向量代数-曲面与曲线
高等数学 向量代数与空间解析几何 (7.5.2)--曲面和曲线
习题7.51. 过定点(,0,0)R -作球面2222x y z R ++=的弦,求动弦中点的轨迹方程.2. 说出下列曲面方程的名称,并作出草图:(1)222(0)x y az a +=>; (2)222(0)x y az a -=>;(3)222z x y =++;(4)220y x z -+=; (5)2222310x y z -++=; (6)222239x y z ++=.3. 说出下列曲面方程的名称,并作出草图:(1)221x y +=; (2)21x =;(3)220x y -=; (4)30y z -=;(5)2222x y z az ++=; (6)22x az =;(7)22149x y +=; (8)22119x y -=; (9)222x y z -=; (10)22234z x y =+.4. 写出适合下列条件的旋转曲面的方程:(1)曲线2210x z y ⎧+=⎪⎨=⎪⎩绕z 轴旋转一周; (2)曲线221940x y z ⎧+=⎪⎨⎪=⎩绕x 轴旋转一周; (3)曲线2210y z x ⎧-=⎪⎨=⎪⎩绕y 轴旋转一周; (4)曲线250z x y ⎧=⎪⎨=⎪⎩绕x 轴旋转一周. 5. 说明下列旋转曲面是如何形成的并写出它的名称: (1)22214y x z +-=; (2)224x y z +=; (3)2221169z x y +-=; (4)2224x y z +=. 6. 指出下列方程表示的曲线:(1)222253x y z x ⎧++=⎪⎨=⎪⎩; (2)222(1)(4)2510x y z y ⎧-+++=⎪⎨+=⎪⎩; (3)2219420y z x ⎧-=⎪⎨⎪-=⎩; (4)241x y z ⎧=⎪⎨=⎪⎩; 7. (1) 将曲线22216:2x y z C z ⎧++=⎪⎨=⎪⎩表示为参数方程,并求其沿z 轴方向的投影柱面及在xOy 面上的投影曲线;(2) 将曲面22z x y =+与平面1x y z ++=的交线C 表示为参数方程,并求其沿z 轴方向的投影柱面及在xOy 面上的投影曲线;(3) 将曲面2222x y z ++=和22z x y =+的交线C 表示为参数方程,并求其沿x 轴方向的投影柱面及在yOz 面上的投影曲线;(4) 将旋转抛物面22z x y =+与平面1y z +=的交线C 表示为参数方程,并求其在各坐标面上的投影曲线;(5) 分别求母线平行于x 轴和y 轴,且通过曲线222222216:0x y z C x z y ⎧++=⎪⎨+-=⎪⎩的柱面方程; (6) 求柱面22z x =与锥面z =所围立体在三坐标面上的投影区域.8. 把下列曲线C 的参数方程化为一般式方程: (1) cos ,:2cos 1,3sin ,x t C y t z t =⎧⎪=-⎨⎪=⎩ [0,2π]t ∈;(2) ,:x t a C y z =+⎧⎪⎪=⎨⎪=⎪⎩[,]t a a ∈-. 9. 试建立下列曲面的参数方程:(1) 椭圆柱面:220022()()1x x y y a b --+=;(2) 双曲柱面:22221y z a b -=;(3) 双叶双曲面:2222221x y z a b c --+=;(4) 椭圆抛物面:2200022()()x x y yz z a b --+=-;(5) 双曲抛物面:2222x y z a b -=;(6) 二次锥面:2222220x y z a b c +-=.。
微积分第七章空间解析几何与向量代数
第七章 空间解析几何与向量代数 为了学习多元函数微积分的需要,本章首先建立空间直角坐标系,并引进在工程技术 上有着广泛应用的向量,介绍向量的一些运算.然后以向量为工具来讨论空间的平面与直线 方程,最后介绍空间曲面与空间曲线及二次曲面.第一节 空间直角坐标系一、 空间直角坐标系众所周知,实数x 与数轴上的点是一一对应的,二元数组(x ,y )与坐标平面上的点是一一对应的,从而可以用代数的方法讨论几何问题.类似地,通过建立空间直角坐标系,把空间中的点与一个三元有序数组(x ,y ,z )建立一一对应关系,用代数的方法研究空间问题.1.空间直角坐标系的建立过空间定点O 作三条互相垂直的数轴,它们都以O 为原点,并且通常取相同的长度单位.这三条数轴分别称为x 轴、y 轴、z 轴.各轴正向之间的顺序通常按下述法则确定:以右手握住z 轴,让右手的四指从x 轴的正向以π/2的角度转向y 轴的正向,这时大拇指所指的方向就是z 轴的正向.这个法则叫做右手法则(图7-1).这样就组成了空间直角坐标系.O 称为坐标原点,每两条坐标轴确定的平面称为坐标平面,简称为坐标面.x 轴与y 轴所确定的坐标面称为xOy 坐标面.类似地有yOz 坐标面、zOx 坐标面.这些坐标面把空间分成八个部分,每一部分称为一个卦限(图7-2).x 、y 、z 轴的正半轴的卦限称为第Ⅰ卦限,从第Ⅰ卦限开始,从z 轴的正向向下看,按逆时针方向,先后出现的卦限依次称为第Ⅱ、Ⅲ、Ⅳ卦限,第Ⅰ、Ⅱ、Ⅲ、Ⅳ卦限下方的空间部分依次称为第Ⅴ、Ⅵ、Ⅶ、Ⅷ卦限。
图7-1 图7-22.空间中点的直角坐标设M 为空间的一点,若过点M 分别作垂直于三坐标轴的平面,与三坐标轴分别相交于P ,Q ,R 三点,且这三点在x 轴、y 轴、z 轴上的坐标依次为x ,y ,z ,则点M 唯一地确定了一个有序数组(x ,y ,z ).反之,设给定一个有序数组(x ,y ,z ),且它们分别在x 轴、y 轴和z 轴上依次对应于P ,Q 和R 点,若过P ,Q 和R 点分别作平面垂直于所在坐标轴,则这三个平面确定了唯一的交点M .这样,空间的点就与一个有序数组(x ,y ,z )之间建立了一一对应关系(图7-3).有序数组(x ,y ,z )就称为点M 的坐标,记为M (x ,y ,z ),它们分别称为横坐标、纵坐标和竖坐标.显然,原点O的坐标为(0,0,0),坐标轴上的点至少有两个坐标为0,坐标面上的点至少有一个坐标为0.例如,在x轴上的点,均有y=z=0;在xOy坐标面上的点,均有z =0.图7-3 图7-4二、空间两点间的距离公式设空间两点M1(x1, y1, z1)、M2 (x2, y2, z2),求它们之间的距离d=12M M.过点M 1,M2各作三个平面分别垂直于三个坐标轴,形成如图7-4所示的长方体.易知 2222121212()d M M M Q QM M QM==+∆是直角三角形222121()M P PQ QM M PQ=++∆是直角三角形222122M P P M QM''''=++()()()222212121x x y y z z=-+-+-所以d=(7-1-1 )特别地,点M(x,y,z)与原点O(0,0,0)的距离(图7-3)d OM==例1在z轴上求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解因所求的点M在z轴上,故设该点坐标为M(0,0,z),依题意MA MB=,即=解得z=149,所求点为M ( 0,0,149).习题7-11.在空间直角坐标系中,定出下列各点的位置:A (1,3,2),B (1,2,-1),C (-1,-2,3),D(0,-2,0),E (-3,0,1).2. 求点(a ,b ,c )关于(1) 各坐标面;(2) 各坐标轴;(3) 坐标原点的对称点的坐标.3. 自点P 0(x 0, y 0, z 0)分别作各坐标面和坐标轴的垂线,写出各垂足的坐标.4. 求点M (4,-3,5)到各坐标轴间的距离.5. 在y Oz 面上,求与三个已知点A (3,1,2),B (4,-2,2)和C (0,5,1)等距离的点.6. 试证明以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.第二节 向量及其运算一、 向量的概念在物理学和工程技术中经常会碰到一些既有大小又有方向的量,如力、速度等,我们把这类量称为向量(或矢量).空间中的向量常用具有一定长度且标有方向的线段(称为有向线段)来表示。
解析几何内容总览.
