6.3二次函数与一元二次方程(1)(044)

合集下载

6.3二次函数与一元二次方程(2)

6.3二次函数与一元二次方程(2)

§6.3 二次函数与一元二次方程(2)【练习课】[ 教案]备课时间: 主备人:1.抛物线y=a (x -2)(x +5)与x 轴的交点坐标为 .2.已知抛物线的对称轴是x=-1,它与x 轴交点的距离等于4,它在y 轴上的截距是-6,则它的表达式为.3.若a >0,b >0,c >0,△>0,那么抛物线y=ax 2+bx +c 经过 象限.4.抛物线y=x 2-2x +3的顶点坐标是.5.若抛物线y=2x 2-(m +3)x -m +7的对称轴是x=1,则m=.6.抛物线y=2x 2+8x +m 与x 轴只有一个交点,则m=.7.已知抛物线y=ax 2+bx +c 的系数有a -b +c=0,则这条抛物线经过点 . 8.二次函数y=kx 2+3x -4的图象与x 轴有两个交点,则k 的取值范围. 9.抛物线y=x 2-2a x +a 2的顶点在直线y=2上,则a 的值是.10.抛物线y=3x 2+5x 与两坐标轴交点的个数为( )A .3个B .2个C .1个D .无11.如图1所示,函数y=ax 2-bx +c 的图象过(-1,0),则ba c a cbc b a +++++的值是( ) A .-3B .3C .21D .-2112.已知二次函数y=ax 2+bx +c 的图象如图2所示,则下列关系正确的是( )A .0<-a b 2<1B .0<-a b 2<2C .1<-a b 2<2D .-ab2=113.已知二次函数y=x 2+mx +m -2.求证:无论m 取何实数,抛物线总与x 轴有两个交点. 14.已知二次函数y=x 2-2kx +k 2+k -2.(1)当实数k 为何值时,图象经过原点?(2)当实数k 在何范围取值时,函数图象的顶点在第四象限内? 15.已知抛物线y=mx 2+(3-2m )x +m -2(m ≠0)与x 轴有两个不同的交点.(1)求m 的取值范围;(2)判断点P (1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点Q 及P 点关于抛物线的对称轴对称的点P ′的坐标,并过P ′、Q 、P 三点,画出抛物线草图.16.已知二次函数y=x 2-(m -3)x -m 的图象是抛物线,如图2-8-10. (1)试求m 为何值时,抛物线与x 轴的两个交点间的距离是3? (2)当m 为何值时,方程x 2-(m -3)x -m=0的两个根均为负数?(3)设抛物线的顶点为M ,与x 轴的交点P 、Q ,求当PQ 最短时△MPQ 的面积.17.在平原上,一门迫击炮发射的一发炮弹飞行的高度y (m )与飞行时间x (s )的关系满足y=-51x 2+10x .(1)经过多长时间,炮弹达到它的最高点?最高点的高度是多少? (2)经过多长时间,炮弹落在地上爆炸?18.已知抛物线y=x 2-(k +1)x +k .(1)试求k 为何值时,抛物线与x 轴只有一个公共点;(2)如图,若抛物线与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴的负半轴交于点C ,试问:是否存在实数k ,使△AOC 与△COB 相似?若存在,求出相应的k 值;若不存在,请说明理由.。

二次函数与一元二次方程、不等式(第二课时)参考教学方案

二次函数与一元二次方程、不等式(第二课时)参考教学方案

《二次函数与一元二次方程、不等式 (第二课时)》教学设计1.通过从实际情境中抽象出一元二次不等式模型的过程,体会一元二次不等式的现实意义,提升数学建模的核心素养.2.能利用一元二次不等式解决一些实际问题,提升数学运算素养.教学重点:实际问题中的一元二次不等式解法.教学难点:从实际问题所蕴含的不等关系中抽象出一元二次不等式.PPT 课件一、知识回顾问题1:二次函数与一元二次方程、一元二次不等式解集的对应关系是怎样的?请你完成下面的表格。

师生活动:学生默写,完成之后教师展示,学生互相检查纠错.预设的答案:Δ>0 Δ=0 Δ<0y =ax 2+bx +c (a >0)的图象ax 2+bx +c =0(a >0)的根有两个不相等的实数根x 1,x 2(x 1<x 2) 有两个相等的实数根x 1=x 2=-b 2a 没有实数根 ax 2+bx +c >0(a >0)的解集 {x |x <x 1,或x >x 2}{x |x ≠-b 2a } R◆ 课前准备◆ 教学过程◆ 教学重难点◆ ◆ 教学目标ax2+bx+c<0(a>0){x|x1<x<x2}∅∅的解集教师讲解:(1)函数的角度:一元二次不等式ax2+bx+c>0表示二次函数y=ax2+bx+c的函数值大于0,图象在x轴的上方;一元二次不等式ax2+bx+c>0的解集即二次函数图象在x 轴上方部分的自变量的取值范围.(2)方程的角度:一元二次不等式ax2+bx+c>0的解集的端点值是一元二次方程ax2+bx+c=0的根.设计意图:复习旧知识,并通过默写的形式让师生都了解是否掌握了,为本节课的学习扫清知识障碍。

问题2:求解一元二次不等式的步骤是怎样的?师生活动:学生写出步骤,教师用如下的程序框图呈现.预设的答案:设计意图:本节课重点依然是一元二次不等式的解法,学生需要借助三个“二次”的联系,获得一元二次不等式的一般性解法,从整体上把握所学内容,让学生明确不等式解法,有助于学生良好认知结构的建立和完善,并为后面知识的学习提供帮助.二、新知探究利用一元二次不等式解决实际问题例1一家车辆制造厂引进一条摩托车整车装配流水线,这条流水线生产的摩托车数量x(单位:辆)与创造的价值y(单位:元)之间有如下的关系:-=.202+y2200xx若这家工厂希望在一个星期内利用这条流水线创收60000元以上,则在一个星期内大约应该生产多少辆摩托车?问题3:这个实际问题中蕴含的不等关系是什么?求解不等式的步骤是什么?对于实际问题还需要注意什么?师生活动:学生分析题目,得出一元二次不等式,并求解。

第14讲二次函数与一元二次方程不等式常考考点(原卷版)

第14讲二次函数与一元二次方程不等式常考考点(原卷版)

第14讲 二次函数与一元二次方程不等式常考考点【考点分析】考点一:一元二次不等式的概念一般地,我们把只含有一个末知数,并且末知数的最高次数是2的不等式,称为一元二次不等式,即形如20(0)ax bx c ++>≥或20(0)ax bx c ++<≤(其中a ,b ,c 均为常数,)0a ≠的不等式都是一元二次不等式.考点二:二次函数的零点一般地,对于二次函数2y ax bx c =++,我们把使20ax bx c ++=的实数x 叫做二次函数2y ax bx c =++的零点.考点三: 二次函数与一元二次方程、不等式的解的对应关系对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=∆,它的解按照0>∆,0=∆,0<∆可分三种情况,相应地,二次函数2y ax bx c =++(0)a >的图像与x20ax bx c ++>(0)a >或20ax bx c ++<(0)a >的解集.24b ac ∆=-0>∆ 0=∆ 0<∆二次函数cbx ax y ++=2(0>a )的图象20(0)ax bx c a ++=>的根有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2R的解集)0(02><++a c bx ax{}21x x xx <<∅∅①20(0)ax bx c a ++>≠在R x ∈上恒成立00a >⎧⇔⎨∆<⎩恒成立②20(0)ax bx c a ++<≠在R x ∈上恒成立00.a <⎧⇔⎨∆<⎩题型一:解不含参数的一元二次不等式解题思路:①当二次项系数为正时,考虑大于取两边,小于取中间①数轴标根,穿针引线【精选例题】【例1】设x ∈R ,则2x <是220x x -<的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【例2】一元二次不等式()20x x ->的解集为( )A .()2,0-B .()0,2C .()(),20,-∞-⋃+∞D .()(),02,-∞+∞【例3】一元二次不等式()()120x x -+>的解集为( )A .()(),21,-∞-+∞B .()2,1-C .()(),12,-∞-+∞D .1,2【例4】使“2560x x +-<”成立的一个充分不必要条件是( )A .51x -<<B .52x -<<C .71x -<<D .72x -<<【跟踪训练】1.不等式24x x <的解集为( )2.不等式2560x x -+>的解集为( )A .{|23}x x <<B .{|2}x x <C .{|3}x x >D .{2|x x <或3}x > (2,)⎫+∞⎪⎭ 12),3⎛-+∞ ⎝题型二:一元二次不等式与根与系数关系的交汇【精选例题】【例2】已知关于x的不等式22430(0) x ax a a-+<>的解集为()12,x x,则1212ax xx x++的最小值是()A B.C D.A.-2B.-1C.1D.2【例4】已知不等式20ax bx c++<的解集为{|1x x<或}3x>,则下列结论正确的是()【跟踪训练】)()2,+∞2.已知关于x的不等式230ax bx++>,关于此不等式的解集有下列结论,其中正确的是().不等式2ax bx++3.已知关于x 的不等式20ax bx c ++>的解集为()(),23,-∞-⋃+∞,则下列选项中正确的是( )题型三:含有参数的一元二次不等式的解法 【精选例题】【例1】若关于x 的不等式()2330x m x m -++<的解集中恰有3个整数,则实数m 的取值范围为( )A .(]6,7B .[)1,0-C .[)(]1,06,7-⋃D .[]1,7-【例2】解关于x 的不等式: ()22110ax a x a -+++<.【例3】已知条件p :2780x x --<,条件q :22210x x m -+-≤(其中0m >),若p 是q 的必要而不充分条件,则实数m 的取值范围为( ) A .()0,8 B .()0,∞+ C .()0,2 D .[]28,【例4】解关于x 的不等式()222R ax x ax a ≥-∈-.【例5】设函数()()()221,R f x ax a x b a b =-++∈.(1)若不等式()0f x <的解集为()1,2,求a ,b 的值;(2)若4b =,求不等式()0f x >的解集.【跟踪训练】1.已知关于x 的不等式()()230a b x a b +-<+的解集为34x x ⎧⎫>-⎨⎬⎩⎭.(1)写出a 和b 满足的关系;(2)解关于x 的不等式()()()222120a b x a b x a ---->++.2.解关于x 的不等式:220ax x a -+<.3.设()212y ax a x a =+-+-.(1)命题:p x ∃∈R ,使得2y <-成立.若p 为假命题,求实数a 的取值范围;(2)解关于x 的不等式()()2121ax a x a a a +-+-<-∈R .题型四:不等式的恒成立问题 【精选例题】【例1】“31m -<<”是“不等式()()21110m x m x -+--<对任意的x ∈R 恒成立”的( )条件A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【例3】已知命题p :“R x ∃∈,210x ax -+<”为假命题,则实数a 的取值范围为( ). A .(],2-∞B .()2,2-C .()(),22,∞∞--⋃+D .[]22-,【例4】不等式()()2242120a x a x -+--<的解集为R ,则实数a 的取值范围是( )A .[)1,2-B .(]1,2-C .()2,1-D .[]1,2-【例5】已知a >b ,关于x 的不等式220ax x b ++≥对于一切实数x 恒成立,又存在实数0x ,使得20020ax x b ++=成立,则22a b a b+-最小值为_________.【跟踪训练】1.已知不等式2440mx mx +-<对任意实数x 恒成立,则m 的取值范围是( )2.若不等式22253x x a a -+≥-对任意实数x 恒成立,则实数a 的取值范围为( )A .[]1,4-B .()[),25,-∞-⋃+∞C .()[),14,∞∞--⋃+D .[]2,5-4.(多选题)下列条件中,为 “关于x 的不等式210mx mx -+>对R x ∀∈恒成立”的充分不必要条件的有( ) A .04m ≤< B .02m << C .14m << D .16m -<<5.已知命题“R x ∀∈,214(2)04x a x +-+>”是假命题,则实数a 的取值范围为( ) A .(][),04,-∞+∞ B .[]0,4 C .[)4,+∞ D .()0,47.若对任意R x ∈,2222224x ax bx c x x +≤++≤-+ 恒成立,则ab 的最大值为_________.。

