国创新指数记为100,近些年来中国创新指数的情况如下表所示。
以y表示年度值,i表示中国创新指数的取值,则i是y的的函数吗?如果是,这个函数用数学符号可以怎样表示?(2)利用医疗仪器可以方便地测量出心脏在各时刻的指标值,据此可以描绘出心电图,如下图所示。
医生在看心电图时,会根据图形的整体形态来给出诊断结果(如根据两个峰值的间距来得出心率等).初中实际上是用变量的观点和解析式来描述函数的,但从情境与问题中的两个实例可知,初中的方法有一定的局限性:情境与问题中的i是y的函数,v是t的函数,但是这两个函数与初中的函数有所不同,比如都很难用一个解析式表示,而且每个变量的取值范围也有了限制,等等。
高中数学新教材必修一第三章 《函数的概念与性质》全套课件
4、若函数的定义域只有一个元素,则值域也只有一
个元素 √
5、对于不同的x , y的值也不同
×
6、f (a)表示当x = a时,函数f (x)的值,是一个常量 √
巩固练习
判断下列对应能否表示y是x的函数
(1) y=|x|
(2)|y|=x
(3) y=x 2
(4)y2 =x
(5) y2+x2=1 (6)y2-x2=1
2x
0y 2
x
2
D
0
2x
学习新知
初中我们已知接触过函数的三种表示方法:解析法、列表法和图 象法
问题 2 某电气维修公司一个工人的工资关于天数 d 的函数 w=350d. ②定义域{1,2,3,4,5,6}
学习新知 这里的实数a与b都叫做相应区间的端点。
实数集R可以用区间表示为(-∞,+∞),“∞”读作“无穷 大”。满足x≥ a,x>a ,x ≤b, x<b的实数的集合分别表示 为[a, +∞)、(a, +∞)、(-∞,b]、(-∞,b).
集合表示 区间表示 数轴表示
{x a<x<b} (a , b)
我国某省城镇居民恩格尔系数变化情况
时间(年)y 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
恩格尔系数r(%) 36.69 36.81 38.17 35.69 35.15 33.53 33.87 29.89 29.35 28.57
请仿照前面的方法描述恩格尔系数r和时间(年)y的关系。
对于集合A中的任意一个数x,按照某种确定的对
应关系f,在集合B中都有唯一确定的数y和它对应, 那么就称f: A→B为从集合A到集合B的一个函数, 记作 y=f(x) , x∈A
第三章 函数
⑶ 在函数的定义中,如果集合 A 和 B 都是通常的数集, 则这里定义的函数就是数学中的函数,其中“自变量”、 “定义域”、“值域”等概念与数学中的函数一致。因此, 离散数学中的函数概念是通常函数概念的推广。 ⑷ 谈到函数,必须涉及两个集合:定义域 A、值域包 B。 在证明题中,需首先明确定义域 A 和值域包集合 B
成为一种特殊的“关系”。函数主要涉及把一个有限集合变换成
另一个有限集合的离散函数。例如,编译程序把一组高级语言命 令的集合变成机器语言指令的集合。
§3.1 函数的概念
一,基本概念
函数:设有集合 Biblioteka 、B,f 是一个由 A 到B 的关系,如果对于每
个 a∈A,存在唯一的 b∈B 使得 af b(或 f (a) = b),则
练习
有关习题:
12
作业
p112 习题 1、2、3
作业
有关习题:
13
二,函数相等
函数相等:设有函数 f:A→B 和 g:C→D,如果 A=C 和B =D , 并且对所有的 a∈A(或 a∈C )都有 f (a)= g (a), 则称函数 f 和 g 是相等 的,记为 f =g
思考:设有函数 f :A→B ,S A, 等式 f (A)-f (S) = f (A -S) 成立吗?为什么?
有关习题:
基本概念
4
我们从反面来理解函数,看什么样的关系 不是函数?
⑴ 在关系 f :A→B 中,若对于某个 a∈A,不存在 b∈B,
使得 a f b ,则 f 不是函数 例: f = {(n1,n2)︱n1,n2∈N,n2=小于 n1 的素数的个数} ⑵ 在关系 f :A→B 中,若对于某个 a∈A,存在 b1∈B 和 b2∈B ,且 b1≠b2,使得 af b1 和 af b2 同 时成立,则
第三章 函数的概念与性质(课堂笔记)
第三章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念1.概念的概念设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合f x x ∈A }叫做函数的值域.2.函数三要素:定义域、对应关系、值域。
3.区间若a ,b ∈R ,且a <b ,则(1)x |a ≤x ≤b =a ,b 闭区间(2)x |a <x <b =a ,b 开区间(3)x |a ≤x <b =a ,b ) 半开半闭区间x |a <x ≤b =(a ,b ]半开半闭区间∞表示无穷大,R =-∞,+∞(4)x |x <a =-∞,a x |x ≤a =-∞,a ] (5)x |x >a =(a ,+∞)x |x ≥a =[a ,+∞)4.常见求函数定义域方法(1)分式的分母不等于零;(2)偶次根号下被开方数大于等于零;(3)零的零次方无意义;a 0=1,a ≠0(4)对数式的真数大于零;(5)定义域多个取值范围同时满足,求交集。
例:函数f (x )=-x 2+4x +12+1x -4的定义域是.解:要使函数有意义,需满足-x 2+4x +12≥0x -4≠0,即-2≤x ≤6x ≠4 .即-2≤x <4或4<x ≤6,故函数的定义域为[-2,4)⋃4,6 .5.判断函数为同一函数如果两个函数的定义域相同,并且对应关系也完全一致,那么这两个函数是同一个函数。
3.1.2函数的表示方法1.函数的表示方法:表格法、图像法、解析式法2.分段函数如果一个函数,在其定义域内,对于自变量x 的不同取值区间,有不同的对应关系,则称其为分段函数。
第3章3.3幂函数
❖
1
(5)如果某人t s内骑车行进了1km,那么他骑车的平均速度v= km/s .
t
s= a2 ;
3
这些函数的解
析式有什么共
同特征?
都是形如
y=xα 的函数
S
讲授新课
一、幂函数的概念
1.幂函数的定义
一般地,函数 y=xα叫做幂函数,其中x为自变量,α
为常数.
2.幂函数的解析式的特征:
①xα的系数为1,
以 f(x)=x3.因为 f(x)=x3 在 R 上为增函数,所以由 f(a-3)>f(1-a),得 a-3>1-a,解
得 a>2.所以满足不等式 f(a-3)>f(1-a)的实数 a 的取值范围是(2,+∞).
变式1: 已知幂函数f()= 的图象过点P(2,8),
证明:f()在(0,+∞)上的单调递减。
典例讲解
例2: 利用单调性判断下列各值的大小.
