中考专题—函数图象选择题的几种解法
2023年中考数学《函数图像的信息获取和判断的秒杀方法》专项题型解析
2023年中考数学《函数图像的信息获取和判断的秒杀方法》专项题型解析◆题型一:函数图像的判断判断函数的图像并不需要把每段函数的解析式完整的求出来!秒杀方法:1.判断一次函数关系:只要判断出结果的未知数的次数,并不需要把解析数求出来,当次数是1时即为一次函数,然后通过k判断结果;2.判断二次函数关系:一般在求面积的时候,会有两个含未知数的式子相乘,即结果为二次函数关系,然后通过该二次项系数的正负判断函数的开口方向即可;3.判断反比例函数关系:只要判断出结果的未知数是不是在分母里即可。
【例1】如图,在矩形ABCD中,AB=2cm,BC=4√3cm,E是AD的中点,连接BE,CE.点P 从点B出发,以√3cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s 的速度沿BE-EC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()【答案】D【解析】由题意得:BE=4cm,bc=4√3cm,则Q从B到E需要4s,从E到C需要4s,共8s;P从B到C需要4s。
①当Q在线段BE上运动时,如图,作QF⊥BC,BP=t,QF=12BQ=√32t,则y=12⋅BF⋅QF,即可得函数为二次函数,且二次项系数>0,开口向上,排除AC;②4s时,P到达终点,不再运动;点Q依然在运动,所以面积公式里只有一个变量,则对应函数为一次函数,因此选D。
1.(2013·湖南衡阳·中考真题)如图所示,半径为的圆和边长为的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过的时间为,圆与正方形重叠部分阴影部分的面积为S,则S与的函数关系式的大致图象为()A.B.C.D.【答案】B【分析】观察图形,在运动过程中,S随的变化情况,得到开始随时间的增大而增大,当圆在正方形内时改变,而重合面积等于圆的面积不变,再运动,随的增大而减小,根据以上结论判断即可.【详解】解:∵半径为的圆沿水平线从左向右匀速穿过正方形,开始至完全进入正方形S随时间的增大而增大,∴选项A、D错误;∵当圆在正方形内时,改变,重合面积等于圆的面积,S不变,再运动,S随的增大而减小,∴选项C错误,选项B正确;故选:B.【点睛】本题主要考查动图形问题的函数图象,熟练掌握函数图象形状变化与两图形重合部分形状、大小变化的关系,是解决此题的关键.2.(2022·青海西宁·统考中考真题)如图,△ABC中,BC=6,BC边上的高为3,点D,E,F分别在边BC,AB,AC上,且EF∥BC.设点E到BC的距离为x,△DEF的面积为y,则y关于x的函数图象大致是()A.B.C.D.【答案】A【分析】过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【详解】解:过点A向BC作AH⊥BC于点H,根据相似比可知:,即,解得:EF=2(3-x),则△DEF的面积y=×2(3-x)x=-x2+3x=-(x-)2+,故y关于x的函数图象是一个开口向下、顶点坐标为(,)的抛物线.故选:A.【点睛】本题考查了二次函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键.3.(2022·山东菏泽·统考中考真题)如图,等腰与矩形DEFG在同一水平线上,,现将等腰沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF 为止.等腰与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A.B.C.D.【答案】B【分析】根据平移过程,可分三种情况,当时,当时,当时,利用直角三角形的性质及面积公式分别写出各种情况下y与x的函数关系式,再结合函数图象即可求解.【详解】过点C作CM⊥AB于N,,在等腰中,,,①当时,如图,,,,∴,y随x的增大而增大;②当时,如图,,∴当时,y是一个定值为1;③当时,如图,,,,当x=3,y=1,当3<x<4,y随x的增大而减小,当x=4,y=0,结合ABCD选项的图象,故选:B.【点睛】本题考查了动点函数问题,涉及二次函数的图象及性质,能够准确理解题意并分情况讨论是解题的关键.4.(2022·辽宁锦州·中考真题)如图,四边形是边长为的正方形,点E,点F分别为边,中点,点O为正方形的中心,连接,点P从点E出发沿运动,同时点Q从点B出发沿运动,两点运动速度均为,当点P运动到点F时,两点同时停止运动,设运动时间为,连接,的面积为,下列图像能正确反映出S与t的函数关系的是()A.B.C.D.【答案】D【分析】分0≤t≤1和1<t≤2两种情形,确定解析式,判断即可.【详解】当0≤t≤1时,∵正方形ABCD 的边长为2,点O为正方形的中心,∴直线EO垂直BC,∴点P到直线BC的距离为2-t,BQ=t,∴S=;当1<t≤2时,∵正方形ABCD 的边长为2,点F分别为边,中点,点O为正方形的中心,∴直线OF∥BC,∴点P到直线BC的距离为1,BQ=t,∴S=;故选D.【点睛】本题考查了正方形的性质,二次函数的解析式,一次函数解析式,正确确定面积,从而确定解析式是解题的关键.5.(2022·广西河池·统考中考真题)东东用仪器匀速向如图容器中注水,直到注满为止.用t表示注水时间,y表示水面的高度,下列图象适合表示y与t的对应关系的是()A.B.C.D.【答案】C【分析】根据题目中的图形可知,刚开始水面上升比较慢,紧接着水面上升较快,最后阶段水面上升最快,从而可以解答本题.【详解】因为对边的圆柱底面半径较大,所以刚开始水面上升比较慢,中间部分的圆柱底面半径较小,故水面上升较快,上部的圆柱的底面半径最小,所以水面上升最快,故适合表示y与t的对应关系的是选项C.故选:C.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.6.(2022·山东潍坊·中考真题)如图,在▱ABCD中,∠A=60°,AB=2,AD=1,点E,F在▱ABCD的边上,从点A同时出发,分别沿A→B→C和A→D→C的方向以每秒1个单位长度的速度运动,到达点C时停止,线段EF扫过区域的面积记为y,运动时间记为x,能大致反映y与x之间函数关系的图象是()A.B.C.D.【答案】A【分析】分0≤x≤1,1<x<2,2≤x≤3三种情况讨论,利用三角形面积公式求解即可.【详解】解:当0≤x≤1时,过点F作FG⊥AB于点G,∵∠A=60°,AE=AF=x,∴AG=x,由勾股定理得FG=x,∴y=AE×FG=x2,图象是一段开口向上的抛物线;当1<x<2时,过点D作DH⊥AB于点H,∵∠DAH=60°,AE=x,AD=1,DF= x-1,∴AH=,由勾股定理得DH=,∴y=(DF+AE)×DH=x-,图象是一条线段;当2≤x≤3时,过点E作EI⊥CD于点I,∵∠C=∠DAB=60°,CE=CF=3-x,同理求得EI=(3-x),∴y= AB×DH -CF×EI=-(3-x)2=-x2+x-,图象是一段开口向下的抛物线;观察四个选项,只有选项A符合题意,故选:A.【点睛】本题考查了利用分类讨论的思想求动点问题的函数图象;也考查了平行四边形的性质,含30度的直角三角形的性质,勾股定理,三角形的面积公式以及一次函数和二次函数的图象.7.(2022·辽宁锦州·统考中考真题)如图,在中,,动点P从点A出发,以每秒1个单位长度的速度沿线段匀速运动,当点P运动到点B时,停止运动,过点P作交于点Q,将沿直线折叠得到,设动点P的运动时间为t秒,与重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.【答案】D【分析】由题意易得,,则有,进而可分当点P在AB中点的左侧时和在AB中点的右侧时,然后分类求解即可.【详解】解:∵,∴,由题意知:,∴,由折叠的性质可得:,当点P与AB中点重合时,则有,当点P在AB中点的左侧时,即,∴与重叠部分的面积为;当点P在AB中点的右侧时,即,如图所示:由折叠性质可得:,,∴,∴,∴,∴与重叠部分的面积为;综上所述:能反映与重叠部分的面积S与t之间函数关系的图象只有D选项;故选D.【点睛】本题主要考查二次函数的图象及三角函数,熟练掌握二次函数的图象及三角函数是解题的关键.8.(2022·湖北武汉·统考中考真题)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形的面积为,小正方形与大正方形重叠部分的面积为,若,则S随t变化的函数图象大致为()A.B.C.D.【答案】A【分析】根据题意,设小正方形运动的速度为V,分三个阶段;①小正方形向右未完全穿入大正方形,②小正方形穿入大正方形但未穿出大正方形,③小正方形穿出大正方形,分别求出S,可得答案.【详解】解:根据题意,设小正方形运动的速度为v,由于v分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-vt×1=4-vt(vt≤1);②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3;③小正方形穿出大正方形,S=2×2-(1×1-vt)=3+vt(vt≤1).分析选项可得,A符合,C中面积减少太多,不符合.故选:A.【点睛】本题主要考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.9.(2022·浙江台州·统考中考真题)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m,600m.他从家出发匀速步行8min到公园后,停留4min,然后匀速步行6min到学校,设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是()A.B.C.D.【答案】C【分析】根据吴老师离公园的距离以及所用时间可判断.【详解】解:吴老师家出发匀速步行8min到公园,表示从(0,400)运动到(8,0);在公园,停留4min,然后匀速步行6min到学校,表示从(12,0)运动到(18,600);故选:C.【点睛】本题考查函数的图象,解题的关键是正确理解函数图象表示的意义,明白各个过程对应的函数图象.10.(2021·辽宁鞍山·统考中考真题)如图,是等边三角形,,点M从点C出发沿CB方向以的速度匀速运动到点B,同时点N从点C出发沿射线CA方向以的速度匀速运动,当点M停止运动时,点N也随之停止.过点M作交AB于点P,连接MN,NP,作关于直线MP对称的,设运动时间为ts,与重叠部分的面积为,则能表示S与t之间函数关系的大致图象为()A.B.C.D.【答案】A【分析】首先求出当点落在AB上时,t的值,分或两种情形,分别求出S的解析式,可得结论.【详解】解:如图1中,当点落在AB上时,取CN的中点T,连接MT.,,,,是等边三角形,,是等边三角形,,,,,,,,是等边三角形,,,,,四边形CMPN是平行四边形,,,,如图2中,当时,过点M作于K,则,.如图3中,当时,,观察图象可知,选项A符合题意,故选:A.【点睛】本题考查动点问题,等边三角形的性质,二次函数的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考选择题中的压轴题.11.(2022·山东济宁·三模)如图,在正方形中,,动点M自A点出发沿AB方向以每秒1cm 的速度运动,同时动点N自A点出发沿折线以每秒3cm的速度运动,到达B点时运动同时停止.设的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.【答案】B【分析】根据题意,分三段(,,)分别求解与的解析式,从而求解.【详解】解:当时,分别在线段,此时,,为二次函数,图象为开口向上的抛物线;当时,分别在线段,此时,底边上的高为,,为一次函数,图象为直线;当时,分别在线段,此时,底边上的高为,,为二次函数,图象为开口向下的抛物线;结合选项,只有B选项符合题意,故选:B【点睛】本题考查动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.12.(2022·甘肃平凉·校考二模)如图,在中,,点以每秒的速度从点出发,沿折线运动,到点停止,过点作,垂足为,的长与点的运动时间秒的函数图像如图所示,当点运动秒时,的长是()A.B.C.D.【答案】B【分析】根据图可判断,,则可确定时的值,利用的值,可求出.【详解】解:由图可得,,,当时,如图所示:此时,故B,,.故选:B.【点睛】本题考查了动点问题的函数图象,解答本题的关键是根据图得到、的长度,此题难度一般.13.(2022·广东深圳·深圳市海滨中学校考模拟预测)如图①,已知Rt△ABC的斜边BC和正方形DEFG的边DE都在直线l上(BC<DE),且点C与点D重合,△ABC沿直线l向右匀速平移,当点B与点D重合时,△ABC停止运动,设DG被△ABC截得的线段长y与△ABC平移的距离x之间的函数图像如图②,则当x=3时,△ABC和正方形DEFG重合部分的面积为()A.B.C.D.【答案】C【分析】过点A作AH⊥BC于点H,由图形可知,当点H和点D重合时,DG被截得的线段长最长,即CH=1;当点B和点D重合时,BC=4,由此可解△ABC;画出当x=3时的图形,利用相似可得出结论.【详解】解:如图①,过点A作AH⊥BC于点H,∴∠AHB=∠AHC=∠BAC=,∴∠ABH+∠BAH=∠BAH+∠HAC=,∴∠ABH=∠HAC,∴△ABH∽△CAH,∴AH:HC=BH:AH,结合图①可知,当点H和点D重合时,DG被截得的线段长最长,即CH=1;当点B和点D重合时,由函数图像可得:BC=4,∴BH=3,∴AH:1=3:AH,即(负值舍去),当x=3时,,如图②,∴设与DG的交点为M,由,则,∴,∴1:3=MD:,即,∴故选:C.【点睛】本题考查的是动点图象问题,涉及相似三角形的性质与判定,解题关键是得出BC和DM的长.14.(2022·青海·统考一模)如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的关系用图象描述大致是()A.B.C.D.【答案】D【分析】该题属于分段函数,根据图象需要得出:点在边上时,随的增大而减小;当点在边上时,随的增大而增大;当点在线段上时,随的增大而减小;当点在线段上时,随的增大而增大.【详解】解:如图,过点作于点.在中,,.①点在边上时,随的增大而减小.故A、B错误,不符合题意;②当点在边上时,随的增大而增大;③当点在线段上时,随的增大而减小,点与点重合时,最小,但是不等于零.故C错误,不符合题意;④当点在线段上时,随的增大而增大.故D正确,符合题意.故选:D.【点睛】本题考查了动点问题的函数图象,解题的关键是读懂图象的含义,即会识图.15.(2021·宁夏银川·统考一模)如图,AB是半圆O的直径,点P从点O出发,沿的路径运动一周.设为,运动时间为,则下列图形能大致地刻画与之间关系的是()A.B.C.D.【答案】C【分析】依题意,可以知道路程先逐渐变大,再保持不变,然后逐渐变小直至为0.则可以作出判断.【详解】解:由题意可以看出点P在从O到A过程中,s随t的增大而增大;点P在上时,s等于半圆O的半径,即s随t的增大而保持不变;点P从B到O的过程中,s随t的增大而逐渐减少直至为0.只有选项C符合实际情况.故选:C.【点睛】此题考查了函数图像的识别,应抓住s随t变化的本质特征:从0开始增大,到达边线后不变,然后到达B点后开始减小直到0.16.(2022·湖南郴州·统考中考真题)如图1,在中,,,.点D从A 点出发,沿线段AB向终点B运动.过点D作AB的垂线,与的直角边AC(或BC)相交于点E.设线段AD的长为a(cm),线段DE的长为h(cm).(1)为了探究变量a与h之间的关系,对点D在运动过程中不同时刻AD,DE的长度进行测量,得出以下几组数据:变量a(cm)0 0.5 1 1.5 2 2.5 3 3.5 4变量h(cm)0 0.5 1 1.5 2 1.5 1 0.5 0在平面直角坐标系中,以变量a的值为横坐标,变量h的值为纵坐标,描点如图2-1;以变量h的值为横坐标,变量a的值为纵坐标,描点如图2-2.根据探究的结果,解答下列问题:①当时,________;当时,________.②将图2-1,图2-2中描出的点顺次连接起来.③下列说法正确的是________.(填“A”或“B”)A.变量h是以a为自变量的函数B.变量a是以h为自变量的函数(2)如图3,记线段DE与的一直角边、斜边围成的三角形(即阴影部分)的面积为s.①分别求出当和时,s关于a的函数表达式;②当时,求a的值.【答案】(1)①1.5;1或3;②见解析;③A(2)①当时,;当时,;②或【分析】(1)①根据题意,对照变量h和变量a对应的数值即可填写,②图2-1,图2-2中描出的点顺次连接起来即可;③根据函数的定义即可判断;(2)①如图,当时,,得到阴影部分是三角形ADE的面积:;当时,,得到阴影部分的面积是三角形BDE的面积:.②当时,令,解得a;当时,令,解得a即可求解;(1)解:①根据题意,对照变量h和变量a对应的数值,当时, 1.5;当时,1或3.故答案为:1.5;1或3;②连线如图2-1、图2-2所示:③根据函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量,所以变是h是以a为自变量的函数,故A选项符合,故选:A.(2)①如图3,当时,,∴阴影部分的面积:;当时,,∴阴影部分的面积:.∴当时,;当时,.②当时,令,解得或(不符合题意,舍去).当时,令,解得或(不符合题意,含去).∴当时,或.【点睛】本题考查了函数图像,写函数关系式,理解函数的定义以及表示方法,会根据三角形的面积公式得出函数关系式是解题的关键.◆题型二:根据已知图像获取相关信息把图像和运动情况结合起来,了解每一个转折点,每条线的具体含义。
2024中考备考热点05 二次函数的图象及简单应用(8大题型+满分技巧+限时分层检测)
热点05 二次函数的图象及简单应用中考数学中《二次函数的图象及简单应用》部分主要考向分为五类:一、二次函数图象与性质(每年1道,3~4分)二、二次函数图象与系数的关系(每年1题,3~4份)三、二次函数与一元二次方程(每年1~2道,4~8分)四、二次函数的简单应用(每年1题,6~10分)二次函数是初中数学三中函数中知识点和性质最多的一个函数,也是中考数学中的重点和难点,考简答题时经常在二次函数的几何背景下,和其他几何图形一起出成压轴题;也经常出应用题利用二次函数的增减性考察问题的最值。
此外,二次函数的性质、二次函数与系数的关系、二次函数上点的坐标特征也是中考中经常考到的考点,都需要大家准确记忆二次函数的对应考点。
只有熟悉掌握二次函数的一系列考点,才能在遇到对应问题时及时提取有用信息来应对。
考向一:二次函数图象与性质【题型1 二次函数的图象与性质】满分技巧1. 对于二次函数y =ax 2+bx +c (a ≠0)的图象:形状:抛物线; 对称轴:直线ab x 2-=;顶点坐标:)442(2a b ac a b --,; 2、抛物线的增减性问题,由a 的正负和对称轴同时确定,单一的直接说y 随x 的增大而增大(或减小)是不对的,必须在确定a 的正负后,附加一定的自变量x 取值范围;3、当a>0,抛物线开口向上,函数有最小值;当a<0,抛物线开口向下,函数有最大值;而函数的最值都是定点坐标的纵坐标。
1.(2023•沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2023•兰州)已知二次函数y=﹣3(x﹣2)2﹣3,下列说法正确的是()A.对称轴为直线x=﹣2B.顶点坐标为(2,3)C.函数的最大值是﹣3D.函数的最小值是﹣33.(2023•陕西)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值C.最小值5D.最小值【题型2 二次函数图象上点的坐标特征】满分技巧牢记一句话,“点在图象上,点的坐标符合其对应解析式”,然后,和哪个几何图形结合,多想与之结合的几何图形的性质1.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为()A.﹣1B.﹣2C.﹣3D.﹣42.若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是()A.(m,n+1)B.(m+1,n)C.(m,n﹣1)D.(m﹣1,n)3.(2023•十堰)已知点A(x1,y1)在直线y=3x+19上,点B(x2,y2),C(x3,y3)在抛物线y=x2+4x ﹣1上,若y1=y2=y3,x1<x2<x3,则x1+x2+x3的取值范围是()A.﹣12<x1+x2+x3<﹣9B.﹣8<x1+x2+x3<﹣6C.﹣9<x1+x2+x3<0D.﹣6<x1+x2+x3<1【题型3 二次函数图象与几何变换】满分技巧1、二次函数的几何变化,多考察其平移规律,对应方法是:①将一般式转化为顶点式;②根据口诀“左加右减,上加下减”去变化。
中考数学考点14二次函数图像与性质及与a、b、c的关系(解析版)
二次函数图像与性质及与a 、b 、c 的关系【命题趋势】在中考中.二次函数的图像与性质常在选择题和填空题常考;二次函数图像与系数a 、b 、c 的关系常在选择题或填空题的最后一题出现。
【中考考查重点】一、会用描点法画出二次函数的图像.通过图像了解二次函数的性质; 二、会用配方法将数字系数的二次函数的表达式化为k ax +=-)h (2y 的形式.并能由此得到二次函数图像的顶点坐标.说出图像的开口方向.画出图像的对称轴。