初中数学_二次函数的图象与一元二次方程教学设计学情分析教材分析课后反思

初中数学_二次函数的图象与一元二次方程教学设计学情分析教材分析课后反思

初中数学_二次函数的图象与一元二次方程教学设计学情分析教材分析课后反思《二次函数与一元二次方程》教学设计【课题】九年级下册5.6《二次函数与一元二次方程》(第1课时)一、教材分析本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。

教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系。

这一节是反映函数与方程这两个重要数学概念之间的联系的内容。

二、学情分析1、知识掌握上,学生对二次函数的图象及其性质和一元二次方程的解的情况都有所了解,特别的,八年级时学生已经了解到了一次函数和一元一次方程的解之间的关系。

因而,对于本节所要学习的二次函数与一元二次方程之间的关系利用类比的方法让学生在自学的基础上进行交流合作学习应该不是难题。

2、学生学习本节课的知识障碍就是建立二次函数与一元二次方程之间的联系,渗透数形结合的思想。

三、教学目标知识与技能:1.探索二次函数y=ax2+bx+c及其图象与一元二次方程ax2+bx+c=0的关系2.能根据二次函数y=ax2+bx+c的系数,判断它的图象与x轴的位置关系3.应用二次函数和一元二次方程的关系解决相关问题过程与方法:经历探索二次函数y=ax2+bx+c及其图象与一元二次方程ax2+bx+c=0的关系的过程,培养学生分析问题,解决问题的能力。

情感态度和价值观:使学生在数学应用增强自信心,在合作学习中增强集体责任感,加强学生数形结合思想的应用。

四、教学重难点重点:应用二次函数和一元二次方程的关系解决相关问题难点:理解二次函数y=ax2+bx+c及其图象与一元二次方程ax2+bx+c=0根的关系五、教法学法教法:类比探究法、归纳总结法、讲练结合法学法:合作探究法、小组讨论法六、教学内容与过程(一)、立体式复习检测(1)一次函数y=-3x+6的图象与x轴的交点(,)一元一次方程-3x+6=0的根为________(2)不解方程,判断方程x2-3x+3=0根的情况是________(3)解方程: x2-2x-3=0(4)(中考·白银)若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是________【师生活动】:同桌提问判别式△与方程实数根的关系,然后请4位同学分别板书以上4个题目,其他同学在导学案完成以上题目。

二次函数与一元二次方程不等式(第1课时)(教学设计)高一数学系列(人教A版2019)

二次函数与一元二次方程不等式(第1课时)(教学设计)高一数学系列(人教A版2019)

学生在小学和初中阶段已经学习了一元一次不等式的解法,在知识上已经具备了一定的知识经验和基础,在能力上初步具备了一定的解决问题的能力,同时这部分知识之前学过的二次函数也有密切的联系,因此学生对一元二次不等式的解法有一定的兴趣和积极性,但是学生能力有限,真正掌握还有一定的难度。

教学时,可以利用具体的一元二次不等式,让学生观察二次函数的图象,获得对解一元二次不等式方法的认识,培养学生直观想象的核心素养。

通过定义辨析,引导学生熟练掌握一元二次不等式特征,提高学生数学抽象的核心素养.】(1)二次函数的零点不是点,是二次函数与x轴交点的横坐标.(2)一元二次方程的根是相应一元二次函数的零点.当x <2 或x >10时,图像在x 轴上方,y >0,即x 2-12x+20>0;当2<x <10时,y <0,即x 2-12x+20<0;故一元二次不等式x 2-12x +20<0的解集是{x|2<x <10}.求解一元二次不等式x 2-12x +20<0解集的方法,是否可以推广到一般的一元二次不等式?一元二次方程、一元二次不等式与二次函数的关系:注意:(1)对于一元二次不等式的二次项系数为正且存在两个根的情况下,其解集的常用口诀是:大于取两边,小于取中间.(2)对于二次项系数是负数(即a <0)的不等式,可以先把二次项系数化为正数,再对照上述情况求解.一元二次不等式的解法】先求出对应一元二次方程的解,再结合对应的二次函数的图象写出不等式的解集.21225600.2 3.56x x x x y x x -+=∆>===-+解:对于方程,因为,所以它有两个实数根解得,画出二次函数的图象,如下图,256{|}023.x x x x x -+><>结合图象得不等式的解集为,或2122961001.3961x x x x y x x -+=∆====-+解:对于方程,因为,所以它有两个相等的实数根,解得画出二次函数的图象,如下图,29610{|}1.3x x x x -+>≠结合图象得不等式的解集为22230.80230.x x x x -+<∆=-<∴-+=解:不等式可化为,方程无实数根223y x x =-+∅画出二次函数因此,原不等式的解集为。

高中数学必修一 (教案)二次函数与一元二次方程、不等式

高中数学必修一 (教案)二次函数与一元二次方程、不等式

二次函数与一元二次方程、不等式【教材分析】三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。

【教学目标】课程目标1.通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。

2.使学生能够运用二次函数及其图像,性质解决实际问题。

3.渗透数形结合思想,进一步培养学生综合解题能力。

数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。

【教学重难点】重点:一元二次函数与一元二次方程的关系,利用二次函数图像求一元二次方程的实数根和不等式的解集;难点:一元二次方程根的情况与二次函数图像与x轴位置关系的联系,数形结合思想的运用。

【教学准备】【教学方法】以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

【教学过程】一、情景导入在初中,我们从一次函数的角度看一元一次方程、一元一次不等式,发现了三者之间的内在联系,利用这种联系可以更好地解决相关问题。

类似地,能否从二次函数的观点看一元二次方程和一元二次不等式,进而得到一元二次不等式的求解方法呢?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察。

研探。

二、预习课本,引入新课阅读课本,思考并完成以下问题1.二次函数与一元二次方程、不等式的解的对应关系。

2.解一元二次不等方的步骤?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1.一元二次不等式与相应的一元二次函数及一元二次方程的关系如下表:判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y=ax 2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2没有实数根ax2+bx+c>0(a>0)的解集{x|x>x2或x<x1}{x|x≠−2ba}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅ab2-=2.一元二次不等式ax2+bx+c>0(a>0)的求解的算法。

6.3 二次函数与一元二次方程(一)导学案

6.3 二次函数与一元二次方程(一)导学案

6.3 二次函数与一元二次方程(一)学习目标:通过本课的学习,掌握二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根的关系,感受数形结合的数学思想。

学习过程:一、知识回顾1、怎样利用根的判别式来判定一元二次方程根的情况?2、不解方程,判别根的情况。

⑴x2-3x+1=0 ⑵-x2+x-1=0 ⑶4y2+4y+1=0二、探索活动1、(1)二次函数y=x2-2x-3与一元二次方程x2―2x―3=0有怎样的关系?(P21) (2)结论:)2、观察二次函数y=x2-6x+9的图象和二次函数y=x2-2x+3的图象。

(P21(1)观察两个函数图象,它们与x轴的公共点个数有几个?(2)利用图象写出一元二次方程x2-6x+9=0和x2-2x+3=0的根的情况。

3、试总结二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根的关系:三、典型例题1、判断下列函数的图象与x轴是否有公共点,并说明理由。

(1)y=x2-x (2)y=-x2+6x-9 (3)y=3x2+6x+112、已知二次函数y=kx2-x-1的图象和x轴有交点,求k的取值范围。

四、巩固练习1、不画图象,你能说出函数y=-x2+x+6的图象与x轴的交点坐标吗?2、关于x的一元二次方程x2―x―n=0没有实数根,则抛物线y=x2-x-n顶点在哪一个象限内?五、小结:这节课我学会了________________________________________巩固练习1、二次函数y=x2-3x的图象与x轴两个交点的坐标是()A. (0, 0), (0, 3)B. (0, 0),(0,-3)C.(0,0),(-3,0)D.(0,0),(3,0)2、已知二次函数y=x2-2ax+(b+c)2,其中a、b、c是△ABC的边长,则函数图象与x轴()A.无交点B.有一个交点C.有两个交点D.交点个数无法确定3、已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=-1,与x轴的一个交点为(x1,0),且0<x1<1,下列结论:①9a-3b+c>0;②b<0;③a-2b+4c<0。

6.3 二次函数和一元二次方程--学案(1)

6.3 二次函数和一元二次方程--学案(1)

6.3 二次函数和一元二次方程--学案(1)课型:新授课 主备:谢辉 审核: 孙祥 时间:2012-1-26 学生姓名__________ 一、学习目标:1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系;2.理解二次函数的图像与x 轴公共点的个数与一元二次方程的根的个数之间的对应关系。

二、学习重点与难点:学习重点是:体会方程与函数之间的联系;理解二次函数的图像与x 轴公共点的个数与一元二次方程的根的个数之间的对应关系。

学习难点是:理解一元二次方程的根就是二次函数与x 轴交点的横坐标。

三、自学质疑与合作探究:1.自学指导:本节课的学习和八(上)第五章中“三个一次之间的关系”,建议你在学习本节时可以“类.比.”进行学习! 2.思考题:问题1:你能快速地求出一元二次方程2230x x --=的根吗?问题2:请你画出函数223y x x =--图象,研究图象上是否有一些特殊的点和一元二次方程2230x x --=的根之间有某种联系,你有什么发现吗?(勤于思考,我的水平将不断提升!) 问题3:研究一元二次方程2230x x -+=的根的个数及其判别式与二次函数223y x x =-+的图像和x 轴的交点个数,你能得到什么结论?问题4:你能结合问题2、3,得到一般化的结论吗?结合课本P23内容进行合作探究:一元二次方程20(0)ax bx c a ++=≠的根的个数与二次函数2(0)y ax bx c a =++≠的图像和x 轴的位置关系之间有什么联系? 预习检测:1.求下列二次函数的图象与x 轴交点坐标,并作草图验证.(1)y=x 2-2x ; (2)y=x 2-2x -3.2.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则方程20(0)ax bx c a ++=> 的根为: 。

二次函数的图象和性质—巩固案(1)A 组:1.判断下列各抛物线是否与x 轴相交,如果相交,求出交点的坐标。

第04课二次函数与一元二次方程不等式(课件)

第04课二次函数与一元二次方程不等式(课件)

A.-2<a≤2 C.a<-2 或 a≥2
B.-2≤a≤2 D.a≤-2 或 a≥2
【解析】不等式(a-2)x2+2(a-2)x-4<0 对一切 x∈R 恒成立,当 a-2=0,即 a=2 时,-4<0 恒成立,满足题意;

a-2≠0
时,要使不等式恒成立,需
a-2<0, Δ<0,
即有
a<2, 4a-22+16a-2<0,
故选 C.
【反思】注意二次项的系数是正还是负.
一、【考点逐点突破】
【考点 7】含参数的一元二次不等式解法
【典例】解关于 x 的不等式 x2-ax+1≤0.
一、【考点逐点突破】
【考点 7】含参数的一元二次不等式解法 【解析】由题意知,Δ=a2-4,①当 a2-4>0,即 a>2 或 a<-2 时,方程 x2-ax+1=0 的两根为 x=a± a2-4,

x∈[1,3]上恒成立.有以下两种方法:
4

g(x)=m
x-1 2
2+3m-6,x∈[1,3].当
m>0
时,g(x)在[1,3]上单调递增,
4
所以
g(x)max=g(3),即
7m-6<0,所以
m<6,所以 7
0<m<6;当 7
m=0
时,-6<0
恒成立;当
m<0
时,g(x)在[1,3]上
单调递减,所以
| C.不等式 cx2-bx+a<0 的解集为 x
x<-1或 x>1 43
D.a+b+c>0
一、【考点逐点突破】
【考点 9】三个“二次”间的关系 【解析】关于 x 的不等式 ax2+bx+c≥0 的解集为(-∞,-3]∪[4,+∞),