[5] 两平面位置特征:
(1) 1 2 A1 A2 B1B2 C1C2 0
(2)
1 //
2
A1 A2
B1 B2
C1 C2
5、空间直线
[1] 空间直线的一般方程 1 : A1 x B1 y C1z D1 0
z
L
1
2 : A2 x B2 y C2z D2 0
2
L:ຫໍສະໝຸດ A1 A2(0 )
2
直线与平面的夹角公式
[7] 直线与平面的位置关系
(1) L A B C mn p
(2) L // Am Bn Cp 0
二、典型例题
例1
已知 a
i,b
j 2k,
c
2i 2 j k,
求一单位向量
n0,使
n0c,且
空间曲线
投影柱面
投影曲线
[4] 空间立体或曲面在坐标面上的投影
空 间 立 体
曲 面
4、平面
[1] 平面的点法式方程 A( x x0 ) B( y y0 ) C(z z0 ) 0
[2] 平面的一般方程
Ax By Cz D 0
[3] 平面的截距式方程 x yz 1 a bc
z
n
M0 M
F(x, y,z) 0 G( x, y, z) 0
[2] 空间曲线的参数方程
x x(t)
y
y(t )
z z(t)
如图空间曲线 一般方程为
z 1 x2 y2
( x
1)2 2
y2
(1)2 2
x
1 2
cos
t
1 2
参数方程为
y
1 2
sin
t
向量代数与空间解析几何考研笔记
向量代数与空间解析几何考研笔记向量代数与空间解析几何是数学中的重要分支,它们在物理、工程、计算机科学等领域有着广泛的应用。
以下是关于向量代数与空间解析几何的考研笔记,供您参考:1. 向量代数基础向量的定义:向量是一个有方向和大小的几何量,通常用有向线段表示。
向量的模:向量的模是表示该向量大小的数值,记作∣a∣。
向量的加法:向量的加法是按照平行四边形的法则进行的。
向量的数乘:实数与向量的乘法称为数乘,其实数称为标量因数。
向量的点乘:两个向量的点乘是一个标量,其值等于两个向量的对应分量之积的和。
向量的叉乘:两个向量的叉乘是一个向量,其方向垂直于作为运算两向量的平面。
2. 空间直角坐标系空间直角坐标系的建立:通过三个互相垂直的平面建立空间直角坐标系。
点的坐标:空间中一点P可以用三维坐标来表示,记作(x, y, z)。
向量的坐标:一个向量的坐标等于其各分量分别乘以对应的单位向量的坐标。
3. 向量函数与空间曲线向量函数的定义:向量函数是由一个或多个自变量和向量构成的函数关系。
空间曲线的参数方程:空间曲线的参数方程是由参数t确定的点的坐标来表示的。
向量函数的导数与空间曲线的切线:向量函数的导数可以用来表示空间曲线的切线。
4. 向量场与梯度、散度、旋度向量场的定义:向量场是由空间中某一点处的向量构成的函数关系。
梯度、散度和旋度的定义:梯度表示标量场中某点的增减性;散度表示矢量场的散开程度;旋度表示矢量场的旋转程度。
5. 空间曲面与曲线在坐标面上的投影空间曲面的参数方程:空间曲面的参数方程由两个参数t1和t2确定。
空间曲线在坐标面上的投影:通过消去参数t1或t2可以将空间曲线投影到坐标平面上。
6. 向量运算的几何意义与向量的应用向量运算的几何意义:向量的加法、数乘、点乘和叉乘等运算都有明确的几何意义。
向量的应用:向量在物理、工程等领域有着广泛的应用,如力、速度、加速度、电场强度等都可以用向量来表示。
以上是关于向量代数与空间解析几何的考研笔记,希望对您有所帮助。
第七章第三节空间平面与直线及其方程
A 4C 0 , 即 A 4C ,
代入所设方程并消去C (C 0) , 得所求的平面方程为
4x z 0 .
高等数学 第七章 向量代数与空间解析几何
7.3 空间平面与空间直线及其方程
三、空间直线的方程
1.空间直线的点向式方程与参数方程 (1) 直线的方向向量的定义 与直线平行的非零向量, 称为这条直线的一个方向向量. 直线的方向向量有无数多个.
i 1 0 j 1 1 k 0 1
n
M1
M3 M2
(1 , 1 , 1)
又 M1 , 利用点法式得平面 的方程为:
高等数学 第七章 向量代数与空间解析几何
7.3 空间平面与空间直线及其方程
例7.3.1 求过三点
的平面 的方程.
解: 平面 的法向量垂直于该平面内任一向量, 于是可取平面 的法向量为:
高等数学 第七章 向量代数与空间解析几何
7.3 空间平面与空间直线及其方程
例7.3.2 设一平面与
轴的交点分别为
R(0,0, c ) (其中 a 0,b 0,c 0 ), 求该平面的方程.
分析: 可用平面的一般方程做 或平面的点法式方程做. 解: 设平面的方程为
Ax By Cz D 0,
x x0 y y0 n m 得 y y0 z z0 p n
法2: 先找直线上两点A, B; AB 就是直线的方向向量.