考点一:二次函数的概念及三种解析式概念 形如的函数叫二次函数三种解析式 1. 一般式:;2. 顶点式:(a ≠0)其中(h,k )为二次函数的顶点坐标3. 交点式:.其中为抛物线与x 轴交点的横坐标图像画法列表、描点、连线1.(2021秋•黔西南州期末)下列各式中.y 是关于x 的二次函数的是( ) A .y =4x +2 B .y =(x ﹣1)2﹣x 2 C .y =3x 2+5﹣4x D .y =【答案】C【解答】解:A .y =4x +2.是一次函数.故A 不符合题意; B .y =(x ﹣1)2﹣x 2=﹣2x +1.是一次函数.故B 不符合题意; C .y =3x 2+5﹣4x =3x 2﹣4x +5.是二次函数.故C 符合题意; D .y =等号右边是分式.不是二次函数.故D 不符合题意;故选:C .考点二:二次函数的图像与性质2.(2021春•岳麓区校级期末)已知二次函数的解析式为y =x 2﹣4x +5.则该二次函数图象的顶点坐标是( ) A .(﹣2.1) B .(2.1)C .(2.﹣1)D .(1.2)【答案】B【解答】解:∵二次函数的解析式为y =x 2﹣4x +5. ∴x =﹣=﹣=2.y ===1.二次函数图象的顶点坐标为(2.1). 故选:B .3.(2020秋•莫旗期末)对于二次函数y =(x ﹣1)2+2的图象.下列说法正确的是( )A .开口向下B .当x =﹣1时.y 有最大值是2C .对称轴是直线x =﹣1解析式对称轴直线(还可以利用.其中为y 值相等的两个点对应的横坐标)求解)顶点坐标2424b ac b a a ⎛⎫-- ⎪⎝⎭,增减性当时.在对称轴左侧.y 随x 的增大而减少;在对称轴右侧.y 随x 的增大而增大 当a <0时.在对称轴左侧.y 随x 的增大而增大;在对称轴右侧.y 随x的增大而减少最值当时.y 有最小值当2bx a =-时.y 有最小值244ac ba-. 当a <0时.y 有最大值当时.y 有最大值D.顶点坐标是(1.2)【答案】D【解答】解:二次函数y=(x﹣1)2+2的图象的开口向上.故A错误;当x=1时.函数有最小值2.故B错误;对称轴为直线x=1.故C错误;顶点坐标为(1.2).故D正确.故选:D.4.(2021秋•越秀区期末)在同一平面直角坐标系xOy中.一次函数y=ax与二次函数y =ax2﹣a的图象可能是()A.B.C.D.【答案】C【解答】解:选项A.直线下降a<0.抛物线开口向上.a>0.不符合题意.选项B.直线下降.a<0.抛物线开口向下a<0.抛物线与y轴交点在x轴下方.﹣a<0.即a>0.不符合题意.选项C.直线上升.a>0.抛物线开口向上a>0.抛物线与y轴交点在x轴下方.﹣a<0.即a>0.符合题意.选项D.直线上升.a>0.抛物线开口向下a<0.不符合题意.故选:C.5.(2021秋•南召县期末)已知(﹣3.y1).(1.y2).(5.y3)是抛物线y=﹣2x2﹣4x+m 上的点.则()A.y1>y2>y3B.y2>y1>y3C.y1=y2>y3D.y1>y2=y3【答案】C【解答】解:∵y=﹣2x2﹣4x+m=﹣2(x+1)2+2+m.∴抛物线的开口向下.对称轴是直线x=﹣1.∴当x>﹣1时.y随x的增大而减小.∵(﹣3.y1).(1.y2).(5.y3)是抛物线y=﹣2x2﹣4x+m上的点.∴点(﹣3.y1)关于对称轴x=﹣1的对称点是(1.y3).∵1<5.∴y1=y2>y3.故选:C6.(2021秋•昭阳区期中)已知二次函数y=﹣(x﹣k)2+h.当x>2时.y随x的增大而减小.则函数中k的取值范围是()A.k≥2B.k≤2C.k=2D.k≤﹣2【答案】B【解答】解:抛物线的对称轴为直线x=k.因为a=﹣1<0.所以抛物线开口向下.所以当x>k时.y的值随x值的增大而减小.而x>2时.y的值随x值的增大而减小.所以k≤2.故选:B.考点三:二次函数图像与a、b、c的关系a、b、c的正负数判断二次函数图像二次项系数a 决定抛物线的开口方向及开口大小⑴当0a>时.抛物线开口向上⑵当0a<时.抛物线开口向下一次项系数b 决定对称轴的位置在二次项系数a确定的前提下.b决定了抛物线的对称轴.(同左异右b为对称轴为y轴)2.根据二次函数图像判断a 、b 、c 关系式与0的关系7.(2021秋•新抚区期末)如图.已知点A (﹣1.0)和点B (1.1).若抛物线y =x 2+c 与线段AB 有公共点.则c 的取值范围是( )A .﹣1≤c ≤0B .﹣1≤c ≤C .﹣1≤c ≤D .0≤c ≤常数项系数c决定抛物线与y 轴的交点的位置⑴ 当0c >时.抛物线与y 轴的交点在x 轴上方⑵ 当0c =时.抛物线与y 轴的交点为坐标原点⑶ 当0c <时.抛物线与y 轴的交点在x 轴下方ac 4b2-决定抛物线与x 轴的交点个数b2-4ac >0时.抛物线与x 轴有2个交点;b2-4ac =0时.抛物线与x 轴有1个交点; b2-4ac <0时.抛物线与x 轴没有交点 决定抛物线与x 轴的交点个数关系式 实质2a+b实质式结合a 的正负比较a2b-与1关系 2a+b实质式结合a 的正负比较a2b-与-1关系 a+b+c 实质是令x=1.看纵坐标正负 a -b+c 实质是令x=-1.看纵坐标正负 4a+2b+c 实质是令x=2.看纵坐标正负 4a -2b+c实质是令x=-2.看纵坐标正负【答案】C【解答】解:设AB所在直线为y=kx+b.将(﹣1.0).(1.1)代入y=kx+b得.∴y=x+.如图.当抛物线与线段AB相切时.令x+=x2+c.整理得x2﹣x﹣+c=0.∴Δ=(﹣)2﹣4(﹣+c)=0.解得c=.c减小.抛物线向下移动.当抛物线经过点A(﹣1.0)时.将(﹣1.0)代入y=x2+c得0=1+c.解得c=﹣1.∴﹣1≤c≤满足题意.故选:C.8.(2021秋•肃州区期末)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示.在下列五个结论中:①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0.其中正确的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:∵抛物线开口向上.∴a>0.∵0<﹣<1.∴b<0.2a﹣b>0.①不正确.不符合题意.∵抛物线与y轴交点在x轴下方.∴c<0.∴abc>0.②不正确.不符合题意.∵x=1时.y<0.∴a+b+c<0.③正确.符合题意.∵x=﹣1时.y>0.∴a﹣b+c>0.④正确.符合题意.∵x=2时.y>0.∴4a+2b+c>0.⑤正确.符合题意.故选:C1.(2021秋•五常市期末)抛物线y=x2+2x﹣3的对称轴是直线()A.x=﹣2B.x=﹣1C.x=1D.x=2【答案】B【解答】解:∵y=x2+2x﹣3.∴抛物线对称轴为直线x=﹣=﹣1.故选:B.2.(2021秋•呼和浩特期末)关于二次函数y=2x2+4x﹣1.下列说法正确的是()A.图象与y轴的交点坐标为(0.1)B.当x<1时.y的值随x值的增大而减小C.图象的顶点坐标为(﹣1.﹣3)D.图象的对称轴在y轴的右侧【答案】C【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3.∴当x=0时.y=﹣1.故选项A错误.该函数的对称轴是直线x=﹣1.当x<﹣1时.y随x的增大而减小.故选项B错误.图象的顶点坐标为(﹣1.﹣3).故选项C正确.图象的对称轴在y轴的左侧.故选项D错误.故选:C.3.(2021春•岳麓区校级期末)已知抛物线y=﹣(x+1)2上的两点A(﹣4.4.y1)和B (﹣3.3.y2).那么下列结论一定成立的是()A.0<y2<y1B.0<y1<y2C.y1<y2<0D.y2<y1<0【答案】C【解答】解:∵y=﹣(x+1)2.∴二次函数图象开口向下.对称轴为直线x=﹣1.顶点为(﹣1.0).∵A(﹣4.4.y1)和B(﹣3.3.y2).∴|﹣1+4.4|>|﹣1+3.3|.∴y1<y2<0.故选:C.4.(2021秋•克东县期末)抛物线y=x2﹣2x﹣4的顶点M关于坐标原点O的对称点为N.则点N的坐标为()A.(1.﹣5)B.(1.5)C.(﹣1.5)D.(﹣1.﹣5)【答案】C【解答】解:∵抛物线y=x2﹣2x﹣4=(x﹣1)2﹣5.∴该抛物线的顶点M的坐标为(1.﹣5).∴顶点M关于坐标原点O的对称点为N的坐标为(﹣1.5).故选:C.5.(2021秋•龙江县期末)对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数.且a≠0)如图所示.现有结论:①abc<0.②b2>4ac.③3a+c>0.④ac﹣bc+c2<0.其中结论正确的有()A.1个B.2个C.3个D.4个【答案】C【解答】解:∵抛物线开口向上.∴a>0.∵抛物线对称轴为直线x=﹣=1.∴b=﹣2a<0.∵抛物线与y轴交点在x轴下方.∴c<0.∴abc>0.①错误.∵抛物线与x轴有2个交点.∴b2﹣4ac>0.∴b2>4ac.②正确.∵b=﹣2a.∴y=ax2﹣2ax+c.由图象可得x=﹣1时y>0.∴a+2a+c=3a+c>0.③正确.∵c<0.∴ac﹣bc+c2<0可整理为a﹣b+c>0.∵x=﹣1时y>0.∴a﹣b+c>0.④正确.故选:C.1.(2021•兰州)二次函数y=x2+4x+1的图象的对称轴是()A.x=2B.x=4C.x=﹣2D.x=﹣4【答案】C【解答】解:∵二次函数y=x2+4x+1.∴抛物线对称轴为直线x=﹣=﹣2.故选:C.2.(2021•广州)抛物线y=ax2+bx+c经过点(﹣1.0)、(3.0).且与y轴交于点(0.﹣5).则当x=2时.y的值为()A.﹣5B.﹣3C.﹣1D.5【答案】A【解答】解:如图∵抛物线y=ax2+bx+c经过点(﹣1.0)、(3.0).且与y轴交于点(0.﹣5).∴可画出上图.∵抛物线对称轴x==1.∴点(0.﹣5)的对称点是(2.﹣5).∴当x=2时.y的值为﹣5.故选:A.3.(2021•常州)已知二次函数y=(a﹣1)x2.当x>0时.y随x增大而增大.则实数a 的取值范围是()A.a>0B.a>1C.a≠1D.a<1【答案】B【解答】解:∵二次函数y=(a﹣1)x2.当x>0时.y随x增大而增大.∴a﹣1>0.∴a>1.故选:B.4.(2021•阜新)如图.二次函数y=a(x+2)2+k的图象与x轴交于A.B(﹣1.0)两点.则下列说法正确的是()A.a<0B.点A的坐标为(﹣4.0)C.当x<0时.y随x的增大而减小D.图象的对称轴为直线x=﹣2【答案】D【解答】解:∵二次函数y=a(x+2)2+k的图象开口方向向上.∴a>0.故A错误.∵图象对称轴为直线x=﹣2.且过B(﹣1.0).∴A点的坐标为(﹣3.0).故B错误.D正确.由图象知.当x<0时.由图象可知y随x的增大先减小后增大.故C错误.故选:D.5.(2021•深圳)二次函数y=ax2+bx+1的图象与一次函数y=2ax+b在同一平面直角坐标系中的图象可能是()A.B.C.D.【答案】A【解答】解:A、由抛物线可知.a>0.b<0.c=1.对称轴为直线x=﹣.由直线可知.a >0.b<0.直线经过点(﹣.0).故本选项符合题意;B、由抛物线可知.对称轴为直线x=﹣.直线不经过点(﹣.0).故本选项不符合题意;C、由抛物线可知.对称轴为直线x=﹣.直线不经过点(﹣.0).故本选项不符合题意;D、由抛物线可知.对称轴为直线x=﹣.直线不经过点(﹣.0).故本选项不符合题意;故选:A.6.(2021•阿坝州)二次函数y=ax2+bx+c的图象如图所示.下列说法错误的是()A.a<0.b>0B.b2﹣4ac>0C.方程ax2+bx+c=0的解是x1=5.x2=﹣1D.不等式ax2+bx+c>0的解集是0<x<5【答案】D【解答】解:由图象可知.抛物线开口向下.所以a<0;对称轴为直线x=﹣=2.所以b=﹣4a.所以b>0.故A正确.因为抛物线与x轴有两个交点.所以b2﹣4ac>0.故B正确.由图象和对称轴公式可知.抛物线与x轴交于点(5.0)和(﹣1.0).所以方程ax2+bx+c =0的解是x1=5.x2=﹣1.故C正确.由图象可知.不等式ax2+bx+c>0的解集是﹣1<x<5.故D错误.故选:D.7.(2021•雅安)定义:min{a.b}=.若函数y=min{x+1.﹣x2+2x+3}.则该函数的最大值为()A.0B.2C.3D.4【答案】C【解答】解:x+1=﹣x2+2x+3.解得x=﹣1或x=2.∴y=.把x=2代入y=x+1得y=3.∴函数最大值为y=3.故选:C.8.(2021•烟台)如图.二次函数y=ax2+bx+c的图象经过点A(﹣1.0).B(3.0).与y 轴交于点C.下列结论:①ac>0;②当x>0时.y随x的增大而增大;③3a+c=0;④a+b≥am2+bm.其中正确的个数有()A.1个B.2个C.3个D.4个【答案】B【解答】解:把点A(﹣1.0).B(3.0)代入二次函数y=ax2+bx+c.可得二次函数的解析式为:y=ax2﹣2ax﹣3a.∵该函数图象开口方向向下.∴a<0.∴b=﹣2a>0.c=﹣3a>0.∴ac<0.3a+c=0.①错误.③正确;∵对称轴为直线:x=﹣=1.∴x<1时.y随x的增大而增大.x>1时.y随x的增大而减小;②错误;∴当x=1时.函数取得最大值.即对于任意的m.有a+b+c≥am2+bm+c.∴a+b≥am2+bm.故④正确.综上.正确的个数有2个.故选:B.9.(2021•徐州)如图.点A、B在y=x2的图象上.已知A、B的横坐标分别为﹣2、4.直线AB与y轴交于点C.连接OA、OB.(1)求直线AB的函数表达式;(2)求△AOB的面积;(3)若函数y=x2的图象上存在点P.使△P AB的面积等于△AOB的面积的一半.则这样的点P共有个.【答案】(1)y=+2 (2)6 (3)4【解答】解:(1)∵点A、B在y=x2的图象上.A、B的横坐标分别为﹣2、4.∴A(﹣2.1).B(4.4).设直线AB的解析式为y=kx+b.∴.解得.∴直线AB的解析式为y=+2;(2)在y=+2中.令x=0.则y=2.∴C的坐标为(0.2).∴OC=2.∴S△AOB=S△AOC+S△BOC=+=6.(3)过OC的中点.作AB的平行线交抛物线两个交点P1、P2.此时△P1AB的面积和△P2AB的面积等于△AOB的面积的一半.作直线P1P2关于直线AB的对称直线.交抛物线两个交点P3、P4.此时△P3AB的面积和△P4AB的面积等于△AOB的面积的一半.所以这样的点P共有4个.故答案为4.1.(2021•龙湾区模拟)下列函数中.是二次函数的是()A.y=6x2+1B.y=6x+1C.y=D.y=﹣+1【答案】A【解答】解:A.是二次函数.故本选项符合题意;B.是一次函数.不是二次函数.故本选项不符合题意;C.是反比例函数.不是二次函数.故本选项不符合题意;D.等式的右边是分式.不是整式.不是二次函数.故本选项不符合题意;故选:A.2.(2021•安徽模拟)在平面直角坐标系中.A的坐标为(1.﹣2).B的坐标为(﹣1.﹣5).若y关于x的二次函数y=﹣x2+2mx﹣m2﹣1在﹣1≤x≤1段的图象始终在线段AB 的下方.则m的取值范围是()A.m<﹣3B.m>2C.m<﹣2或m>2D.m<﹣3或m>2【答案】D【解答】解:∵y关于x的二次函数为y=﹣x2+2mx﹣m2﹣1.∴顶点式为y=﹣(x﹣m)2﹣1.∴抛物线顶点为(m.﹣1).当﹣1≤m≤1时.∵﹣1>﹣2>﹣5.∴顶点在线段AB的上方.不符合题意;当m<﹣1时.若二次函数的图象与线段AB交于点B.则当x=﹣1时.y=﹣(﹣1﹣m)2﹣1=﹣5.解得:m1=﹣3.m2=1(舍去).∴要使二次函数的图象在线段AB的下方.则需要将图象向左平移.∴m<﹣3.当m>1时.若二次函数图象与线段AB交于点A.则当x=1时.y=﹣(1﹣m)2﹣1=﹣2.解得:m1=2.m2=0(舍去).∴而要使二次函数始终在线段AB下方.则需要将图象向右平移.∴m>2.综上所述:m<﹣3或m>2.故选:D.3.(2021•陕西模拟)如图.若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1.与y 轴交于点C.与x轴交于点A、点B(﹣1.0).则:①二次函数的最大值为1;②4a ﹣2b+c>0;③b2﹣4ac>0;④当y<0时.x<﹣1或x>3.其中错误的个数是()A.I B.2C.3D.4【答案】B【解答】解:∵对称轴为直线x=1.∴b=﹣2a.∵B(﹣1.0).∴A(3.0).∴a﹣b+c=0.∴c=﹣3a.∴y=ax2﹣2ax﹣3a;①当x=1时.函数的最大值是a+b+c.故①不正确;②当x=﹣2时.y<0.∴4a﹣2b+c<0.故②不正确;③∵函数与x轴有两个不同的交点.∴Δ=b2﹣4ac>0.故③正确;④由图象可知当y<0时.x<﹣1或x>3.故④正确;故选:B.。
中考数学专题函数图象选择题的几种解法
专题复习一一.专题复习 1. 探索型问题 2. 开放型问题 二. 常见的问题的类型:1. 条件探索型——结论明确,而需探索发现使结论成立的条件的题目。
2. 结论探索型——给定条件,但无明确结论或结论不惟一。
3. 存在探索型——在一定条件下,需探索发现某种数学关系是否存在。
4. 规律探索型——发现数学对象所具有的规律性与不变性的题目。
三. 常用的解题切入点:1. 利用特殊值(特殊点、特殊数量、特殊线段、特殊位置)进行归纳、概括,从而得出规律。
2. 反演推理:根据假设进行推理,看推导出矛盾的结果还是能与已知条件一致。
3. 分类讨论:当命题的题设和结论不惟一确定时,则需对可能出现的情况做到既不重复,也不遗漏,分门别类地加以讨论求解,将不同结论综合归纳得出正确结论。
以上四种常见解题方法在本周的练习提纲中均有体现,同学们在解完本练习后,可细细对照参考答案,用心体会。
一. 填空题(每空4分,共48分)1. 请你写出:(1)一个比-1大的负数:____________;(2)一个二次三项式:____________。
2. 请你写出:(1)经过点(0,2)的一条直线的解析式是________________________;(2)经过点(0,2)的一条抛物线的解析式是________________________。
3. 如果菱形的面积不变,它的两条对角线的长分别是x 和y ,那么y 是x 的____________函数。
(填写函数名称)4. 如图,△ADE 和△ABC 有公共顶点A ,∠1=∠2,请你添加一个条件:___________,使△ADE ∽△ABC 。
ABCE D215. 有一列数:1,2,3,4,5,6,……,当按顺序从第2个数数到第6个数时,共数了_______个数;当按顺序从第m 个数数到第n 个数(n m >)时,共数了_______个数。
6. 请你在“2,-3,4,-5,6”中任意挑选4个数,添加“+,-,×,÷”和括号进行运算,使其计算结果为24,这个算式是_____________________。
中考化学图像题的解法与技巧(讲解突破)原卷解析版
中考化学图象题的解法和技巧图像是研究和处理化学问题的一种方法和手段。
化学试题中常运用图像信息表示化学过程或相关的变化规律,称之为图像题,它以化学中的基本概念、基本理论、元素化合物和化学实验等知识为载体,精心设计问题的一种信息处理与分析的试题。
这类题目具有形象直观、简明清晰、知识面广、综合性强等特点。
图像题要求学生能从文字、表格、图象中提取能解决问题的有用信息,能较好地考查学生抽象、概括、观察、分析判断能力和信息提取能力。
图像题是初中化学教学的重要部分,是每年中考的必考内容,在省、市各层次的考试中,出现频率都非常高。
专题归纳一、图像题的内容从内容上来说,出现在质量守恒、金属与酸、盐溶液的反应、溶液的性质、酸碱盐之间的反应、微粒间的变化、反应速率等。
给出的题目一般有坐标、图表、分子原子模型等,知识面广,知识的联系强,近三年中考中常作为综合题出现。
二、解题方法分析已知条件,读懂题目中有限的文字信息,对整个函数图象进行多角度认真分析。
1. 直角坐标系题:解题要点在于解题时要求学生首先弄清楚横坐标和纵坐标到底是什么,理解起点、终点、转折点的含义,然后根据所学知识分析概念、图象、数值三者之间的关系。
起点一般有三种情况:起点从原点开始;起点开始于y轴;起点开始于x轴。
变化趋势可分为三种:变大、变小、不变型。
终点可分为:接近某个值或等于某个值。
2.表格型题:解题要点在于通过审题,获取有用信息,然后对表格中数据进行比较分析,依据物质的性质、变化规律进行解答。
(1)起点开始于y轴的图象一般是当横坐标所表示的量为零时,其纵坐标所表示的量不为零。
如向不饱和溶液中加入溶质,其溶质质量的变化图象。
(2)起点开始于x轴的图象一般是当横坐标所表示的量达到一定程度时,其纵坐标所表示的量才开始变化。
如条件为加热的反应其生成物(纵坐标)随时间(横坐标)的变化图象。
(3)pH图象和溶解度曲线均为曲线图象,不要画成直线。
二、主要题型1.金属与酸反应图象题。
求函数解析式的方法和例题
求函数解析式的方法和例题在数学学习中,求函数解析式是一个非常重要的问题。
函数解析式是描述函数规律的数学式子,它可以帮助我们更好地理解函数的性质和特点,进而解决各种与函数相关的问题。
那么,我们该如何求函数的解析式呢?下面,我将介绍几种常见的方法和通过例题来帮助大家更好地理解。
一、根据函数图像求解析式。
我们知道,函数的图像可以直观地反映函数的性质和规律。
因此,当给定函数的图像时,我们可以通过观察图像的特点来求解析式。
以一元一次函数为例,当我们给定了函数图像上的两个点坐标时,我们可以通过这两个点的坐标来求解析式。
具体的求解步骤是,首先计算出斜率,然后利用其中一个点的坐标和斜率来写出函数解析式。
例如,给定一元一次函数的图像上的两个点坐标分别为(1,3)和(2,5),我们可以先计算出斜率为2,然后利用其中一个点的坐标(比如(1,3))和斜率来写出函数解析式,y=2x+1。
二、根据函数的性质求解析式。
有些函数具有一些特殊的性质,我们可以通过这些性质来求解析式。
比如,对于一元二次函数y=ax^2+bx+c,我们知道它的图像是一个抛物线,而抛物线的开口方向取决于a的正负。
因此,当我们给定了抛物线的开口方向和顶点坐标时,我们可以通过这些性质来求解析式。
例如,给定一元二次函数的抛物线开口向上,顶点坐标为(1,2),我们可以利用这些信息来求解析式。
首先,根据顶点坐标可以得到c=2,然后根据抛物线开口向上可以得到a>0,进而写出函数解析式,y=ax^2+bx+2。
三、根据函数的定义求解析式。
有些函数是根据一定的规则或定义而得到的,我们可以通过这些规则或定义来求解析式。
比如,对于阶梯函数,我们知道它在不同的区间有不同的取值,因此可以根据这些规则来写出函数解析式。
例如,给定一个阶梯函数在区间[0,2)上的取值为1,在区间[2,4)上的取值为3,我们可以根据这些规则来写出函数解析式,f(x)=1, 0≤x<2;f(x)=3, 2≤x<4。
中考数学三轮专题冲刺7:利用函数图像解决实际问题综合(含答案)