二次函数与一元二次方程 优秀教学设计(教案)

二次函数与一元二次方程  优秀教学设计(教案)

二次函数与一元二次方程【教学目标】1.知识与技能:理解二次函数与一元二次方程的关系,会判断抛物线与x轴的交点个数、掌握方程与函数间的转化。

2.过程与方法:逐步探索二次函数与一元二次方程之间的关系,函数图象与x轴的交点情况。

由特殊到一般,提高学生的分析、探索、归纳能力。

3.情感态度:培养合作的良好意识和大胆探索数学知识间联系的好习惯,体会到二次函数广泛意义。

【教学重点】探索一次函数图象与一元二次方程的关系,理解抛物线与x轴交点情况。

【教学难点】函数→方程→x轴交点,三者之间的关系的理解与运用。

【教学过程】一、问题导入。

如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线。

如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系。

考虑以下问题:(1)小球的飞行高度能否达到15m?如果能,需要多少飞行时间?(2)小球的飞行高度能否达到20m?如果能,需要多少飞行时间?(3)小球的飞行高度能否达到20.5m?为什么?(4)小球从飞出到落地需要多少时间?2205h t t=-二、探索新知。

1.从上面的问题可以看出,二次函数与一元二次方程有如下关系:函数,当函数值y为某一确定值m时,对应自变量x的值就是方程的根。

特别是y=0时,对应的自变量x的值就是方程的根。

以上关系,反过来也成立。

利用以上关系,可以解决两个方面问题。

其一,当y为某一确定值时,可通过解方程来求出相应的自变量x值;其二,可以利用函数图象来找出相应方程的根。

2.二次函数的图象与x轴的交点情况同一元二次方程的根的情况之间的关系。

观察图中的抛物线与x轴的交点情况,你能得出相应方程的根吗?方程的根是,。

方程的根是。

方程无实数根。

3.归纳总结。

一般地,从二次函数的图象可得如下结论:如果抛物线与x轴有公共点,公共点的横坐标是,那么当时,函数值是0,因此是方程的一个根。

二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。

二次函数与一元二次方程、不等式(第一课时)-课件全文

二次函数与一元二次方程、不等式(第一课时)-课件全文
目录
新知理解
Δ>0
Δ=0
Δ<0
y=ax2+bx+c(a>0)的图象
ax2+bx+c=0(a>0)的根
有两个不相等的实数 有两个相等的实数
根 x1,x2(x1<x2)
根 x1=x2=-2ba
没有实数根
ax2+bx+c>0(a>0)的解集 {x|x<x1 或 x>x2}
xx≠-2ba
R
ax2+bx+c<0(a>0)的解集
计算判别式=(-12)2-4×1×20 = 64 >0,
求根公式:a1=12-2
64 =
2,a2
12+ =2
64 =
10,
所以边界值为:a1= 2,a2= 10,
所以不等式的解集为{a│2 <a < 10}.
答:这个矩形苗圃的边长 a 取大于 2 且小于 10 的数时,苗圃的
面积会大于 20 平方关于 x 的一元二次不等式: (1)x2-5x + 6 > 0; (2)2x-x2 +3 <0. 解(2)整理为一般式 x2-2x-3>0, 法二:设二次函数 y=x2 -2x-3, 其图象开口向上, 解一元二次方程 x2-2x-3=0, 得到二次函数的零点:x1=-1,x2=3, 看函数的图象,得到不等式的解集为 {x│x>3 或 x<-1}
{x|x1<x<x2}


目录
巩固与练习 例 2 求不等式 9x2-6x+1>0 的解集.
解:
对于方程 9x2-6x+1=0,因为=0,
所以它有两个相等的实数根,解得

二次函数与一元二次方程及解决实际问题(解析版)

二次函数与一元二次方程及解决实际问题(解析版)

第5天二次函数与一元二次方程及解决实际问题【知识回顾】1.抛物线与x轴的交点求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c =0,解关于x的一元二次方程即可求得交点横坐标.(1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.(2)二次函数的交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).2.图象法求一元二次方程的近似根利用二次函数图象求一元二次方程的近似根的步骤是:(1)作出函数的图象,并由图象确定方程的解的个数;(2)由图象与y=h的交点位置确定交点横坐标的范围;1(3)观察图象求得方程的根(由于作图或观察存在误差,由图象求得的根一般是近似的).3.根据实际问题列二次函数关系式根据实际问题确定二次函数关系式关键是读懂题意,建立二次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.△描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象后再判断是二次函数还是其他函数,再利用待定系数法求解相关的问题.△函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式.4.二次函数的应用(1)利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.(2)几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.(3)构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.23一.选择题(共10小题)1.(2019·北京市十一学校月考)已知二次函数23y x x m =-+(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程230x x m -+=的两实数根分别是( )A .121,1x x ==-B .121,2x x ==C .121,0x x ==D .121,3x x ==【答案】B【解析】方法一:△二次函数23y x x m =-+图象与x 轴的一个交点为(1,0),△013m =-+,解得2m =.△一元二次方程为2320x x -+=,即(1)(2)0x x --=,解得121,2x x ==.故选B .方法二:△二次函数图象与x 轴的交点横坐标即为对应一元二次方程的实数根, △二次函数图象的对称轴是直线32x =,△二次函数的图象与x 轴的另一个交点为(2,0),4 △关于x 的一元二次方程230x x m -+=的两实数根分别是121,2x x ==.故选B .2.(2019·广东郁南月考)已知二次函数y 1=ax 2+bx+c (a≠0)与一次函数y 2=kx+m (k≠0)的图象交于点A (﹣2,4),B (8,2),如图所示,则能使y 1>y 2成立的x 的取值范围是( )A .x <﹣2B .x >8C .﹣2<x <8D .x <﹣2或x >8【答案】D【解析】 △A (﹣2,4),B (8,2),△能使y 1>y 2成立的x 的取值范围是x <﹣2或x >8.故答案选D .3.(2020·天津南开期末)抛物线y =x 2﹣5x +6与x 轴的交点情况是( )A .有两个交点B .只有一个交点C .没有交点D .无法判断【答案】A【解析】△y=x2﹣5x+6=(x﹣2)(x﹣3),△当y=0时,x=2或x=3,即抛物线y=x2﹣5x+6与x轴的交点坐标为(2,0),(3,0),故抛物线y=x2﹣5x+6与x轴有两个交点,故选A.4.(2020·浙江杭州一模)已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程23=0 2ax bx c+++的根的情况是()A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根【答案】D【解析】解:函数y=ax2+bx+c向上平移32个单位得到232y ax bx c'+++=,5而y′顶点的纵坐标为﹣2+32=﹣12,故23 2y ax bx c'+++=与x轴有两个交点,且两个交点在x轴的右侧,故23=0 2ax bx c+++有两个同号不相等的实数根,故选:D.5.(2020·安徽瑶海·合肥38中月考)由下表可知方程ax2+bx+c=0(a≠0,a、b、c为常数)一个根(精确到0.01)的范围是()A.6<x<6.17B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.20【答案】C【解析】由表可以看出,当x取6.18与6.19之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.△ax2+bx+c=0的一个解x的取值范围为6.18<x<6.19.故选:C.67 6.(2020·福建厦门一中月考)二次函数y =x 2+mx ﹣n 的对称轴为x =2.若关于x 的一元二次方程x 2+mx ﹣n =0在﹣1<x <6的范围内有实数解,则n 的取值范围是( ) A .﹣4≤n <5B .n ≥﹣4C .﹣4≤n <12D .5<n <12 【答案】C【解析】解:△抛物线的对称轴x =-2m =2, △m =-4,则方程x 2+mx -n =0,即x 2-4x -n =0的解相当于y =x 2-4x 与直线y =n 的交点的横坐标, △方程x 2+mx -n =0在-1<x <6的范围内有实数解,△当x =-1时,y =1+4=5,当x =6时,y =36-24=12,又△y =x 2-4x =(x -2)2-4,△在-1<x <6的范围,-4≤y <12,△n 的取值范围是-4≤n <12,故选:C .7.(2020·安徽合肥三模)若无论x 取何值,代数式()()13x m x m +--的值恒为非负数,则m 的值为( )A .0B .12C .13D .1【答案】B【解析】解:(x+1−3m)(x−m)=x2+(1−4m)x+3m2−m,△无论x取何值,代数式(x+1−3m)(x−m)的值恒为非负数,△△=(1−4m)2−4(3m2−m)=(1−2m)2≤0,又△(1−2m)2≥0,△1−2m=0,△m=12.故选:B.8.(2020·山东岱岳二模)将抛物线y=﹣13x2﹣13x+2(x≤0)沿y轴对折,得到如图所示的“双峰”图象.若直线y=x+b与该“双峰”图象有三个交点时,b的值为()A.2,73B.2C.73D.0【答案】A89【解析】将抛物线y =﹣13x 2﹣13x +2(x ≤0)沿y 轴对折,得到抛物线为y =﹣13x 2+13x +2(x >0), 由抛物线y =﹣13x 2﹣13x +2(x ≤0)可知抛物线与y 轴的交点为(0,2), 把点(0,2)代入y =x +b 求得b =2, 由﹣13x 2+13x +2=x +b 整理得x 2+2x +3b ﹣6=0, 当△=4﹣4(3b ﹣6)=0,即b =73时,直线y =x +b 与该“双峰”图象有三个交点, 由图象可知若直线y =x +b 与该“双峰”图象有三个交点时,b 的值是2和73, 故选:A .9.(2020·全国)从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的函数关系如图所示.下列结论:△小球在空中经过的路程是40m ;△小球抛出3秒后,速度越来越快;△小球抛出3秒时速度为0;△小球的高度30h m =时, 1.5t s =.其中正确的是( )10A .△△B .△△C .△△△D .△△ 【答案】D【解析】△由图象知小球在空中达到的最大高度是40m ;故△错误; △小球抛出3秒后,速度越来越快;故△正确;△小球抛出3秒时达到最高点即速度为0;故△正确; △设函数解析式为:()2340h a t =-+,把()0,0O 代入得()200340a =-+,解得409a =-,△函数解析式为()2403409h t =--+,把30h =代入解析式得,()240303409t =--+,解得: 4.5t =或 1.5t =,△小球的高度30h m =时, 1.5t s =或4.5s ,故△错误; 故选D .10.(2020·全国)如图,两条抛物线y1=-12x2+1,y2=-12x2-1与分别经过点(-2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为()A.8B.6C.10D.4【答案】A【解析】如图,过,y2=-12x2-1的顶点(0,-1)作平行于x轴的直线与y1=-12x2+1围成的阴影,同过点(0,-3)作平行于x轴的直线与y2=-12x2-1围成的图形形状相同,故把阴影部分向下平移2个单位即可拼成一个矩形,因此矩形的面积为4×2=8.故选A二.填空题(共5小题)11.(2019·北京市十一学校月考)二次函数y1=ax2+bx+c与一次函数y2=mx+n的图象如图所示,则满足ax2+bx+c≥mx+n的x的取值范围是_____.11【答案】﹣3≤x≤0.【解析】解:由图可知,-3<x<0时二次函数图象在一次函数图象上方,所以,满足ax2+bx+c≥mx+n的x的取值范围是﹣3≤x≤0.故答案为:﹣3≤x≤012.(2020·北京市昌平区第四中学期中)二次函数y=﹣x2+bx+c的部分图象如图所示,由图象可知,不等式﹣x2+bx+c<0的解集为______.【答案】x<−1或x>5.【解析】抛物线的对称轴为直线x=2,而抛物线与x轴的一个交点坐标为(5,0),所以抛物线与x轴的另一个交点坐标为(−1,0),1213所以不等式−x 2+bx +c <0的解集为x <−1或x >5.故答案为x <−1或x >5.13.(2020·四川南充月考)已知抛物线21y ax x =--与x 轴交于A ,B 两点,顶点为C ,如果ABC ∆为直角三角形,则a =________. 【答案】34【解析】出这两个距离,列方程求解,检验得出答案.【详解】解:△抛物线y=ax 2-x -1与x 轴交于A ,B 两点,△b 2-4ac >0,即1+4a >0,也就是14a >- △抛物线y=ax 2-x -1与x轴交点的横坐标为x =414a y a --=, △AB 的距离为|x 1-x 2|= ,顶点C 到x 轴距离CD 为414a a --, △当△ABC 为直角三角形,根据对称性可知它是一个等腰直角三角形,此时AB=2CD ,4124a a--=⨯14两边平方得:224144a a --⎛⎫=⨯ ⎪⎝⎭⎝⎭ 整理得:16a 2-8a -3=0 解得:1231,44a a ==- △14a >- △34a = 14.(2020·湖北武汉月考)二次函数y =ax 2+bx+c 的图象如图所示,下列结论:△ab >0;△a+b ﹣1=0;△a >1;△关于x 的一元二次方程ax 2+bx+c =0的一个根为1,另一个根为﹣1a.其中正确结论的序号是_____.【答案】△△△【解析】解:△由二次函数的图象开口向上可得a >0,对称轴在y 轴的右侧,b <0,△ab <0,故△错误;△由图象可知抛物线与x 轴的交点为(1,0),与y 轴的交点为(0,﹣1),△c=﹣1,△a+b﹣1=0,故△正确;△△a+b﹣1=0,△a﹣1=﹣b,△b<0,△a﹣1>0,△a>1,故△正确;△△抛物线与y轴的交点为(0,﹣1),△抛物线为y=ax2+bx﹣1,△抛物线与x轴的交点为(1,0),△ax2+bx﹣1=0的一个根为1,根据根与系数的关系,另一个根为﹣1a,故△正确;故答案为△△△.15.(2020·全国)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.【答案】-41516【解析】建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为()0,2.通过以上条件可设顶点式22y ax =+,其中a 可通过代入A 点坐标()2,0.- 代入到抛物线解析式得出:0.5a =-,所以抛物线解析式为20.52y x =-+,当水面下降2米,通过抛物线在图上的观察可转化为:当2y =-时,对应的抛物线上两点之间的距离,也就是直线2y =-与抛物线相交的两点之间的距离,可以通过把2y =-代入抛物线解析式得出: 220.52x -=-+,解得:x =±17所以水面宽度增加到4.故答案是:4.三.解析题(共5小题)16.(2020·福建省连江第三中学月考)已知抛物线y =x 2-2x -8与x 轴的两个交点为A ,B (A 在B 的左侧),与y 轴交于点C .(1)直接写出点A ,B ,C 的坐标;(2)求△ABC 的面积.【答案】(1)A (-2,0),B (4,0),C (0,-8);(2)S △ABC =24【解析】(1)在y =x 2-2x -8,令0x =,可得8y =-,即C 点坐标为(0,8)C -令0y =,得2280x x =-- 解得122,4x x =-=△A 在B 的左侧△(2,0),(4,0)A B -(2)△(2,0),(4,0),(0,8)A B C --△6,8AB OC ==18S △ABC =12AB OC ⋅=1682⨯⨯=24 17.(2020·福建省连江第三中学月考)已知抛物线y =-x 2+4x -3.(1)用配方法求出它的顶点坐标和对称轴;(2)若抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.【答案】(1)(2,1),直线x=2;(2)2【解析】解:(1)△y=-x 2+4x -3=-(x 2-4x+4)+1=-(x -2)2+1,△抛物线的顶点坐标为(2,1)、对称轴为直线x=2;(2)令y=0得-x 2+4x -3=0,解得:x=1或x=3,则抛物线与x 轴的交点坐标为(1,0)和(3,0),△线段AB 的长为2.18.(2020·全国)如图,抛物线2y x bx c =++与x 轴交于A ,B 两点,其中点A 的坐标为(3,0)-,与y 轴交于点C ,点(2,3)D --在抛物线上.19(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P ,求出PA PD +的最小值;(3)若抛物线上有一动点Q ,使ABQ △的面积为6,求点Q 的坐标.【答案】(1)223y x x =+-;(2)3)点Q 的坐标为(0,3)-或(2,3)--或(1-+或(1--【解析】解:(1)△抛物线2y x bx c =++经过点(3,0),(2,3)A D ---,△930,423,b c b c -+=⎧⎨-+=-⎩解得2,3,b c =⎧⎨=-⎩△抛物线的解析式为223y x x =+-.(2)由(1)得抛物线223y x x =+-的对称轴为直线1,(0,3)x C =--.△(2,3)D --,△C ,D 关于抛物线的对称轴对称,连接AC ,可知,当点P 为直线AC与20对称轴的交点时,PA PD +取得最小值,△最小值为AC ==(3)设点()2,23Q m m m +-, 令2230y x x =+-=,得3x =-或1,△点B 的坐标为(1,0), △4AB =.△6QAB S =, △2142362m m ⨯⨯+-=, △2260m m +-=或220m m +=,解得:1m =-+1--或0或2-,△点Q 的坐标为(0,3)-或(2,3)--或(1-+或(1--.19.(2020·山东日照·中考真题)如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD ,为美化环境,用总长为100m 的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE =3BE ;(2)在(1)的条件下,设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.21【答案】(1)见解析;(2)2610040053⎛⎫=-+<< ⎪⎝⎭y x x x ,见解析. 【解析】解:(1)证明:△矩形MEFN 与矩形EBCF 面积相等,△ME =BE ,AM =GH .△四块矩形花圃的面积相等,即S 矩形AMDND =2S 矩形MEFN ,△AM =2ME ,△AE =3BE ;(2)△篱笆总长为100m ,△2AB +GH +3BC =100, 即1231002AB AB BC ++=, △6405AB BC =-设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2,22 则266404055y BC AB x x x x ⎛⎫=⋅=-=-+ ⎪⎝⎭, △6405AB BC =-, △402035EB x =->, 解得1003x <, △2610040053⎛⎫=-+<< ⎪⎝⎭y x x x . 20.(2020·云南一模)大学毕业生小李自主创业,开了一家小商品超市.已知超市中某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价必须低于34元,设每件商品的售价上涨x 元(x 为非负整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式,并直接写出自变量x 的取值范围;(2)利用函数关系式求出每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?(3)利用函数关系式求出每件商品的售价定为多少元时,每个月的利润恰好是1920元?这时每件商品的利润率是多少?【答案】(1)y=80x+1800x 4,≤<(0且x 为整数);(2)每件商品的售价为33元时,商品的利润最大为1950元;(3)售价为32元时,利润为1920元.每件商品的利润率是60%.23【解析】(1)2y=3020+x)(180-10x)=-10x =80x+18000x 4,x -≤<((且为整数);(2)()2y 1041960x =--+,100-<,当x 4<时y 随x 的增大而增大,由0x 4≤<, 且x 为整数可得当x 3=时,y =1950最大答:每件商品的售价为33元时,商品的利润最大为1950元; (3)2192010x 80x 1800=-++,2x 8x 120-+=,即()2(6=0x x )-- 解得x 2=或x 6=,0x 4≤<,x 2∴=,()322020100%60%-÷⨯=∴售价为32元时,利润为1920元.每件商品的利润率是60%.。