(1)5.20.8 与 5.30.8
(2)0.2- 0.3 与 0.3-0.3
解:(1)y= x0.8在(0,+∞)上是增函数,
∵5.2<5.3
∴ 5.20.8 <5.30.8
关于这五个幂函数的图象,其中 = , = , = − ,
我们在初中已经画过了。
1
2
思考:如何画出 = 3 , = ,的图象?
讲授新课
1. 五种常见幂函数的图象
y=x3
y=x2
y=x
4
1
3
y= x 2
2
1
(1,1)
(-1,1)
-6
-4
-2
-1
(-1,-1)
第三章 第三节 函数的奇偶性及周期性 课件(共55张PPT)
是奇函数.]
3.设 f(x)为定义在 R 上的奇函数,当 x≥0 时,f(x)=3x-7x+2b(b 为常
数),则 f(-2)=( )
A.6
B.-6
C.4
D.-4
A [∵f(x)为定义在 R 上的奇函数,且当 x≥0 时,
f(x)=3x-7x+2b,
∴f(0)=1+2b=0,
∴b=-12 .
∴f(x)=3x-7x-1,
(2)因为函数 f(x)=3x+4sin x-1,f(-a)=5,所以-3a+4sin (-a)-1= 5,则 3a+4sin a=-6,所以 f(a)=3a+4sin a-1=-6-1=-7.
答案: (1)D (2)-7
已知函数奇偶性可以解决的 3 个问题 (1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解. (2)求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性 求出解析式. (3)求解析式中的参数:利用待定系数法求解,根据 f(x)±f(-x)=0 得到 关于参数的恒等式,由系数的对等性得参数的方程或方程(组),进而得出参 数的值.
1.函数奇偶性常用结论 (1)如果函数 f(x)是偶函数,那么 f(x)=f(|x|). (2)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的 区间上具有相反的单调性. (3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶= 偶,奇×偶=奇.
2.函数周期性常用结论 对 f(x)定义域内任一自变量的值 x: (1)若 f(x+a)=-f(x),则 T=2a(a>0). (2)若 f(x+a)=f(1x) ,则 T=2a(a>0). (3)若 f(x+a)=-f(1x) ,则 T=2a(a>0).
第三章函数
第三章 函数一、基础知识定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。
定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。
定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。
定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。
定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。
A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。
集合{f (x )|x ∈A }叫函数的值域。
通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}.定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A→B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。
例如:函数y =x -11的反函数是y =1-x1(x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称。
定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。
定义7 函数的性质。
(1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)<f (x 2)(f (x )>f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。
第三章 函数的概念与性质 章节复习(解析版).
故选: A .
【例 2】函数 f (x) x x 2 的值域是 (
)
A.[2 , )
B.[7 , ) 4
C.[0 , )
【解答】解: f (x) x x 2 的定义域为 x 2 ,
函数 y x 在[2 , ) 上为单调递增函数,
D. (2, )
函数 y x 2 在 [2 , ) 上为单调递增函数,
2. 函数的构成要素为:定义域.对应关系.值域. 3. 区间:闭区间、开区间、半开半闭区间 4. 函数的三种表示方法:解析法、图象法、列表法. 5. 分段函数 知识点二:函数的基本性质 单调性与最大(小)值 1.函数单调性的定义:
设函数 f (x) 的定义域为 I ,区间 D I ,如果 x1、x2 D, 当 x1 x2 时,都有: f (x1) f (x2 ) 或 f (x1) f (x2 ) 0,就称f (x)在区间D 上单调递增;
C. (0 , 4]
D. (0, 4)
【解答】解: 函数 f (x) ax2 ax 1 的定义域为 R , ax2 ax 1 0 恒成立. 当 a 0 时,显然满足 ax2 ax 1 0 恒成立. 当 a 0 时, ax2 ax 1 0 不可能恒成立, 当 a 0 时,应有△ a2 4a 0 ,求得 0 a 4 . 综上可得, a [0 , 4] ,
奇函数图象关于原点对称. 2.奇函数的性质:
若奇函数 f x 的定义域为 I , 如果 0 I ,则有 f (0) 0 .
3.奇偶性与单调性:
奇函数在关于原点对称的区间上单调性相同;偶函数在关于原点对称的区间上单调性相反. 知识点四:幂函数
1.幂函数的解析式: y x , x 是自变量, 是常数.
2.几种幂函数的图象:
数学第三章函数知识点总结
数学第三章函数知识点总结在数学中,函数是一种特殊的数学关系,它描述了两个变量之间的对应关系。
函数在数学中扮演着非常重要的角色,它们被广泛应用于各种数学领域和实际问题中。
在数学的第三章中,我们将学习如何定义和描述函数,以及函数的性质和应用。
1. 函数的定义函数是一种特殊的数学关系,它将一个或多个输入映射到一个输出。
这种映射可以用一个数学公式、图形、表格或者文字描述。
函数通常用f(x)的形式表示,其中x是输入,f(x)是输出。
函数也可以用其他变量表示,如y = f(x)。
在数学中,函数通常有两个集合:定义域和值域。
定义域是所有可能的输入值的集合,值域是所有可能的输出值的集合。
函数将定义域中的元素映射到值域中的元素。
2. 函数的表示函数可以通过各种方式来表示,最常见的是用表格、图形和公式来描述。
在函数的图形表示中,我们通常使用直角坐标系来显示函数的图像。
函数的图像是一条曲线,它显示了输入和输出之间的关系。
函数的表格表示中,我们列出了函数的输入和输出值。