高等数学 第七章 向量代数与空间解析几何
7.3 空间平面与空间直线及其方程
例7.3.5 用点向式方程及参数方程表示直线
分析: 先找直线上一点; 再找直线的方向向量. 解: 先在直线上找一点 M0 ( x0 , y0 , z0 ) . y0 z 0 1 0 , 令 x0 0 , 代入原方程组得 2 y0 z 0 1 0 ,
高等数学第七章 向量代数与空间解析几何
第七章向量代数与空间解析几何空间解析几何是多元函数微积分学必备的基础知识.本章首先建立空间直角坐标系,然后引进有广泛应用的向量代数,以它为工具,讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分内容.第一节空间直角坐标系平面解析几何是我们已经熟悉的,所谓解析几何就是用解析的,或者说是代数的方法来研究几何问题.坐标法把代数与几何结合起来.代数运算的基本对象是数,几何图形的基本元素是点.正如我们在平面解析几何中所见到的那样,通过建立平面直角坐标系使几何中的点与代数的有序数之间建立一一对应关系.在此基础上,引入运动的观点,使平面曲线和方程对应,从而使我们能够运用代数方法去研究几何问题.同样,要运用代数的方法去研究空间的图形——曲面和空间曲线,就必须建立空间内点与数组之间的对应关系.一、空间直角坐标系空间直角坐标系是平面直角坐标系的推广.过空间一定点O,作三条两两互相垂直的数轴,它们都以O为原点.这三条数轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴),统称坐标轴.它们的正方向按右手法则确定,即以右手握住z轴,右手的四个手指指向x轴的正向以π2角度转向y轴的正向时,大拇指的指向就是z轴的正向(图7-1),这样的三条坐标轴就组成了一空间直角坐标系Oxyz,点O叫做坐标原点.图7-1三条坐标轴两两分别确定一个平面,这样定出的三个相互垂直的平面:xOy,yOz,zOx,统称为坐标面.三个坐标面把空间分成八个部分,称为八个卦限,上半空间(z>0)中,从含有x 轴、y轴、z轴正半轴的那个卦限数起,按逆时针方向分别叫做Ⅰ,Ⅱ,Ⅲ,Ⅳ卦限,下半空间(z<0)中,与Ⅰ,Ⅱ,Ⅲ,Ⅳ四个卦限依次对应地叫做Ⅴ,Ⅵ,Ⅶ,Ⅷ卦限(图7-2).图7-2确定了空间直角坐标系后,就可以建立起空间点与数组之间的对应关系.设M为空间的一点,过点M作三个平面分别垂直于三条坐标轴,它们与x轴、y轴、z 轴的交点依次为P、Q、R(图7-3).这三点在x轴、y轴、z轴上的坐标依次为x,y,z.这样,空间的一点M就惟一地确定了一个有序数组(x,y,z),它称为点M的直角坐标,并依次把x,y和z叫做点M的横坐标,纵坐标和竖坐标.坐标为(x,y,z)的点M通常记为M(x,y,z).图7-3反过来,给定了一有序数组(x,y,z),我们可以在x轴上取坐标为x的点P,在y轴上取坐标为y的点Q,在z轴上取坐标为z的点R,然后通过P、Q与R分别作x轴,y轴与z 轴的垂直平面,这三个平面的交点M就是具有坐标(x,y,z)的点(图7-3).从而对应于一有序数组(x,y,z),必有空间的一个确定的点M.这样,就建立了空间的点M和有序数组(x,y,z)之间的一一对应关系.如图7-3所示x轴,y轴和z轴上的点的坐标分别为P(x,0,0),Q(0,y,0),R(0,0,z);xOy面,yOz面和zOx面上的点的坐标分别为A(x,y,0),B(0,y,z),C(x,0,z);坐标原点O的坐标为O(0,0,0).它们各具有一定的特征,应注意区分.二、空间两点间的距离设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d,我们过M1,M2各作三个分别垂直于三条坐标轴的平面.这六个平面围成一个以M1,M2为对角线的长方体(图7-4).根据勾股定理,有图7-4|M 1M 2|2=|M 1N |2+|NM 2|2=|M 1P |2+|M 1Q |2+|M 1R |2.由于|M 1P |=|P 1P 2|=|x 2-x 1|,|M 1Q |=|Q 1Q 2|=|y 2-y 1|,|M 1R |=|R 1R 2|=|z 2-z 1|,所以d =|M 1M 2|=212212212)()()(z z y y x x -+-+-,这就是两点间的距离公式.特别地,点M (x,y,z )与坐标原点O (0,0,0)的距离为d =|OM |=222z y x ++。
第3讲空间解析几何—曲面、曲线及其方程
第3讲 空间解析几何—曲面、曲线及其方程本节主要内容第三节 曲面及其方程1 曲面方程的概念2 旋转曲面3 柱 面 4二次曲面第四节 空间曲线及其方程1 空间曲线的一般方程2 空间曲线的参数方程3 空间曲线在坐标面上的投影讲解提纲:第七章 空间解析几何与向量代数第三节 曲面及其方程一、 曲面方程的概念空间曲面研究的两个基本问题是:1.已知曲面上的点所满足的几何条件,建立曲面的方程;2.已知曲面方程,研究曲面的几何形状.二、旋转曲面以一条平面曲线绕其平面上的一条直线旋转一周形成的曲面叫做旋转曲面,旋转曲线和定直线分别叫做旋转曲面的母线和轴。
三、柱面平行于定直线并沿定曲线C 移动的直线L 形成的轨迹叫做柱面,定曲线C 叫做柱面的准线,动直线L 叫做柱面的母线。
四、二次曲面三元二次方程0),,(=z y x F 所表示的曲面称为二次曲面。
例题选讲:曲面方程的概念例1 建立球心在点),,(0000z y x M 、半径为R 的球面方程. 解:易得球面方程为2222000()()()x x y y z z R -+-+-=例2 求与原点O 及)4,3,2(0M 的距离之比为1:2的点的全体所组成的曲面方程. 解:易得曲面方程为22224116()(1)()339x y z +++++=。
例3 已知()1,2,3,A ()2,1,4,B - 求线段AB 的垂直平分面的方程.解:设点(,,)M x y z 为所求平面上的任一点,由 A M B M ==整理得26270x y z -+-=。