中考数学第三轮压轴题专题冲刺复习:利用函数图像解决实际问题综合1、甲、乙两车分别从A 、B 两地同时出发,甲车匀速前往B 地,到达B 地立即以另一速度按原路匀速返回到A 地;乙车匀速前往A 地,设甲、乙两车距A 地的路程为y (千米),甲车行驶的时间为x (时),y 与x 之间的函数图象如图所示(1)求甲车从A 地到达B 地的行驶时间;(2)求甲车返回时y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)求乙车到达A 地时甲车距A 地的路程.2、由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y 1(万m 3)与干旱持续时间x (天)的关系如图中线段l 1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y 2(万m 3)与时间x (天)的关系如图中线段l 2所示(不考虑其它因素).(1)求原有蓄水量y 1(万m 3)与时间x (天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x ≤60时,水库的总蓄水量y (万m 3)与时间x (天)的函数关系式(注明x 的范围),若总蓄水量不多于900万m 3为严重干旱,直接写出发生严重干旱时x 的范围.3、某物流公司引进A 、B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A 种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运,如图,线段OG 表示A 种机器人的搬运量A y (千克)与时间x (时)的函数图像,线段EF 表示B 种机器人的搬运量B y (千克)与时间x (时)的函数图像,根据图像提供的信息,解答下列问题:(1)求B y 关于x 的函数解析式;(2)如果A、B两种机器人各连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?4、有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.5、快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.6、某企业接到一批粽子生产任务,按要求在19天内完成,约定这批粽子的出厂价为每只4元,为按时完成任务,该企业招收了新工人,设新工人李红第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李红第几天生产的粽子数量为260只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画,若李红第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)7、某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(3m)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水340m(二月份用水量不超过325m),缴纳水费79.8元,则该用户二、三月份的用水量各是多少3m?8、某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?9、某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动.11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD 表示y与x之间的函数关系.(1)活动中心与小宇家相距千米,小宇在活动中心活动时间为小时,他从活动中心返家时,步行用了小时;(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.10、甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y 与x 的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.11、湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养天的总成本为万元;放养天的总成本为万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是万元,收购成本为万元,求和的值;(2)设这批淡水鱼放养天后的质量为(),销售单价为元/.根据20000kg 1030.42030.8a b a b t m kg y kg以往经验可知:与的函数关系为;与的函数关系如图所示.①分别求出当和时,与的函数关系式;②设将这批淡水鱼放养天后一次性出售所得利润为元,求当为何值时,最大?并求出最大值.(利润=销售总额-总成本)12、如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A —C—B运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1, C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.13、在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y 2(千米)与行驶的时间x(小时)的函数关系图象如图1所示.m t()()200000501001500050100tmt t≤≤⎧⎪=⎨+<≤⎪⎩y t 050t≤≤50100t<≤y tt W tW(1)甲、乙两地相距 千米.(2)求出发3小时后,货车离服务区的路程y 2(千米)与行驶时间x (小时)之间的函数关系式.(3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y 3(千米)与行驶时间x(小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等?14、雷雷服饰有限公司生产了一款夏季服装,通过实验商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量1y (百件)与时间t (t 为整数,单位:天)的部分对应值如下表所示;网上商店的日销售量2y (百件)与时间t (t 为整数,单位:天)的关系如下图所示.y与t (1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映1y与t的函数关系式及自变量t的取值范围;的变化规律,并求出1y与t的函数关系式,并写出自变量t的取值范围;(2)求2(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.15、荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m(m <7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.参考答案2021年中考数学第三轮压轴题专题冲刺复习:利用函数图像解决实际问题综合1、甲、乙两车分别从A 、B 两地同时出发,甲车匀速前往B 地,到达B 地立即以另一速度按原路匀速返回到A 地;乙车匀速前往A 地,设甲、乙两车距A 地的路程为y (千米),甲车行驶的时间为x (时),y 与x 之间的函数图象如图所示(1)求甲车从A 地到达B 地的行驶时间;(2)求甲车返回时y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)求乙车到达A 地时甲车距A 地的路程.【解答】解:(1)300÷(180÷1.5)=2.5(小时),答:甲车从A 地到达B 地的行驶时间是2.5小时;(2)设甲车返回时y 与x 之间的函数关系式为y=kx+b ,∴, 解得:,∴甲车返回时y 与x 之间的函数关系式是y=﹣100x+550;(3)300÷[(300﹣180)÷1.5]=3.75小时,当x=3.75时,y=175千米,答:乙车到达A 地时甲车距A 地的路程是175千米.2、由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y 1(万m 3)与干旱持续时间x (天)的关系如图中线段l 1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y 2(万m 3)与时间x (天)的关系如图中线段l 2所示(不考虑其它因素).(1)求原有蓄水量y 1(万m 3)与时间x (天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x ≤60时,水库的总蓄水量y (万m 3)与时间x (天)的函数关系式(注明x 的范围),若总蓄水量不多于900万m 3为严重干旱,直接写出发生严重干旱时x 的范围.【解答】解:(1)设y1=kx+b,把(0,1200)和(60,0)代入到y1=kx+b得:解得,∴y1=﹣20x+1200当x=20时,y1=﹣20×20+1200=800,(2)设y2=kx+b,把(20,0)和(60,1000)代入到y2=kx+b中得:解得,∴y2=25x﹣500,当0≤x≤20时,y=﹣20x+1200,当20<x≤60时,y=y1+y2=﹣20x+1200+25x﹣500=5x+700,y≤900,则5x+700≤900,x≤40,当y1=900时,900=﹣20x+1200,x=15,∴发生严重干旱时x的范围为:15≤x≤40.3、某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量Ay(千克)与时间x(时)的函数图像,线段EF表示B种机器人的搬运量By(千克)与时间x(时)的函数图像,根据图像提供的信息,解答下列问题:(1)求By关于x的函数解析式;(2)如果A、B两种机器人各连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?解:(1)设B y 关于x 的函数解析式为1B y k x b =+(10k ≠),由线段EF 过点(1,0)E 和点(3,180)P ,得1103180k b k b +=⎧⎨+=⎩,解得19090k b =⎧⎨=-⎩,所以B y 关于x 的函数解析式为9090B y x =-(16x ≤≤);(2)设A y 关于x 的函数解析式为2A y k x =(20k ≠),由题意,得21803k =,即260k = ∴60A y x =;当5x =时,560300A y =⨯=(千克),当6x =时,90690450B y =⨯-=(千克),450300150-=(千克);答:如果A 、B 两种机器人各连续搬运5小时,那么B 种机器人比A 种机器人多搬运了150千克4、有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 70 米,甲机器人前2分钟的速度为 95 米/分;(2)若前3分钟甲机器人的速度不变,求线段EF 所在直线的函数解析式;(3)若线段FG ∥x 轴,则此段时间,甲机器人的速度为 60 米/分;(4)求A 、C 两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.【解答】解:(1)由图象可知,A、B两点之间的距离是70米,甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;(2)设线段EF所在直线的函数解析式为:y=kx+b,∵1×(95﹣60)=35,∴点F的坐标为(3,35),则,解得,,∴线段EF所在直线的函数解析式为y=35x﹣70;(3)∵线段FG∥x轴,∴甲、乙两机器人的速度都是60米/分;(4)A、C两点之间的距离为70+60×7=490米;(5)设前2分钟,两机器人出发xs相距28米,由题意得,60x+70﹣95x=28,解得,x=1.2,前2分钟﹣3分钟,两机器人相距28米时,35x﹣70=28,解得,x=2.8,4分钟﹣7分钟,两机器人相距28米时,(95﹣60)x=28,解得,x=0.8,0.8+4=4.8,答:两机器人出发1.2s或2.8s或4.8s相距28米.5、快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.【解答】解:(1)快车速度:180×2÷()=120千米/时,慢车速度:120÷2=60千米/时;(2)快车停留的时间:﹣×2=(小时),+=2(小时),即C(2,180),设CD的解析式为:y=kx+b,则将C(2,180),D(,0)代入,得,解得,∴快车返回过程中y(千米)与x(小时)的函数关系式为y=﹣120x+420(2≤x ≤);(3)相遇之前:120x+60x+90=180,解得x=;相遇之后:120x+60x﹣90=180,解得x=;快车从甲地到乙地需要180÷120=小时,快车返回之后:60x=90+120(x﹣﹣)解得x=综上所述,两车出发后经过或或小时相距90千米的路程.6、某企业接到一批粽子生产任务,按要求在19天内完成,约定这批粽子的出厂价为每只4元,为按时完成任务,该企业招收了新工人,设新工人李红第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李红第几天生产的粽子数量为260只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画,若李红第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)【解答】解:(1)设李红第x天生产的粽子数量为260只,根据题意得20x+60=260,解得x=10,答:李红第10天生产的粽子数量为260只;(2)根据图象得当0≤x≤9时,p=2;当9<x≤19时,设解析式为y=kx+b,把(9,2),(19,3)代入得,解得,所以p=x+,①当0≤x ≤5时,w=(4﹣2)•32x=64x ,x=5时,此时w 的最大值为320(元); ②当5<x ≤9时,w=(4﹣2)•(20x+60)=40x+120,x=9时,此时w 的最大值为480(元);③当9<x ≤19时,w=[4﹣(x+)]•(20x+60)=﹣2x2+52x+174=﹣2(x ﹣13)2+786,x=13时,此时w 的最大值为786(元);综上所述,第13天的利润最大,最大利润是786元.7、某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y (元)与每月用水量x (3m )之间的关系如图所示.(1)求y 关于x 的函数解析式;(2)若某用户二、三月份共用水340m (二月份用水量不超过325m ),缴纳水费79.8元,则该用户二、三月份的用水量各是多少3m ?【答案】:(1)当015x <<时,设y mx =,则1527m =,所以 1.8m =, 1.8y x =当15x ≥时,设y kx b =+,则15272039k b k b +=⎧⎨+=⎩,解得 2.49k b =⎧⎨=-⎩,所以y 与x 的关系式是 1.8,0152.49,15x x y x x <<⎧=⎨-≥⎩.8、某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?【答案】(1)观察图象可知:当参加旅游的人数不超过10人时,人均收费为240元.故答案为240.(2)∵3600÷240=15,3600÷150=24,∴收费标准在BC段,设直线BC的解析式为y=kx+b,则有10240 25150k bk b+=⎧⎨+=⎩,解得6300kb=-⎧⎨=⎩,∴y=﹣6x+300,由题意(﹣6x+300)x=3600,解得x=20或30(舍弃)答:参加这次旅游的人数是20人.9、某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动.11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD 表示y与x之间的函数关系.(1)活动中心与小宇家相距22 千米,小宇在活动中心活动时间为 2 小时,他从活动中心返家时,步行用了0.4 小时;(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.【解答】解:(1)∵点A的坐标为(1,22),点B的坐标为(3,22),∴活动中心与小宇家相距22千米,小宇在活动中心活动时间为3﹣1=2小时.(22﹣20)÷5=0.4(小时).故答案为:22;2;0.4.(2)根据题意得:y=22﹣5(x﹣3)=﹣5x+37.(3)小宇从活动中心返家所用时间为:0.4+0.4=0.8(小时),∵0.8<1,∴所用小宇12:00前能到家.10、甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y 与x 的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【解答】解:(1)设y=kx+b ,则有,解得, ∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.11、湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养天的总成本为万元;放养天的总成本为万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是万元,收购成本为万元,求和的值;(2)设这批淡水鱼放养天后的质量为(),销售单价为元/.根据以往经验可知:与的函数关系为;与的函数关系如图所示.①分别求出当和时,与的函数关系式;20000kg 1030.42030.8a b a b t m kg y kg m t ()()200000501001500050100t m t t ≤≤⎧⎪=⎨+<≤⎪⎩y t 050t ≤≤50100t <≤y t②设将这批淡水鱼放养天后一次性出售所得利润为元,求当为何值时,最大?并求出最大值.(利润=销售总额-总成本)试题解析:(1)由题意得 解得 答:a 的值为0.04,b 的值为30.当50<t ≤100时,设y 与t 的函数关系式为y=k 2t+n 2把点(50,25)和(100,20)的坐标分别代入y=k 2t+n 2,得 解得 t W tW 1030.42030.8a b a b +=⎧⎨+=⎩0.0430a b =⎧⎨=⎩2222255020100k n k n =+⎧⎨=+⎩2211030k n ⎧=-⎪⎨⎪=⎩∴y 与t 的函数关系式为y=t+30 ②由题意得,当0≤t ≤50时,W=20000×(t+15)-(400t+300000)=3600t ∵3600>0,∴当t=50时,W 最大值=180000(元)当50<t ≤100时,W=(100t+15000)(t+30)-(400t+300000)=-10t 2+1100t+150000=-10(t-55)2+180250∵-10<0,∴当t=55时,W 最大值=180250综上所述,当t 为55天时,W 最大,最大值为180250元.12、如图1,在△ABC 中,∠A=30°,点P 从点A 出发以2cm/s 的速度沿折线A —C —B 运动,点Q 从点A 出发以a(cm/s)的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x(s),△APQ 的面积为y(cm 2),y 关于x 的函数图象由C 1 , C 2两段组成,如图2所示.(1)求a 的值;(2)求图2中图象C 2段的函数表达式;(3)当点P 运动到线段BC 上某一段时△APQ 的面积,大于当点P 在线段AC 上任意一点时△APQ 的面积,求x 的取值范围.【答案】(1)解:在图1中,过P 作PD ⊥AB 于D ,∵∠A=30°,PA=2x , ∴PD=PA ·sin30°=2x · =x ,∴y= = .由图象得,当x=1时,y= ,则 = . 110-15110-∴a=1.(2)解:当点P在BC上时(如图2),PB=5×2-2x=10-2x. ∴PD=PB·sinB=(10-2x)·sinB,∴y= AQ·PD= x·(10-2x)·sinB.由图象得,当x=4时,y= ,∴×4×(10-8)·sinB= ,∴sinB= .∴y= x·(10-2x)·= .(3)解:由C1, C2的函数表达式,得= ,解得x1=0(舍去),x2=2,由图易得,当x=2时,函数y= 的最大值为y= . 将y=2代入函数y= ,得2= .解得x1=2,x2=3,13、在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图1所示.(1)甲、乙两地相距480 千米.(2)求出发3小时后,货车离服务区的路程y2(千米)与行驶时间x(小时)之间的函数关系式.(3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x (小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等?【解答】解:(1)360+120=480(千米)故答案为:480;(2)设3小时后,货车离服务区的路程y2与行驶时间x之间的函数关系式为y2=kx+b,由图象可得,货车的速度为:120÷3=40千米/时,则点B的横坐标为:3+360÷40=12,∴点P的坐标为(12,360),,得,即3小时后,货车离服务区的路程y2与行驶时间x之间的函数关系式为y2=40x﹣120;(3)v客=360÷6=60千米/时,v邮=360×2÷8=90千米/时,设当邮政车去甲地的途中时,经过t小时邮政车与客车和货车的距离相等,120+(90﹣40)t=360﹣(60+90)tt=1.2(小时);设当邮政车从甲地返回乙地时,经过t小时邮政车与客车和货车的距离相等,40t+60t=480解得t=4.8,综上所述,经过1.2或4.8小时邮政车与客车和货车的距离相等.14、雷雷服饰有限公司生产了一款夏季服装,通过实验商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天y(百件)与时间t(t为整数,单位:的跟踪调查,其中实体商店的日销售量1y(百件)与时间t(t为天)的部分对应值如下表所示;网上商店的日销售量2整数,单位:天)的关系如下图所示.y与t (1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映1y与t的函数关系式及自变量t的取值范围;的变化规律,并求出1y与t的函数关系式,并写出自变量t的取值范围;(2)求2(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.【答案】(3)依题意得y=y 1+y 2,当0≤t ≤10时,得到y 最大=80;当10<t ≤30时,得到y 最大=91.2,于是得到结论.试题解析:(1)根据观察可设y 1=at 2+bt+c ,将(0,0),(5,25),(10,40)代入得:0,25525,1001040c a b a b =⎧⎪+=⎨⎪+=⎩,解得1,56,0a b c ⎧=-⎪⎪=⎨⎪=⎪⎩, ∴y 1与t 的函数关系式为:y 1=﹣15-t 2+6t (0≤t ≤30,且为整数); (2)当0≤t ≤10时,设y 2=kt ,∵(10,40)在其图象上,∴10k=40,∴k=4, ∴y 2与t 的函数关系式为:y 2=4t , 当10≤t ≤30时,设y 2=mt+n , 将(10,40),(30,60)代入得1040,3060m n m n +=⎧⎨+=⎩,解得1,30m n =⎧⎨=⎩,∴y 2与t 的函数关系式为:y 2=t+30,综上所述,()()24010301030,t t t y t t t ⎧≤≤⎪=⎨+<≤⎪⎩,且为整数且为整数; (3)依题意得y=y 1+y 2,当0≤t ≤10时,y=15-t 2+6t+4t=15-t 2+10t=15-(t ﹣25)2+125,∴t=10时,y 最大=80;当10<t ≤30时,y=15-t 2+6t+t+30=15-t 2+7t+30=15-(t ﹣352)2+3654, ∵t 为整数,∴t=17或18时,y 最大=91.2,∵91.2>80,∴当t=17或18时,y 最大=91.2(百件).15、荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m(m <7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.【解答】解:(1)设解析式为y=kt+b,将(1,198)、(80,40)代入,得:,解得:,∴y=﹣2t+200(1≤x≤80,t为整数);(2)设日销售利润为w,则w=(p﹣6)y,①当1≤t≤40时,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,=2450;∴当t=30时,w最大②当41≤t≤80时,w=(﹣t+46﹣6)(﹣2t+200)=(t﹣90)2﹣100,=2301,∴当t=41时,w最大∵2450>2301,∴第30天的日销售利润最大,最大利润为2450元.(3)由(2)得:当1≤t≤40时,w=﹣(t﹣30)2+2450,令w=2400,即﹣(t﹣30)2+2450=2400,解得:t1=20、t2=40,由函数w=﹣(t﹣30)2+2450图象可知,当20≤t≤40时,日销售利润不低于2400元,而当41≤t≤80时,w最大=2301<2400,∴t的取值范围是20≤t≤40,∴共有21天符合条件.(4)设日销售利润为w,根据题意,得:w=(t+16﹣6﹣m)(﹣2t+200)=﹣t2+(30+2m)t+2000﹣200m,其函数图象的对称轴为t=2m+30,∵w随t的增大而增大,且1≤t≤40,∴由二次函数的图象及其性质可知2m+30≥40,解得:m≥5,又m<7,∴5≤m<7.。
中考函数图像题型赏析
长 ) , 车从进入 隧道 至离 开隧道 时 货
的时间 与货车在隧道内的长度 间的关 系用 图像描述大致 是 之
二、 利用 函数 图像 。 考查 与不等 式有 关的 运算 例3 (0 1贵阳) 2 1. 反比例函数, 鱼 , 1 =
和正 比例 函 数Y= 2的图 像交 于 ( 1 :kx 一,
、
利 用 函数 图像 。 查函数 的基本 概念 及性 质 考
’
例 1 (0 1 江 西 ) 图 1 已 知 21・ 如 ,
一
次 i X = + 的 图像经过第一 、 、  ̄ yx b 二 ) .