函数的公式表示中,我们用数学公式来描述输入和输出之间的关系。
3. 函数的性质函数有许多重要的性质,这些性质可以帮助我们理解和分析函数。
其中一些重要的性质包括:- 定义域和值域:函数的定义域是所有可能的输入值的集合,值域是所有可能的输出值的集合。
- 单调性:函数的单调性描述了函数的增减趋势。
一个函数有可能是递增的(y随x的增加而增加)或者是递减的(y随x的增加而减小)。
- 奇偶性:函数的奇偶性描述了函数在坐标系中的对称性。
一个函数有可能是奇函数(f(-x) = -f(x))或者是偶函数(f(-x) = f(x))。
- 周期性:周期函数是一种具有周期性的函数,它的图像在特定的区间内会周期性地重复。
4. 函数的应用函数在数学中有着广泛的应用,它们被应用于各种数学领域和实际问题中。
在微积分中,函数被用来描述曲线的斜率、凹凸性和积分。
在代数中,函数被用来解方程和不等式。
第三章 函数的概念和性质
A 、 第三章 函数的概念和性质Ⅰ 教学要求(1)了解映射的概念.(2)理解函数的概念,了解函数的三种表示法,理解分段函数的定义及表示法.(3)理解函数的单调性和奇偶性.(4)了解反函数的概念,掌握简单函数的反函数的求法,了解函数)(x f y =的图像与它的反函数)(1x f y -=的图像之间的关系.(5)掌握一元二次函数的性质及其图像,掌握解一元二次不等式与一元二次函数之间的关系.(6)会用待定系数法求一次函数和二次函数的解析式.(7)了解函数的实际应用.Ⅱ 教材分析、教学建议和练习题解答现实世界中许多量之间有依赖关系,一个量变化时另一个量随着起变化,函数是研究各个量之间确定性依赖关系的数学模型,在工业革命时代,函数是数学中最基本的概念之一. 现在的世界已进入信息时代,计算机和互联网迅速普及,计算机科学和信息科学蓬勃发展. 由此促使了离散数学的地位日益上升,于是映射成了数学中最基本的概念之一.映射也是日常生活中许多现象的抽象.中学生学习映射的概念,至少有三方面的好处:作为现代社会的居民,能看懂信息时代的书报、电视;在日常生活中把事情做好;能更好理解函数的概念,反函数的概念.函数的图像是数形结合的基础,要让学生理解函数的图像的意义.本教材从函数的图像引出奇函数与偶函数的概念,既直观,同时又揭示了其本质. 本教材运用映射的观点阐述反函数的概念,给出反函数的求法,这与传统的方法不同.我们有创新,使得反函数概念的本质容易理解,使得反函数的求法严谨且易于掌握. 本章第三单元讲一元二次函数,这是在初中讲一元二次函数的基础上进一步讲清楚道理,运用第二单元函数的单调性和奇偶性的一般理论来具体地研究一元二次函数的性质和图像,既让学生学习如何运用理论研究具体函数的性质和图像,又使画函数图像的方法严谨、科学.待定系数法是数学中的一种重要方法,本章用一节介绍如何用待定系数法求一次函数和二次函数的解析式.总之,本章首先介绍映射和函数的概念,然后讨论函数的一般性质,最后运用函数的单调性和奇偶性的一般理论研究一元二次函数,并且介绍了一元二次不等式的解法. 本章的重点是:映射的概念,函数的概念,函数的图像,函数的单调性、奇偶性;一元二次函数的性质和图像,一元二次函数的最大值或最小值;解一元二次不等式的图像法;待定系数法.本章的难点是:映射的概念,点M在函数的图像上的充分必要条件,反函数的概念,函数的实际应用.学好本章的关键是:了解映射的概念,理解函数的图像的意义.本章教学时间约需15课时,具体分配如下:3.1 映射1课时3.2 函数的定义及记号1课时3.3 函数的三种表示法1课时3.4 分段函数1课时3.5 函数的单调性1课时3.6 函数的奇偶性2课时3.7 函数的图像2课时3.8 反函数1课时3.9 一元二次函数的性质及其图像1课时3.10 用待定系数法求函数的解析式1课时3.11 函数的实际应用1课时本章小结2课时3.1 映射1. 集合的概念与映射的概念是现代数学中最基本的两个概念. 在信息时代,映射的概念比函数的概念更基本. 理解了映射的概念,就能更深刻地理解函数的概念.2. 在讲映射的定义时,要着重指出:有两个集合和一个对应法则,并且这个对应法则使第一个集合的每一个元素,都有第二个集合中唯一确定的元素与它对应.3. 设f是集合A到集合B的一个映射,则把A叫做定义域,把B叫做值域.许多教材没有给第二个集合起名字,有的教材把第二集合叫做陪域.4. 一个映射f:BA→由定义域、值域和对应法则组成,它们称为映射的三要素,因此两个映射相等的定义应当是:定义域相等,值域相等,对应法则相同.3.1的练习答案1.(1)不是;(2)是.2.(1)是;(2)是;(3)不是;(4)不是;(5)不是.3.(1)不是;(2)是;(3)是;(4)不是;(5)不是.4. 是3.2 函数的定义及记号1. 在现实世界中有不少变量之间有确定性的依赖关系,函数就是研究这种关系的有力工具. 研究各种各样的函数的性质是数学的重要内容之一.2. 函数的概念包含三个要素:定义域,值域和对应法则. 从而两个函数相等当且仅当它们的定义域相等,并且对应法则相同.3. 例1(1)求函数值,例如求3xx=xf在处的函数值,实质上就是求-x,253)(=-=3,2=-=x x 处的函数值,实质上就是求3,2=-=x x 时,代数式35-x 的值,因此12335)3(,133)2(5)2(=-⨯=-=--⨯=-f f .由于在初中一年级已经学过代数式求值,因此给学生讲:求函数值实质上就是求代数式的值,学生便容易学会.在上述例子中,不要给学生说:“35)(-=x x f 的对应法则是‘乘5减3’,因此求处的函数值就是在2)(-x f -2乘5减3,即133)2(5)2(-=--⨯=-f .”这种讲法会使学生感到求函数值难学,因为要把一个函数的对应法则用语言叙述是很啰嗦的,再由对应法则来求函数值,显然是增加了难度.3.2的练习答案1.(1)是;(2)是;(3)不是;(4)不是.2. 是,定义域为{,,,,d c b a …,y ,z },值域为{0,1,2,…,24,25}.3. f (1)=-37, f (2)=-34. 4. (1)31)2(;13-=+=b a a b . 5.(1)是;(2)是.6. (1) f (1)=1,g (1)=-1;(2) 1)]1([,3)]1([-==f g g f ; (3) 5496)]([,1639)13(22--=--=-x x x g f x x x f . 3.3 函数的三种表示法1. 函数的概念包含三个要素:定义域、值域和对应法则.目前中职阶段,值域通常取为实数集,因此表示一个函数就要指明它的定义域和对应法则.当函数f 的定义域A 是有限集时,可以用一张表格来表示函数,第一行写出A 的各个元素,第二行写出相应的函数值,这种表示函数的方法叫做列表法.2. 当f 的定义域A 是无限集或有限集时,通常要寻找一个或几个式子来表示对应法则,即用一个或几个等式来表示函数,这种方法叫做公式法. 这一个或几个等式叫做这个函数的解析表达式,简称为解析式.教材中公式法下的第(2)个例子,设}1,0{B },6,5,4,3,2,1,0{A ==.考虑A 到B 的一个对应法则f :⎪⎩⎪⎨⎧∉∈=A,,0A,,1)(x x x f 当当 这是A 到B 的一个映射,从而是定义域为A 、值域为B 的一个函数这个例子来自组合设计与现代通信和密码的关系.