例4方程2222440x y z x y z ++-++=表示怎样的曲面?旋转曲面例5 将xOz 坐标面上的抛物线25z x =分别绕x 轴旋转一周,求所生成的旋转曲面的方程.解:易得旋转曲面的方程225y z x +=例6 直线L 绕另一条与L 相交的定直线旋转一周, 所得旋转曲面称为叫圆锥面. 两直线的交点称为圆锥面的顶点, 两直线的夹角α)20(πα<<称为圆锥面的半顶角. 试建立顶点在坐标原点, 旋转轴为z 轴, 半顶角为α的圆锥面方程解:在yoz 坐标平面上,直线L 的方程为 c o tz y α= 可得圆锥面的方程为2222()z x y α=+柱面例7 分别求母线平行于x 轴和y 轴,且通过曲线222222216x y z x y z ⎧++=⎨-+=⎩的柱面方程.解:母线平行于x 轴的柱面方程:22316y z -= 母线平行于y 轴的柱面方程:223216x z += 二次曲面.椭球面:1222222=++cz b y a x )0,0,0(>>>c b a抛物面椭圆抛物面 qy p x z 2222+= (同号与q p )双曲抛物面 z qy p x =+-2222 ( p 与q 同号)双曲面单叶双曲面 1222222=-+c z b y a x )0,0,0(>>>c b a双叶双曲面 1222222-=-+c z b y a x )0,0,0(>>>c b a二次锥面 0222222=-+cz b y a x例8 由曲面,0,0,0===z y x 1,122=+=+z y y x 围成的空间区域(在第一卦限部分), 作它的简图.课堂练习 1.求直线11:121x y z L --==绕z 轴旋转所得到的旋转曲面的方程. 2.指出方程221x y -=及22z x =-所表示的曲面. 3 方程()()22234z x y =-+--的图形是怎样的?第四节 空间曲线及其方程一、 空间曲线的一般方程 ⎩⎨⎧==0),,(0),,(z y x G z y x F二、空间曲线的参数方程 ⎪⎩⎪⎨⎧===)()()(t z z t y y t x x三、 空间曲线在坐标面上的投影⇒⎩⎨⎧==.0),,(,0),,(z y x G z y x F ⇒=0),(y x H ⎩⎨⎧==00),(z y x H例题选讲:空间曲线的一般方程例1方程组 221493x y y ⎧+=⎪⎨⎪=⎩表示怎样的曲线?空间曲线的参数方程例2 若空间一点M 在圆柱面222a y x =+上以角速度ω绕z 轴旋转, 同时又以线速度v 沿平行于z 轴的正方向上升 (其中ω、v 是常数), 则点M 构成的图形叫做螺旋线. 试建立其参数方程.解:取时间t 为参数,在t=0时,动点位于x 轴上的一点(,0,0)A a 处。
专升本高等数学二教材内容
专升本高等数学二教材内容高等数学二教材是专升本考试中的一门重要科目,涵盖了诸多数学概念和方法。
本文将围绕高等数学二教材内容展开论述,旨在帮助专升本考生对这门课程有更清晰的认识和理解。
第一章:数列与数学归纳法数列作为数学研究的基本对象之一,是高等数学中的重要概念。
本章介绍了数列的概念、等差数列和等比数列的性质、通项公式以及数列极限等内容。
同时,数学归纳法作为一种重要的数学证明方法,在高等数学中起到了重要的作用。
第二章:函数与映射函数是高等数学中的核心概念,也是数学建模过程中常用的工具。
本章介绍了函数的基本概念、函数的性质、基本初等函数、反函数以及复合函数等内容。
同时,映射的概念和性质也是本章的重点内容之一。
第三章:极限与连续极限是高等数学中的核心概念,是掌握整个课程的基础。
本章介绍了函数极限的定义、性质和计算方法,以及无穷小量和无穷大量的概念。
另外,连续函数和间断点的性质也是本章的重要内容。
第四章:导数与微分导数是高等数学中的重要概念,描述了函数变化率的属性。
本章介绍了导数的概念、性质和计算方法,以及高阶导数和隐函数求导等内容。
微分的概念和微分中值定理也是本章的重点内容之一。
第五章:不定积分与定积分初步积分是高等数学中的重要工具,也是微积分的核心内容之一。
本章介绍了不定积分的概念、基本性质和计算方法,以及定积分的定义、性质和计算方法。
牛顿-莱布尼兹公式和换元积分法等内容也是本章的重点。
第六章:微分方程微分方程作为数学建模过程中常用的工具,对理解和解决实际问题起到了重要作用。
本章介绍了常微分方程的基本概念、初等解法和一阶线性微分方程等内容。
同时,高阶线性微分方程和二阶常系数齐次线性微分方程的解法也是本章的重点内容之一。
第七章:无穷级数无穷级数是数学中的重要概念,也是高等数学中的难点之一。
本章介绍了数项级数的收敛和发散的判别法、常见数项级数的性质,以及幂级数和傅里叶级数的概念和应用等内容。
第八章:曲线与曲面积分曲线积分和曲面积分是高等数学中的重要概念和方法,用于求解曲线和曲面上的物理问题。
8.3-8.4空间曲面、空间曲线及其方程
(4)
方程(5)表示一个母线平行于z 轴的柱面,
注意:曲线 C 一定在柱面上. 空间曲线 C 在 x O y 面上的 投影曲线必定包含于:
z
C
o o
H (x, y) = 0 z=0
y
x
注: 同理可得曲线在yOz面或xOz面
上的投影曲线方程.
已知两个球面的方程分别为:x2 + y2 + z2 = 1和 例6 x2 + (y 1)2 + (z1)2 = 1.求它们的交线C在xOy 面上的投影曲线的方程. 解 联立两个方程消去 z ,得 椭圆柱面
定义1 如果曲面 S 与方程 F( x, y, z ) = 0 有下述关系: (1) 曲面 S 上的任意点的坐标都满足此方程; (2) 不在曲面 S 上的点的坐标不满足此方程,
则 F( x, y, z ) = 0 叫做曲面 S 的方程,
曲面 S 叫做方程 F( x, y, z ) = 0 的图形.
故所求方程为
( x x0 ) 2 ( y y0 ) 2 ( z z0 ) 2 R 2 z
特别,当M0在原点时,球面方程为
x2 y2 z 2 R2
表示上(下)球面 .
M0
M
o x
y
例2
研究方程
表示怎样
的曲面. 解 配方得 故此方程表示: 球心为 M 0 (1, 2, 0 ) , 半径为 5 的球面. 说明: 如下形式的三元二次方程 ( A≠ 0 )
特别,当 p = q 时为绕 z 轴的旋转抛物 面. (2) 双曲抛物面(鞍形曲面)
x
y
z
x y z ( p , q 同号) 2p 2q
2
2
高等数学(第八章)向量代数与空间解析几何(全)
若向量a = x1i y1 j z1k,b = x2i y2 j z2k,由数量积的运算性质得
a b = x1x2 y1 y2 z1z2.
设非零向量a = x1, y1, z1,b = x2, y2, z2,则
(1) | a | a a x12 y12 z12;
(2) cos a, b a b
2
向量代数与空间解析几何
空间直角坐标系
一、空间直角坐标系 空间两点间的距离
向量的概念---大小,方向,相等,向径,坐标等.
二、向量代数 向量的运算---加减,数乘,点乘,叉乘,混合积.
❖ 向量位置关系的刻画 ---平行,垂直,夹角. ❖ 向量的方向角、方向余弦.
平面的方程
三、空间的平面 两平面的位置关系
五、 向量的坐标
空间直角坐标系Oxyz 中,在x 轴、y 轴、z 轴上各取一个与坐标轴同向的单位 向量,以此记作i,j,k,把它们称为基本单位向量或基向量.任一向量都可以 唯一地表示为i,j,k 数乘之积.
设M (x, y, z)是空间任意一点,记OM r,则r xi yj zk,我们把上式称为 向量r 的坐标分解式,xi,yj 和zk 称为向量r 沿3 个坐标轴方向的分向量,i,j,
d (x2 x1)2 ( y2 y1)2 (z2 z1)2 .
11
二、 空间两点间的距离 例 1 在z轴上求与点A(3,5, 2)和B(4,1,5)等距离的点M .