A. 一2 B. 一1
三象 限, 的值可以是 ( 则6
C. 0 D. 2
/
是( ) .
例 2 ( 0 1 兰 州 ) 图 2 示 的二 21・ 如 所
次 函数, 僦zb + 的图像 中,刘星 同学 , +xc = 观察 得到 了下面 四条信息 :1 b- a> ( )24c 0 ( )> ;3 2- < ;4 叶6 c O你认 ;2c 1 ( )a b 0 ( ) + < .
时刻起 只打开进水管进水 , 经过一 段时间 , 再打开 出水管放 水 ,
至1分钟时 , 2 关停进水管 , 打开进水管到关停进水管这段时 间 在
麓豳嚣 中’ ? 中 黼麓豳 ? 擞-初版
21年7 02 月
试 题 赏 析
用运动的观点来探究几何图形变化规律的问题 称为运动型
问题 , 此类 问题的显著特点是 图形 中的某个元 素( 如点 、 线段 、 角
/ 0
图 1
四 、 据 问题 情 景 , 查 函数 图像的确 定 根 考
例5 (0 ・ 2 1 江西 ) 1 时钟 在正常 运行时 , 针每分钟 转动6 分
【中考压轴之满分集训】专题02 函数图像与性质综合题(四大类)(解析版)
冲刺中考数学压轴之满分集训专题02函数图像与性质综合题(四大类)【类型一:分析函数图像】【典例1】(锦州)已知A,B两地相距10千米,上午9:00甲骑电动车从A 地出发到B地,9:10乙开车从B地出发到A地,甲、乙两人距A地的距离y(千米)与甲所用的时间x(分)之间的关系如图所示,则乙到达A地的时间为.【答案】9:20【解答】解:因为甲30分走完全程10千米,所以甲的速度是千米/分,由图中看出两人在走了5千米时相遇,那么甲此时用了15分钟,则乙用了(15﹣10)分钟,所以乙的速度为:5÷5=1千米/分,所以乙走完全程需要时间为:10÷1=10分,因为9:10乙才出发,所以乙到达A地的时间为9:20;故答案为9:20.【变式1-1】(2022•潍坊)如图,在▱ABCD中,∠A=60°,AB=2,AD=1,点E,F在▱ABCD的边上,从点A同时出发,分别沿A→B→C和A→D→C 的方向以每秒1个单位长度的速度运动,到达点C时停止,线段EF扫过区域的面积记为y,运动时间记为x,能大致反映y与x之间函数关系的图象是()A.B.C.D.【答案】A【解答】解:过点F作FH⊥AB于H,当0≤x≤1时,如图1,在Rt△FAH中,AF=x,∠A=60°,则FH=AF•sin A=x,∴线段EF扫过区域的面积y=x•x=x2,图象是开口向上的抛物线,当1<x≤2时,如图2,过点D作DP⊥AB于P,则DP=AD•sin A=,∴线段EF扫过区域的面积y=×(x﹣1+x)×=x﹣,图象是y 随x的增大而增大的线段,当2<x≤3时,如图3,过点E作EG⊥CD于G,则CE=CF=3﹣x,∴EG=(3﹣x),∴线段EF扫过区域的面积y=2×﹣×(3﹣x)×(3﹣x)=﹣(3﹣x)2,图象是开口向下的抛物线,故选:A.【变式1-2】(2022•齐齐哈尔)如图①所示(图中各角均为直角),动点P从点A出发,以每秒1个单位长度的速度沿A→B→C→D→E路线匀速运动,△AFP的面积y随点P运动的时间x(秒)之间的函数关系图象如图②所示,下列说法正确的是()A.AF=5B.AB=4C.DE=3D.EF=8【答案】B【解答】解:由图②的第一段折线可知:点P经过4秒到达点B处,此时的三角形的面积为12,∵动点P从点A出发,以每秒1个单位长度的速度沿A→B→C→D→E路线匀速运动,∴AB=4.∵×AF•AB=12,∴AF=6,∴A选项不正确,B选项正确;由图②的第二段折线可知:点P再经过2秒到达点C处,∴BC=2,由图②的第三段折线可知:点P再经过6秒到达点D处,∴CD=6,由图②的第四段折线可知:点P再经过4秒到达点E处,∴DE=4.∴C选项不正确;∵图①中各角均为直角,∴EF=AB+CD=4+6=10,∴D选项的结论不正确,故选:B.【变式1-3】(2022•宜昌)如图是小强散步过程中所走的路程s(单位:m)与步行时间t(单位:min)的函数图象.其中有一时间段小强是匀速步行的.则这一时间段小强的步行速度为()A.50m/min B.40m/min C.m/min D.20m/min【答案】D【解答】解:由函数图象知,从30﹣70分钟时间段小强匀速步行,∴这一时间段小强的步行速度为=20(m/min),故选:D.【变式1-4】(2022•辽宁)如图,在等边三角形ABC中,BC=4,在Rt△DEF 中,∠EDF=90°,∠F=30°,DE=4,点B,C,D,E在一条直线上,点C,D重合,△ABC沿射线DE方向运动,当点B与点E重合时停止运动.设△ABC运动的路程为x,△ABC与Rt△DEF重叠部分的面积为S,则能反映S与x之间函数关系的图象是()A.B.C.D.【答案】A【解答】解:过点A作AM⊥BC,交BC于点M,在等边△ABC中,∠ACB=60°,在Rt△DEF中,∠F=30°,∴∠FED=60°,∴∠ACB=∠FED,∴AC∥EF,在等边△ABC中,AM⊥BC,∴BM=CM=BC=2,AM=BM=2,=BC•AM=4,∴S△ABC①当0<x≤2时,设AC与DF交于点G,此时△ABC与Rt△DEF重叠部分为△CDG,由题意可得CD=x,DG=x∴S=CD•DG=x2;②当2<x≤4时,设AB与DF交于点G,此时△ABC与Rt△DEF重叠部分为四边形AGDC,由题意可得:CD=x,则BD=4﹣x,DG=(4﹣x),﹣S△BDG=4﹣×(4﹣x)×(4﹣x),∴S=S△ABC∴S=﹣x2+4x﹣4=﹣(x﹣4)2+4,③当4<x≤8时,设AB与EF交于点G,过点G作GM⊥BC,交BC于点M,此时△ABC与Rt△DEF重叠部分为△BEG,由题意可得CD=x,则CE=x﹣4,DB=x﹣4,∴BE=x﹣(x﹣4)﹣(x﹣4)=8﹣x,∴BM=4﹣x在Rt△BGM中,GM=(4﹣x),∴S=BE•GM=(8﹣x)×(4﹣x),∴S=(x﹣8)2,综上,选项A的图像符合题意,故选:A.【类型二:判断函数图像】【典例2】(2020•铜仁市)如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.【答案】D【解答】解:由题意当0≤x≤4时,y=×AD×AB=×3×4=6,当4<x<7时,y=×PD×AD=×(7﹣x)×4=14﹣2x.故选:D.【变式2-1】(2022•湖北)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形的面积为S1,小正方形与大正方形重叠部分的面积为S2,若S=S1﹣S2,则S随t变化的函数图象大致为()A.B.C.D.【答案】A【解答】解:由题意得:当0≤t<1时,S=4﹣t,当1≤t≤2时,S=3,当2<<t≤3时,S=t+1,故选:A.【变式2-2】(2022•绥化)已知二次函数y=ax2+bx+c的部分函数图象如图所示,则一次函数y=ax+b2﹣4ac与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【答案】B【解答】解:∵二次函数y=ax2+bx+c的部分函数图象开口向上,∴a>0,∵二次函数y=ax2+bx+c的部分函数图象顶点在x轴下方,开口向上,∴二次函数y=ax2+bx+c的图象与x轴有两个交点,b2﹣4ac>0,∴一次函数y=ax+b2﹣4ac的图象位于第一,二,三象限,由二次函数y=ax2+bx+c的部分函数图象可知,点(2,4a+2b+c)在x轴上方,∴4a+2b+c>0,∴y=的图象位于第一,三象限,据此可知,符合题意的是B,故选:B.【变式2-3】(2022•广西)已知反比例函数y=(b≠0)的图象如图所示,则一次函数y=cx﹣a(c≠0)和二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【答案】D【解答】解:∵反比例函数y=(b≠0)的图象位于一、三象限,∴b>0;∵A、B的抛物线都是开口向下,∴a<0,根据同左异右,对称轴应该在y轴的右侧,故A、B都是错误的.∵C、D的抛物线都是开口向上,∴a>0,根据同左异右,对称轴应该在y轴的左侧,∵抛物线与y轴交于负半轴,∴c<0由a>0,c<0,排除C.故选:D.【类型三:反比例函数综合】【典例3】(2022•十堰)如图,正方形ABCD的顶点分别在反比例函数y=(k1>0)和y=(k2>0)的图象上.若BD∥y轴,点D的横坐标为3,则k1+k2=()A.36B.18C.12D.9【答案】B【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图象上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图象上,D(3,a)在y=(k2>0)的图象上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B【变式3-1】(2021•鄂州)如图,点A是反比例函数y=(x>0)的图象上一点,过点A作AC⊥x轴于点C,AC交反比例函数y=(x>0)的图象于点B,点P是y轴正半轴上一点.若△PAB的面积为2,则k的值为.【答案】8【解答】解:连接OA、OB,∵AC⊥x轴,∴AC∥y轴,=S△APB,∴S△AOB=2,∵S△APB=2,∴S△AOB由反比例函数系数k的几何意义可得:S△AOC=6,S△BOC=,∴6﹣=2,解得:k=8,故答案为8.【变式3-2】(2021•荆州)如图,过反比例函数y=(k>0,x>0)图象上的四点P1,P2,P3,P4分别作x轴的垂线,垂足分别为A1,A2,A3,A4,再过P1,P2,P3,P4分别作y轴,P1A1,P2A2,P3A3的垂线,构造了四个相邻的矩形.若这四个矩形的面积从左到右依次为S1,S2,S3,S4,OA1=A1A2=A2A3=A3A4,则S1与S4的数量关系为.【答案】S1=4S4【解答】解:∵过双曲线上任意一点、向坐标轴作垂线所围成的矩形面积S 是个定值,OA1=A1A2=A2A3=A3A4,∴S1=k,S2=k,S3=k,S4=k,∴S1=4S4.故答案为:S1=4S4.【变式3-3】(2022•毕节市)如图,在平面直角坐标系中,正方形ABCD的顶点A,B分别在x轴、y轴上,对角线交于点E,反比例函数y=(x>0,k>0)的图象经过点C,E.若点A(3,0),则k的值是.【答案】4【解答】解:设C(m,),∵四边形ABCD是正方形,∴点E为AC的中点,∴E(,),∵点E在反比例函数y=上,∴,∴m=1,作CH⊥y轴于H,∴CH=1,∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°,∴∠OBA=∠HCB,∵∠AOB=∠BHC,∴△AOB≌△BHC(AAS),∴BH=OA=3,OB=CH=1,∴C(1,4),∴k=4,故答案为:4.【变式3-4】(2022•雁塔区校级模拟)如图,正方形ACBE的边长是,点B,C分别在x轴和y轴正半轴上,BO=2,ED⊥x轴于点D,ED的中点F在反比例函数y=(x>0)的图象上,则k=.【答案】3【解答】解:∵正方形ACBE的边长是,BO=2,∴BC=BE=,∴OC===1,∵∠ABC=90°,∴∠OBC+∠EBD=90°,∵∠OBC+∠OCB=90°,∴∠OCB=∠EBD,在△OBC和△DEB中,,∴△OBC≌△DEB(AAS),∴BD=OC=1,DE=OB=2,∴OD=3,∴E(3,2),∵点F是ED的中点,∴F(3,1),∵点F在反比例函数y=(x>0)的图象上,∴k=3×1=3,故答案为3.【变式3-5】(2021•广元)如图,点A(﹣2,2)在反比例函数y=的图象上,点M在x轴的正半轴上,点N在y轴的负半轴上,且OM=ON=5.点P(x,y)是线段MN上一动点,过点A和P分别作x轴的垂线,垂足为点D和E,<S△OPE时,x的取值范围是.连接OA、OP.当S△OAD【答案】1<x<4【解答】解:过点B作BF⊥ON于F,连接OB,过点C作CG⊥OM于点G,连接OC,如图,∵点A(﹣2,2)在反比例函数y=的图象上,∴k=﹣4.∴y=.∵点A(﹣2,2),∴AD=OD=2.∴.设B(a,b),则ab=﹣4,OF=﹣b,BF=a.∴==2.=2.同理:S△OCG>S△OBF,从图中可以看出当点P在线段BC上时,S△OPE<S△OPE.即当点P在线段BC上时,满足S△OAD∵OM=ON=5,∴N(0,﹣5),M(5,0).设直线MN的解析式为y=mx+n,则:,解得:.∴直线MN的解析式为y=x﹣5.∴,解得:,.∴B(1,﹣4),C(4,﹣1).∴x的取值范围为1<x<4.【变式3-6】(2021•荆门)如图,在平面直角坐标系中,Rt△OAB斜边上的高为1,∠AOB=30°,将Rt△OAB绕原点顺时针旋转90°得到Rt△OCD,点A的对应点C恰好在函数y=(k≠0)的图象上,若在y=的图象上另有一点M使得∠MOC=30°,则点M的坐标为.【答案】(,1)【解答】解:作AE⊥OB于E,MF⊥x轴于F,则AE=1,∵∠AOB=30°,∴OE=AE=,将Rt△OAB绕原点顺时针旋转90°得到Rt△OCD,点A的对应点C为(1,),∵点C在函数y=(k≠0)的图象上,∴k=1×=,∴y=,∵∠COD=∠AOB=30°,∠MOC=30°,∴∠DOM=60°,∴∠MOF=30°,∴OF=MF,设MF=n,则OF=n,∴M(n,n),∵点M在函数y=的图象上,∴n=,∴n=1(负数舍去),∴M(,1),故答案为(,1).【变式3-7】(2021•达州)如图,将一把矩形直尺ABCD和一块等腰直角三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,EF交BC于点M,反比例函数y=(x<0)的图象恰好经过点F,M,若直尺的宽CD=1,三角板的斜边FG=4,则k=.【答案】﹣12【解答】解:过点M作MN⊥AD,垂足为N,则MN=CD=1,在Rt△FMN中,∠MFN=45°,∴FN=MN=1又∵FG=4,∴NA=MB=FG﹣FN=4﹣1=3,设OA=a,则OB=a+1,∴点F(﹣a,4),M(﹣a﹣1,3),又∵反比例函数y=(x<0)的图象恰好经过点F,M,∴k=﹣4a=3(﹣a﹣1),解得,a=3,∴k=﹣4a=﹣12,故答案为:﹣12.【类型4:二次函数综合】【典例4】(2021•广安)二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0,②4a﹣2b+c<0,③a﹣b≥x(ax+b),④3a+c<0,正确的有()A.1个B.2个C.3个D.4个【答案】C【解答】解:∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣1,即,∴b=2a,则b<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故①正确;∵抛物线对称轴为直线x=﹣1,与x轴的一个交点横坐标在0和1之间,则与x轴的另一个交点在﹣2和﹣3之间,∴当x=﹣2时,y=4a﹣2b+c>0,故②错误;∵x=﹣1时,y=ax2+bx+c的最大值是a﹣b+c,∴a﹣b+c≥ax2+bx+c,∴a﹣b≥ax2+bx,即a﹣b≥x(ax+b),故③正确;∵当x=1时,y=a+b+c<0,b=2a,∴a+2a+c=3a+c<0,故④正确;故选:C.【变式4-1】(2022•辽宁)抛物线y=ax2+bx+c的部分图象如图所示,对称轴为直线x=﹣1,直线y=kx+c与抛物线都经过点(﹣3,0).下列说法:①ab>0;②4a+c>0;③若(﹣2,y1)与(,y2)是抛物线上的两个点,则y1<y2;④方程ax2+bx+c=0的两根为x1=﹣3,x2=1;⑤当x=﹣1时,函数y=ax2+(b﹣k)x有最大值.其中正确的个数是()A.2B.3C.4D.5【答案】A【解答】解:∵抛物线的开口方向向下,∴a<0.∵抛物线的对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,b<0.∵a<0,b<0,∴ab>0,∴①的结论正确;∵抛物线y=ax2+bx+c经过点(﹣3,0),∴9a﹣3b+c=0,∴9a﹣3×2a+c=0,∴3a+c=0.∴4a+c=a<0,∴②的结论不正确;∵抛物线的对称轴为直线x=﹣1,∴点(﹣2,y1)关于直线x=﹣1对称的对称点为(0,y1),∵a<0,∴当x>﹣1时,y随x的增大而减小.∵>0>﹣1,∴y1>y2.∴③的结论不正确;∵抛物线的对称轴为直线x=﹣1,抛物线经过点(﹣3,0),∴抛物线一定经过点(1,0),∴抛物线y=ax2+bx+c与x轴的交点的横坐标为﹣3,1,∴方程ax2+bx+c=0的两根为x1=﹣3,x2=1,∴④的结论正确;∵直线y=kx+c经过点(﹣3,0),∴﹣3k+c=0,∴c=3k.∵3a+c=0,∴c=﹣3a,∴3k=﹣3a,∴k=﹣a.∴函数y=ax2+(b﹣k)x=ax2+(2a+a)x=ax2+3ax=a﹣a,∵a<0,∴当x=﹣时,函数y=ax2+(b﹣k)x有最大值,∴⑤的结论不正确.综上,结论正确的有:①④,故选:A.【变式4-2】(2022•烟台)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,其对称轴为直线x=﹣,且与x轴的一个交点坐标为(﹣2,0).下列结论:①abc>0;②a=b;③2a+c=0;④关于x的一元二次方程ax2+bx+c﹣1=0有两个相等的实数根.其中正确结论的序号是()A.①③B.②④C.③④D.②③【答案】D【解答】解:①由图可知:a>0,c<0,<0,∴b>0,∴abc<0,故①不符合题意.②由题意可知:=﹣,∴b=a,故②符合题意.③将(﹣2,0)代入y=ax2+bx+c,∴4a﹣2b+c=0,∵a=b,∴2a+c=0,故③符合题意.④由图象可知:二次函数y=ax2+bx+c的最小值小于0,令y=1代入y=ax2+bx+c,∴ax2+bx+c=1有两个不相同的解,故④不符合题意.故选:D.【变式4-3】(2022•梧州)如图,已知抛物线y=ax2+bx﹣2的对称轴是直线x =﹣1,直线l∥x轴,且交抛物线于点P(x1,y1),Q(x2,y2),下列结论错误的是()A.b2>﹣8aB.若实数m≠﹣1,则a﹣b<am2+bmC.3a﹣2>0D.当y>﹣2时,x1•x2<0【答案】C【解答】解:根据函数图象可知a>0,根据抛物线的对称轴公式可得x=﹣=﹣1,∴b=2a,∴b2>0,﹣8a<0,∴b2>﹣8a.故A正确,不符合题意;∵函数的最小值在x=﹣1处取到,∴若实数m≠﹣1,则a﹣b﹣2<am2+bm﹣2,即若实数m≠﹣1,则a﹣b<am2+bm.故B正确,不符合题意;∵l∥x轴,∴y1=y2,令x=0,则y=﹣2,即抛物线与y轴交于点(0,﹣2),∴当y1=y2>﹣2时,x1<0,x2>0.∴当y1=y2>﹣2时,x1•x2<0.故D正确,不符合题意;∵a>0,∴3a>0,没有条件可以证明3a>2.故C错误,符合题意;故选:C.【变式4-4】(2022•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,0<a<c)经过点(1,0),有下列结论:①2a+b<0;②当x>1时,y随x的增大而增大;③关于x的方程ax2+bx+(b+c)=0有两个不相等的实数根.其中,正确结论的个数是()A.0B.1C.2D.3【答案】C【解答】解:①∵抛物线y=ax2+bx+c经过点(1,0),∴a+b+c=0,∵a<c,∴a+b+a<0,即2a+b<0,本小题结论正确;②∵a+b+c=0,0<a<c,∴b<0,∴对称轴x=﹣>1,∴当1<x<﹣时,y随x的增大而减小,本小题结论错误;③∵a+b+c=0,∴b+c=﹣a,对于方程ax2+bx+(b+c)=0,Δ=b2﹣4×a×(b+c)=b2+4a2>0,∴方程ax2+bx+(b+c)=0有两个不相等的实数根,本小题结论正确;故选:C.【变式4-5】(2021•福建)二次函数y=ax2﹣2ax+c(a>0)的图象过A(﹣3,y1),B(﹣1,y2),C(2,y3),D(4,y4)四个点,下列说法一定正确的是()A.若y1y2>0,则y3y4>0B.若y1y4>0,则y2y3>0C.若y2y4<0,则y1y3<0D.若y3y4<0,则y1y2<0【答案】C【解答】解:如图,由题意对称轴为直线x=1,观察图象可知,y1>y4>y2>y3,若y1y2>0,如图1中,则y3y4<0,选项A不符合题意,若y1y4>0,如图2中,则y2y3<0,选项B不符合题意,若y2y4<0,如图3中,则y1y3<0,选项C符合题意,若y3y4<0,如图4中,则y1y2>0,选项D不符合题意,故选:C.【变式4-6】(2021•恩施州)如图,已知二次函数y=ax2+bx+c的图象与x轴交于(﹣3,0),顶点是(﹣1,m),则以下结论:①abc>0;②4a+2b+c>0;③若y≥c,则x≤﹣2或x≥0;④b+c=m.其中正确的有()个.A.1B.2C.3D.4【答案】B【解答】解:①∵抛物线开口向上,对称轴在y轴左边,与y轴交于负半轴,∴a>0,b>0,c<0,∴abc<0,故结论①错误;②∵二次函数y=ax2+bx+c的图象与x轴交于(﹣3,0),顶点是(﹣1,m),∴抛物线与x轴的另一个交点为(1,0),∵抛物线开口向上,∴当x=2时,y=4a+2b+c>0,故结论②正确;③由题意可知对称轴为:直线x=﹣1,∴x=,∴b=2a,把y=c,b=2a代入y=ax2+bx+c得:ax2+2ax+c=c,∴x2+2x=0,解得x=0或﹣2,∴当y≥c,则x≤﹣2或x≥0,故结论③正确;④把(﹣1,m),(1,0)代入y=ax2+bx+c得:a﹣b+c=m,a+b+c=0,∴b=,∵b=2a,∴a=,∵抛物线与x轴的另一个交点为(1,0),∴a+b+c=0,∴c=,∴b+c=,故选:B.。
辽宁省各市中考数学分类解析 专题6:函数的图像与性质
辽宁各市中考数学试题分类解析汇编专题6:函数的图像与性质 锦元数学工作室 编辑一、选择题1. (辽宁鞍山3分)如图,点A 在反比例函数()3y=x 0x>的图象上,点B 在反比例函数()ky=x 0x>的图象上,AB⊥x 轴于点M ,且AM :MB=1:2,则k 的值为【 】A . 3B .-6C .2D .6 【答案】B 。
【考点】反比例函数图象上点的坐标特征。
【分析】如图,连接OA 、OB .∵点A 在反比例函数()3y=x 0x>的图象上,点B 在反比例函数()ky=x 0x>的图象上,AB⊥x 轴于点M , ∴S △AOM =32,S △BOM =k 2。