43.二次函数与一元二次方程的关系(一)

43.二次函数与一元二次方程的关系(一)
二次函数与一元二次方程的关系(一)
问题探究
从上面发现,二次函数y=ax2+bx+c何时为一元二次方程?
一般地,当y取常数(定值)时,二次函数为一元二次方程.
如:y=5时,则5=ax2+bx+c就是一个一元二次方程.
所以二次函数与一元二次方程联系密切 已知二次函数y = -x2+4x的值为3,求自变量x的值,可以看作解一元二 次方程-x2+4x=3(即x2-4x+3=0). 反过来,解方程x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值 为0,求自变量x的值. 既然联系密切,我们可以运用二次函数y=ax2+bx+c深入讨论 一元二次方程ax2+bx+c=0
0个 1个
2个 y = x2-x+1
3
-2, 1
y = x2+x-2
1
知识梳理
以上是运用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0
反过来,由一元二次方程根的情况,也可以确定相应的二次函数的图象
与x轴的位置关系.
二次函数y=ax2+bx+c的图象与x轴交点的坐标与 一元ห้องสมุดไป่ตู้次方程ax2+bx+c=0根的关系
问题2.下列二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是 多少?当x取公共点的横坐标时,函数值是多少?由此,你能得出相应的一 元二次方程的根吗?
(1)y=x2+x-2;
(2)y=x2-6x+9;
(3)y=x2-x+1.
观察图象,完成下表 二次函数 y = x2-x+1 y = x2-6x+9 y = x2+x-2 抛物线与x轴 公共点 公共点个数 横坐标 当x取公共点横坐标 相应的一元二次方 程的根 时,函数值是多少? x2-x+1=0没有实数根 0 x2-6x+9=0,x1=x2=3 x2+x-2=0,x1=-2,x2=1 0 y = x2-6x+9

二次函数与一元二次方程、不等式课件年高一上学期数学人教A版(2019)必修第一册

二次函数与一元二次方程、不等式课件年高一上学期数学人教A版(2019)必修第一册

(2)计算判别式△的值如果△≥0,求方程ax²+bx+c=0的根;如果△≤0,说明方程
ax²+bx+c=0 无实数根。
(3)画出二次函数y=ax²+bx+c 的图象等式x²-5x+6>0的解集
分析:
因为方程x²-5x+6=0的根是函数y=x²-5x+6的零点,
位于x轴上方,此时 y>0,即 x²-12x + 20>0;当2<x<10 时
,函数图象位于轴下方,此时 y<0,即x²-12x + 20<0。所以
,一元二次不等式x²-12x + 20<0的解集是
{x|2<x<10}
因为{x|2<x<10}含于{x|0<x<12},因此当围成的矩形的一
条边长x满足2<x<10 时,围成的形区域的面积大于20m².
花卉。若栅栏的长度是 24 m,围成的形区域的面积
在初中,我们从一次函数的角度
要大于20 m²,则这个矩形的边长为多少米?
看一元一次方程、一元一次不等式,
发现了三者之间的内在联系,利用这
种联系可以更好地解决相关问题,对
设这个矩形的一条边长为xm,则另一条边长为
(12一x)m,由题意,得
于二次函数、一元二次方程和一元二
所以先求出x²-5x+6=0 的根,再根据函数图象得到x²5x+6>0的解集。
解:
对于方程x²-5x+6=0,因为 △>0,所以它有两个
实数根。解得x1=2,x2=3。
画出二次函数 y=x²-5x+6 的图象(如图),结合图