解 由于所求的点M 在z 轴上,因此M 点的坐标可设为(0, 0, z),又由于
MA MB ,
由空间两点间的距离公式,得
(3)结合律:(a) b = (a b) a (b);
(4)a a = a 2 ; (5)a b = 0 a b; (6) | a b || a | | b | . 特别地,有
空间解析几何与向量代数》知识点、公式总结
空间解析几何与向量代数》知识点、公式总结空间解析几何与向量代数是数学中非常重要的分支,它们在物理、工程、计算机科学等领域得到了广泛的应用。
以下是一些知识点和公式的总结:一、向量的数量积与向量积1. 向量的数量积:两个向量 a 和 b 的数量积 (也叫数量积或点积) 定义为一个新的向量,记作 a·b,其大小为|a|·|b|,方向遵循右手法则,即对于任意的向量 c,(a·b)·c=a·(b·c)。
2. 向量积:两个向量 a 和 b 的向量积 (也叫向量积或叉积)定义为一个新的向量,记作 a×b,其大小为|a|·|b|,方向遵循右手法则,即对于任意的向量 c,(a×b)·c=a·(b×c)。
二、向量的混合积1. 向量的混合积:三个向量的混合积 (也叫叉积) 定义为一个新的向量,记作 (ab)c,其大小为|a|·|b|,方向遵循右手法则,即对于任意的向量 d,(ab)c·d=a·(b·c)d。
2. 向量共面的条件:三个向量 a、b、c 共面的条件是它们对应的三条法向量共面。
三、空间平面及其方程1. 空间平面的方程:空间中两个不共线的平面的方程分别为Px+My+Nz=C 和 Px+My+Nz=D,其中 P、M、N 为平面上的任意三个点,C 和D 为已知常数。
2. 平面的点法式方程:设 M(x0,y0,z0) 为平面上的已知点,n(A,B,C) 为法向量,M(x,y,z) 为平面上的任一点,则平面的点法式方程为 A(x-x0)B(y-y0)C(z-z0)=0。
四、空间直线及其方程1. 空间直线的方程:空间中一条直线的方程为 x+My+Nz=C,其中 P、M、N 为直线上的任意三个点,C 为已知常数。
2. 空间直线的参数方程:空间中一条直线的参数方程为x=f(t),y=g(t),z=h(t),其中 t 为参数,f、g、h 分别为直线上的点的 x、y、z 坐标。
第八章 向量代数与空间解析几何(2)
在xoy面上, x2 + y2 = R2 表示以
z
原点O为圆心, 半径为R的圆.
曲面可以看作是由平行 于 z 轴的直线L沿xoy面上的 圆x2 + y2 = R2 移动而形成, 称 该曲面为圆柱面.
l
oo
y
x
9
画出下列柱面的图形:
y x2
z
y x
z
o x
y
o
y
x
抛物柱面
平面
10
方程F (x, y) = 0 表示:
点的轨迹.
解 设M( x, y, z)是所求平面上任一点, 根据题意有 | MA | | MB | ,
( x 2)2 ( y 1)2 (z 3)2
( x 4)2 ( y 1)2 (z 2)2 ,
化简得所求方程 4x 4 y 2z 7 0 .
这是一个平面方程,可知所求的轨迹是一个平面. 称此平面为线段的垂直平分面.
x
y
那末, 方程F (x, y, z) = 0叫做曲面S的方程, 而曲面 S叫做方程F (x, y, z) = 0的图形 .
2
研究空间曲面有两个基本问题: (1)已知曲面作为点的轨迹时,求曲面方程.
(讨论旋转曲面) (2)已知曲面方程,研究曲面形状.
(讨论柱面、二次曲面)
3
例1 求到空间两点 A(2,1,3) 和B(4,1,2) 距离相等的
4
以下给出几种常见的曲面.
1、球面
建立球心在点M0 ( x0 , y0 , z0 )、
半径为 R 的球面方程.
解 设M ( x, y, z)是球面上任一点, 根据题意有 | MM0 | R ,
M R
M0
即 ( x x0 )2 ( y y0 )2 (z z0 )2 R ,
高等数学 第七章 向量代数与空间解析几何
第四节 空间直线及其方程
一、空间直线的一般方程 二、空间直线的对称式方程与参数方程
三、两直线的夹角 四、直线与平面的夹角
一、空间直线的一般方程
空间直线可以看作是两个平面的交线.
设直线L是平面1和2的交线, 平面的方程分别为
A1xB1yC1zD10和A2xB2yC2zD20, 那么直线L可以用方程组
设α=x1i+y1j+z1k=(x1 , y1 ,z1), 则有:β=x2i+y2j+z2k= (x2,y2,z2).
α+β =(x1+x2 )i +(y1+y2)j +(z1+z2) k
=(x1+x2 , y1+y2 , z1+z2 ). α-β=(x1-x2) i+ (y1-y2 ) j+ (z1-z2)k
一方向向量s(m, n, p)为已知时, 直线L 的位置就完全确定了.
❖直线的对称式方程
求通过点M0(x0, y0, x0), 方向向量为s(m, n, p)的直线的方 程.
设M(x, y, z)为直线上的任一点,
则从M0到M的向量平行于方向向量:
从而有
(xx0, yy0, zz0)//s ,
>>>注
λ >0
由性质1, Prj(λα)=|λα|cos(φ1)
α φ1 = φ
=λ|α|cosφ
λα φ1=π- φ
=λPrjlα
λ<0
当λ<0时 φ1=π-φ
λα
Prj(λα)=|λ|.|α|cos(φ1) =-λ|α|(-cosφ)
λ >0 α
=λPrjlα; 当λ=0时
同济大学(高等数学)-第八章-向量代数与解析几何
第五篇 向量代数与空间解析几何第八章 向量代数与空间解析几何解析几何的基本思想是用代数的方法来研究几何的问题,为了把代数运算引入几何中来,最根本的做法就是设法把空间的几何结构有系统的代数化,数量化. 平面解析几何使一元函数微积分有了直观的几何意义,所以为了更好的学习多元函数微积分,空间解析几何的知识就有着非常重要的地位.本章首先给出空间直角坐标系,然后介绍向量的基础知识,以向量为工具讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分容.第1节 空间直角坐标系1.1 空间直角坐标系用代数的方法来研究几何的问题,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现.1.1.1 空间直角坐标系过定点O ,作三条互相垂直的数轴,这三条数轴分别叫做x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),它们都以O 为原点且具有相同的长度单位. 通常把x 轴和y 轴配置在水平面上,而z 轴则是铅垂线;它们的正方向要符合右手规则:右手握住z 轴,当右手的四指从x 轴的正向转过2角度指向y 轴正向时,大拇指的指向就是z 轴的正向,这样就建立了一个空间直角坐标系(图8-1),称为Oxyz 直角坐标系,点O 叫做坐标原点.图8-1在Oxyz 直角坐标系下,数轴Ox ,Oy ,Oz 统称为坐标轴,三条坐标轴中每两条可以确定一个平面,称为坐标面,分别为xOy ,yOz ,zOx ,三个坐标平面将空间分为八个部分,每一部分叫做一个卦限(图8-2),分别用Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ表示.yxzO图8-21.1.2 空间点的直角坐标设M 为空间中的任一点,过点M 分别作垂直于三个坐标轴的三个平面,与x 轴、y 轴和z 轴依次交于A 、B 、C 三点,若这三点在x 轴、y 轴、z 轴上的坐标分别为x ,y ,z ,于是点M 就唯一确定了一个有序数组(, , )x y z ,则称该数组(, , )x y z 为点M 在空间直角坐标系Oxyz 中的坐标,如图8-3.x ,y ,z 分别称为点M 的横坐标、纵坐标和竖坐标.