本教材有意识地举一些信息时代的例子,目的是使中职数学不要囿于传统的教材中,而能透出信息时代的一些气息.在上面这个例子中,集合A 到集合B 的一个对应法则f 用了两个等式来表示;当A∈x时,0)(,A ;1)(=∉=x f x x f 时当.习惯上把这样的函数叫做分段函数. 其实不必用这个术语,因为不管用几个等式表示函数,都无非是给出了定义域到值域的一个对应法则,多一个术语,会使学生多一份负担,所以我们在教材中没有出现“分段函数”这个术语,希望教师不要补充这个术语.3. 在用公式法表示定义域为数集的函数时,如果没有标明定义域,那么我们约定:函数)(x f 的定义域是指所有使解析式有意义(即,在解析式给出的对应法则下有象)的实数x 组成的集合,不再每次声明. 此外要注意,在实际问题中,还必须结合问题的实际意义来确定自变量x 的取值范围.在上面一段话里,我们阐明了什么叫做“使解析式有意义”,即“在解析式给出的对应法则下有象”. 例如,求函数31)(-=x x f 的定义域,解法如下: 03)(≠-⇔x x f 的解析式有意义3≠⇔x .因此函数),3()3,()(+∞-∞ 的定义域是x f .在上面这个例子中,“)(x f 的解析式有意义”指的是“在解析式给出的对应法则下有象”. 由于x 在)(x f 的解析式给出的对应法则下没有象当且仅当03=-x ,因此)(x f 的解析式有意义当且仅当)3(03≠≠-x x 即. 这样讲是确切的,因为表达式31-x 是一个分式,它当然是有意义的;只是分式函数31)(-=x x f 当3=x 时没有象,此时称分式函数31)(-=x x f 的解析式当3=x 时没有象,此时称为分式函数31)(-=x x f 的解析式当3=x 时没有意义.在这里我们区分了“分式”与“分式函数”这两个不同的概念:分式..指的是表达式...),,),(),(()()(等等或y x g y x f x g x f 其中)()(x g x f 与是一元多项式,且)(x g 不是零多项式(或),(),(y x g y x f 与是二元多项式,且),(y x g 不是零多项式,等等),而分式函数....指的是由分式给出的映射..,这一段话是为教师写的,不要给学生讲. 在求函数的定义域时,我们采用等价术语来叙述,既严谨又简捷.4. 用平面直角坐标系里的圆形表示函数的方法称为图像法.用图像法表示函数的最大优点是直观,因为函数的图像是数形结合的基础. 为此首先要把什么是函数的图像搞清楚. 教材中给函数的图像下了一个定义:设)(x f 是定义域为A 的一个函数,任取A ∈a ,在平面直角坐标系Oxy 里,描出坐标为M a f a 的点))(,(.当a 取遍A 的所有元素时,坐标为))(,(a f a 的点组成的集合,称为函数)(x f 的图像.从这个定义应即得出:点)(A,)(),(a f b a x f b a M =∈⇔且的图像上在.即,点)(),(x f b a M 在的图像上当且仅当它的横坐标a 属于定义域,纵坐标b 等于a 处的函数值.这个结论十分重要,它是利用函数的图像研究函数性质的基础.3.3的练习答案1.(1)f (x )的解析式有意义⇔53035≠⇔≠-x x ,因此)(x f 定义域为),53()53,(+∞-∞ ; (2)f (x )的解析式有意义⇔x 37-≥0⇔x ≤37,因此)(x f 定义域为]37,(-∞; (3)f (x )的解析式有意义⇔162-x ≥0⇔x ≤-4或x ≥4, 因此)(x f 定义域为);,4[]4,(+∞--∞(4)f (x )的解析式有意义⇔216x -≥0⇔-4≤x =4,因此)(x f 定义域为]4,4[-;(5)f (x )的解析式有意义⇔1523-+x x ≥0⇔-32≤x <51,因此)(x f 定义域为)51,32[-; (6)f (x )的解析式有意义⇔x x 5123-+≥0⇔x ≤-32或x >51,因此)(x f 定义域为),51(]32,(+∞--∞ . 2.(1)532)2(;)1(4122+-+x x a . 3.图略4.点M 、Q 都不在函数)(x f 的图像上.5.(1)(a , f (a ));(2) (-a , f (-a )).6.(1));,31()31,0)[4(];3,2)[3(];23,0)[2();,21()21,0[+∞-+∞ (5)(-∞,-5) ]7,6)(6(]; 7,5-(.7. 图像略8. 证明:)0()(≠+=k b kx x f 的图像经过原点 ⇔ f (0)=0 ⇔ k ·0+b =0⇔ b =03.4 分段函数1. 自变量在不同变化范围中,对应法则用不同式子表示的函数,称为分段函数.2. 教材给出了分段函数f (x )=⎪⎩⎪⎨⎧+∞∈+∈),1(.1]1,0[,2x x x x .要求作出此函数的图像.3.4的练习答案1.1)0()}5({-==f f f .2.(1).8101)]3([,7)]5([,161)]3([-=--==f f f f f f (2)⎪⎪⎪⎩⎪⎪⎪⎨⎧∈-<-=-R ,132·3.313,2.313 ≥,529)]([133x x x x x f f x x 3.(1))0 ≥()]([4x x x g f =;(2))0(1)]([>-=x xx f g . 4.图略 二、函数的性质3.5 函数的单调性1. 判断函数f (x )在区间上是增函数还是减函数,如果我们在画函数f (x )的图像时没有默让函数的单调性,那么用图像法判断f (x )的单调性,它具有直观易懂的优点,但是要注意:我们不能默认函数f (x )的单调性,去用一条光滑的曲线联结描出的各点,然后又让学生从这样画出的图像去判断f (x )的单调性,在画基本初等函数时在某个区间上的图像时,往往是要先用定义证明函数的单调性,然后才能用一条光滑曲线联结描出的各点,得到该函数在某个区间上的图像,之后利用对称性等画出该函数在另一个区间上的图像,这样对于该函数在另一个区间上的单调性就可以从图像来判断了.2. 对于任意的一次函数)0(≠+=k b kx y 的单调性,自然应当用定义法去判断. 教材的例1写出了求解过程,先统一写出)()(21x f x f -的表达式,然后分k >0和k <0两种情形判断)()(21x f x f -的正负.例2是讨论二次函数[)+∞--+=,13)1(21)(2在x x f 上的单调性. 必须先用定义法判断),1[3)1(21)(2+∞--+=在x x f 上是增函数,才能用一条光滑曲线联结描出的各点,得到),1[3)1(21)(2+∞--+=在x x f 上的一段图像.利用对称性.就能判定函数在]1,(--∞上是减函数,在),1[+∞-上是增函数.还有一种方法判定函数单调性,我们将在第三册中讲到. 定理:设函数f (x )在闭区间),(,],[b a b a 在开区间上连续内可导.(1)如果在内),(b a )('x f >0,那么],[)(b a x f 在上是增函数;(2)如果在内),(b a )('x f <0,那么],[)(b a x f 在上是减函数;(3)如果在内),(b a )('x f =0,那么],[)(b a x f 在上是常数.3.5的练习答案1. 任取121),,(,x x x 且+∞-∞∈<2x ,有-3x 1>-3x 2⇒-3x 1-2>-3x 2-2⇒)(1x f >)(2x f因此),(23)(+∞-∞--=在x x f 上是减函数.2. 