二次函数与一元二次方程、不等式【八大题型】(解析版)-2025年新高考数学一轮复习

二次函数与一元二次方程、不等式【八大题型】(解析版)-2025年新高考数学一轮复习

二次函数与一元二次不等式【八大题型】【新高考专用】【题型1不含参一元二次不等式的解法】【题型2含参一元二次不等式的解法】【题型3由一元二次不等式的解确定参数】【题型4其他不等式的解法】【题型5一元二次不等式根的分布问题】【题型6二次函数的单调性、最值问题】【题型7一元二次不等式恒成立问题】【题型8一元二次不等式有解问题】1、二次函数与一元二次方程、不等式考点要求真题统计考情分析(1)会从实际情景中抽象出一元二次不等式(2)掌握三个“二次”的关系,会解一元二次不等式(3)了解分式、高次、绝对值不等式的解法2020年I 卷:第1题,5分2023年新高考I 卷:第1题,5分一元二次不等式是高考数学的重要内容.从近几年高考情况来看,三个“二次”的关系是必考内容,单独考查的频率很低,偶尔作为已知条件的一部分出现在其他考点的题目中;此外,“含参不等式恒成立与能成立问题”也是常考的热点内容,这类问题把不等式、函数、三角、几何等知识有机地结合起来,其以覆盖知识点多、综合性强、解法灵活等特点备受高考命题者的青睐.【知识点1一元二次不等式】1.一元二次不等式的解法(1)解不含参数的一元二次不等式的一般步骤:①通过对不等式变形,使二次项系数大于零;②计算对应方程的判别式;③求出相应的一元二次方程的根,或根据判别式说明方程没有实根;④根据函数图象与x 轴的相关位置写出不等式的解集.(2)解含参数的一元二次不等式的一般步骤:①若二次项系数含有参数,则需对二次项系数大于0、等于0与小于0进行讨论;②若求对应一元二次方程的根需用公式,则应对判别式Δ进行讨论;③若求出的根中含有参数,则应对两根的大小进行讨论.2.分式、高次、绝对值不等式的解法(1)解分式不等式的一般步骤:①对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意分母不为零.②对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解.(2)解高次不等式的一般步骤:高次不等式的解法:如果将分式不等式转化为正式不等式后,未知数的次数大于2,一般采用“穿针引线法”,步骤如下:①标准化;②分解因式;③求根;④穿线;⑤得解集.(3)解绝对值不等式的一般步骤:对于绝对值不等式,可以分类讨论然后去括号求解;还可以借助数轴来求解.3.一元二次不等式恒成立、存在性问题不等式对任意实数x恒成立,就是不等式的解集为R,对于一元二次不等式ax2+bx+c>0,它的解集为R的条件为a>0,Δ=b2-4ac<0;一元二次不等式ax2+bx+c≥0,它的解集为R的条件为a>0,Δ=b2-4ac≤0;一元二次不等式ax2+bx+c>0的解集为∅的条件为a<0,Δ≤0.【方法技巧与总结】1.已知关于x的一元二次不等式ax2+bx+c>0的解集为R,则一定满足a>0Δ<0 ;2.已知关于x的一元二次不等式ax2+bx+c>0的解集为φ,则一定满足a<0Δ≤0 ;3.已知关于x的一元二次不等式ax2+bx+c<0的解集为R,则一定满足a<0Δ<0 ;4.已知关于x的一元二次不等式ax2+bx+c<0的解集为φ,则一定满足a>0Δ≤0 .【题型1不含参一元二次不等式的解法】1(2023·广东珠海·模拟预测)不等式x2+x-6<0的解集是()A.-6,1B.-1,6C.-2,3D.-3,2【解题思路】利用二次不等式的解法可得出原不等式的解集.【解答过程】由x2+x-6<0得x-2x+3<0,解得-3<x<2,故原不等式的解集为-3,2.故选:D.2(2024·天津·一模)设x∈R,则“x<0”是“x2-x>0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解题思路】解出不等式x 2-x >0后,结合充分条件与必要条件的定义即可得.【解答过程】由x 2-x >0,解得x >1或x <0,故“x <0”是“x 2-x >0”的充分不必要条件.故选:A .3(2023·湖南岳阳·模拟预测)不等式x 2-1<3x +1 的解集是()A.x ∣x <4B.x ∣-4<x <1C.x ∣-1<x <4D.x ∣x <-1 或x >4【解题思路】将不等式化简成一元二次不等式的标准形式,即可求得结果.【解答过程】由不等式x 2-1<3x +1 可得x 2-3x -4<0,即x -4 x +1 <0,可得-1<x <4,因此不等式x 2-1<3x +1 的解集是x ∣-1<x <4 .故选:C .4(2024·湖南衡阳·模拟预测)已知命题p :集合A =x x 2+x -2>0 ,命题q :集合B =x x 2+2x -3>0 ,则p 是q 的( )条件A.充分不必要 B.必要不充分 C.充分必要 D.既不充分也不必要【解题思路】解出集合A 、B ,利用集合的包含关系判断可得出结论.【解答过程】∵A =x x 2+x -2>0 =x x +2 x -1 >0 =x x <-2或x >1 ,B =x x 2+2x -3>0 =x x +3 x -1 >0 =x x <-3或x >1 ,∴B 是A 的真子集,因此,p 是q 的必要不充分条件.故选:B .【题型2含参一元二次不等式的解法】1(23-24高一上·海南海口·期中)若0<m <1,则不等式x -m x -1m<0的解集为()A.x 1m <x <mB.x x >1m 或x <mC.x x <1m或x >m D.x m <x <1m【解题思路】根据0<m <1得到1m >m ,从而写出x -m x -1m <0的解集.【解答过程】因为0<m <1,所以1m>m ,所以x -m x -1m <0的解集为x m <x <1m.故选:D .2(23-24高一上·山东·阶段练习)不等式ax 2-a +1 x +1≥0a <0 的解集为( ).A.x 1a ≤x ≤1B.x 1≤x ≤1aC.x x ≤1a 或x ≥1D.x x ≤1或x ≥1a【解题思路】由一元二次不等式的解法求解.【解答过程】原不等式可化为ax -1 x -1 ≥0即a x -1a (x -1)≥0,而a <0,故1a<1,y =ax 2-(a +1)x +1图象开口向下,故原不等式的解集为x 1a≤x ≤1 .故选:A .3(23-24高一上·河南开封·期中)关于x 的不等式ax 2-a +1 x +1<0的解集不可能是()A.∅B.x x >1C.x 1 <x <1aD.x |x <1 或x >1a【解题思路】将原不等式化为ax -1 x -1 <0,再分类讨论a 的取值情况进行求解.【解答过程】由题意,原不等式可化为ax -1 x -1 <0当a =0时,原不等式为-x +1<0,解得x >1,原不等式的解集为x x >1 ;当a >1时,0<1a <1,原不等式的解集为x 1a<x <1 ;当0<a <1时,1a >1,原不等式的解集为x 1<x <1a ;当a =1时,1a =1,原不等式的解集为∅;当a <0时,1a <1,原不等式的解集为x x <1a 或x >1 ;综上,当a =0时,原不等式的解集为x x >1 ;当a >1时,原不等式的解集为x 1a <x <1 ;当0<a <1时,原不等式的解集为x 1<x <1a;当a =1时,原不等式的解集为∅;当a <0时,原不等式的解集为x x <1a 或x >1 ;故不可能的解集为x |x <1 或x >1a .故选:D .4(23-24高一上·浙江台州·期中)不等式ax 2+bx +c >0的解集为x -3<x <2 ,则下列选项正确的为()A.a +b +c <0B.9a +3b +c >0C.不等式cx 2+ax +b >0的解集为x -13<x <12D.不等式cx 2+bx +a >0的解集为x x >12 或x <-13 【解题思路】赋值法可解AB ,消去参数可解CD .【解答过程】记f x =ax 2+bx +c ,因为1∈x -3<x <2 所以f 1 =a +b +c >0,故A 错误;因为3∉x -3<x <2所以f 3 =9a +3b +c ≤0,故B 错误;由题知-3和2是方程ax 2+bx +c =0的两个实根,所以-b a =-3+2=-1,ca=-3×2=-6且a <0解得b =a ,c =-6a故cx 2+ax +b =-a 6x 2-x -1 >0⇔6x 2-x -1>0⇔x >12或x <-13,C 错误;cx 2+bx +a =-a 6x 2-x -1 >0⇔6x 2-x -1>0⇔x >12或x <-13,D 正确;故选:D .【题型3由一元二次不等式的解确定参数】1(23-24高一下·云南·阶段练习)若关于x 的不等式x 2-m +1 x +m <0的解集中恰有三个整数,则实数m 的取值范围为()A.-3,-2 ∪4,5B.-2,-1 ∪4,5C.-3,1 ∪4,5D.-3,5【解题思路】分类讨论x 2-(m +1)x +m =0的两根大小,结合已知条件,通过求一元二次不等式即可求解.【解答过程】原不等式可化为(x -1)(x -m )<0,当m >1时,得1<x <m ,此时解集中的整数为2,3,4,则4<m ≤5;当m <1时,得m <x <1,此时解集中的整数为-2,-1,0,则-3≤m <-2,综上所述,m 的取值范围是[-3,-2)∪(4,5].故选:A .2(2024·广东·一模)已知a ,b ,c ∈R 且a ≠0,则“ax 2+bx +c >0的解集为x x ≠1 ”是“a +b +c =0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解题思路】根据一元二次不等式的解及充分条件、必要条件求解.【解答过程】由题意,二次不等式ax 2+bx +c >0的解集为x x ≠1 ,则等价于a >0-b2a =1Δ=b 2-4ac =0 ,即a =c >0,b =-2a ,即a +b +c =0,当a +b +c =0时,不能推出a =c >0,b =-2a ,所以“ax 2+bx +c >0的解集为x x ≠1 ”是“a +b +c =0”的充分不必要条件,故选:A .3(23-24高三上·云南德宏·期末)已知关于x 的不等式x 2-ax +b ≤0的解集为x 2≤x ≤3 ,则关于x 的不等式x 2-bx +a <0的解集为()A.x 2<x <3B.x 1<x <3C.x 2<x <5D.x 1<x <5【解题思路】根据一元二次不等式的解集与对应一元二次方程的根之间的关系求出a 、b 的值,再解不等式.【解答过程】根据题意,方程x 2-ax +b =0的两根为2和3,则a =2+3=5,b =2×3=6,则x 2-bx +a <0为x 2-6x +5<0,其解集为x 1<x <5 .故选:D .4(23-24高一上·黑龙江大庆·期末)关于x 的不等式x 2-ax -6a <0的解集是{x |m <x <n },且n -m ≤5,则实数a 的取值范围()A.-25,-24B.0,1C.-25,-24 ∪0,1D.-25,-24 ∪0,1【解题思路】先求出m =a -a 2+24a 2,n =a +a 2+24a2,再根据n -m ≤5,即可求出.【解答过程】关于x的不等式x2-ax-6a<0的解集是{x|m<x<n},∴m,n是方程x2-ax-6a=0的两个根,∴Δ=a2+24a>0即a(a+24)>0,∴a<-24或a>0,∴m=a-a2+24a2,n=a+a2+24a2,∵n-m≤5,∴a+a2+24a2-a-a2+24a2≤5,即a2+24a-25≤0,即(a-1)(a+25)≤0,解得-25≤a≤1,综上所述-25≤a<-24,或0<a≤1,故选:D.【题型4其他不等式的解法】1(23-24高一上·湖南长沙·期末)解下列不等式:(1)2xx-1≥4;(2)2x-3+x-2≤3.【解题思路】(1)将分式不等式化为2x-2x-1≤0且x≠1,求出解集;(2)将绝对值不等式化为分段函数,零点分段法求解绝对值不等式.【解答过程】(1)不等式2xx-1≥4,移项得2xx-1-4≥0,通分得4-2xx-1≥0,可转化为2x-2x-1≤0且x≠1,解得1<x≤2,不等式解集为x 1<x≤2.(2)令y=2x-3+ x-2=3x-5,x≥2,x-1,32<x<2,-3x+5,x≤32,当x≥2时,3x-5≤3,解得x≤83,即x∈2,83;当32<x<2时,x-1≤3,解得x≤4,即x∈32,2;当x≤32时,-3x+5≤3,解得x≥23,即x∈23,32;综上所述:不等式解集为x 23≤x≤83.2(23-24高一上·江苏扬州·期中)求下列不等式的解集(1)3x-1x+1>4;(2)2x-3x+1<1(3)x+2<1【解题思路】(1)将原不等式3x-1x+1>4等价转换为x-13x+5>0,解一元二次不等式即可.(2)将原不等式2x-3x+1<1等价转换为x+1x-4<0,解一元二次不等式即可.(3)将原不等式x+2<1等价转换为x+1x+3<0,解一元二次不等式即可.【解答过程】(1)由题意3x -1 x +1 >4⇔3x 2+2x -1>4⇔3x 2+2x -5>0⇔x -1 3x +5 >0,解不等式得x <-53或x >1,从而不等式3x -1 x +1 >4的解集为-∞,-53∪1,+∞ .(2)由题意2x -3x +1<1⇔x -4x +1<0⇔x +1 x -4 <0,解不等式得-1<x <4,从而不等式2x -3x +1<1的解集为-1,4 .(3)由题意x +2 <1⇔x +2 2-12<0⇔x +1 x +3 <0,解不等式得-3<x <-1,从而不等式x +2 <1的解集为-3,-1 .3(22-23高一上·上海徐汇·阶段练习)解下列不等式:(1)5-x x 2-2x -3<-1;(2)(x -1)(x +2)2≥0.【解题思路】对不等式因式分解,由数轴标根法或分类讨论求解即可.【解答过程】(1)5-x x 2-2x -3<-1⇔x 2-3x +2x 2-2x -3<0⇔(x +1)(x -1)(x -2)(x -3)<0,由数轴标根法得,解集为(-1,1)∪(2,3);(2)(x -1)(x +2)2≥0⇔x -1≥0x +2≠0 或x +2=0,易得解集为{-2}∪[1,+∞).4(2023高一·上海·专题练习)解下列关于x 的不等式.