图8-3反之,若任意给定一个有序数组(, , )x y z ,在x 轴、y 轴、z 轴上分别取坐标为x ,y ,z 的三个点A 、B 、C ,过这三个点分别作垂直于三个坐标轴的平面,这三个平面只有一个交点M ,该点就是以有序数组(, , )x y z 为坐标的点,因此空间中的点M 就与有序数组(, , )x y z 之间建立了一一对应的关系.注:A 、B 、C 这三点正好是过M 点作三个坐标轴的垂线的垂足.yxzOyxzAB C(,,)M x y z1.2 空间中两点之间的距离设两点111(, , )M x y z ,222(, , )N x y z ,则M 与N 之间的距离为212212212)()()(z z y y x x d -+-+-= (8-1-1)事实上,过点M 和N 作垂直于xOy 平面的直线,分别交xOy 平面于点1M 和1N ,则1MM ∥1NN ,显然,点1M 的坐标为11(, , 0)x y ,点1N 的坐标为22(, , 0)x y (如图8-4).图8-4由平面解析几何的两点间距离公式知,1M 和1N 的距离为:21221211)()(||y y x x N M -+-=.过点M 作平行于xOy 平面的平面,交直线1NN 于2N ,则11M N ∥2MN ,因此2N 的坐标为221(, , )x y z ,且212212112)()(||||y y x x N M MN -+-==,在直角三角形N MN 2中,||||122z z N N -=,所以点M 与N 间的距离为2122122122222)()()(||||z z y y x x N N MN d -+-+-=+=.例1 设(1, 2, 0)A -与(1, 0, 2)B --为空间两点,求A 与B 两点间的距离. 解 由公式(8-1-1)可得,A 与B 两点间的距离为d ==例2 在z 轴上求与点(3, 5, 2)A -和(4, 1, 5)B -等距的点M .解 由于所求的点M 在z 轴上,因而M 点的坐标可设为(0, 0, )z ,又由于MA MB =,由公式(8-1-1),得222222)5(1)4()2(53z z -++-=--++.从而解得72=z ,即所求的点为2(0, 0, )7M .习题8-11.讨论空间直角坐标系的八个卦限中的点的坐标的符号. 2.在坐标轴上的点和在坐标平面上的点的坐标各有何特点? 3.在空间直角坐标系中,画出以下各点:(2, 0, 0)A ;(0, 3, 0)B -;(3, 0, 1)C ;(3, 2, 1)D -.4.求点(1, 2, 3)-关于各坐标平面对称的点的坐标. 5.求点(1, 2, 3)关于各坐标轴对称的点的坐标. 6.求以下各对点间的距离: (1) (0, 1, 3)A -与(2, 1, 4)B ;(2) (1, 4, 2)C -与D(2, 7, 3).7.在坐标平面yOz 上求与三点(3, 1, 2)A 、(4, 2, 2)B --和(0, 5, 1)C 等距的点. 8.求点(12, 3, 4)A -与原点、各坐标平面和各坐标轴的距离.9. 证明以()()()A 4,3,1,B 7,1,2,C 5,2,3为顶点的三角形△ABC 是一等腰三角形.第2节 空间向量的代数运算2.1 空间向量的概念在日常生活中,我们经常会遇到一些量,如质量、时间、面积、温度等,它们在取定一个度量单位后,就可以用一个数来表示.这种只有大小没有方向的量,叫做数量(或标量).但有一些量,如力、位移、速度、电场强度等,仅仅用一个实数是无法将它们确切表示出来,因为它们不仅有大小,而且还有方向,这种既有大小又有方向的量,叫做向量(或矢量).在数学上,我们用有向线段AB 来表示向量,A 称为向量的起点,B 称为向量的终点,有向线段的长度就表示向量的大小,有向线段的方向就表示向量的方向.通常在印刷时用黑体小写字母a ,b ,c ,…来表示向量,手写时用带箭头的小写字母, ,,a b c来记向量.向量的长度称为向量的模,记作a 或AB ,模为1的向量叫做单位向量,模为0的向量叫做零向量,记作0,规定:零向量的方向可以是任意的.本章我们讨论的是自由向量,即只考虑向量的大小和方向,而不考虑向量的起点,因此,我们把大小相等,方向相同的向量叫做相等向量,记作a =b .规定:所有的零向量都相等.与向量a 大小相等,方向相反的向量叫做a 的负向量(或反向量),记作 a . 平行于同一直线的一组向量称为平行向量(或共线向量).平行于同一平面的一组向量,叫做共面向量,零向量与任何共面的向量组共面.2.2 向量的线性运算2.2.1 向量的加法我们在物理学中知道力与位移都是向量,求两个力的合力用的是平行四边形法则,我们可以类似地定义两个向量的加法.定义1 对向量a ,b ,从同一起点A 作有向线段AB 、AD 分别表示a 与b ,然后以AB 、AD 为邻边作平行四边形ABCD ,则我们把从起点A 到顶点C 的向量AC 称为向量a 与b 的和(图8-5),记作a +b .这种求和方法称为平行四边形法则.图8-5 图8-6若将向量b 平移,使其起点与向量a 的终点重合,则以a 的起点为起点,b 的终点为终ab Cabc =a +b点的向量c 就是a 与b 的和(图8-6),该法则称为三角形法则.多个向量,如a 、b 、c 、d 首尾相接,则从第一个向量的起点到最后一个向量的终点的向量就是它们的和a +b +c +d (图8-7).图8-7对于任意向量a ,b ,c ,满足以下运算法则: (1)a +b =b +a (交换律).(2)()()a +b +c =a +b +c (结合律). (3)0a +=a .2.2.2 向量的减法定义2 向量a 与b 的负向量-b 的和,称为向量a 与b 的差,即()--a b =a +b .特别地,当b =a 时,有()-0a +a =.由向量减法的定义,我们从同一起点O 作有向线段OA ,OB 分别表示a ,b ,则()OA OB OA OB --=+-a b =OA BO BA =+=.也就是说,若向量a 与b 的起点放在一起,则a ,b 的差向量就是以b 的终点为起点,以a 的终点为终点的向量(图8-8).图8-82.2.3数乘向量定义3 实数λ与向量a 的乘积是一个向量,记作λa ,λa 的模是λa ,方向: 当0λ>时,λa 与a 同向;当0λ<时,λa 与a 反向;当0λ=时,λ0a =.abcda +b +c +daabb -a bBAC对于任意向量a ,b 以与任意实数λ,μ,有运算法则: (1) ()()λμλμa =a . (2) ()+λμλμ+a =a a .(3) ()+λλλ+a b =a b .向量的加法、减法与数乘向量运算统称为向量的线性运算,λμa +b 称为a ,b 的一个线性组合(, )R λμ∈.特别地,与 a 同方向的单位向量叫做a 的单位向量,记做a e ,即aa e a=.上式说明:一个非零向量除以它的模的结果是一个与原向量同方向的单位向量.例1 如图8-9,在平行六面体///ABCD B C D /—A 中,设/=AA ,a AD =b AB =c ,试用,,a b c 来表示对角线向量//,.AC A C图8-9解 ''AC AB BC CC =++'AB BC AA =++a b c =++;'''AC A A AB BC AA AB AD =++=-++a b c =++.由于向量λa 与a 平行,所以我们通常用数与向量的乘积来说明两个向量的平行关系.即有,定理1 向量a 与非零向量b 平行的充分必要条件是存在一个实数λ,使得λa =b .2.3 向量的坐标表示2.3.1向量在坐标轴上的投影设A 为空间中一点,过点A 作轴u 的垂线,垂足为'A ,则'A 称为点A 在轴u 上的投影(图8-10).