∴S △AOM :S △BOM =32:k 2=3:|k|。
∵S △AOM :S △BOM =AM :MB=1:2,∴3:|k|=1:2。
∴|k|=6。
∵反比例函数()ky=x 0x>的图象在第四象限,∴k<0。
∴k=-6。
故选B 。
2. (辽宁鞍山3分)如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点B 坐标(﹣1,0),下面的四个结论:①OA=3;②a+b+c<0;③ac>0;④b 2﹣4ac >0.其中正确的结论是【 】A.①④ B.①③ C.②④ D.①②【答案】A。
【考点】二次函数图象与系数的关系,二次函数的性质,一元二次方程根的判别式。
【分析】∵由图象知,点B坐标(﹣1,0),对称轴是直线x=1,∴A的坐标是(3,0)。
∴OA=3。
∴结论①正确。
∵由图象知:当x=1时,y>0,∴把x=1代入二次函数的解析式得:y=a+b+c>0。
∴结论②错误。
∵抛物线的开口向下,与y轴的交点在y轴的正半轴上,∴a<0,c>0。
∴ac<0。
∴结论③错误。
∵抛物线与x轴有两个交点,∴b2﹣4ac>0。
∴结论④正确。
综上所述,结论①④正确。
故选A。
3. (辽宁本溪3分)如图,已知点A在反比例函数4y=x图象上,点B在反比例函数ky=x(k≠0)的图象上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为C、D,若OC=13OD,则k的值为【】A、10B、12C、14D、16 【答案】B。
中考数学复习考点知识归类讲解20 二次函数的图象与系数的关系问题
中考数学复习考点知识归类讲解 专题20 二次函数的图象与系数的关系问题知识对接考点一、二次函数图象与系数的关系问题 1.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 考点二、用待定系数法求二次函数解析式的步骤 (1)设:巧设二次函数的解析式;(2)代:根据已知条件,得到关于待定系数的方程(组);(3)解:解方程(组),求出待定系数的值,从而得到函数的解析式.专项训练 一、单选题1.已知抛物线2y ax bx =+,当0a <,0b >时,它的图象经过() A .第一,二,三象限 B .第一,二,四象限 C .第一,三,四象限D .第一,二,三,四象限2.函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)经过点(﹣1,0)、(m ,0),且1<m<2,当x <﹣1时,y 随x 增大而减小,下列结论:①abc >0;②a +b <0;③若点A (﹣3,y 1),B (3,y 2)在抛物线上,则y 1<y 2;④方程ax 2+bx +c -2=0必有两个不相等实数根;⑤c ≤﹣1时,则b 2﹣4ac ≤4a .其中结论正确的有( )个 A .1个B .2个C .3个D .4个3.如图,二次函数()2y ax bx ca 0=++≠的图象与x 轴正半轴相交于A ,B 两点,与y 轴相交于点C ,对称轴为直线2x =,且OA OC =,则下列结论:①0abc >; ②930a b c ++<; ③1c >-;④关于x 的方程20ax bx c ++=有一个根为1a-. 其中正确的结论个数有()A .1个B .2个C .3个D .4个4.抛物线2y ax bx c =++的对称轴为直线1x =-,图象过(1,0)点,部分图象如图所示,下列判断中:其中正确的个数是()①0abc >;②240b ac ->;③930a b c -+=;④若点()()122.5,,0.5,y y --均在抛物线上,则12y y >;⑤520a b c -+<. A .2个B .3个C .4个D .5个5.如图,二次函数y =ax 2+bx +c (a >0)的图象的顶点为点D ,其图象与轴的交点A 、B 的横坐标分别为﹣1、3,与y 轴负半轴交于点C ,在下面四个结论中,其中正确的结论是()A .2a ﹣b =0B .a +b +c >0C .c <﹣3aD .当ax 2+bx +c +2=0有实数解时,则a ≥0.56.已知点()13,P y -,()25,Q y ,()3,M m y 均在抛物线2y ax bx c =++上,其中20am b +=.若321y y y >,则m 的取值范围是()A .3m <-B .1mC .31m -<<D .15m <<7.已知二次函数2y ax bx c =++,若0a <,0a b c -+>,则一定有() A .240b ac -≥B .240b ac ->C .240b ac -≤D .240b ac -<8.如图,已知二次函数()20y axbx c a =++≠的图象与x 轴交于点()1,0A -,对称轴为直线1x =,下列结论:①0abc >;②930a b c ++=;③20a b -=;④2am bm a b +<+(m 是任意实数);⑤c-a <-1,其中正确的是( )A .①②⑤B .②③C .①②③⑤D .②③④9.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0)和B ,与y 轴的正半轴交于点C .下列结论:①abc >0;②4a ﹣2b +c >0;③2a ﹣b >0;④3a +c <0,其中正确结论的个数为()A .1个B .2个C .3个D .4个10.二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,顶点坐标为(1,﹣4a ),点A (4,y 1)是该抛物线上一点,若点D (x 2,y 2)是抛物线上任意一点,有下列结论:①4a ﹣2b +c >0;②若y 2>y 1,则x 2>4;③若0≤x 2≤4,则0≤y 2≤5a ;④若方程a (x +1)(x ﹣3)=﹣1有两个实数根x 1和x 2,且x 1<x 2,则﹣1<x 1<x 2<3.其中正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题11.已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于点(2,0)-,()1,0x ,且112x <<,与y 轴的正半轴的交点在()0,2的下方,下列结论:①0abc >;②420a b c -+=;③0a b c -+<;④20a c +>.其中正确的有_______.(填序号)12.如图,二次函数2() 0y ax bx c a =++≠的图像过点(-1,0),对称轴为直线x =2,下列结论:①4a +b =0;②9a +c <3b ;③8a +7b +2c >0;④若点A (-3,1y )、点B (21,2y -)、点C (37,2y )在该函数图像上,则132y y y <<:⑤若方程()()153a x x +-=-的两根为12,x x ,且12x x <,则12-15. x x <<<其中正确的结论有__________. (只填序号)13.抛物线2y ax bx c =++的图象如图所示,则a +b +c ______0.(填“<”“=”“>”)14.如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为12x =且经过点(2,0).下列说法:①若(﹣3,y 1),(π,y 2)是抛物线上的两点,则y 1<y 2;②c =2b ;③关于x 的一元二次方程ax 2+bx +1=0(a ≠0)一定有两个不同的解;④()4bm am b ≥+(其中m 为实数).其中说法正确的是_______.15.已知二次函数y =ax 2+bx +c (a 、b 、c 为常数,a ≠0)的图象如图所示,下面四个结论,①abc <0;②a +c <b ;③2a +b =1;④a +b ≥m (am +b ),其中全部正确的是______三、解答题16.已知二次函数y =ax 2+bx +c (a <0)过点C (0,2)、点A (2,0). (1)求证:b =﹣2a ﹣1;(2)若平行于x 轴的直线y =2﹣a 与抛物线有交点,求a 的取值范围.(3)若a 为整数,n 为正整数,当n <x <n +2时,对应函数值有且只有9个整数,求a 、n 的值.17.在平面直角坐标系中,二次函数221y x mx =-+图像与y 轴的交点为A ,将点A 向右平移4个单位长度得到点B . (1)直接写出点A 与点B 的坐标;(2)若函数221y x mx =-+的图像与线段AB 恰有一个公共点,求m 的取值范围. 18.在平面直角坐标系中,抛物线解析式为222422y x mx m =-+-+,直线l :y =-x +1与x 轴交于点A ,与y 轴交于点B .(1)如图1,当抛物线经过点A 且与x 轴的两个交点都在y 轴右侧时,求抛物线的解析式.(2)在(1)的条件下,若点P 为直线l 上方的抛物线上一点,过点P 作PQ ⊥l 于Q ,求PQ 的最大值.(3)如图2,点C (-2,0),若抛物线与线段AC 只有一个公共点,求m 的取值范围.19.在平面直角坐标系xOy 中,已知抛物线22y ax ax c =-+与直线3y =-有且只有一个公共点.(1)直接写出抛物线的顶点D 的坐标,并求出c 与a 的关系式;(2)若点(),P x y 为抛物线上一点,当1t x t ≤≤+时,y 均满足233y at -≤≤-,求t 的取值范围;(3)过抛物线上动点(),M x y (其中3x ≥)作x 轴的垂线l ,设l 与直线23y ax a =-+-交于点N ,若M 、N 两点间的距离恒大于等于1,求a 的取值范围.20.在平面直角坐标系xOy 中,已知抛物线y=x 2﹣4x+2m ﹣1与x 轴交于点A ,B .(点A 在点B 的左侧) (1)求m 的取值范围;(2)当m 取最大整数时,求点A 、点B 的坐标.21.二次函数y =ax 2+bx +c 的图象如图所示,且P =|2a +b |+|3b -2c |,Q =|2a -b |-|3b +2c |,试判断P ,Q 的大小关系.22.设二次函数y =ax 2+bx+c (a >0,c >1),当x =c 时,y =0;当0<x <c 时,y >0. (1)请比较ac 和1的大小,并说明理由; (2)当x >0时,求证:021a b cx x x++>++. 23.己知抛物线()()22113y m x m x =-+++(m 为常数).(1)若该抛物线经过点(1,m +7),求m 的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求满足条件的最大整数m ; (3)将该抛物线向下平移若干个单位长度,所得的新抛物线经过P (5-,1y ),Q (7,2y )(其中12y y <)两点,当53x -≤≤时,点P 是该部分函数图象的最低点,求m 的取值范围.。
热点2-4 函数的图象与函数的零点10大题型(解析版)
热点2-4 函数的图象与函数的零点10大题型函数图象问题依旧以考查图象识别为重点和热点,难度中档,也可能考查利用函数图象解函数不等式等。
函数的零点问题一般以选择题与填空题的形式出现,有时候也会结合导数在解答题中考查,此时难度偏大。
一、函数图象辨识的方法步骤图象辨识题的主要解题思想是“对比选项,找寻差异,排除筛选”1、求函数定义域(若各选项定义域相同,则无需求解);2、判断奇偶性(若各选项奇偶性相同,则无需判断);3、找特殊值:①对比各选项,计算横纵坐标标记的数值;②对比各选项,函数值符号的差别,自主取值(必要时可取极限判断符号);4、判断单调性:可取特殊值判断单调性.二、作函数图象的一般方法1、直接法:当函数表达式是基本函数或函数图象是解析几何中熟悉的曲线时,就可根据这些函数或曲线的特征直接作出.2、转化法:含有绝对值符号的函数,可去掉绝对值符号,转化为分段函数来画图象.3、图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称变换得到,可利用图象变换作出,但要注意变换顺序.对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换的顺序对变换单位及解析式的影响.4、如何制定图象变换的策略(1)在寻找到联系后可根据函数的形式了解变换所需要的步骤,其规律如下:①若变换发生在“括号”内部,则属于横坐标的变换;②若变换发生在“括号”外部,则属于纵坐标的变换.例如:()=+:可判断出属于横坐标的变换:有放缩与平移两个步骤.31y f x()2=-+:可判断出横纵坐标均需变换,其中横坐标的为对称变换,纵坐标y f x的为平移变换.(2)多个步骤的顺序问题:在判断了需要几步变换以及属于横坐标还是纵坐标的变换后,在安排顺序时注意以下原则:①横坐标的变换与纵坐标的变换互不影响,无先后要求;②横坐标的多次变换中,每次变换只有x发生相应变化.三、零点个数的判断方法1、直接法:直接求零点,令()0=f x,如果能求出解,则有几个不同的解就有几个零点.2、定理法:利用零点存在定理,函数的图象在区间[],a b上是连续不断的曲线,且()()0f a f b,⋅<结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.3、图象法:(1)单个函数图象:利用图象交点的个数,画出函数()f x的f x的图象,函数()图象与x轴交点的个数就是函数()f x的零点个数;(2)两个函数图象:将函数()g x的差,根据f x拆成两个函数()h x和()()()()f x的零点个数就是函数()y h x和=f x h xg x,则函数()=⇔=()y g x的图象的交点个数=4、性质法:利用函数性质,若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数四、已知零点个数求参数范围的方法1、直接法:利用零点存在的判定定理构建不等式求解;2、数形结合法:将函数的解析式或者方程进行适当的变形,把函数的零点或方程的根的问题转化为两个熟悉的函数图象的交点问题,再结合图象求参数的取值范围;3、分离参数法:分离参数后转化为求函数的值域(最值)问题求解.【题型1 函数图象的画法与图象变换】【例1】(2022秋·甘肃白银·高三校考阶段练习)作出下列函数图象(1)12xy ⎛⎫= ⎪⎝⎭(2)()2log 1y x =+【答案】(1)答案见解析;(2)答案见解析【解析】(1)因为1()2xy f x ⎛⎫== ⎪⎝⎭,所以11()()22xxf x f x -⎛⎫⎛⎫-=== ⎪⎪⎝⎭⎝⎭, 所以函数为偶函数,关于y 轴对称,因此只需要画0x >时的函数图形即可,11()==22xxf x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,再利用对称性即可得解.(2)将函数 2log y x = 的图象向左平移 1个单位,再将 x 轴下方的部分沿 x 轴翻折上去, 即可得到函数()2log 1y x =+ 的图象,如图所示.【变式1-1】(2022秋·广东广州·高三广东实验中学校考阶段练习)为了得到函数()2ln e y x =的图象,可将函数ln y x =的图象( )A .纵坐标不变,横坐标伸长为原来的2e 倍B .纵坐标不变,横坐标缩短为原来的21e C .向下平移两个单位长度 D .向上平移两个单位长度 【答案】BD【解析】()22ln e ln e ln ln 2y x x x ===++,可将函数ln y x =的图象向上平移两个单位长度得到ln 2y x =+, 可将函数ln y x =的图象纵坐标不变,横坐标缩短为原来的21e 得到()2ln e y x =.故选:BD【变式1-2】(2022秋·重庆·高三统考阶段练习)已知函数()f x 的图象如图1所示,则图2所表示的函数是( )A .()1f x -B .()2f x --C .()1f x --D .()1f x -- 【答案】C【解析】由图知,将()f x 的图象关于y 轴对称后再向下平移1个单位即得图2,又将()f x 的图象关于y 轴对称后可得函数()y f x =-, 再向下平移1个单位,可得()1y f x =--所以解析式为()1y f x =--,故选:C.【变式1-3】(2022秋·北京·高三首都师范大学附属中学校考阶段练习)函数12xy -=的图像可看作是把函数2xy =经过以下哪种变换得到( )A .把函数2x y =向右平移一个单位B .先把函数2x y =的图像关于x 轴对称,然后把所得函数图像向左平移一个单位C .先把函数2x y =的图像关于y 轴对称,然后把所得函数图像向左平移一个单位D .先把函数2x y =的图像关于y 轴对称,然后把所得函数图像上各点的纵坐标变为原来的2倍,横坐标不变 【答案】D【解析】选项A :函数2xy =向右平移一个单位得到12x y -=;选项B :先把函数2xy =的图像关于x 轴对称得到2x y =-,然后向左平移一个单位得到12x y +=-;选项C :先把函数2xy =的图像关于y 轴对称得到2xy -=,然后向左平移一个单位得到(1)122x x y -+--==;选项D :先把函数2xy =的图像关于y 轴对称得到2xy -=,然后把各点的纵坐标变为原来的2倍,横坐标不变得到1222x xy --=⨯=;故选:D【变式1-4】(2022秋·江西宜春·高三江西省丰城中学校考阶段练习)定义在R 上的函数()f x 满足()()22f x f x -=+,且在()2,+∞单调递增,()40f =,()4g x x =,则函数()()2y f x g x =+的图象可能是( )A .B .C .D .【答案】B【解析】()()22f x f x -=+,所以()f x 的图象关于直线2x =对称,则()2f x +的图象关于直线0x =即y 轴对称,()2f x +是偶函数,()4g x x =为偶函数,图象关于y 轴对称,所以()()2y f x g x =+是偶函数,图象关于y 轴对称,排除AD 选项.()()()()4222200f f f f =+=-==,由于()f x 在()2,+∞上递增,在(),2-∞上递减, 所以()f x 有且仅有2个零点:0和4,另外有()30f <,所以()2f x +有且仅有2个零点:2-和2,()g x 有唯一零点:0, 所以()()2y f x g x =+有且仅有3个零点:2-、0和2. 当1x =时,()110g =>,()()()()121310y f g f g =+⋅=⋅<, 从而排除C 选项,故B 选项正确.故选:B【变式1-5】(2022秋·北京海淀·高三统考期中)已知函数()f x .甲同学将()f x 的图象向上平移1个单位长度,得到图象1C ;乙同学将()f x 的图象上所有点的横坐标变为原来的12(纵坐标不变),得到图象2C .若1C 与2C 恰好重合,则下列给出的()f x 中符合题意的是( )A .()12log f x x = B .()2log f x x = C .()2x f x =D .()12xf x ⎛⎫= ⎪⎝⎭【答案】B【解析】对于A ,()112:1log 1C f x x +=+,()211112222:2log 2log log 2log 1C f x x x x ==+=-,A 错误;对于B ,()12:1log 1C f x x +=+,()22222:2log 2log log 2log 1C f x x x x ==+=+,B 正确;对于C ,()1:121x C f x +=+,()22:224x xC f x ==,C 错误;对于D ,()11:112x C f x ⎛⎫+=+ ⎪⎝⎭,()2211:224x xC f x ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,D 错误.故选:B.【题型2 由复杂函数解析式选择图象】【例2】(2022·四川资阳·统考二模)函数()32cos e ex x x xf x -=+在区间[]2π,2π-上的图象大致为( )A .B .C .D .【答案】B【解析】∵()()()()332cos 2cos e e e ex xx x x x x xf x f x -----==-=-++, ∴()f x 为奇函数,图象关于原点对称,C 、D 错误;又∵若(]0,2πx ∈时,320,e e 0x xx ->+>,当π3π0,,2π22x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭时,cos 0x >,当π3π,22x ⎛⎫∈ ⎪⎝⎭时,cos 0x <,∴当π3π0,,2π22x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭时,()0f x >,当π3π,22x ⎛⎫∈ ⎪⎝⎭时,()0f x <,A 错误,B 正确;故选:B.【变式2-1】(2022秋·江西·高三九江一中校联考阶段练习)函数()sin 2xf x =的大致图像是( )A .B .C .D .【答案】A【解析】注意到()sin 2xf x =过点()0,1,故可排除C ,D 选项.因2xy =在R 上单调递增,sin x 在π0,2⎛⎫⎪⎝⎭上单调递增, 则由复合函数单调性相关知识点可知,()sin 2xf x =在π0,2⎛⎫⎪⎝⎭上单调递增,故排除B 选项.故选:A【变式2-2】(2022·河南·安阳一中校联考模拟预测)函数()3sin 3291x x x f x π⎛⎫+ ⎪⎝⎭=-图像大致为( )A .B .C .D .【答案】B【解析】易得函数定义域为()(),00,-∞⋃+∞,已知函数()3sin 3cos329133x xx xx x f x π-⎛⎫+ ⎪⎝⎭==--,()()()cos 3cos33333x x x x x xf x f x ----===---,∴函数()f x 为奇函数,排除A 选项;当0x +→时,0cos31x <<,31x >,31x -<,则330x x -->, 所以()0f x >,排除C 选项;当x →+∞时,1cos31x -≤≤,3x →+∞,30x -→,则33x x --→+∞, 所以()0f x →,排除D 选项;故选:B.【变式2-3】(2022秋·江苏南京·高三南京师大附中校考期中)函数()2e2xf x x=的图象大致为( )A .B .C .D .