(1)x +4 x +5 22-x 3<0;(2)x 2-4x +13x 2-7x +2<1.【解题思路】(1)由题意不等式等价于x ≠-5x +4 x -2 3>0,由零点标根法画图即可求解.(2)由题意不等式等价于(2x -1)(x -1)(3x -1)(x -2)>0,由零点标根法画图即可求解.【解答过程】(1)原不等式等价于x +4 x +5 2x -2 3>0,所以x ≠-5x +4 x -2 3>0,如图所示:解得x <-4或x >2且x ≠-5,所以原不等式解集为x |x <-5 或-5<x <-4或x >2 .(2)由x 2-4x +13x 2-7x +2<1得,-2x 2+3x -13x 2-7x +2<0,∴原不等式等价于2x -1 x -13x -1 x -2 >0,即(2x -1)(x -1)(3x -1)(x -2)>0,如图所示:解得x <13或12<x <1或x >2,所以原不等式的解集为{x |x <13或12<x <1或x >2}.【题型5一元二次不等式根的分布问题】1(2024高三·全国·专题练习)关于x 的方程ax 2+a +2 x +9a =0有两个不相等的实数根x 1,x 2,且x 1<1<x 2,那么a 的取值范围是()A.-27<a <25B.a >25 C.a <-27D.-211<a <0【解题思路】说明a =0时,不合题意,从而将ax 2+a +2 x +9a =0化为x 2+1+2ax +9=0,令y =x 2+1+2ax +9,结合其与x 轴有两个交点,且分布在1的两侧,可列不等式即可求得答案.【解答过程】当a =0时,ax 2+a +2 x +9a =0即为2x =0,不符合题意;故a ≠0,ax 2+a +2 x +9a =0即为x 2+1+2ax +9=0,令y =x 2+1+2ax +9,由于关于x 的方程ax 2+a +2 x +9a =0有两个不相等的实数根x 1,x 2,且x 1<1<x 2,则y =ax 2+a +2 x +9a 与x 轴有两个交点,且分布在1的两侧,故x =1时,y <0,即1+1+2a ×1+9<0,解得2a <-11,故-211<a <0,故选:D .2(23-24高三上·四川·阶段练习)若关于x 的方程x 2-2ax +a +2=0在区间-2,1 上有两个不相等的实数解,则a 的取值范围是()A.-65,-1 B.-65,1 C.-∞,-65 ∪-1,+∞D.-∞,-65∪1,+∞【解题思路】令g x =x 2-2ax +a +2,依题意可得Δ>0-2<a <1g -2 >0g 1 >0,解得即可.【解答过程】令g x =x 2-2ax +a +2,因为方程x 2-2ax +a +2=0在区间-2,1 上有两个不相等的实数解,所以Δ>0-2<a <1g -2 >0g 1 >0,即Δ=4a 2-4a +2 >0-2<a <14+4a +a +2>01-2a +a +2>0,解得-65<a <-1,所以a 的取值范围是-65,-1 .故选:A .3(23-24高一上·上海浦东新·期中)已知实数a <b ,关于x 的不等式x 2-a +b x +ab +1<0的解集为x 1,x 2 ,则实数a 、b 、x 1、x 2从小到大的排列是()A.a <x 1<x 2<bB.x 1<a <b <x 2C.a <x 1<b <x 2D.x 1<a <x 2<b【解题思路】由题可知x 1+x 2=a +b ,再利用中间量m ,根据x 1+x 2与x 1x 2之间的关系求出的取值范围,即可判断a 、b 、x 1、x 2之间的关系.【解答过程】由题可得:x 1+x 2=a +b ,x 1x 2=ab +1.由a <b ,x 1<x 2,设x 1=a +m ,则x 2=b -m .所以x 1x 2=(a +m )(b -m )=ab +m (b -a )-m 2=ab +1,所以m (b -a )-m 2=1,m =1+m 2b -a .又a <b ,所以b -a >0,所以m >0.故x 1>a ,x 2<b .又x 1<x 2,故a <x 1<x 2<b .故选:A .4(23-24高三·全国·阶段练习)方程x 2+(m -2)x +5-m =0的一根在区间(2,3)内,另一根在区间(3,4)内,则m 的取值范围是()A.(-5,-4)B.-133,-2 C.-133,-4 D.(-5,-2)【解题思路】令f (x )=x 2+(m -2)x +5-m ,由二次函数根的分布性质有f (2)>0,f (3)<0),f (4)>0,求得m 的取值范围.【解答过程】令f (x )=x 2+(m -2)x +5-m ,由二次函数根的分布性质,若一根在区间(2,3)内,另一根在区间(3,4)内,只需f (2)>0f (3)<0f (4)>0 ,即4+2(m -2)+5-m >09+3(m -2)+5-m <016+4(m -2)+5-m >0,解不等式组可得-133<m <-4,即m 的取值范围为-133,-4 ,故选:C .【题型6二次函数的单调性、最值问题】1(23-24高一上·江苏南京·期末)若函数f x =x 2-mx +3在区间-∞,2 上单调递减,则实数m 的取值范围是()A.-∞,2B.2,+∞C.-∞,4D.4,+∞【解题思路】利用二次函数的对称轴及函数的单调性列出不等式求解.【解答过程】因为函数f x =x 2-mx +3在区间-∞,2 上单调递减,所以m 2≥2,解得m ≥4.故选:D .2(23-24高一上·湖北武汉·期中)已知函数f (x )=2x 2-kx -8在[-2,1]上具有单调性,则实数k 的取值范围是()A.k ≤-8B.k ≥4C.k ≤-8或k ≥4D.-8≤k ≤4【解题思路】根据二次函数的单调性和对称轴之间的关系,建立条件求解即可.【解答过程】函数f (x )=2x 2-kx -8对称轴为x =k4,要使f (x )在区间[-2,1]上具有单调性,则k 4≤-2或k4≥1,∴k ≤-8或k ≥4综上所述k 的范围是:k ≤-8或k ≥4.故选:C .3(23-24高一上·江苏镇江·阶段练习)若函数y =x 2-2x -3的定义域为[-1,t ],值域为[-4,0]则实数t 的取值范围为()A.1≤t ≤3B.1<t <3C.-1<t <3D.-1<t ≤3【解题思路】利用分类讨论-1<t ≤1与t >1,求解t 范围.【解答过程】由y =x 2-2x -3的定义域为-1,t ,对称轴为x =1,y =x 2-2x -3当-1<t ≤1时,y =x 2-2x -3在-1,t 单调递减,则y min =t 2-2t -3,y max =(-1)2-2×-1 -3=0,而函数的值域为-4,0 ,则t 2-2t -3=-4,解得t =1,故t =1,当t >1时,y =x 2-2x -3在-1,1 单调递减,在1,t 单调递增,则y min =12-2×1-3=-4,y =-1 2-2×-1 -3=0,y =t 2-2t +3,故-4≤t 2-2t -3≤0,解得-1≤t ≤3,故1<t ≤3,综上所述,t 的取值范围为1≤t ≤3,故选:A .4(2024高三·全国·专题练习)已知函数f x =x 2+ax +b a ,b ∈R 的最小值为0,若关于x 的不等式f x <c 的解集为m ,m +4 ,则实数c 的值为()A.9B.8C.6D.4【解题思路】先由f x =x 2+ax +b a ,b ∈R 的最小值为0,得到Δ=0,再由f (x )<c 的解集为(m ,m +4),得到f (x )-c =0的根为m ,m +4,从而利用韦达定理即可求解.【解答过程】因为f x =x 2+ax +b a ,b ∈R 开口向上,最小值为0,∴Δ=a 2-4b =0,∴b =a 24,则f (x )=x 2+ax +a 24=x +a 22,∵f (x )<c 的解集为(m ,m +4),所以m ,m +4是f (x )-c =0的两个不等实根,即m ,m +4是x 2+ax +a 24-c =0的两个不等实根,所以m +m +4=-a ,则m =-a -42,∴c =f (m )=m +a 2 2=-a -42+a 22=4.故选:D .【题型7一元二次不等式恒成立问题】1(2023·福建厦门·二模)不等式ax 2-2x +1>0(a ∈R )恒成立的一个充分不必要条件是()A.a >2B.a ≥1C.a >1D.0<a <12【解题思路】分a =0和a ≠0两种情况讨论求出a 的范围,再根据充分条件和必要条件的定义即可得解.【解答过程】当a =0时,-2x +1>0,得x <12,与题意矛盾,当a ≠0时,则a >0Δ=4-4a <0 ,解得a >1,综上所述,a >1,所以不等式ax 2-2x +1>0(a ∈R )恒成立的一个充分不必要条件是A 选项.故选:A .2(2023·江西九江·模拟预测)无论x 取何值时,不等式x 2-2kx +4>0恒成立,则k 的取值范围是()A.-∞,-2B.-∞,-4C.-4,4D.-2,2【解题思路】由题知4k 2-16<0,再解不等式即可得答案.【解答过程】解:因为无论x 取何值时,不等式x 2-2kx +4>0恒成立,所以,4k 2-16<0,解得-2<k <2,所以,k 的取值范围是-2,2 故选:D .3(2023·辽宁鞍山·二模)若对任意的x ∈(0,+∞),x 2-mx +1>0恒成立,则m 的取值范围是()A.(-2,2)B.(2,+∞)C.(-∞,2)D.(-∞,2]【解题思路】变形给定不等式,分离参数,利用均值不等式求出最小值作答.【解答过程】∀x ∈(0,+∞),x 2-mx +1>0⇔m <x +1x ,而当x >0时,x +1x≥2x ⋅1x =2,当且仅当x =1x,即x =1时取等号,则m <2,所以m 的取值范围是(-∞,2).故选:C .4(23-24高一上·贵州铜仁·期末)当x ∈-1,1 时,不等式2kx 2-kx -38<0恒成立,则k 的取值范围是()A.-3,0B.-3,0C.-3,18D.-3,18【解题思路】对二项式系数进行分类,结合二次函数定义的性质,列出关系式求解.【解答过程】当x ∈-1,1 时,不等式2kx 2-kx -38<0恒成立,当k =0时,满足不等式恒成立;当k ≠0时,令f x =2kx 2-kx -38,则f x <0在-1,1 上恒成立,函数f x 的图像抛物线对称轴为x =14,k >0时,f x 在-1,14 上单调递减,在14,1 上单调递增,则有f -1 =2k +k -38≤0f 1 =2k -k -38≤0,解得0<k ≤18;k <0时,f x 在-1,14 上单调递增,在14,1 上单调递减,则有f 14 =2k 16-k 4-38<0,解得-3<k <0.综上可知,k 的取值范围是-3,18.故选:D .【题型8一元二次不等式有解问题】1(2023·福建宁德·模拟预测)命题“∃x ∈[1,2],x 2≤a ”为真命题的一个充分不必要条件是()A.a ≥1B.a ≥4C.a ≥-2D.a ≤4【解题思路】根据能成立问题求a 的取值范围,结合充分不必要条件理解判断.【解答过程】∵∃x ∈[1,2],x 2≤a ,则x 2 min ≤a ,即a ≥1,∴a 的取值范围1,+∞由题意可得:选项中的取值范围对应的集合应为1,+∞ 的真子集,结合选项可知B 对应的集合为4,+∞ 为1,+∞ 的真子集,其它都不符合,∴符合的只有B ,故选:B .2(2023高三·全国·专题练习)若关于x 的不等式x 2+mx -4>0在区间2,4 上有解,则实数m 的取值范围为()A.-3,+∞B.0,+∞C.-∞,0D.-∞,-3【解题思路】利用二次函数的图象及根的分布计算即可.【解答过程】易知Δ=m 2+16>0恒成立,即x 2+mx -4=0有两个不等实数根x 1,x 2,又x 1x 2=-4<0,即二次函数y =x 2+mx -4有两个异号零点,所以要满足不等式x 2+mx -4>0在区间2,4 上有解,所以只需42+4m -4>0,解得m >-3,所以实数m 的取值范围是-3,+∞ .故选A .3(2023·河南·模拟预测)已知命题“∃x 0∈-1,1 ,-x 20+3x 0+a >0”为真命题,则实数a 的取值范围是()A.-∞,-2B.-∞,4C.-2,+∞D.4,+∞【解题思路】由题知x 0∈-1,1 时,a >x 20-3x 0 min ,再根据二次函数求最值即可得答案.【解答过程】解:因为命题“∃x 0∈-1,1 ,-x 20+3x 0+a >0”为真命题,所以,命题“∃x 0∈-1,1 ,a >x 20-3x 0”为真命题,所以,x 0∈-1,1 时,a >x 20-3x 0 min ,因为,y =x 2-3x =x -32 2-94,所以,当x ∈-1,1 时,y min =-2,当且仅当x =1时取得等号.所以,x 0∈-1,1 时,a >x 20-3x 0 min =-2,即实数a 的取值范围是-2,+∞ 故选:C .4(23-24高一上·福建·期中)若至少存在一个x <0,使得关于x 的不等式3-3x -a >x 2+2x 成立,则实数a 的取值范围是()A.-374,3B.-3,134C.-374,134D.-3,3【解题思路】化简不等式3-3x -a >x 2+2x ,根据二次函数的图象、含有绝对值函数的图象进行分析,从而求得a 的取值范围.【解答过程】依题意,至少存在一个x <0,使得关于x 的不等式3-3x -a >x 2+2x 成立,即至少存在一个x<0,使得关于x的不等式-x2-2x+3>3x-a成立,画出y=-x2-2x+3x<0以及y=3x-a的图象如下图所示,其中-x2-2x+3>0.当y=3x-a与y=-x2-2x+3x<0相切时,由y=3x-ay=-x2-2x+3消去y并化简得x2+5x-a-3=0,Δ=25+4a+12=0,a=-374.