任取),,0[,21+∞∈x x 且x 1<x 2,有212x <222x⇒212x +5<222x +5⇒)(1x f <)(2x f因此上在),0[52)(2+∞+=x x f 是增函数.3. 任取),0(,21+∞∈x x ,且x 1<x 2,有21122121)(555)()(x x x x x x x f x f -=-=-, 由于,x 2>x 1,x 1x 2>0,因此)(1x f -)(2x f >0从而 )(1x f >)(2x f 这表明()+∞=,05)(在xx f 上是减函数. 4. 任取),3[,21+∞x x ,且1x <2x ,有2x >1x ≥3⇒2x -3>1x -3≥0⇒(2x -3)2>(1x -3) 2≥0⇒-5)3(3122+-x <-5)3(3121+-x ⇒)(2x f <)(1x f所以),3[5)3(31)(2+∞+--=在x x f 上是减函数. 3.6 函数的奇偶性1. 本教材在阐述奇函数和偶函数的定义和性质上有创新.我们抓住了讨论函数奇偶性的实质是研究函数图像的对称性. 因此我们先复习图形关于直线对称的概念, 然后探索定义域为A 的函数)(x f 的图像在什么条件下关于原点对称?运用点P (a , b )在)(x f 的图像上的充分必要条件,我们推导出定义域为A 的函数)(x f 的图像E 关于原点对称 ⇔ E 上每一点))(,(a f a P 关于原点的对称点))(,(a f a M --仍在E 上⇔ A ),()(A,∈-=-∈-a a f a f a 对一切且.由此引出了奇函数的定义,并且上述推理也就证明了奇函数的图像关于原点对称,起了一箭双雕的作用.对于奇函数也是先复习圆形关于原点O 对称的概念,然后探索函数)(x f 的图像关于原点O 对称的充分必要条件:由此引出奇函数的定义,并且证明了奇函数的图像关于原点对称.我们这种讲法阐明了为什么要引进奇函数和偶函数的概念,而且简捷地证明了奇函数和偶函数的图像的对称性.2. 我们在教材中结合图形推导出“点),(b a P 关于y 轴的对称点Q 的坐标是),(b a -.关于原点的对称点M 的坐标是(b a --,)”这两个结论. 它们在探索)(x f 的图像的对称性时有用.3. 我们在例1中给出了判断一个函数)(x f 是不是奇函数的方法:求出)(x f 的定义域A.如果对于任意的)()(A,A,x f x f x x -=-∈-∈并且有都有,那么)(x f 是奇函数. 如果能找到一个)()(A,c f c f c -≠-∈使得,那么)(x f 不是奇函数.例2中给出了判断一个函数)(x f 是不是偶函数的方法:求出)(x f 的定义域A ,如果对于任意的A ∈x ,都有-A ∈x ,并且有)()(x f x f =-,那么)(x f 是偶函数.如果能找一个A ∈d ,使得)()(d f d f ≠-,那么)(x f 不是偶函数.例1和例2给出的方法是教学的基本要求,应让学生学会.3.6的练习答案1.(1)是;(2)是;(3)是;(4)不是.2.(1)是;(2)是;(3)不是;(4)不是.3. 证明:由于)(x f 、)(x g 都是定义域相同的偶函数,因此对于任意A ∈x ,有A ∈-x ,并且)F()()()()()F(x x g x f x g x f x =+=-+-=-.因此)(x F 是偶函数.4. )5(-f =-3.5.)3(f >)1(f .6. 证明:由于)(x f 、)(x g 都是定义域为A 的奇函数.因此对于任意A A,∈-∈x x 有,并且[])()()()()()()()(x h x g x f x g x f x g x f x h -=+-=--=-+-=-,)()()()]()][([)()()(x P x g x f x g x f x g x f x P ==--=--=-, 因此)(x h 是奇函数,)(x P 是偶函数.3.7 函数的图像1. 如果已经判断出)(x f 是奇函数,那么在画)(x f 的图像时,可以先画出y 轴右边的部分,然后利用对称性画出y 轴左边的部分. 这里的基本作图是,会作出点P 关于原点的对称点N ,这只要联结PO ,且延长至N ,使线段ON 的长度等于线段PO 的长度,则点N 就是点P 关于原点的对称点.2. 如果已经判断出)(x f 是偶函数,那么在画)(x f 的图像时,只要先画出y 轴右边的部分,然后利用对称性画出y 轴左边的部分,这里的基本作图法是,会作出点P 关于y 轴的对称轴Q ,这只要过点P 作y 轴垂线,设垂足为M ,把这垂线往左延长至点Q ,使线段MQ 的长度等于线段PM 的长度,则点Q 就是点P 关于y 轴的对称点.3.7的练习答案1. (1) (2)是偶函数,(3) (4) (5) (6)不是偶函数.2. (1)是;(2)是;(3)不是;(4)不是.3. 图略4.(1)2123)2(;3432--=+-=x x y x y . 5 ~7. 图略.3.8 反函数1. 我们在反函数的概念和求法上与传统的讲法不同,我们有创新. 传统的讲法大致是:给了函数的解析式,例如x y 3=.反解出y x 31=. 于是对于y 在R 中的任何一个值,通过式子y x 31=,x 在R 中都有唯一确定的值和它对应.因此也可以把y 作为自变量(∈y R ),x 作为y 的函数,我们一般用x 表示自变量,用y 表示函数,为此我们对调函数式y x 31=中的字母x 、y ,把它与成x y 31=.传统的讲法没有清晰地揭示反函数概念的本质,通过对调字母x 与y ,学生很难看清楚反函数与原来函数的关系.传统的讲法在反解出)(y g x =时,由于没有写出反解过程. 因此导致一些误会和差错. 传统的讲法对于用列表法表示的函数(不知道函数的解析式),没有给出反函数的概念. 而当今信息时代,由于计算机科学和信息科学的迅速发展,离散数学的地位加强,遇到的函数不一定能用公式表示,因此传统的讲法已不适应时代的要求.基本上述原因,我们对于反函数的概念和求法采取了新的讲法.2. 对于反函数的概念,我们给出这样的定义:如果函数)(x f y =有反函数,那么我们的讲法可以立即得出,严格单调函数一定有反函数. 3. 关于反函数的求法,我们给出了函数)(x f 的解析式,求它的反函数(仍用函数式表示). 对于用公式法表示的函数,我们给出的求反函数的方法是科学的. 以教材中例1的(3)为例:解b a x x y 对应到把2213-≠+-= )2(213-≠+-=⇔a a a b )2(13)2(-≠-=+⇔a a a b)3,2(12)3(≠-≠+=-⇔b a b a b)3,2(312≠-≠-+=⇔b a bb a a b xx y 对应到把3312≠-+=⇔ 因此函数213+-=x x y 的反函数是 ∈-+=x xx y (,313R 且3≠x ). 求213+-=x x y 的反函数,就是要寻找一个函数使得,对于原来函数的值域中的每一个b ,当原来的函数把a 对应到b 时,所求的函数把b 对应到a . 上述求解过程满足这一要求. 从反函数的定义知道,我们首先要知道原来的函数)(x f y =的值域;才能判断出所求出的函数是不是反函数(因为反函数必须是对于)(x f y =的值域中每一个元素b ,都有)(x f y =的定义域中唯一的一个元素a 与它对应).