【答案】A【解析】由()2e 2xf x x=,则其定义域为()()00-∞∞,,+,因为()()()22ee22xxf x f x xx --===-,故函数为偶函数, ()222e ,0e 22e ,02xx x x x f x x x x -⎧>⎪⎪==⎨⎪<⎪⎩,()()()33e 2,02e 2,02x x x x x f x x x x -⎧->⎪⎪=⎨--<'⎪⎪⎩,令()0f x '=,解得2x =±,可得下表:x(),2-∞-2-()2,0-()0,22()2,+∞()f x ' -+-+()f x极小值极小值故选:A.【变式2-4】(2022秋·山东青岛·高三山东省莱西市第一中学校考阶段练习)函数()()ln 0sin ax x f x a x+=在[2π-,2π]上的大致图像可能为( )A .B .C .D .【答案】ABC【解析】①当0a =时,()ln sin x f x x=,()()ln sin x f x f x x-=-=-,函数()f x 为奇函数,由0x →时()f x →∞,1x =±时()0f x =等性质可知A 选项符合题意; ②当a<0时,令()ln ||,()g x x h x ax ==-,作出两函数的大致图象,由图象可知在(1,0)-内必有一交点,记横坐标为0x ,此时0()0f x =,故排除D 选项;当02πx x -<<时,()()0g x h x ->,00x x <<时,()()0g x h x -<, 若在(0,2π)内无交点,则()()0g x h x -<在(0,2π)恒成立, 则()f x 图象如C 选项所示,故C 选项符合题意;若在(0,2π)内有两交点,同理得B 选项符合题意.故选:ABC.【题型3 根据函数图象选择解析式】【例3】(2022秋·福建南平·高三校考期中)已知函数()y f x =的部分图象如图所示,则下列可能是()f x 的解析式的是( )A .()cos f x x x =+B .()cos f x x x =-C .()cos xf x x= D .()cos xf x x=【答案】B【解析】A. ()010f =>,故错误;B.因为()010f =-<,且()1sin 0f x x '=+≥,则()f x 在R 上递增,故正确;C.()f x 的定义域为{}|0x x ≠关于原点对称, 又 ()()()cos cos x xf x f x x x--===---,则()f x 是奇函数,图象关于原点对称,故错误;D. ()f x 的定义域为|,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭关于原点对称,又()()()cos cos x xf x f x x x---===--,则()f x 是奇函数,图象关于原点对称,故错误;故选:B【变式3-1】(2022秋·湖北宜昌·高三校联考期中)已知函数()f x 的图象如图所示,则该函数的解析式为( )A .2()e e x x xf x -=+ B .()3e e x x f x x -+= C .2()e ex x x f x -=-D .()2e e x xf x x -+=【答案】D【解析】由题图:()f x 的定义域为(,0)(0,)-∞+∞,排除A ;当333e e e e e e (),()()()x x x x x xf x f x f x x x x ---+++=-==-=--,故3e e ()x xf x x -+=是奇函数,排除B.当()()()()222,e e e e e e x x x x x x x x x f x f x f x ----=-==-=----,故2()e ex x x f x -=-是奇函数,排除C.故选:D【变式3-2】(2022秋·广西桂林·高三校考阶段练习)已知函数()y f x =的图象如图所示,则此函数的解析式可能是( )A .()()2211x f x x x -=- B .()2211x f x x x -=- C .()22211x f x x x -=- D .()()22211x f x x x -=-【答案】B【解析】根据图像可得:所求函数为奇函数,且当()0,1x ∈时,()0f x <;对CD :定义域关于原点对称,且都有()()f x f x =-,均为偶函数,故错误;对A :当()0,1x ∈时,()0f x >,故错误;故选:B.【变式3-3】(2022秋·江苏扬州·高三期末)已知函数()f x 的部分图像如图,则函数()f x 的解析式可能为( )A .()()e e sin x xf x x -=- B .()()e e sin x x f x x -=+C .()()e e cos x x f x x -=-D .()()e e cos x xf x x -=+【答案】B【解析】由于图像关于原点对称,所以()f x 为奇函数,对于A :由()()e e sin x xf x x -=-得:()()()()()e e sin e e sin x x x x f x x x f x ---=--=-=,()f x 为偶函数,故可排除A ;对于D :由()()e e cos x xf x x -=+得:()()()()()e e cos e e cos x x x x f x x x f x ---=+-=+=,()f x 为偶函数,故可排除D ;由图知()f x 图象不经过点π,02⎛⎫⎪⎝⎭,而对于C :ππ22ππe e cos 022f -⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故可排除C ;故选:B【变式3-4】(2022秋·湖北·高三枣阳一中校联考期中)已知函数()sin f x x =,()g cos x x =,()p x x =,则图像为下图的函数可能是( )A .()()2p x y f x =+B .()()2y g f x x =+C .()()2p x y f x =+D .()()2p x y f x =+【答案】D【解析】对于A ,2sin xy x =+该函数为奇函数,由已知图象可得函数y 的图象不关于原点对称,故A 不符合; 对于B ,sin 2cos xy x =+该函数为奇函数,由已知图象可得函数y 的图象不关于原点对称,故B 不符合; 对于C ,2sin x y x=+由于[]sin 1,1x ∈-,所以02sin x y x=≥+,由于已知图象y 的值域中存在负值,故C 不符合; 对于D ,2sin xy x=+不是奇函数,[]sin 1,1x ∈-,所以R y ∈,故D 图象符合.故选:D.【题型4 根据实际问题作函数图象】【例4】(2022·北京·人大附中校考模拟预测)如图为某无人机飞行时,从某时刻开始15分钟内的速度()V x (单位:米/分钟)与时间x (单位:分钟)的关系.若定义“速度差函数”()v x 为无人机在时间段[]0,x 内的最大速度与最小速度的差,则()v x 的图像为( )A .B .C .D .【答案】C【解析】由题意可得,当[0,6]x ∈时,无人机做匀加速运动,40()603V x x =+,“速度差函数”40()3v x x =; 当[6,10]x ∈时,无人机做匀速运动,()140V x =,“速度差函数”()80v x =; 当[10,12]x ∈时,无人机做匀加速运动,()4010V x x =+,“速度差函数”()2010v x x =-+;当[12,15]x ∈时,无人机做匀减速运动,“速度差函数”()100v x =, 结合选项C 满足“速度差函数”解析式,故选:C.【变式4-1】(2022·四川泸州·统考模拟预测)如图,一高为H 且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为.T 若鱼缸水深为h 时,水流出所用时间为t ,则函数()h f t =的图象大致是( )A .B .C .D .【答案】B【解析】函数()h f t =是关于t 的减函数,故排除C ,D ,则一开始,h 随着时间的变化,而变化变慢,超过一半时,h 随着时间的变化,而变化变快,故对应的图象为B ,故选B .【变式4-2】(2022秋·安徽合肥·高三校考期中)(多选)水滴进玻璃容器,如图所示(单位时间内进水量相同),则下列选项匹配正确的是( )A .()2a -B .()3b -C .()4c -D .()1d - 【答案】AB【解析】在a 中,容器是圆柱形的,水高度的变化速度应是直线型,与(2)对应,故A 正确;在b 中,容器下粗上细,水高度的变化先慢后快,与(3)对应,故B正确;在c 中,容器为球型,水高度的变化为快—慢—快,与(1)对应,故C 错误;在d 中,容器上粗下细,水高度的变化为先快后慢,与(4)对应,故D 错误.故选:AB.【变式4-3】(2022·全国·高三专题练习)如图,正△ABC 的边长为2,点D 为边AB 的中点,点P 沿着边AC ,CB 运动到点B ,记∠ADP =x .函数f (x )=|PB |2﹣|P A |2,则y =f (x )的图象大致为( )A .B .C .D .【答案】A【解析】根据题意,f (x )=|PB |2﹣|P A |2,∠ADP =x .在区间(0,2π)上,P 在边AC 上,|PB |>|P A |,则f (x )>0,排除C ;在区间ππ⎛⎫⎪⎝⎭,2上,P 在边BC 上,|PB |<|P A |,则f (x )<0,排除B ,又由当12x x π+=时,有()12()f x f x =-,()f x 的图象关于点(,0)π2对称,排除D ,故选:A【变式4-4】(2022·全国·高三专题练习)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD -中,AB ⊥平面BCD ,且BD CD ⊥,AB BD CD ==,点P 在棱AC 上运动,设CP 的长度为x ,若PBD △的面积为()f x ,则()f x 的图象大致为()A .B .C .D .【答案】A【解析】作PQ BC ⊥于点Q ,作QR BD ⊥于点R ,连接到PR ,由已知可得,PQ AB QR CD ∥∥,且AB ⊥平面BCD , 所以PQ ⊥平面BCD ,又BD ⊂平面BCD ,所以PQ BD ⊥,,,,QR BD PQ QR Q PQ QR ⊥=⊂平面PQR ,BD ∴⊥平面PQR ,PR ⊂平面PQR ,BD PR ∴⊥,设1,AB BD CD ===3AC ∴=,133PQ PQ =∴, 33133QR BQ x x QR BC --==∴222332233333x x PR x x ⎛⎫-⎛⎫∴=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭故23()22336f x x x =-+其函数图像是关于直线3x 对称的图像且开口上,故选项B,C,D 错误.故选:A .【题型5 函数零点所在区间问题】【例5】(2022秋·湖南长沙·高三长郡中学校考阶段练习)函数()()52lg 21f x x x =--+零点所在的区间是( )A .()0,1B .()1,2C .()2,3D .()3,4 【答案】C【解析】因为函数()()52lg 21f x x x =--+在1(,)2-+∞上单调递减,所以函数()f x 最多只有一个零点, 因为(0)(1)5(52lg3)5(3lg3)0f f ⋅=--=->,(1)(2)(52lg3)(54lg5)(3lg3)(1lg5)0f f ⋅=----=-->, (2)(3)(52lg3)(56lg7)(3lg3)(1lg7)0f f ⋅=----=---<, (3)(4)(56lg7)(58lg9)(1lg7)(3lg9)0f f ⋅=----=---->,所以函数()()52lg 21f x x x =--+零点所在的区间是()2,3.故选:C【变式5-1】(2022秋·广东深圳·高三红岭中学校考阶段练习)函数81()log 3f x x x=-的一个零点所在的区间是( )A .(1,2)B .(2,3)C .(3,3.5)D .(3.5,4) 【答案】A【解析】因为函数81log ,3y x y x==-在()0,∞+上单调递增, 所以,81()log 3f x x x =-在()0,∞+上单调递增, 因为()()8811111log 1,2log 23366f f =-=-=-=,()()120f f ⋅<, 所以,函数只有一个零点,且位于()1,2区间内.故选:A .【变式5-2】(2022秋·辽宁辽阳·高三统考阶段练习)若函数()lg f x a x x =++()110x <<有零点,则a 的取值范围为( )A .()10,1--B .()1,10C .()1,11D .()11,1-- 【答案】D【解析】因为函数y x a =+与lg y x =均在()1,10上单调递增,所以()lg f x a x x =++在()1,10上单调递增.要使函数()lg f x a x x =++()110x <<有零点,则只需要()()10100f f ⎧<⎪⎨>⎪⎩即可, 即10110a a +<⎧⎨+>⎩,解得111a -<<-.故选:D.【变式5-3】(2022秋·上海浦东新·高三上海市实验学校校考阶段练习)已知()23e x f x x =-,函数()f x 的零点从小到大依次为,12i x i =、、,若[),1(i x m m m ∈+∈Z ),请写出所有的m 所组成的集合___________.【答案】{}1,0,3-【解析】()f x 的零点可以转化为函数e x y =和23y x =图象交点的横坐标,图象如右所示,由图可知共三个零点,()1130f --=->e ,()010f =-<,所以在[)1,0-上存在一个零点; ()130f =->e ,则在[)0,1上存在一个零点;()33270f =->e ,()44480f =-<e ,则在[)3,4上存在一个零点;所以{}1,0,3m ∈-.【变式5-4】(2022秋·安徽·高三合肥一六八中学校联考阶段练习)(多选)已知函数()e 1x f x a x b =-+,若()f x 在区间[]1,222a b +( )A .1eB eC .2eD .1 【答案】BCD【解析】设()f x 在区间[]1,2上零点为m ,则e 10m a m b -+=,所以点(),P a b 在直线e 10m x y m --=上,()()222200a b a b OP +-+-,其中О为坐标原点.又()2220e 10ee 11m m mmm OP ⋅-+-≥=-+,记函数()2e m m g m =,[]1,2m ∈,()2222211122e e e e m m m mg m m m'==⎛⎫ -⎪⎝⎭- 因为[]1,2m ∈,所以()g m 在[]1,2m ∈上单调递增 所以()g m 最小值为()11g e=,所以221e a b +≥,故选:BCD.【题型6 函数的零点与零点个数问题】【例6】(2022秋·上海杨浦·高三同济大学第一附属中学校考阶段练习)若函数(),R y f x x =∈,满足()()2f x f x +=,且(]1,1x ∈-时,()f x x =,则函数()f x 的图像与函数4log y x =的图像的交点的个数为( ) A .3 B .4 C .6 D .8 【答案】C【解析】由题意得()f x 的周期为2,作出()y f x =与4log y x =的函数图象,数形结合得共有6个交点,故选:C【变式6-1】(2022·天津河西·统考二模)已知定义在R 上的函数()f x 满足:①()2()0f x f x -+=;②()()20f x f x ---=;③在[]1,1-上的解析式为()[](]πcos ,1,021,0,1x x f x x x ⎧∈-⎪=⎨⎪-∈⎩,则函数()f x 与函数1()2xg x ⎛⎫= ⎪⎝⎭的图象在区间[]3,3-上的交点个数为( )A .3B .4C .5D .6 【答案】B【解析】由(2)()0f x f x -+=知()f x 的图象关于(1,0)对称,由(2)()0f x f x ---=知()f x 的图象关于=1x -对称,作出()f x 与||1()()2x g x =在[3-,3]上的图象:由图可知函数()f x 与函数1()2xg x ⎛⎫= ⎪⎝⎭的图象在区间[]3,3-上的交点个数为4.故选:B .【变式6-2】(2022秋·上海闵行·高三上海市七宝中学校考期中)定义域为R 的函数()f x 的图象关于直线1x =对称,当[]0,1x ∈时,()f x x =,且对任意x ∈R 只有()()2f x f x +=-,()()()2025,0log ,0f x x g x x x ⎧≥⎪=⎨--<⎪⎩,则方程()()0g x g x --=实数根的个数为( )A .2024B .2025C .2026D .2027 【答案】D【解析】由于函数()f x 的图象关于直线1x =对称,当[0x ∈,1]时,()f x x =,对任意x ∈R 都有(2)()f x f x +=-,得()()()(4)(2)=f x f x f x f x +=-+--=, 所以函数()f x 在[0,)∞+上以4为周期,()()2f x f x +=-, 做出函数()f x 一个周期[0,4]的图象:当0x >时,0x -< ,由()()g x g x =-得:()2025=log f x x - 令2025log 1x -=-,则2025x =,因为202545061=⨯+,而在第一个周期有3个交点,后面每个周期有2个交点,所以共有505231013⨯+=个交点,当0x <时,0x -> ,由()()g x g x =-得:()()2025=log f x x ---,令x t -=,得()2025=log f t t -,由上述可知,()2025=log f t t -有505231013⨯+=个交点,故()()2025=log f x x ---有505231013⨯+=个交点,又0x =时,(0)(0)g g =,所以方程()()0g x g x --=实数根的个数为210131=2027⨯+.故选:D .【变式6-3】(2022秋·河北·高三期中)函数21()cos sin 14f x x x x x =+--零点的个数为( )A .0B .1C .2D .3 【答案】D 【解析】()()()()()2211()cos sin 1cos sin 144f x x x x x x x x x f x -=-+-----=+--=, ()f x ∴是R 上的偶函数,1()cos 2f x x x ⎛⎫'=- ⎪⎝⎭,①当[]0,2πx ∈时,令()0f x '>,得π03x <<或5π2π3x <≤, 令()0f x '<,得π5π33x <<.()f x ∴在π0,3⎛⎫⎪⎝⎭和5π,2π3⎛⎤ ⎥⎝⎦上单调递增,在π5π,33⎛⎫ ⎪⎝⎭上单调递减.()()22π5π5π315π100,0,2ππ0333432f f f f ⎛⎛⎫⎛⎫⎛⎫>==⨯-⨯-<=-< ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭ 0π5π,33x ⎛⎫∴∃∈ ⎪⎝⎭,使得()00,()f x f x =∴在[]0,2π上有两个零点.②当(2,)x π∈+∞时,2211()cos sin 1044f x x x x x x x =+--<-<,()f x ∴在()2π,+∞上没有零点,由①②及()f x 是偶函数可得()f x 在R 上有三个零点.故选:D.【变式6-4】(2022秋·江苏南京·高三期末)若函数()f x 的定义域为Z ,且()()()[()()]f x y f x y f x f y f y ++-=+- ,(1)0(0)(2)1f f f -===, ,则曲线|()|y f x =与2log y x =的交点个数为( )A .2B .3C .4D .5 【答案】B【解析】由题意函数()f x 的定义域为Z ,且()()()[()()]f x y f x y f x f y f y ++-=+-,(1)0(0)(2)1f f f -===,,令1y =,则[]()(1)(1)()(1)1(1())f x f x f x f f x f f ++-==+-,令1x =,则2(2)(0)(1)f f f +=,即2(1)2f =,令2x =,则(3)(1)(2)(1)f f f f +=,即(3)0f =, 令3x =,则(4)(2)(3)(1)f f f f +=,即(4)1f =-, 令4x =,则(5)(3)(4)(1)f f f f +=,即(5)(1)f f =-,令5x =,则(6)(4)(5)(1)f f f f +=,即2(6)1(1),(6)1f f f -=-∴=-,令6x =,则(7)(5)(6)(1)f f f f +=,即(7)(1)(1),(7)0f f f f -=-∴=, 令7x =,则(8)(6)(7)(1)f f f f +=,即(8)10,(8)1f f -=∴=, 依次类推,可发现此时当Z x ∈,且x 依次取0,1,2,3,时,函数|()|y f x =的值依次为, ,即每四个值为一循环, 此时曲线|()|y f x =与2log y x =的交点为(2,1); 令=1x -,则(0)(2)(1)(1)0,(2)1f f f f f +-=-=∴-=-, 令2x =-,则(1)(3)(2)(1)(1),(3)(1)f f f f f f f -+-=-=-∴-=-,令3x =-,则2(2)(4)(3)(1)(1),(4)1f f f f f f -+-=-=-∴-=-,令4x =-,则(3)(5)(4)(1)(1),(5)0f f f f f f -+-=-=-∴-=, 令5x =-,则(4)(6)(5)(1)0,(6)1f f f f f -+-=-=∴-=, 令6x =-,则(5)(7)(6)(1)(1),(7)(1)f f f f f f f -+-=-=∴-=,令7x =-,则2(6)(8)(7)(1)(1),(8)1f f f f f f -+-=-=∴-=,依次类推,可发现此时当Z x ∈,且x 依次取1,2,3---,时,函数|()|y f x =的值依次为0,121,0121,0,,,,,, ,即每四个值为一循环, 此时曲线|()|y f x =与2log y x =的交点为(1,0),(2,1)--;故综合上述,曲线|()|y f x =与2log y x =的交点个数为3,故选:B【题型7 根据函数零点个数求参数范围】【例7】(2022秋·广东中山·高三小榄中学校考阶段练习)已知函数()2ln ,045,0x x f x x x x ⎧>⎪=⎨-+≤⎪⎩,若方程()0f x a -=有4个不同的实数解,则实数a 的取值范围为_________. 