当y=-3x+a与y=-x2-2x+3x<0相切时,由y=-3x+ay=-x2-2x+3消去y并化简得x2-x+a-3=0①,由Δ=1-4a+12=0解得a=134,代入①得x2-x+14=x-122=0,解得x=12,不符合题意.当y=-3x+a过0,3时,a=3.结合图象可知a的取值范围是-37 4 ,3.故选:A.一、单选题1(2023·山东泰安·模拟预测)“c∈-23,23”是“∀x∈R,x2-cx+3≥0成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题思路】化简“∀x∈R,x2-cx+3≥0成立”,再结合充分条件和必要条件的定义判断.【解答过程】由∀x∈R,x2-cx+3≥0可得Δ=c2-4×3≤0,化简可得-23≤c≤23,所以“∀x∈R,x2-cx+3≥0成立”等价于“c∈-23,23”,“c∈-23,23”可推出“∀x∈R,x2-cx+3≥0成立”,“∀x∈R,x2-cx+3≥0成立”不能推出“c∈-23,23”所以“c∈-23,23”是“∀x∈R,x2-cx+3≥0成立”的充分不必要条件,故选:A.2(2023·湖南岳阳·模拟预测)不等式x-1x-2023≥0的解集为()A.{x∣x≥2023或x≥1}B.{x∣x≤1或x≥2023}C.x∣1≤x≤2023D.{x∣x<1或x>2023}【解题思路】解一元二次不等式即可得解.【解答过程】因为x-1x-2023≥0,所以x≥2023或x≤1,故不等式x -1 x -2023 ≥0的解集为{x ∣x ≤1或x ≥2023}.故选:B .3(2024·浙江·模拟预测)若不等式kx 2+k -6 x +2>0的解为全体实数,则实数k 的取值范围是()A.2≤k ≤18B.-18<k <-2C.2<k <18D.0<k <2【解题思路】分类讨论k =0与k ≠0两种情况,结合二次不等式恒成立问题的解决方法即可得解.【解答过程】当k =0时,不等式kx 2+k -6 x +2>0可化为-6x +2>0,显然不合题意;当k ≠0时,因为kx 2+k -6 x +2>0的解为全体实数,所以k >0Δ=k -6 2-4k ×2<0,解得2<k <18;综上:2<k <18.故选:C .4(2024·甘肃张掖·模拟预测)不等式x 2-3x <2-2x 的解集是()A.-1,12B.-12,12C.-1,5-172D.5-172,12【解题思路】按照x 2-3x 正负分类讨论取绝对值,运算得解.【解答过程】当x 2-3x ≥0,即x ≥3或x ≤0时,不等式x 2-3x <2-2x 等价于x 2-3x <2-2x ,即x 2-x -2<0,解得-1<x <2,所以-1<x ≤0;当x 2-3x <0,即0<x <3时,不等式x 2-3x <2-2x 等价于不等式3x -x 2<2-2x ,即x 2-5x +2>0,解得x >5+172或x <5-172,所以0<x <5-172.综上,不等式x 2-3x <2-2x 的解集是-1,5-172 .故选:C .5(2023·山东·模拟预测)若不等式2x 2+bx +c <0的解集是(0,4),函数f (x )=2x 2+bx +c 的对称轴是()A.x =2B.x =4C.x =52D.x =32【解题思路】由一元二次不等式的解法与二次函数的性质求解.【解答过程】解:∵不等式2x 2+bx +c <0的解集是(0,4),∴x =0和x =4是方程2x 2+bx +c =0的两个根,∴-b2=0+4,∴b =-8,∴函数f (x )=2x 2+bx +c 的对称轴是x =-b4=2.故选:A .6(23-24高一上·四川成都·期中)一元二次不等式ax 2+bx +c >0的解为x -2<x <3 ,那么ax 2-bx +c >0的解集为()A.x x >3或x <-2B.x x >2或x <-3C.x -2<x <3D.x -3<x <2【解题思路】根据题意得出a 、b 、c 的关系,代入新的一元二次不等式求解即可.【解答过程】一元二次不等式ax 2+bx +c >0的解为x -2<x <3 ,所以ax 2+bx +c =0的解为x 1=-2,x 2=3,且a <0,由韦达定理得x 1+x 2=-ba =1x 1⋅x 2=c a =-6⇒b =-ac =-6a,代入得ax 2+ax -6a >0⇒x 2+x -6<0⇒-3<x <2,故选:D .7(2023·辽宁鞍山·二模)已知当x >0时,不等式:x 2-mx +16>0恒成立,则实数m 的取值范围是()A.-8,8B.-∞,8C.-∞,8D.8,+∞【解题思路】先由x 2-mx +16>0得m <x +16x ,由基本不等式得x +16x≥8,故m <8.【解答过程】当x >0时,由x 2-mx +16>0得m <x +16x,因x >0,故x +16x ≥2x ×16x =8,当且仅当x =16x 即x =4时等号成立,因当x >0时,m <x +16x恒成立,得m <8,故选:C .8(2023·河南·模拟预测)某同学解关于x 的不等式ax 2+bx +c <0(a ≠0)时,因弄错了常数c 的符号,解得其解集为(-∞,-3)∪(-2,+∞),则不等式bx 2+cx +a >0的解集为()A.-1,-15B.(-∞,-1)∪-15,+∞ C.15,1D.-∞,15∪(1,+∞)【解题思路】利用根与系数关系、一元二次不等式的解求得a ,b ,c 的关系式,进而求得不等式bx 2+cx +a >0的解集.【解答过程】由题意可知a <0,且-3+(-2)=-b a ,-3×(-2)=-c a,所以b =5a ,c =-6a ,所以bx 2+cx +a >0化为5x 2-6x +1<0,5x -1 x -1 <0,解得15<x <1.故选:C .二、多选题9(2024·广东深圳·模拟预测)下列说法正确的是()A.不等式4x 2-5x +1>0的解集是x x >14或x <1 B.不等式2x 2-x -6≤0的解集是x x ≤-32或x ≥2 C.若不等式ax 2+8ax +21<0恒成立,则a 的取值范围是∅D.若关于x 的不等式2x 2+px -3<0的解集是q ,1 ,则p +q 的值为-12【解题思路】对于AB ,直接解一元二次不等式即可判断;对于C ,对a 分类讨论即可判断;对于D ,由一元二次不等式的解集与一元二次方程的根的关系,先求得p ,q ,然后即可判断.【解答过程】对于A ,4x 2-5x +1>0⇔x -1 4x -1 >0⇔x <14或x >1,故A 错误;对于B ,2x 2-x -6≤0⇔x -2 2x +3 ≤0⇔-32≤x ≤2,故B 错误;若不等式ax 2+8ax +21<0恒成立,当a =0时,21<0是不可能成立的,所以只能a <0Δ=64a 2-84a <0 ,而该不等式组无解,综上,故C 正确;对于D ,由题意得q ,1是一元二次方程2x 2+px -3=0的两根,从而q ×1=-322+p -3=0,解得p =1,q =-32,而当p =1,q =-32时,一元二次不等式2x 2+x -3<0⇔x -1 2x +3 <0⇔-32<x <1满足题意,所以p +q 的值为-12,故D 正确.故选:CD .10(2023·江苏连云港·模拟预测)若对于任意实数x ,不等式a -1 x 2-2a -1 x -4<0恒成立,则实数a 可能是()A.-2B.0C.-4D.1【解题思路】首先当a =1,不等式为-4<0恒成立,故满足题意;其次a ≠1,问题变为了一元二次不等式恒成立问题,则当且仅当a -1<0Δ<0 ,解不等式组即可.【解答过程】当a =1时,不等式为-4<0恒成立,故满足题意;当a ≠1时,要满足a -1<0Δ<0 ,而Δ=4a -1 2+16a -1 =4a -1 a +3 ,所以解得-3<a <1;综上,实数a 的取值范围是-3,1 ;所以对比选项得,实数a 可能是-2,0,1.故选:ABD .11(23-24高二上·山东威海·期末)已知关于x 的不等式ax 2+bx +c >0的解集为-∞,-2 ∪3,+∞ ,则下列选项中正确的是()A.a <0B.不等式bx +c >0的解集是x |x <-6C.a +b +c >0D.不等式cx 2-bx +a <0的解集为-∞,-13 ∪12,+∞ 【解题思路】根据给定的解集,用a 表示出b ,c ,再逐项判断作答.【解答过程】不等式ax 2+bx +c >0的解集为-∞,-2 ∪3,+∞ ,则-2,3是方程ax 2+bx +c =0的根,且a >0,则-b a =1,ca=-6,a >0,即b =-a ,c =-6a ,a >0,A 错误;不等式bx +c >0化为-ax -6a >0,解得x <-6,即不等式bx +c >0的解集是x |x <-6 ,B 正确;a +b +c =-6a <0,C 错误;不等式cx 2-bx +a <0化为-6ax 2+ax +a <0,即6x 2-x -1>0,解得x <-13或x >12,所以不等式cx 2-bx +a <0的解集为-∞,-13 ∪12,+∞ ,D 正确.故选:BD .三、填空题12(2023·江西鹰潭·模拟预测)若命题p :“∃x ∈R ,k 2-1 x 2+41-k x +3≤0”是假命题,则k 的取值范围是[1,7).【解题思路】本题首先可根据题意得出命题“∀x ∈R ,k 2-1 x 2+4(1-k )x +3>0”是真命题,然后分为k =1,k =-1,k 2-1≠0三种情况进行讨论,结合二次函数性质即可得出结果.【解答过程】因为命题p :“∃x ∈R ,k 2-1 x 2+41-k x +3≤0”是假命题,所以命题“∀x ∈R ,k 2-1 x 2+4(1-k )x +3>0”是真命题,若k 2-1=0,即k =1或k =-1,当k =1时,不等式为3>0,恒成立,满足题意;当k =-1时,不等式为8x +3>0,不恒成立,不满足题意;当k 2-1≠0时,则需要满足k 2-1>0Δ=16(1-k )2-4×k 2-1 ×3<0 ,即(k -1)(k +1)>0(k -1)(k -7)<0,解得1<k <7,综上所述,k 的取值范围是[1,7).故答案为:[1,7).13(2023·河南·模拟预测)已知函数y =kx -k 与曲线y =x 2-1x有三个交点,则k 的取值范围是-∞,-1 ∪3,+∞.【解题思路】将两曲线表达式联立,得出一元二次方程,利用判别式即可求出k 的取值范围.【解答过程】由题意,函数y =kx -k 与曲线y =x 2-1x有三个交点,y =kx -ky =x 2-1x,则x -1 x 2+1-k x +1 =0,若直线y =kx -k 与曲线y =x 2-1x有三个交点,只需满足方程x 2+1-k x +1=0有两个不等于1和0的解.因为该方程的两个解之积x 1x 2=1,故只需满足Δ=1-k 2-4>0,所以k <-1或k >3,即k 的取值范围是-∞,-1 ∪3,+∞ .故答案为:-∞,-1 ∪3,+∞ .14(23-24高一上·江苏徐州·阶段练习)若关于x 的不等式0≤ax 2+bx +c ≤2a >0 的解集为x -1≤x ≤3 ,则3a +b +2c 的取值范围是32,4.【解题思路】先根据一元二次不等式的解集得到对称轴,然后根据端点得到两个等式和一个不等式,求出a 的取值范围,最后3a +b +2c 都表示成a 的形式即可.【解答过程】因为不等式0≤ax 2+bx +c ≤2a >0 的解集为x -1≤x ≤3 ,所以二次函数f x =ax 2+bx +c 的对称轴为直线x =1,且需满足f -1 =2f 3 =2f 1 ≥0,即a -b +c =29a +3b +c =2a +b +c ≥0,解得b =-2ac =-3a +2 ,所以a+b+c=a-2a-3a+2≥0⇒a≤12,所以a∈0,12,所以3a+b+2c=3a -2a-6a+4=4-5a∈32,4.故答案为:3 2 ,4.四、解答题15(23-24高一下·四川成都·开学考试)已知函数f x =x2-2ax+3.(1)若关于x的不等式f x ≥0的解集为R,求实数a的取值范围;(2)解关于x的不等式f x <0.【解题思路】(1)由题意可知Δ≤0,进而求出实数a的取值范围;(2)根据Δ≤0和Δ>0两种情况讨论,结合二次函数的性质求解即可.【解答过程】(1)若不等式x2-2ax+3≥0的解集为R,则Δ=(-2a)2-12≤0,解得-3≤a≤3,即实数a的取值范围[-3,3];(2)不等式x2-2ax+3<0,①当Δ≤0时,即-3≤a≤3时,不等式的解集为∅,②当Δ>0时,即a<-3或a>3时,由x2-2ax+3=0,解得x=a-a2-3或x=a+a2-3,所以不等式的解集为{x|a-a2-3<x<a+a2-3},综上所述,当-3≤a≤3时,不等式的解集为∅;当a<-3或a>3时,不等式的解集为{x|a-a2-3<x<a+a2-3}.16(2024·山东·二模)已知f x 是二次函数,且f1 =4,f0 =1,f3 =4.(1)求f x 的解析式;(2)若x∈-1,5,求函数f x 的最小值和最大值.【解题思路】(1)设二次函数为f x =ax2+bx+c,a≠0,根据题意,列出方程组,求得a,b,c的值,即可求解;(2)根据二次函数的性质,求得函数f x 的单调区间,进而求得其最值.【解答过程】(1)解:设二次函数为f x =ax2+bx+c,a≠0,因为f1 =4,f0 =1,f3 =4,可得a+b+c=4c=19a+3b+c=4,解得a=-1,b=4,c=1,所以函数f x 的解析式f x =-x2+4x+1.(2)解:函数f x =-x2+4x+1,开口向下,对称轴方程为x=2,即函数f x =-x2+4x+1在-1,2单调递增,在2,5单调递减,所以f(x)min=f-1=f5 =-4,f(x)max=f2 =5.17(23-24高二上·江苏南通·期中)设m∈R,关于x的不等式x2+2mx+m+2<0的解集为∅.(1)求m的取值范围;(2)求关于x的不等式mx2+(m-2)x-2≥0的解集.【解题思路】(1)由一元二次不等式恒成立的性质运算即可得解;(2)转化条件为mx-2x+1≥0,按照m=0、0<m≤2、-1≤m<0讨论,运算即可得解.【解答过程】(1)因为关于x的不等式x2+2mx+m+2<0的解集为∅,。