我们求反函数的方法是在求解过程中先求出了原来函数的值域,然后才求出了反函数. 这是符合反函数定义的要求的.我们是怎样求出原来函数的值域的呢?上述例子中,在第二步等价于b (a +2)=3a -1(a ≠-2),3.3=≠b b 因为假如从此式看出,则上式左边=3(a +2)=3a +6,而上式右边=3a -1.由此推出6=1-,矛盾,所以3≠b .即原来函数的值域是{b ∈R|(b ≠3)}. 于是对于原来函数值域中的每一个元素b ,在(3-b )a =2b +1而边除以(3-b )(此时3-b ≠0,因此可以用它作除数)得,b b a -+=312.从而求出了反函数为)3(312≠-+=x x x y .4. 有的教材在讲求反函数时是像下述那样讲的: “由213+-=x x y ,可得y y x -+=312,所以函数213+-=x x y 的反函数是xx y -+=312(∈x R 且3≠x ).”这种讲法没有详细写出反解的过程,在得出y y x -+=312时,没有讨论3≠y . 就把y -3当除数用了,这是不严谨的. 这种讲法没有事先求出原来函数的值域,因此所求出的函数xx y -+=312是否为反函数无从判断. 这种讲法容易引起误会以至产生差错,不少复习资料由此引出求原来函数值域的方法:“先求反函数,再从反函数的解析式求出定义域,它就是原来函数的值域.”这种方法是错误的,以213+-=x x y 为例,在反解时,如果不讨论3≠y ,就用)3(y -去除两边,得出y y x -+=312,然后又说从3312≠-+=x xx y 看出,因此得出反函数的定义域为{x ∈R |x ≠3},于是原来函数的值域为{y ∈R |y ≠3}. 这是先默认3≠y ,用(3-y )去除两边得到y y x -+=312,然后又说从x =yy -+312看出3≠y ,这在逻辑上是混乱的,这种思维方式是错误的. 由此看出,教数学不能只是教计算,而不管计算过程是否合理;教数学不能只是看答案对不对,而不管其思维方式是否正确. 这些都是直接关系到我们培养的学生的素质啊!定理1 如果函数)(x f y =有反函数,那么)(x f y =的图像与它的反函数)(1x f y -=的图像关于直线y =x 对称.学习数学一定要掌握基本理论,有了理论的指导,解题就会有思路,就能通过逻辑推理深入揭示事物之间的内在联系以及它们的本质.三、一元二次函数及其应用3.9 一元二次函数的性质及其图像1. 一元二次函数的图像在初中时已讲过,但是一些道理没有讲. 鉴于一元二次函数是非常重要的一类函数,有必要在中学阶段打下扎实的基础,因此我们在教材中用一节来讲一元二次函数的性质和图像, 这是在初中的基础上的提高.2. 我们在教材一开始就让学生动脑筋:如何正确..、简便..地画一元二次函数25212-+=x x y 的图像?然后分析:先把函数的表达式配方得,()31212-+=x y . 利用3.7节例3的结论,()31212-+=x y 的图像有对称轴1-=x . 因此只要先画出图像在直线1-=x 的右边的一半. 从而列表时只需要列出1-=x ,0,1,2,3,…时相应的函数值. 接着在平面直角坐标系Oxy 中描点. 描完点后,不是马上连线,而是先利用3.4节例3的结论:3)1(212-+=x y 在区间),1[+∞-上是增函数,这时才知道可以用一条光滑曲线把描出的各点联结起来. 最后利用对称性,画出图像在直线1-=x 的左边的部分.这样画函数的图像既简便又科学.传统的画函数图像的方法是:列表,描点,连线.前两步虽然正确,但是较麻烦(如果先讨论对称性,则可减少一半的工作量).第三步连线是不科学的. 在还没有讨论函数的单调性时,怎么知道如何联结描出的有限几个点?更不应该的是,事先不讨论单调性,但是却默认函数有单调性,“用一条光滑曲线联结各点”,然后又让学生从图像上看出函数是增函数或减函数. 这在逻辑上是混乱的,这种思维方式是不正确的.也许有人会说,让中学生讨论函数的单调性要求太高了,那么让我们来看一看,)(x f =),1[3)1(212+∞--+在x 上是单调性的讨论: 任取1x ,2x ),1[+∞-∈,且1x <2x ,有2x >1x ≥-1⇒12+x >11+x ≥0⇒(12+x )2>(11+x )2 ⇒()312122-+x >()312121-+x ⇒()2x f >()1x f , 因此),1[3)1(21)(2+∞--+=在区间x x f 上是增函数. 从上述讨论过程看到,用的都是不等式的性质,并不困难,而且正好是复习巩固不等式的性质. 我们又注意了分散难点,把这个讨论放在3.4节的例3,到3.8节时只是引用这个结论. 因此中学生是能够接受先讨论函数的单调性,再连线的.3. 在讲完()31212-+=x y 的图像后,我们给出顶点的概念,并且让学生观察顶点坐标)3,1(--与表达式有什么联系?观察顶点坐标与函数的最小值有什么联系?从函数的图像(我们已正确地画出了函数的图像)看出函数在顶点横坐标往左的区间上的单调性,以及图像的开口方向. 在观察的基础上,我们抽象出一般的一元二次函数()02≠++=a c bx ax y 的性质和图像. 由于其论证与()31212-+=x y 的性质和图像的论证类似,因此我们在教材中就不写出了.4. 在让学生画一个具体的一元二次函数的图像时,先配方,然后求出对称轴,接着先画图像在对称轴右边的一半(列表,描点,连线. 由于已经讲了一般的一元二次函数的单调性,因此在连线之前不用再讨论单调性了),最后利用对称性画出图像在对称轴左边的部分.5. 本节的练习除了画二次函数的图像以外,还有写出顶点坐标,求函数的最大值或最小值,求一元二次函数的最大(小)值的基本方法是将表达式配方. 这应让学生掌握. 这是因为配方在数学中是常用的一种技巧.至于直接利用顶点坐标来求最大 (小)值的方法,对于课时较充裕的学校也可以介绍. 我们在教材中把它作为思考题,让学生思考.3.9的练习答案1.(1)对称轴为5=x ,顶点坐标为)223,5(-,图略; (2)对称轴为41=x ,顶点坐标为)87,41(-,图略. 2.(1)当1-=x 时,y 达到最小值2;(2)当2-=x 时,y 达到最大值5;(3)当23=x 时,y 达到最小值41-; (4)当2=x 时,y 达到最大值1. 3.(1)顶点坐标)421,3(-,对称轴为x =3; (2)841)25(-=f ; (3))415()41(f f >-. 4.(1)对称轴为45=x ,顶点坐标为)825,45(-,函数最小值为825-,]45,(-∞为单调递减区间,),45[+∞为单调递增区间,函数图像开口向上; (2)对称轴为3=x ,顶点坐标为)27,3(,函数最大值为27,]3,(-∞为单调递增区间,),3[+∞为单调递减区间,函数图像开口向下.5.(1)顶点坐标为(3,-2).),63()63,(+∞+--∞∈ x 时,y >0;()63,63+-∈x 时,y <0.]3,(-∞∈x 时,函数为单调递减函数; ),3[+∞∈x 时,函数为单调递增函数. (2)顶点坐标为(-1,3). )261,261(+---∈x 时,y >0;),261()261,(+∞+----∞∈ x 时,y <0.]1,(--∞∈x 时,函数为单调递增函数;),,1[+∞-∈x 时,函数为单调递减函数.3.10 用待定系数法求函数的解析式1. 