【答案】(1,5]【解析】由题知:方程()0f x a -=有4个不同的实数解,即()f x a =有4个不同的实数解.作出()f x 图像(如图所示),即直线y a =与曲线()y f x =有4个公共点. 易知:15a <≤.【变式7-1】(2022秋·新疆喀什·高三新疆维吾尔自治区喀什第二中学校考阶段练习)已知函数()34,0,0x x x f x lnx x ⎧-≤=⎨>⎩,若函数()()g x f x x a =+-有3个零点,则实数a的取值范围是( )A .[)0,1B .[)0,2C .(],1-∞D .(],2-∞ 【答案】B【解析】令()()0g x f x x a =+-=,即()f x x a +=,令()()x f x x ϕ=+,当0x ≤时,()33x x x ϕ=-,()233x x ϕ'=-,令()0x ϕ'>得:1x >或1x <-,结合0x ≤,所以1x <-,令()0x ϕ'<得:11x -<<,结合0x ≤得:10-<≤x ,所以()x ϕ在=1x -处取得极大值,也是最大值,()()max 12x ϕϕ=-=,当x →-∞时,()x ϕ→-∞,且()00ϕ=,当0x >时,()ln x x x ϕ=+,则()110x xϕ'=+>恒成立,()ln x x x ϕ=+单调递增,且当0x →时,()x ϕ→-∞,当x →+∞时,()x ϕ→+∞,画出()x ϕ的图象,如下图:要想()()g x f x x a =+-有3个零点,则[)0,2a ∈故选:B【变式7-2】(2022·江西南昌·南昌市八一中学校考三模)定义在R 上的偶函数()f x 满足()()2f x f x =-,且当[]0,1x ∈时,()e 1x f x =-,若关于x 的方程()()()10f x m x m =+>恰有5个解,则m 的取值范围为( )A .e 1e 1,65--⎛⎫⎪⎝⎭ B .e 1e 1,64--⎛⎫ ⎪⎝⎭ C .e 1e 1,86--⎛⎫ ⎪⎝⎭D .()0,e 1- 【答案】B【解析】∵()()2f x f x =-,∴函数()f x 关于直线1x =对称,又()f x 为定义在R 上的偶函数,故函数()f x 关于直线0x =对称,作出函数()y f x =与直线()1y m x =+的图象,要使关于x 的方程()()()10f x m x m =+>恰有5个解, 则函数()y f x =与直线()1y m x =+有5个交点,∴6e 14e 1m m >-⎧⎨<-⎩,即e 1e 164m --<<.故选:B.【变式7-3】(2022秋·北京顺义·高三牛栏山一中校考期中)若函数()2,,,.x x a f x x x a ≤⎧=⎨>⎩满足存在t R ∈使()f x t =有两个不同的零点,则a 的取值范围是______. 【答案】()(),00,1-∞⋃【解析】如图所示,画出函数()2,,x x af x x x a ≤⎧=⎨>⎩的图象.结合图象可知,()(),00,1a ∈-∞⋃【变式7-4】(2023·全国·高三专题练习)已知函数()3112,21ln ,2x m x f x x x m x ⎧--<⎪⎪=⎨⎪-≥⎪⎩恰有3个零点,则m 的取值范围是________.【答案】1ln 2,(0,1)3e8⎛⎤-- ⎥⎝⎦【解析】设函数()3112,21ln ,2x x g x x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩,根据题意函数()f x 恰有3个零点, 即为函数()g x 的图象与直线y m =有3个公共点,当12x ≥时,可得2()(3ln 1)g x x x '=+,令()0g x '=,得131e 2x -=>,当131[,e )2x -∈时,函数()g x 单调递减;当13(e ,)x -∈+∞时,函数()g x 单调递增,所以当13e x -=时,函数()g x 取得极小值,极小值为131e 3e g -⎛⎫=- ⎪⎝⎭,又由11()ln 2028g =-<,作出()g x 的图象,如图所示,由图可知,实数m 的取值范围是1ln 2,(0,1)3e8⎛⎤-- ⎥⎝⎦.【题型8 复合函数的零点问题】【例8】(2022秋·贵州黔东南·高三校考阶段练习)已知函数()()1ln 1,121,1x x x f x x -⎧->⎪=⎨+≤⎪⎩,则函数()()1y f f x =+的零点个数为______. 【答案】2【解析】先由函数画出草图如图,∴函数()f x 的零点为=2x ,令()1=2f x +,得()=1f x ,∴函数()()1y f f x =+的零点个数就是方程()=1f x 解的个数,也就是函数()f x 的图像与直线=1y 交点的个数,由图可知函数()f x 的图像与直线=1y 有两个不同的交点A ,B ,∴()()1y f f x =+的零点个数为2,【变式8-1】(2022秋·上海普陀·高三曹杨二中校考期中)已知函数()||1f x x =-,关于x 的方程2()|()|0f x f x k -+=,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有3个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根. 其中真命题的序号为( )A .①②③B .①②④C .①③④D .②③④ 【答案】C【解析】设||1t x =-,则1t-,当1t =-时,0x =,当1t >-时,x 有两解.则原方程等价为2||0t t k -+=,即2211||(||)24k t t t =-+=--+.画出||1t x =-以及211(||)24k t =--+的图象, 由图象可知,(1)当0k <时,1t >,此时方程恰有2个不同的实根; (2)当0k =时,1t =或0=t 或1t =-, 当1t =时,x 有两个不同的解, 当0=t 时,x 有两个不同的解,当1t =-时,x 只有一个解,所以此时共有5个不同的解.(3)当104k <<时,112t -<<-或102t -<<或102t <<或112t <<,此时对应着8个解.(4)当14k =时,12t =-或12t =.此时每个t 对应着两个x ,所以此时共有4个解.综上正确的是①③④.故选:C【变式8-2】(2022秋·湖北·高三校联考阶段练习)已知函数()π4sin sin 3f x x x ⎛⎫=+ ⎪⎝⎭.(1)求()f x 的单调递增区间;(2)若2,63ππx ⎡⎤∈⎢⎥⎣⎦,讨论函数()()()()21g x f x m f x m =-++⎡⎤⎣⎦的零点个数. 【答案】(1)πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,Z k ∈;(2)答案详见解析 【解析】(1)()134sin sin cos 22x f x x x ⎛⎫=+⎪ ⎪⎝⎭1cos 23sin 2x x =-+π2sin 216x ⎛⎫=-+ ⎪⎝⎭, 由πππ2π22π262k x k -+≤-≤+,Z k ∈, 解得ππππ63k x k -+≤≤+,Z k ∈,故()f x 递增区间为πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,Z k ∈. (2)π2,π63x ⎡⎤∈⎢⎥⎣⎦,则ππ72,π666x ⎡⎤-∈⎢⎥⎣⎦,则π1sin 2,162x ⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以()π2sin 21[0,3]6f x x ⎛⎫=-+∈ ⎪⎝⎭,画出()f x 在区间π2,π63⎡⎤⎢⎥⎣⎦上的图象如下图所示,令()f x t =,则()()()()211g x t m t m t t m =-++=--,[]0,3t ∈,由()()10t t m --=,结合()f x 图象得:①当1m =时,()0g t ≥,1t =,即()1f x =,此时零点唯一; ②当23m ≤<时,1t =或()1t m f x =⇔=或()f x m =,此时三个零点; ③当3m =时,1t =或t m =⇔()1f x =或()3f x =,此时两个零点; ④当3m >时,1t =或t m =⇔()1f x =或()f x m =(无解),此时只有一个零点;⑤当0m =时,1t =或t m =⇔()1f x =或()0f x =,此时两个零点; ⑥当01m <<,12m <<时,1t =或t m =⇔()1f x =或()f x m =,此时有两个零点;⑦当0m <时,1t =或t m =⇔()1f x =或()f x m =(无解),此时有一个零点;综上所述:当()(){},03,1m ∈-∞⋃+∞⋃时,只有一个零点;[)(){}0,11,23m ∈⋃⋃时,只有两个零点;[]2,3m ∈,有三个零点.【变式8-3】(2022秋·河南焦作·高三统考期中)已知函数()()12,024,24x x f x x f x x ⎧+-<≤⎪=⎨⎪-<<⎩,方程()2(1sin )()sin 0f x f x θθ⎡⎤+⎦⋅⎣-+=(其中0θπ<<)有6个不同的实根,则θ的取值范围是( )A .π0,6⎛⎫ ⎪⎝⎭B .π2π0,,π33⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭C .50ππ,,66π⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D .π0,3⎛⎫⎪⎝⎭ 【答案】C【解析】因为当24x <<时,有()()4f x f x =-,故()f x 在()0,2上图象与在()2,4上的图象关于2x =对称,故()2(1sin )()sin 0f x f x θθ⎡⎤+⎦⋅⎣-+=在()0,2上有3个不同的实数根. 下面仅在()0,2上讨论()2(1sin )()sin 0f x f x θθ⎡⎤+⎦⋅⎣-+=的解.因为()2(1sin )()sin 0f x f x θθ⎡⎤+⎦⋅⎣-+=,故()1f x =或()sin f x θ=, 当()1f x =时,则有:12102x x x ⎧+-=⎪⎨⎪<<⎩,解得x . 因为方程()2(1sin )()sin 0f x f x θθ⎡⎤+⎦⋅⎣-+=在()0,2上有3个不同的实数根. 故()sin f x θ=在()0,2上有2个不同的实数根且与x 相异,故12sin 02π2x x x θθ⎧+-=⎪⎪<<⎨⎪⎪≠⎩有两个不同的解,整理得到()22sin 1002π2x x x θθ⎧⎪-++=⎪<<⎨⎪⎪≠⎩有两个不同的解.设()2(2sin )10g x x x θ=-++=,则2(0)0(2)02sin 022(2sin )40g g θθ>⎧⎪>⎪⎪⎨+<<⎪⎪+->⎪⎩,解得10sin 2θ<<,故π5π0,,π66θ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭.故选:C.【变式8-4】(2022秋·江西抚州·高三金溪一中校考阶段练习)已知函数()()()2,0,2ln ,0,x x f x g x x x x x ⎧==-⎨>⎩,若方程()()()0f g x g x m +-=的所有实根之和为4,则实数m 的取值范围是( )A .1m >B .1mC .1m <D .1m 【答案】C【解析】令(),0t g x t =≥,当1m =时,方程为()10f t t +-=,即1f t t ,作出函数()y f t =及1y t =-的图象, 由图象可知方程的根为0=t 或1t =, 即()20x x -=或()21x x -=, 作出函数()()2g x x x =-的图象,结合图象可得所有根的和为5,不合题意,故BD 错误; 当0m =时,方程为()0f t t +=,即()f t t =-, 由图象可知方程的根01t <<,即()()20,1x x t -=∈, 结合函数()()2g x x x =-的图象,可得方程有四个根, 所有根的和为4,满足题意,故A 错误.故选:C.【题型9 函数零点的大小与范围】【例9】(2022秋·河北保定·高三校联考阶段练习)已知0x >,函数()25xf x x =+-,()24g x x x =+-,()2log 3h x x x =+-的零点分别为a ,b ,c ,则( )A .a b c <<B .a c b <<C .b a c <<D .b c a <<【答案】C【解析】因为()25xf x x =+-单调递增,且()()551.6 1.65555(1.6)2 3.42 3.4256454.354240,f =-=-=-<()24250,f =+->由零点的存在性定理可知()f x 有唯一零点a 且1.62a <<;因为()24g x x x =+-在()0+∞,单调递增, 且()211140,(1.6) 1.6 2.4 2.56 2.40g g =+-<=-=->,由零点的存在性定理可知()g x 有唯一零点b 且1 1.6b <<;因为()2log 3h x x x =+-在()0+∞,单调递增,且()21230h =+-=, 由零点的存在性定理可知()h x 有唯一零点2c =,所以b a c <<.故选:C.【变式9-1】(2022·全国·高三专题练习)已知函数()()()222,log 2,32x x f x x g x x x h x x =+=+=+的零点分别为,,a b c ,则,,a b c 的( )A .b c a >>B .b a c >>C .c a b >>D .a b c >> 【答案】A【解析】由题可得,,a b c 即为2y x =-的图象分别与2xy =,2log y x =,3x y =的交点的横坐标,如图,画出函数图象,由图可得,b c a >>.故选:A.【变式9-2】(2022·全国·模拟预测)已知函数()g x 的定义域为R ,()1g x +为奇函数,()g x 为偶函数,当01x ≤≤时,()()221g x x =--,则方程()11g x x =-,在区间[-5,7]上所有解的和为( )A .10B .8C .6D .4 【答案】B【解析】第一步:判断函数()g x 与11y x =-的图象的特征并作出图象 ∵()1g x +为奇函数,∴()()11g x g x -=-+,即()()2g x g x -=-, ∴()g x 的图象关于点(1,0)对称. 又()()()42222g x g x g x +=++=--=⎡⎤⎡⎤⎣⎦⎣⎦()()()222g x g x g x ---=-+=---=⎡⎤⎣⎦()()()g x g x g x ---=-=⎡⎤⎣⎦,∴()g x 是周期为4的周期函数,显然,函数11y x =-的图象关于点(1,0)对称,在同一直角坐标系中,分别作出函数()g x 与函数11y x =-的图象如图所示.(画出函数图象,注意“草图不草”)第二步:确定交点个数,进而求解 由可知,函数()g x 与11y x =-的图象在[-5,7]上共有8个交点,且两两关于点(1,0)对称,∴方程()11g x x =-在[-5,7]上所有解的和为428⨯=.故选:B【变式9-3】(2022秋·全国·高三校联考阶段练习)已知函数ln ,0<2,()=ln(4),2<<4,x x f x x x ≤-⎧⎪⎨⎪⎩若直线=y m 与()f x 的图像有四个交点,且从左到右四个交点的横坐标依次为1234,,,x x x x ,则()123412++4+=x x x x x x ( )A .12B .16C .18D .32 【答案】C【解析】作出函数()f x 的图像如图所示:()f x 的图像关于直线=2x 对称.由图可知:1423+=+=4x x x x ,且12340<<1<<2<<3<<4x x x x .所以341<4<2,0<4<1x x --.由12ln ln x x =可得:12ln ln x x -=,所以121x x =. 同理可得()()34441x x --=,所以()3434=4+15x x x x -.于是()()()1234123412++4+=1+4+15+4+x x x x x x x x x x -()()1423=4++4+14x x x x -=18.故选:C【变式9-4】(2022·全国·高三专题练习)(多选)已知函数2()log (1)(0)=-->f x x m m 的两个零点为12,x x 12()x x <,则( ) A .122x x << B .12111x x += C .124x x < D .122322+≥+x x 【答案】ABD【解析】令2()log (1)0f x x m =--=,()1x >则2log (1)x m -=,令2log (1)y x =-,y m =,则函数2()log (1)(0)=-->f x x m m 的两个零点为12,x x 12()x x <,即为函数2log (1)y x =-,y m =交点的横坐标, 作图如下图所示:故1212x x <<<,故A 正确;根据题意得()12()0f x f x ==,即2122log (1)log (1)x x -=-, 因为1212x x <<<,所以2122log (1)0,log (1)0x x -<->, 故2122log (1)log (1)0x x -+-=,即212log (1)(1)0x x --=,所以12(1)(1)1x x --=,即()12120x x x x -+=,所以12111x x +=,故B 正确;因为12122x x x x +≥,所以()121212122x x x x x x x x -+≤-,即121220x x x x -≥, 所以124x x ≥,当且仅当12x x =时取等号, 又因1212x x <<<,所以124x x >,故C 错误;()2112121212211223322x xx x x x x x x x ⎛⎫+++=+++ ≥⎪⎝⎭=,当且仅当21122x x x x =,即212x x =时,取等号,故D 正确.故选:ABD.【变式9-5】(2022秋·天津武清·高三校考阶段练习)已知函数()2log ,02{12,22x x f x x x <<=-+≥,如果互不相等的实数,,a b c ,满足()()()f a f b f c ==,则实数abc 的取值范围_____. 【答案】(2,4)【解析】()2log ,0212,22x x f x x x ⎧<<⎪=⎨-+≥⎪⎩,画出函数图象,如图所示:不妨设a b c <<,其中22log log a b -=,故1ab =,且()2,4c ∈,所以abc 的取值范围是(2,4).【题型10 二分法及其应用】【例10】(2022·陕西西安·西安中学校考模拟预测)某同学用二分法求函数()237x f x x =+-的零点时,计算出如下结果:()()1.50.33, 1.250.87f f ==-,()()()()1.3750.26, 1.43750.02, 1.40650.13, 1.4220.05f f f f =-==-=-,下列说法正确的有( )A .1.4065是满足精度为0.01的近似值.B .1.375是满足精度为0.1的近似值C .1.4375是满足精度为0.01的近似值D .1.25是满足精度为0.1的近似值 【答案】B【解析】()()1.43750.020, 1.40650.130f f =>=-<,又1.4375 1.40650.0310.01-=>,A 错误;()()1.3750.260, 1.43750.020f f =-<=<,又1.4375 1.3750.0620.1-=<, ∴满足精度为0.1的近似值在()1.375,1.4375内,则B 正确,D 错误;()()1.4220.050, 1.43750.020,1.4375 1.4220.01550.01f f =-<=>-=>,C 错误.故选:B.【变式10-1】(2022·全国·高三专题练习)在用二分法求方程32100x x +-=在(1,2)上的近似解时,构造函数()3210x f x x =+-,依次计算得()150f =-<,()230f =>,()1.50f <,()1.750f >,()1.6250f <,则该近似解所在的区间是( )A .()11.5, B .()1.51.625, C .()1.6251.75, D .()1.752, 【答案】C【解析】根据已知()150f =-<,()1.50f <,()1.6250f <,()1.750f >,()230f =>,根据二分法可知该近似解所在的区间是()1.625,1.75.故选:C.【变式10-2】(2022·全国·高三专题练习)用二分法求如图所示的函数()f x 的零。
2023年中考数学--- a,b,c和二次函数图像的九种考法例题解析
2023年中考数学--- a ,b ,c 和二次函数图像的九种考法例题解析如图,二次函数的图像关于直线对称,与x 轴交于,两点,若考法解决方法本题结果①a,b,ca:二次函数图像开口向上时,a >0;开口向下,则a <0;b :和a 共同决定了函数对称轴的位置,“左同右异”,当对称轴在y 轴左侧时,a ,b 同号,当对称轴在y 轴右侧时,a ,b 异号。
c :c 为图像和y 轴交点的纵坐标。
a >0b <0c <0②b 2−4ac当图像和x 轴有两个交点时,b 2−4ac >0; 当图像和x 轴有一个交点时,b 2−4ac =0; 当图像和x 轴没有交点时,b 2−4ac <0。
b 2−4ac <0 ③a+b+c a-b+c 4a+2b+c 4a-2b+c 9a+3b+c 9a-3b+c 用特殊值进行判断:a+b+c 即为当x=1时的函数值; 4a-2b+c 即为当x=-2时的函数值。
a+b+c <0 a-b+c <0④3a+2b只有a ,b 时,用对称轴代换,消去一个未知数进行判断∵−b2a = 1,∴b=- 2а,∴3a +2b= 3a-4a= -a ,∵a >0,∴3a+2b<0⑤c+a 只有a ,c 或只有b ,c 时,先用对称轴代换,消去一个未知数,然后利用④中的结果判断结果∵a -b +c<0,∴a +c<b ,∵a >0, ∴b=-2a<0,∴a +c<0, ⑥b+2c若c 的系数不是1,可以先化成1再进行上述计算,或这把③中的某个式子中的c 的系数变成题里的形式。
∵−b 2a=1,∴2a =−b , ∵a+b +c<0,∴2a+2b +2c<0,-b+2b +2c<0,b +2c<0 ⑦am 2+bm 和a +b 的小小关系同时加上c ,am 2+bm+c ,a +b+c第一个式子是当x=m 时的函数值,第二个am 2+bm ≥a+b式子是当x=1时的函数值;由图可知,x=1时函数取最小值。