二次函数与一元二次方程、不等式+复习课件-2024-2025学年高一上学期数学人教A版(2019)

二次函数与一元二次方程、不等式+复习课件-2024-2025学年高一上学期数学人教A版(2019)

A.-2
B.-1
C.1
D.2
)
B
Δ=4-8a<0,解得 a>2 ,即实数 a 的取值范围是
一元二次不等式恒成立的问题:
(1)在解决一元二次不等式恒成立问题的过程中除了要对二次项系数是不
是零进行分类讨论外,还要分清谁是主元,谁是参数.一般地,知道谁的
取值范围,谁就是主元,求谁的取值范围,谁就是参数.
(2)不等式 ax 2+bx+c>0 的解集是实数集(或恒成立)的条件是:当 a=0 时,
(1)二次项的系数变为正(a>0 );
(2)看能否因式分解,不能分解的计算△;
(3)求出方程ax2+bx+c=0的实根,得到二次函数零点;(画出函数
图像)
(4)(结合函图象)写出不等式的解集.
解含参不等式
例2.若不等式ax2+bx+c>0的解集为{x|-3<x<4},
求不等式bx2+2ax-c-3b<0的解集.
2
例1. 求下列不等式的解集:
(2) 2 x x 3;
2
(2)不等式可化为 2 x x 3 0;
2
对于方程 2 x x 3 0, 0, 所以它无实数根;
2
由y 2 x x 3的图像得不等式的解集 为R;
2
例1. 求下列不等式的解集:
(3) x x 3 0;
二次函数与一元二次方程、不等式复习课
知识回顾
一元二次不等式的概念
一元二次不等式的概念:
一般地,我们把只含有一个未知数,并且未知数的最高次数是2的
不等式,称为一元二次不等式.它的一般形式是
+ + > , + + < ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

响水县双语学校九(8)班数学导学案(044)
课题:6.3二次函数与一元二次方程(1) 主备人:张亚元学生姓名
一、学习目标:
1、经历探索二次函数与一元二次方程关系的过程,体会方程与函数之间的关系。

2、理解二次函数的图象与x轴公共点的个数与相应的一元二次方程根的对应关系。

二、知识导学:
(一)思考与探索:二次函数y=x2-2x-3与一元二次方程x2-2x-3=0有怎样的关系?
1、从关系式看二次函数y=x2-2x-3成为一元二次方程x2-2x-3=0的条件是什么?
2、反应在图象上:观察二次函数y=x2-2x-3的图象,
你能确定一元二次方程x2-2x-3=0的根吗?
3、结论:
一般地,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点(x1,0)、(x2,0),那么一元二次方程ax2+bx+c=0有两个不相等的实数根x=x1、x=x2。

反过来也成立。

4、观察与思考:
观察下列图象:
(1)观察函数y= x2-6x+9与y= x2-2x+3的图象与x轴的公共点的个数;
(2)判断一元二次方程x2-6x+9=0和x2-2x+3=0的根的情况;
(3)你能利用图象解释一元二次方程的根的不同情况吗?
(二)归纳提高:
(三)例题讲解
1、判断下列函数的图象与x轴是否有公共点,说明理由.
(1)y=x2-x (2)y=-x2+6x-9 (3)y=3x2+6x+11
2、已知二次函数1x mx y 2
-+=.
(1)当m 取何值时,它的图象与x 轴有两个公共点? (2)当m 取何值时,它的图象与x 轴有一个公共点? (3)当m 取何值时,它的图象与x 轴没有公共点?
3、二次函数2
(0)y ax bx c a =++≠
(1)写出方程2
0ax bx c ++=(2)写出不等式2
0ax bx c ++>(3)写出y 随x 的增大而减小的自变量x (4)若方程2
ax bx c k ++=求k 的取值范围.
(四)随堂练习: 1、方程 的根是 ;则函数 的图象与x 轴的交点有 个,其坐标是 . 2、方程 的根是 ;则函数 的图象与x 轴的交点有 个,其坐标是 .
3、下列函数的图象中,与x 轴没有公共点的是( )
4、已知二次函数y=-2x 4x+k+2与x 轴有公共点,求k 的取值范围.
5、已知二次函数2a ax x y 2
-++=.试说明此二次函数的图象与x 轴一定有两个不同的交点.
0542=-+x x 542-+=x x y 025102=-+-x x 25102-+-=x x y 2)(2-=x y A x
x y B -=2)(96)(2-+-=x x y C 2)(2+-=x x y D
【课后作业】 姓名
1、(2009年甘肃庆阳)从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)的函数关系式是2
9.8 4.9h t t =-,那么小球运动中的最大高度为 米.
2、(2009年包头)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值 是 cm 2.
4、(2009年包头)已知二次函数2
y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,
,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个.
.
5. (2011山东菏泽,8,3分)如图为抛物线2
y ax bx c =++的图像,A 、B 、C 为抛物线与坐
标轴的交点,且OA =OC =1,则下列关系中正确的是
A .a +b =-1
B . a -b =-1
C . b <2a
D . ac <0
6. (2011山东烟台,10,4分)如图,平面直角坐标系中,两条抛物线
有相同的对称轴,则下列关系正确的是( )
A .m =n ,k >h
B .m =n ,k <h
C .m >n ,k =h
D .m <n ,k =h
7. (2011浙江温州,9,4分)已知二次函数的图象(0≤x ≤3)如图所示. 关于该函数在所给自变量取值范围内,下列说法正确的是( )
A .有最小值0,有最大值3
B .有最小值-1,有最大值0
C .有最小值-1,有最大值3
D .有最小值-1,无最大值
8. (2011甘肃兰州,9,4分)如图所示的二次函数2
y ax bx c =++的图象中,刘星同学观察得
出了下面四条信息:(1)2
40b ac ->;(2)c >1; (3)2a -b <0;(4)a +b +c <0。

你认为其中错误..
的有 A .2个
B .3个
C .4个
D .1个
9、(2009 安徽)已知某种水果的批发单价与批发量的函数关系如图(1)所示. (1)请说明图中①、②两段函数图象的实际意义.
(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的
函数关系式;在下图的坐标系中画出该函数图象;指出金额在什 么范围内,以同样的资金可以批发到较多数量的该种水果. (3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函
数关系如图(2)所示,该经销商拟每日售出60kg 以上该种水果, 且当日零售价不变,请你帮助该经销商设计进货和销售的方案, 使得当日获得的利润最大.。

相关文档
最新文档