在许多数学问题或实际问题中,建立了函数的模型后,需要求其中的未知的系数,这可以通过列方程组并且解这个方程组求出,从而求出函数的解析式,这种方法叫做待定系数法.它是数学中重要的一种方法.本节主要是介绍如何用待定系数法求一元一次函数和一元二次函数的解析式,并且介绍了它们在实际问题中的应用.2. 一次函数的解析式)0(≠+=k b kx y 有2个系数k ,b ,因此需要列出两个彼此独立的方程来求未知系数k ,b ,于是需要已知两个条件来列两个方程.3. 一元二次函数)0(2≠++=a c bx ax y 的解析式有3个系数,因此用待定系数法求这3个系数时,需要列出3个彼此独立的方程,于是通常要给出这个函数当自变量取3个不同数时相应的函数值.4. 如果知道一元二次函数g (x )的图像的顶点坐标为(e , d ),则可以假设g (x )的解析式为d e x a x g +-=2)()(.这时只要再知道图像所经过的一个点的坐标,就可以求出系数a .5. 如果知道一元二次函数)(x g 的图像的对称轴是直线e x =,则可以假设)(x g 的解析式为d e x a x g +-=2)()(.这时只要再知道图像上两个点的坐标,就可以列出两个方程,从而求出待定系a 、d.6. 为了让学生了解待定系数法在日常生活中的应用,教材的例3求出了扔铅球时铅球在空中飞行轨道(抛物线的一段)的解析表达式.3.10的练习答案1. 设这个一次函数的解析式为b kx y +=,其中k ,b 待定.由于P (2,-5),Q (-1,7)在这个函数的图像上,因此有⎩⎨⎧=+--=+.7,52b k b k 解得 3,4=-=b k因此所求一次函数的解析式为34+-=x y .2. 设这个正比例函数的解析式为kx y =,其中k 待定,由于点(2,8)在这个函数的图像上,因此有8=2k ,解得 k =4.。
讲义-第三章《函数》
例:求函数y=3x2+2x+1的最小值及它图像的对称轴,并说明图像的单调区间。
(3)图像法:用图像来表示两个变量的函数关系。特点是直观表示变化趋势。
2.分段函数:在函数定义域内,对于自变量x的不同取值区间,有着不同的对应法则。
★3.3函数的单调性:
1.内涵:是指函数的增减性,反应在图像上就是看函数是增函数还是减函数。
2.增函数、减函数的等价说法:增函数就是在给定的区间上随着自变量x的增大(减小)而增大(减小),减函数是随着自变量x的增大(减小)而减小(增大)。
第三章函数
★3.1函数的概念(难点)
1.定义:有两个变量x和y,如果给定一个x值,就相应的确定了唯一的y值,那么我们就称y是x的函数。其中x表示自变量,y表示因变量。
2.函数的实质:是表示两个数集的元素之间按照某种对应法则确定的一种对应关系。
3.函数符号y=f(x)是一个抽象的数学符号,它是“y是x的函数”这句话的数学表示,并非表示f与x的乘积。在该符号中,f表示对应法则,等式y=f(x)表明,对于定义域中的任意x,在“对应法则f”的作用下,即可得到y。
★3.4函数的奇偶性
1.内涵:指函数的对称性。
2.奇偶性:奇函数:图像是以坐标原点为对称中心的中心对称图形(中心对称)
偶函数:图像是以y轴为对称轴的对称图形(轴对称)
3.判断函数的奇偶性的方法:
如满足f(-x)=-f(x)时,函数为奇函数;如满足f(-x)=f(x)时,函数为偶函数。
4.重点:(1)函数的奇偶性是函数在整个定义域上的一种性质;
3.根据函数的解析式判断一个函数在给定区间上是增函数还是减函数的一般步骤是:
离散数学第三章 函数
第三章 函数
二、反函数
1、定义1:设f:AB是双射,则逆关系 f -1:BA
是从B到A的函数,称为 f 的反函数。
记 f -1 :BA。 由定义可知:当函数 f:AB的反函数存在,若 f (x) = y,则f -1 (y) = x 且
f f 1 I A , f 1 f I B
f 0 ( x) x n 1 n f ( x ) f ( f ( x ))
第三章 函数
(2) 定理2: 设f: A→B,则 f。IB=IA。f=f
(3) 定理3:设有函数f:AB,g:BC
① 若f ,g是单射,则f g也是单射。
② 若f ,g是满射,则f g也是满射。
所以 f。g={(x, 4x 2+4x+2)}, g。f={(x, 2x 2+3)}
f。f={(x, 4x+3)}, g。g={(x, x 4+2x 2+2)}
第三章 函数
2、性质:
⑴ 定理1:设有函数f:AB,g:BC,h:
CD,则f ( g h) 和( f g ) h都是函数,且
③ 若f ,g是双射,则f g也是双射。
注:定理3的逆不成立。
第三章 函数
例3:设A={ 1, 2, 3 }, B={ a, b, c, d }, C={ x, y, z }
令 f = {(1, a), (2, b), (3, c)},
g = {(a , x), (b, y), (c, z), ( d, z)}
f ( g h) = ( f g ) h = f g h 证明: f。(g。h)(x) =(g。h) (f (x))=h (g (f (x)) =h((f。g) (x))=(f。g)。h (x)
C++第三章 函数
int step;
step=m;
m=n;
n=step;
}
运行结果:
x=5 y=10
x=5 y=10
分析:从上面的运行结果可以看出,并没有达到交换的目的。这是因为,这里采用的值调用,函数调用是传递的是实参的值,是单向传递过程。形参质的改变对实参不起作用。
2.引用调用
if(symm(m)&&symm(m*m)&&symm(m*m*m))
cout<<"m="<<m<<" m*m="<<m*m<<" m*m*m="<<m*m*m<<endl;
}
//****************以下是判断回文数的函数**********************
bool symm(long n)
{
k=(n-1)/2;
sum+=power(-1,k)*power(x,n)/n;
}
return sum;
}
double power(double y,int m)
{
int i;
double val=1;
for(i=1;i<=m;i++)
val*=y;
return val;
main函数也可以有形参和返回值,其形参也称为命令行参数,由操作系统在启动程序时初始化,其返回值传递给操作系统。不过命令行参数的类型与个数有特殊要求。
函数在没有被调用的时候是静止的,此时的形参只是一个符号,它标志着在形参出现的位置应该有一个什么类型的数据。函数在被调用时才由主调函数将实际参数(实参)赋予形参。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处 不用数学。 ----华罗庚(Hualuogeng,公元1910年-1985年) (中国数学家)
现实世界“万物皆变”——行星在宇宙中的位置随时间而变化;日气温随时间而变化 ;销售收入随销售方案而变化;……这种一个量随另一个量的变化而变化的现象大量存在. 人们经过多年的归纳总结得出一个重要的描述事物运动变化规律的数学模型——函数.如果 了解了函数的变化规律,那么也就基本把握了相应事物的变化规律.因此研究函数的性质, 如函数在何时递增或递减,有没有最大值或最小值,函数的图像有什么特征等,是非常必 要的.