求函数解析式的方法和例题
求函数解析式的方法和例题在数学学习中,我们经常会遇到需要求解函数解析式的问题。
函数解析式是描述函数规律的数学式子,它可以帮助我们更好地理解函数的性质和行为。
那么,如何求函数解析式呢?接下来,我将介绍一些常见的方法和例题,希望能帮助大家更好地掌握这一内容。
一、常见的求函数解析式的方法。
1. 根据函数图像求解析式,当已知函数的图像时,我们可以通过观察图像的性质来推导函数解析式。
例如,对于一元一次函数y=kx+b,我们可以根据函数的斜率k和截距b来确定函数解析式。
同样地,对于二次函数、指数函数、对数函数等,也可以通过观察图像的特点来求解析式。
2. 根据函数性质求解析式,有些函数具有特定的性质,我们可以利用这些性质来求解析式。
例如,对于奇偶函数、周期函数、对数函数等,我们可以根据其性质来确定函数解析式。
3. 根据已知条件求解析式,有时候,我们会遇到一些特定的条件,例如函数的零点、极值点、导数等,我们可以利用这些已知条件来求解析式。
通过建立方程组,我们可以求解未知的函数解析式。
二、求函数解析式的例题。
1. 已知一元一次函数的图像经过点(2,3),斜率为4,求函数解析式。
解,根据一元一次函数的一般形式y=kx+b,我们可以利用已知的斜率和点的坐标来求解析式。
首先,斜率为4,即k=4;其次,函数经过点(2,3),代入x=2,y=3,得到3=4×2+b,解得b=-5。
因此,函数解析式为y=4x-5。
2. 已知函数f(x)满足f(1)=2,f'(x)=3x^2,求函数f(x)的解析式。
解,根据已知条件f(1)=2,我们可以利用这一条件来求解析式。
由导数的定义可知,f'(x)=3x^2,对f(x)进行积分得到f(x)=x^3+C,其中C为积分常数。
代入f(1)=2,得到2=1+C,解得C=1。
因此,函数f(x)的解析式为f(x)=x^3+1。
通过以上例题,我们可以看到,求解函数解析式的关键在于利用已知条件和函数的性质来建立方程,进而求得未知的函数解析式。
初三数学教案-中考专题—函数图象选择题的几种解法 精品
函数图象选择题的几种解法函数图象选择题,是中考题中的常见题型,此类问题都是依据函数图象的性质、图象在坐标系中的位置和图象的变化趋势进行解答,解法灵活,熟练掌握各种解法可以提高准确性和解题速度。
现以部分中考题为例,说明此种类型问题的解法。
一、直接判断法例1.反比例函数y=-的图象大致如下,正确的是()(长沙市)解:反比例函数的图象是双曲线,因为k=-5<0,所以图象在第二、四象限,故选择D。
说明:如果函数解析式中的系数为固定值(或取值范围确定),可直接根据该函数的性质进行判断。
二、排除法例2.已知二次函数y=ax2+bx+c,如果a>b>c, 且a+b+c=0, 则它的图象可能是()(潍坊市)解:∵a+b+c=0, ∴二次函数y=ax2+bx+c的图象过点(1,0),可排除D,图C中显然a<0, c=0与a>c矛盾,故排除。
图B中a>0, b<0, c>0与b>c矛盾,故排除。
因此选择A。
说明:根据已知条件和选项中图象的特点,把不合条件的答案逐一排除,最后得到应选答案。
三、分类讨论法例3.下列各图中,能表示函数y=k(1-x)和y=(k≠0)在同一平面直角坐标系中的图象大致是()(哈尔滨市)解:y=k(1-x)即y=-kx+k,分k>0和k<0两种情况讨论,当k>0,双曲线y=在第一、三象限,直线y=-kx+k必过二、四象限,与y轴的交点在正半轴上,此时无正确选项;当k<0时,双曲线y=在第二、四象限,直线y=-kx+k必过一、三象限,与y轴的交点在负半轴上,故选答案D。
说明:如果两个函数解析式中有共同的系数,可根据系数的取值范围进行分类讨论,选择正确答案。
四、字母系数吻合法例4.在同一坐标系中,函数y=ax2+bx与y=的图象大致是()。
(黑龙江省)解:两解析式中有相同的系数b,可根据各图象中b的取值范围是否吻合进行选择。
专题21反比例函数的图象与性质(3个知识点5种题型2种中考考法)(原卷版-初中数学北师大版9年级上册
专题21反比例函数的图象与性质(3个知识点5种题型2种中考考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.反比例函数图象的画法(重点)知识点2.反比例函数的图象与性质(重点)知识点3.反比例函数表达式中比例系数k 的几何意义(难点)【方法二】实例探索法题型1.反比例函数的图象与性质的应用题型2.反比例函数与图形面积问题题型3.利用反比例函数图象的对称性解题题型4.创新题题型5.反比例函数与几何图形的综合【方法三】仿真实战法考法1.反比例函数的比例系数k 的几何意义考法2.利用反比例函数的性质比较函数值大小【方法四】成果评定法【学习目标】1.能画出反比例函数的图象,知道反比例函数的图象是双曲线。
2.理解反比例函数的性质,并能运用其性质解决相关的问题。
3.理解反比例函数)0(≠=k xky 中的比例系数k 的几何意义,并能运用其意义求与反比例函数图象有关的图形面积问题。
【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1.反比例函数图象的画法(重点)(1)列表:自变量的取值应以0为中心,在0的两侧取三对(或三对以上)互为相反数的值,填写y 值时,只需计算右侧的函数值,相应左侧的函数值是与之对应的相反数;(2)描点:描出一侧的点后,另一侧可根据中心对称去描点;(3)连线:按照从左到右的顺序连接各点并延伸,连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;(4)反比例函数图象的分布是由k 的符号决定的:当0k >时,两支曲线分别位于第一、三象限内,当0k <时,两支曲线分别位于第二、四象限内.知识点2.反比例函数的图象与性质(重点)1、反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴.注意:(1)若点(a b ,)在反比例函数ky x=的图象上,则点(a b --,)也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数(k 为常数,0k ≠)中,由于,所以两个分支都无限接近但永远不能达到x 轴和y 轴.2.反比例函数的性质(1)如图1,当0k >时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 值随x 值的增大而减小;(2)如图2,当0k <时,双曲线的两个分支分别位于第二、四象限,在每个象限内,y 值随x 值的增大而增大;注意:(1)反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k 的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出k 的符号.(2)反比例的图像关于原点的对称【例2】(2022秋•南华县期末)反比例函数与一次函数y =kx +1在同一坐标系的图象可能是()A .B .C.D.【变式】(2022秋•大渡口区校级期末)在同一坐标系中,函数和y=kx﹣2的图象大致是()A.B.C.D.【例3】(2023•瑞安市开学)对于反比例函数,当﹣1<y≤2,且y≠0时,自变量x的取值范围是()A.x≥1或x<﹣2B.x≥1或x≤﹣2C.0<x≤1或x<﹣2D.﹣2<x<0或x≥1【变式】(2023•西湖区校级开学)若点A(x1,y1),B(x2,y2),C(x3,y3),都在反比例函数(k为常数,k>0)的图象上,其中y2<0<y1<y3,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x2<x1<x3知识点3.反比例函数表达式中比例系数k的几何意义(难点)通过反比例函数上一点向一条坐标轴作垂线,这个点与垂足和原点所构成的三角形面积为12k,与两条坐标轴围成矩形面积为k,注意加绝对值时,有正负两个答案.【例4】(2023•和平区校级三模)如图,点A在双曲线上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k 的值为()A .2B .4C .﹣2D .﹣4【变式】如图,矩形ABCD 的边CD 在x 轴上,顶点A 在双曲线1y x =上,顶点B 在双曲线3y x=上,求矩形ABCD 的面积.A B CDE Oxy【方法二】实例探索法题型1.反比例函数的图象与性质的应用1.(2023•株洲)下列哪个点在反比例函数的图象上?()A .P 1(1,﹣4)B .P 2(4,﹣1)C .P 3(2,4)D .2.(2023•西湖区校级开学)若点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),都在反比例函数(k 为常数,k>0)的图象上,其中y 2<0<y 1<y 3,则x 1,x 2,x 3的大小关系是()A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 2<x 1<x 33.(2023春•东阳市期末)已知反比例函数的图象的一支如图所示,它经过点(3,﹣2).(1)求此反比例函数的表达式,并补画该函数图象的另一支.(2)求当y ≤4,且y ≠0时自变量x 的取值范围.4.(1)平面直角坐标系中,点A (725)m m --,在第二象限,且m 为整数,求过点A 的反比例函数解析式;(2)若反比例函数3k y x -=的图像位于第二、四象限内,正比例函数2(1)3y k x =-过一、三象限,求整数k 的值.5.已知反比例函数(0)k y k x =≠,当自变量x 的取值范围为84x ≤≤--时,相应的函数取值范围是12y ≤≤--1,求这个反比例函数解析式.题型2.反比例函数与图形面积问题6.(1)若P是反比例函数3kyx=图像上的一点,PQ⊥y轴,垂足为点Q,若2POQs∆=,求k的值;(2)已知反比例函数kyx=的图像上有一点A,过A点向x轴,y轴分别做垂线,垂足分别为点B C,,且四边形ABOC的面积为15,求这个反比例函数解析式.7.(2022秋•朝阳期末)如图,一次函数y=k1x+b与反比例函数y=(x>0)的图象交于A(1,6),B(3,n)两点.(1)求反比例函数的解析式和n的值;(2)根据图象直接写出不等式k1x+b的x的取值范围;(3)求△AOB的面积.题型3.利用反比例函数图象的对称性解题8.(2023•福建)如图,正方形四个顶点分别位于两个反比例函数y=和y=的图象的四个分支上,则实数n的值为()A.﹣3B.﹣C.D.39.(2023•广西)如图,过的图象上点A,分别作x轴,y轴的平行线交的图象于B,D 两点,以AB,AD为邻边的矩形ABCD被坐标轴分割成四个小矩形,面积分别记为S1,S2,S3,S4,若,则k的值为()A.4B.3C.2D.1(1)若点A(1,1),分别求线段(2)对于任意的点A(a,b),试探究线段14.(2022秋·安徽滁州·九年级统考期中)如图,已知1A,2A,3A,…,n A…是x轴上的点,且15.(2021秋·河北石家庄每个台阶凸出的角的顶点记作(1)若L 过点1T ,则k =(2)若曲线L 使得1T T ~16.(2022秋·全国·九年级期末)如图,已知反比例函数题型5.反比例函数与几何图形的综合17.过原点作直线交双曲线(0)ky k x=>于点A 、C ,过A 、C 两点分别作两坐标轴的平行线,围成矩形ABCD ,如图所示.(1)已知矩形ABCD 的面积等于8,求双曲线的解析式;(2)若已知矩形ABCD 的周长为8,能否由此确定双曲线的解析式?如果能,请予求出;如果不能,说明理由.y ABCDOx18.正方形OAPB 、ADFE 的顶点A 、D 、B 在坐标轴上,点E 在AP 上,点P 、F 在函数(0)ky k x=>的图像上,已知正方形OAPB 的面积是16.(1)求k 的值和直线OP 的函数解析式;(2)求正方形ADEF 的边长.yABPFOxED19.如图,已知正方形OABC 的面积是9,点O 为坐原点,A 在x 轴上,C 在y 轴上,B 在函数(00)ky k x x=>>,的图像上,点P (m ,n )在(00)ky k x x=>>,的图像上异于B 的任意一点,过点P 分别作x 轴,y 轴的垂线,垂足分别是E 、F .设矩形OEPF 和正方形OABC 不重合部分的面积是S .(1)求点B 的坐标;(2)当92S =时,求点P 的坐标;(3)写出S 关于m 的函数解析式.A BC PE FyOx【方法三】仿真实战法考法1.反比例函数的比例系数k 的几何意义1.(2023•福建)如图,正方形四个顶点分别位于两个反比例函数y =和y =的图象的四个分支上,则实数n 的值为()A .﹣3B.﹣C.D .32.(2023•湘西州)如图,点A 在函数y=(x >0)的图象上,点B 在函数y=(x >0)的图象上,且AB ∥x 轴,BC ⊥x 轴于点C ,则四边形ABCO 的面积为()A .1B .2C .3D .4考法2.利用反比例函数的性质比较函数值大小3.(2023•镇江)点A(2,y1)、B(3,y2)在反比例函数y=的图象上,则y1y2(用“<”、“>”或“=”填空).4.(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y1,y2,y3,y4中最小的是()A.y1B.y2C.y3D.y45.(2021•广安)若点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y2<y1<y3C.y1<y2<y3D.y3<y2<y1【方法四】成果评定法一、单选题A.1 43.(2022·福建福州·校考模拟预测)如图,在x轴于B、D两点,连结A .4B .65.(2022秋·福建厦门·九年级校考期中)如图,过双曲线上任意一点交x 轴、y 轴于点M 、N ,所得矩形A .4B .4-6.(2021秋·河北石家庄·九年级校联考期中)关于反比例函数A .函数图像分别位于第一、三象限C .函数图像过()(23A mB n -,、,A.4 10.(2023·江苏宿迁图像上,点E在yA.1B 二、填空题11.(2022秋·湖南永州13.(2022秋·黑龙江大庆的大小关系是14.(2023·安徽滁州15.(2023秋·重庆沙坪坝比例函数()0ky k x=≠上两点,平行线,两直线交于点16.(2023秋·福建泉州·九年级校考专题练习)如图,已知直线(00)a y x a x =>>,和b y x =象于点D ,过点C 作CE ∥17.(2022秋·贵州铜仁·九年级统考期中)如图,点112232021OA A A A A A ==== 图象分别交于点123,,,B B B 18.(2023·浙江·九年级专题练习)如图,点所示,分别过点A ,C 作x 轴与构成的阴影部分面积为2,则矩形三、解答题19.(2023秋·陕西榆林·九年级校考期末)已知反比例函数(1)函数的图象在第二、四象限?(1)求k的值;(2)请用无刻度的直尺和圆规作出(3)设(2)中的角平分线与⊥.证:DE OA(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:①点()121,7552,,,,2A y B y C x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭②当函数值2y =时,求自变量x 的值;(1)求点A 的坐标;(2)求反比例函数的解析式:(1)点D的坐标为______,点E的坐标为______;(2)动点P在第一象限内,且满足12PBO ODE S S∆∆=。
中考点拨:用顶点式解决二次函数图像平移问题
中考点拨:用顶点式解决二次函数图像平移问题二次函数是初中数学中最精彩的内容之一,也是历年中考的热点和难点。
其中,关于函数解析式的确定是非常重要的题型。
从近几年中考趋势来看强化了对图形变换的要求,那么二次函数和图形变化的结合,将是同学们在学习中不可忽视的内容。
图形变换包含平移、轴对称、旋转、位似四种变换,那么二次函数的图像在其图形变化(平移、轴对称、旋转)的过程中,如何完成解析式的确定呢?解决此类问题的方法很多,关键在于解决问题的着眼点。
飞杨老师认为最好的方法是用顶点式的方法。
因此解题时,先将二次函数解析式化为顶点式,确定其顶点坐标,再根据具体图形变换的特点,确定变化后新的顶点坐标及a值。
1、平移:二次函数图像经过平移变换不会改变图形的形状和开口方向,因此a值不变。
顶点位置将会随着整个图像的平移而变化,因此只要按照点的移动规律,求出新的顶点坐标即可确定其解析式。
例1.将二次函数y=x²-2x-3的图像向上平移2个单位,再向右平移1个单位,得到的新的图像解析式为_____分析:将y=x²-2x-3化为顶点式y=(x-1)2-4,a值为1,顶点坐标为(1,-4),将其图像向上平移2个单位,再向右平移1个单位,那么顶点也会相应移动,其坐标为(2,-2),由于平移不改变二次函数的图像的形状和开口方向,因此a值不变,故平移后的解析式为y=(x-2)²-2。
2、轴对称:此图形变换包括x轴对称和关于y轴对称两种方式。
二次函数图像关于x轴对称的图像,其形状不变,但开口方向相反,因此a值为原来的相反数。
顶点位置改变,只要根据关于x轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。
二次函数图像关于y轴对称的图像,其形状和开口方向都不变,因此a值不变。
但是顶点位置会改变,只要根据关于y轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。
例2.求抛物线y=x²-2x-3关于x轴以及y轴对称的抛物线的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数图象选择题的几种解法
函数图象选择题,是中考题中的常见题型,此类问题都是依据函数图象的性质、图象在坐标系中的位置和图象的变化趋势进行解答,解法灵活,熟练掌握各种解法可以提高准确性和解题速度。
现以部分中考题为例,说明此种类型问题的解法。
一、直接判断法
例1.反比例函数y=-的图象大致如下,正确的是()(长沙市)
解:反比例函数的图象是双曲线,因为k=-5<0,所以图象在第二、四象限,故选择D。
说明:如果函数解析式中的系数为固定值(或取值范围确定),可直接根据该函数的性质进行判断。
二、排除法
例2.已知二次函数y=ax2+bx+c,如果a>b>c, 且a+b+c=0, 则它的图象可能是()(潍坊市)
解:∵a+b+c=0, ∴二次函数y=ax2+bx+c的图象过点(1,0),可排除D,图C中显然a<0, c=0与a>c矛盾,故排除。
图B中a>0, b<0, c>0与b>c矛盾,故排除。
因此选择A。
说明:根据已知条件和选项中图象的特点,把不合条件的答案逐一排除,最后得到应选答案。
三、分类讨论法
例3.下列各图中,能表示函数y=k(1-x)和y=(k≠0)在同一平面直角坐标系中的图象大致
是()(哈尔滨市)
解:y=k(1-x)即y=-kx+k,分k>0和k<0两种情况讨论,
当k>0,双曲线y=在第一、三象限,直线y=-kx+k必过二、四象限,与y轴的交点在正半轴上,此时无正确选项;
当k<0时,双曲线y=在第二、四象限,直线y=-kx+k必过一、三象限,与y轴的交点在负半轴上,故选答案D。
说明:如果两个函数解析式中有共同的系数,可根据系数的取值范围进行分类讨论,选择正确答案。
四、字母系数吻合法
例4.在同一坐标系中,函数y=ax2+bx与y=的图象大致是()。
(黑龙江省)
解:两解析式中有相同的系数b,可根据各图象中b的取值范围是否吻合进行选择。
由图A得抛物线y=ax2+bx中a>0, b<0,双曲线y=中b>0,
由图B得抛物线y=ax2+bx中a<0, b<0.双曲线y=中b>0;
由图C得抛物线y=ax2+bx中a>0, b>0, 双曲线y=中b<0;
由图D得抛物线y=ax2+bx中a<0,b>0,双曲线y=中b>0。
只有图D中b的取值范围相吻合,故选答案D。
说明:如果两个函数解析式中有相同的字母系数,可由图象确定各个函数解析式中的字母系数的取值范围,选择同一字母取值范围相吻合的一项。
五、画图法
例5.函数y=ax2与y=(a<0)在同一坐标系中的图象大致是()。
(甘肃省)
解:根据a<0,画出函数y=ax2与y=在同一坐标系中的大致图象如上图,
与四个选项比较,应选择答案D。
说明:函数式中系数的取值范围一定时,可根据这一取值范围画出草图,与供选图象对照选择。
六、推理选择法
例6.已知函数y=kx中,y随x的增大而增大,那么函数y=的图象大致是()(南京市)
解:由y=kx中,y随x的增大而增大,推出k>0,由k>0推出y=的图象为双曲线,且在一、三象限,因此选择A。
说明:如果已知一个函数的某些特点,选择与此函数有相同系数的其它函数的图象,可先推理出系数的取值范围,再根据这一范围,推理出函数图象的特征,依据这些特征进行选择。
七、特殊值法
例7.当k<0, 函数y=k(x-1)与y=在同一直角坐标系中的图象大致是()(黄岗市)
解:取k=-1得两函数的解析式y=-x+1和y=-,由此二解析式易知应选择答案B。
说明:若函数解析式中系数的取值范围确定,可在此范围内把系数取一特殊值,得到此时函数的解析式,根据这一特殊解析式的图象特征,选择答案。
八、特殊点法
例8.下列直角坐标系中,一次函数y=kx-2k的图象可能是()。
(北京海淀区)
解:此题的四个供选图象中,都有一个特殊点,把它们的坐标分别代入解析式y=kx-2k,
得k的值,A中k=0, B中k为任意数,C中k=-2,D中k=0,A、D不符合一次函数的定义,C 中k=-2与直线的倾斜方向不符,只有B符合题意,故选B。
说明:如果函数图象中,已知某个特殊点,可把该点坐标代入解析式,求出解析式中的参数,选择符合题意的一项。
九、图象共性法
例9.二次函数y=ax2+bx+c与一次函数y=ax+c在同一坐标系中的图象大致是()(山西省)
解:由两函数的解析式可知,两函数的图象与y轴有同一交点(0,c),因此答案必为C、D之一,图C中由抛物线知a>0, b<0. 由直线知a<0, a的取值范围相矛盾,图D中由抛物线知a<0, b>0,由直线知a<0,故选择答案D。
说明:如果两个函数的图象有某些共同性质,可利用这些共同性质进行选择。
以上是函数图象选择题的一些常用的解法,在解题中应灵活运用,有时在解题时可综合运用其中的两种或更多种方法。