图8-10若M 为空间直角坐标系中的一点,则M 在x 轴、y 轴、z 轴上的投影为A 、B 、C ,如图8-11所示.图8-11设向量AB 的始点与终点B 在轴u 的投影分别为A '、B ',那么轴u 上的有向线段A B ''的值A B ''叫做向量AB 在轴u 上的投影,记作u prj AB A B ''=,轴u 称为投影轴.图8-12当A B ''与轴u 同向时,投影取正号,当A B ''与轴u 反向时,投影取负号. 注 (1) 向量在轴上投影是标量.(2) 设MN 为空间直角坐标系中的一个向量,点M 的坐标为111(, , )x y z ,点N 的坐标为222(, , )x y z ,显然,向量MN 在三个坐标轴上的投影分别为12x x -,12y y -,12z z -. 2.3.2向量的坐标表示yxzOA B CM取空间直角坐标系Oxyz ,在x 轴、y 轴、z 轴上各取一个与坐标轴同向的单位向量,依次记作, , i j k ,它们称为坐标向量.空间中任一向量a ,它都可以唯一地表示为, , i j k 数乘之和. 事实上,设MN a =,过M 、N 作坐标轴的投影,如图8-13所示.MN =MA+AP +PN =MA+MB +MC a =.由于MA 与i 平行,MB 与j 平行,MC 与k 平行,所以,存在唯一的实数, , x y z ,使得MA x =i ,MB y =j ,MC z =k ,即x y z a =i +j +k . (8-2-1)图 8-13我们把(8-2-1)式中, , i j k 系数组成的有序数组(, , )x y z 叫做向量a 的直角坐标,记为{, , }x y z a =,向量的坐标确定了,向量也就确定了.显然,(8-2-1)中的, , x y z 是向量a 分别在x 轴、y 轴、z 轴上的投影.因此,在空间直角坐标系中的向量a 的坐标就是该向量在三个坐标轴上的投影组成的有序数组.例2 在空间直角坐标系中设点(3, 1, 5)M -,(2, 3, 1)N -,求向量MN 与NM 的直角坐标.解 由于向量的坐标即为向量在坐标轴上的投影组成的有序数组,而向量的各投影即为终点坐标与起点坐标对应分量的差.所以向量MN 的坐标为{5, 4, 4}--,向量NM 的坐标为{5, 4, 4}-. 例3(定比分点公式) 设111(,,)A x y z 和222(,,)B x y z 为两已知点,有向线段AB 上的点M 将它分为两条有向线段AM 和MB ,使它们的值的比等于数(1)λλ≠-,即AMMBλ=,求分点(,,)M x y z 的坐标.图8-14 解 如图8-14,因为AM 与MB 在同一直线上,且同方向,故AM MB λ=⋅,而122{,,}AM x x y y z z =---, 222{,,}MB x x y y z z =---222{(),(),()}MB x x y y z z λλλλ=---所以 12()x x x x λ-=-,12()y y y y λ-=-,12()z z z z λ-=- 解得121212,,.111x x y y z z x y z λλλλλλ+⋅+⋅+⋅===+++当λ=1, 点M 的有向线段→AB x 2.3.3向量可以用它的模与方向来表示,设空间向量12a M M =分别为,,αβγ,规定: 0,0απ≤≤≤称,,αβγ为向量a 的方向角因为向量a 12cos cos x a M M a αα=⋅=⋅12cos cos y a M M a ββ=⋅=⋅(8-2-2)12cos cos z a M M a γγ=⋅=⋅公式(8.2.2)中出现的cos ,cos ,cos αβγ称为向量a 的方向余弦.而{,,}{cos ,cos ,cos }x y z a a a a a a a αβγ==⋅⋅⋅{cos ,cos ,cos }a a a e αβγ=⋅=⋅{cos ,cos ,cos }a e αβγ=是与向量a 同方向的单位向量.而 a =M M =12,,x y z M P a M Q a M R a ===111,故向量a 的模为 x a a a =+2(8-2-3)从而向量a 的方向余弦为cos a αβγ===(8-2-4)并且 222cos cos cos 1αβγ++=.例4 已知两点1M 和()21,3,0M ,求向量12M M 的模、方向余弦和方向角.解12(12,32,0(1,1,M M =--=-2)2(1)1(222=-++-=;11cos ,cos ,cos 22αβγ=-==; 23,,334πππαβγ===. 例5 已知两点(4,0,5)A 和(7,1,3)B ,求与AB 同方向的单位向量e . 解 因为{74,10,35}{3,1,2},AB =---=-所以23AB == 于是 {}.e =2.4 向量的数量积在物理中我们知道,一质点在恒力F 的作用下,由A 点沿直线移到B 点,若力F 与位移向量AB 的夹角为θ,则力F 所作的功为||||cos W F AB θ=⋅⋅.类似的情况在其他问题中也经常遇到.由此,我们引入两向量的数量积的概念. 定义1 设a ,b 为空间中的两个向量,则数cos ,a b a b叫做向量a 与b 的数量积(也称积或点积),记作⋅a b ,读作“a 点乘b ”.即cos ,⋅a b =a b a b (8-2-5)其中,a b 表示向量a 与b 的夹角,并且规定0, π≤≤a b .两向量的数量积是一个数量而不是向量,特别地当两向量中一个为零向量时,就有0⋅a b =.由向量数量积的定义易知:(1)2⋅a a =a ,因此=a(2) 对于两个非零向量a ,b ,a 与b 垂直的充要条件是它们的数量积为零,即⊥a b ⇔0⋅a b =.注 数量积在解决有关长度、角度、垂直等度量问题上起着重要作用. 数量积的运算满足如下运算性质: 对于任意向量a ,b 与任意实数λ,有 (1) 交换律:⋅⋅a b =b a .(2) 分配律:()⋅⋅⋅a b +c =a b +a c .(3) 与数乘结合律:()()()λλλ⋅⋅=⋅a b =a b a b . (4)0⋅≥a a 当且仅当0a =时,等号成立.例6 对坐标向量i ,j ,k ,求⋅i i ,⋅j j ,⋅k k ,⋅i j ,⋅j k ,⋅k i . 解 由坐标向量的特点与向量积的定义得1⋅⋅⋅i i =j j =k k =, 0⋅⋅⋅i j =j k =k i =.例7 已知2=a ,3=b ,2, 3π=a b ,求a b ⋅,(2)()-+a b a b ⋅,+a b . 解 由两向量的数量积定义有2cos , 23cos 3π⋅=⨯⨯a b =a b a b 123()=32=⨯⨯--.(2)()=22-⋅+⋅⋅-⋅-⋅a b a b a a +a b b a b b22=2-⋅-a a b b 222(3)23=11=---⨯-.2()()+=⋅+a b a +b a b =⋅⋅+⋅+⋅a a +a b b a b b222=+⋅+a a b b 2222(3)3=7=+⨯-+,因此+=a b .在空间直角坐标系下,设向量111{,,}x y z a =,向量222{,,}x y z b =,即111x y z ++a =i j k , 222x y z ++b =i j k .则111222()()x y z x y z ⋅++⋅++a b =i j k i j k121212()()+()x x x y x z ⋅+⋅⋅=i i i j i k 121212()()+()y x y y y z ⋅+⋅⋅+j i j j j k 121212()()+()z x z y z z ⋅+⋅⋅+k i k j k k .