3.1.3 利用几何图版画函数图像
由解析式画函数图像时,一般采用点描点法作图,描出的点越多,画出的函数图像越准确. 但是,仅靠手工操作有时很难画出准确的图像.有些计算机的作图软件(基于描点作图的原理) 可以帮助我们又迅速又准确地画出函数图像. 《几何画板》是一款优秀的数学软件,它有绘制函数图像的功能(new function/graph), 启用这个功能可方便的作函数的图像. 下面介绍一些用《几何画板》软件画函数图像的例子. 例1.利用几何画板作出函数y=x3 的图像. 解:具体操作步骤如下: ,板面何几开打点击“图表”下拉列表中“绘制新函数”,在“新建函数”对话框中输入 ^ “x 3 ”如图3-6所示,即生成函数y=x3的图像,如图3-7所示.
已知函数 f(x+1)=x2+2x+1 ,求f(x) . 解法一:使用换元法,令 x+1=t,则 x=t-1,代入f(x+1)=x2+2x+1 ,得f(t)=(t1)2+2(t-1)+1=t2-2t+1+2t-2+1=t2 因为函数由定义域、对应关系确定,与变量用哪个字母表示无关,所以f(x)=x2. 解法二:使用配方法,将 f(x+1)=x2+2x+1等号右端配成关于x+1的表达式的形式, 得f(x+1)=(x+1)2,所以 f(x)=x2. * 例6
例2.利用几何画板来制作函数y=ax2(a≠0)的图像,并探究系数a对函数图像的影响. 解:具体操作步骤如下: (1),板面何几开打点击“图表”下拉列表中“定义坐标系”,在x轴外任选一点A, 点击“度量”下拉列表中“纵坐标”选项,画板上显示的点A的纵坐标yA就是参数a的值. (2)点击“图表”下拉列表中“绘制新函数”,在对话框内单击“数值“下拉列表中 的度量值”yA“输入函数表达式“yA x^2 ”,如图3-8所示,点击“确定“后,即生成函数 y=ax2的图像,如图3-9所示.
3.1.2 函数的三种表示方法
在研究函数的过程中,采用不同的方法表示函数,可以从不同的角度帮助我们理解函 数的性质. 表示函数的常用方法有列举法、图像法和解析法. 我们回到3.1.1开头的三个 函数实例: 实例1中,只要给出了表中存款的时间,就能从表中查出相应的年利率,这种用列出表 格来表示两个变量之间的函数关系的方法叫列表法.用列表法表示函数关系时,不必通过 计算就可以知道自变量取某个值时,相应的函数值是多少. 实例2中,我们用图像表示了某一时刻与温度的关系。这种用图像来表示两个变量之 间的函数关系的方法叫图像法.用图像表示函数关系时,可以从整体上直观而形象地表示 出函数的变化情况. 实例3中,长方形的边长x与面积y的函数关系式为:y=x(5-x)(0<x<5),这种用数学 等式表示两个变量间函数关系的方法叫解析法,这个等式叫做函数的解析表达式,简称 解析式.用解析式表示函数关系时,便于用解析式来研究函数的性质.
例1 某种桶装方便面的单价为3.5元,要买这样的方便面x桶(x∈{0,1,2,3,4}),需 要y元,试用三种方法表示它们之间的函数关系. 解:此函数的定义域为{0,1,2,3,4}, 列表法:(如表3-3所示)
解析法:y=3.5x x∈{0,1,2,3,4}), 图像法:
作图时要考 虑定义域的 情况
21世纪中等职业学校规划教材
数
学ห้องสมุดไป่ตู้
北京出版社
第三章
3.1 函数的概念 3.1.1 函数的概念
函数
3.1.2 函数的三种表示方法 3.1.3 利用几何图版画函数图像 3.2 函数的简单性质 3.2.1 函数的单调性 3.2.2 函数的奇偶性 3.2.3 二次函数性质再研究 3.3 函数的实际应用举例
数学—科学不可动摇的基石,促进人类事业进步的丰富源泉。 ——巴罗(Barrow.I,公元1630年-1677年) (英国数学家)
实例2.气温随着时间的变化 图3-1为我国某北部山区气温的日变化曲线图,图中给出了时间与温度的数量关 系:温度随着时间的变化而变化,其中温度和时间都是变量. 当时间为12点时,温度 为-23℃;当时间是20点时,温度为 ℃.
实例3.长方形的边长与面积 用10米长的绳子围成长方形.设长方形的边长为x米,面积为y米2,那么可以得到边 长与面积的关系式: y=x(x-5) 它给出了面积与边长的数量关系:面积随着边长的变化而变化,其中边长和面积都 是变量,绳子的长度是常量. 在上述的每一个实例中都含有两个变量,当一个变量的取值确定后,另一个变量的 值也随之唯一确定.由初中学过函数知识可知,上述三个例子都给出了一种函数关系.
这个函数的图像(如图3-2所示)是由5个孤立的点构成的,这种形式的图像称为 散点图. 例2 用图像法表示函数y=√x ,观察图像写出该函数的值域. 解:函数y=√x的定义域为[0,+∞) 列表3-5如下(表中不是准确值的精确到0.1)
描点作图
观察此函数的图像(如图3-4所示)可知,其值域为{y|y≥0,y∈R}
函数是中学数学的重要内容之一,本章我们将进一步学习函数的知识,了解函数在生 活、生产中的应用,并运用函数的思想认识和解决现实生活中一些简单问题.
3.1
3.1.1 函数的概念
函数的概念
在现实生活中我们经常会遇到一些数量间的关系问题. 实例1.人民币存款利率
表3-1给出了存期与利率之间的数量关系:利率随着存期的变化而变化,其中存 期和利率都是变量. 当存期为3个月时,年利率是2.60%;当存期为12个月时,年 利率是 .