由于1⋅⋅⋅i i =j j =k k =, 0⋅⋅⋅i j =j k =k i =,所以121212x x y y z z ⋅++a b =.(8-2-6)也就是说,在直角坐标系下,两向量的数量积等于它们对应坐标分量的乘积之和.同样,利用向量的直角坐标也可以求出向量的模、两向量的夹角公式以与两向量垂直的充要条件,即设非零向量111{,,}x y z a =,向量222{,,}x y z b =,则=a (8-2-7)cos ||||⋅=a ba,b a b=. (8-2-8)⊥a b ⇔1212120x x y y z z ++=. (8-2-9)例8 在空间直角坐标系中,设三点(5, 4, 1)A -,(3, 2, 1)B ,(2, 5, 0)C -.证明:ABC ∆是直角三角形.证明 由题意可知{2, 6, 0}AB =-,={3, 1, 1}AC ---,则(2)(3)6(1)0(1)0AB AC ⋅=-⨯-+⨯-+⨯-=,所以AB AC ⊥.即ABC ∆是直角三角形.2.5向量的向量积在物理学中我们知道,要表示一外力对物体的转动所产生的影响,我们用力矩的概念来描述.设一杠杆的一端O 固定,力F 作用于杠杆上的点A 处,F 与OA 的夹角为θ,则杠杆在F 的作用下绕O 点转动,这时,可用力矩M 来描述.力F 对O 的力矩M 是个向量,M 的大小为||||||sin OA OA =M F ,F .M 的方向与OA 与F 都垂直,且OA ,F ,M 成右手系,如图8-16所示.图8-162.5.1向量积的定义在实际生活中,我们会经常遇到象这样由两个向量所决定的另一个向量,由此,我们引入两向量的向量积的概念.定义2 设a ,b 为空间中的两个向量,若由a ,b 所决定的向量c ,其模为sin , c =a b a b . (8-2-10)其方向与a ,b 均垂直且a ,b ,c 成右手系(如图8-17),则向量c 叫做向量a 与b 的向量积(也称外积或叉积).记作⨯a b ,读作“a 叉乘b ”.注 (1) 两向量a 与b 的向量积⨯a b 是一个向量,其模⨯a b 的几何意义是以a ,b 为邻边的平行四边形的面积. (2)⨯0a a =这是因为夹角θ=0,所以⨯0a a = 图8-17(3)对两个非零向量a 与b ,a 与b 平行(即平行)的充要条件是它们的向量积为零向量.a ∥b ⇔⨯0a b =.向量积的运算满足如下性质:对任意向量a ,b 与任意实数λ,有 (1) 反交换律:⨯-⨯a b =b a . (2) 分配律:()⨯⨯⨯a b +c =a b +a c ,()⨯⨯⨯a +b c =a c +b c .(3) 与数乘的结合律:()()()λλλ⨯⨯⨯a b =a b =a b .例9 对坐标向量i ,j ,k ,求⨯i i ,⨯j j ,⨯k k ,⨯i j ,⨯j k ,⨯k i . 解⨯⨯⨯0i i =j j =k k =.⨯i j =k ,⨯j k =i ,⨯k i =j .2.5.2向量积的直角坐标运算在空间直角坐标系下,设向量111{, , }x y z a =,向量222{, , }x y z b =,即111x y z ++a =i j k ,222x y z ++b =i j k ,因为⨯⨯⨯0i i =j j =k k =. ⨯i j =k ,⨯j k =i ,⨯k i =j , ⨯-j i =k ,⨯-k j =i ,⨯-i k =j .则111222()()x y z x y z ⨯++⨯++a b =i j k i j k121212()()+()x x x y x z ⨯+⨯⨯=i i i j i k 121212()()+()y x y y y z ⨯+⨯⨯+j i j j j k 121212()()+()z x z y z z ⨯+⨯⨯+k i k j k k121212121212()()+()()()()x y y x y z z y x z z x -⨯-⨯--⨯=i j j k k i 121212121212()()+()y z z y x z z x x y y x ----=i j k .为了便于记忆,借助于线性代数中的二阶行列式与三阶行列式有111111222222y z x z x y y z x z x y ⨯-a b =i j +k 111222x y z x y z =i j k . 注 设两个非零向量111{, , }x y z a =,222{, , }x y z b =,则a ∥b ⇔⨯0a b =,⇔212121z z y y x x ==. 若某个分母为零,则规定相应的分子为零.例10 设向量{1,2,1}--a =,{2,0,1}b =,求⨯a b 的坐标.解211112121012120201----⨯--=-i j ka b =i j +k 234=--i j +k .因此⨯a b 的直角坐标为{2, 3, 4}--.例11 在空间直角坐标系中,设向量{3, 0, 2}a =,{1, 1, 1}--b =,求同时垂直于向量a 与b 的单位向量.解 设向量⨯c =a b ,则c 同时与a ,b 垂直.而302111⨯--i j kc =a b =23=-+i j +k ,所以向量c 的坐标为{2, 1, 3}-.再将c 单位化,得02,1,3}={=-c ,即{与-- 为所求的向量. 例12 在空间直角坐标系中,设点(4, 1, 2)A -,(1, 2, 2)B -,(2, 0, 1)C ,求ABC ∆的面积.解 由两向量积的模的几何意义知:以AB 、AC 为邻边的平行四边形的面积为AB AC ⨯,由于{3, 3, 4}AB =--,{2, 1, 1}AC =--,因此33453211AB AC ⨯=--=++--i j ki j k ,所以21AB AC ⨯=故ABC ∆的面积为235=∆ABC S .2.6向量的混合积定义3 给定空间三个向量,,a b c ,如果先作前两个向量a 与b 的向量积,再作所得的向量与第三个向量c 的数量积,最后得到的这个数叫做三向量,,a b c 的混合积,记做()a b c ⨯⋅或abc ⎡⎤⎣⎦.说明:三个不共面向量,,a b c 的混合积的绝对值等于以,,a b c 为棱的平行六面体的体积V .定理如果111a X i Y j Z k =++,222b X i Y j Z k =++,333c X i Y j Z k =++,那么 111222333.X Y Z abc X Y Z X Y Z ⎡⎤=⎣⎦习题8-21.,,,,,().ABCD AB AD AC DB MA M ==设为一平行四边形试用表示为平行四边形对角线的交点a b.a b12.,().2M AB O OM OA OB =+设为线段的中点,为空间中的任意一点证明 2223.?(1)()();(2)();(3)()().==⨯=⨯对于任意三个向量与判断下列各式是否成立a,b c,a b c b c a a b a b a b c c a b4.:(1);(2)(3).利用向量证明三角形的余弦定理正弦定理;勾股定理5.设,,a b c 为单位向量,且满足0a b c ++=,求.a b b c c a ++6.1(3,2,2),(1,3,2),(8,6,2),322a b c a b + c.求=-==--7.已知三点(3,0,2),A B AB ==求的坐标、模、方向余弦和方向角.8.一向量的终点在点B(2,-1,7),它在x 轴、y 轴和z 轴上的投影依次为4,-4和7.求这向量的起点A 的坐标.9.设2=a ,4=b ,3πa,b =,求⋅a b ,(2)-⋅a b b ,-a b . 10.设向量a ,b ,c 两两垂直,且1=a ,2=b ,3=c ,求向量d =a +b +c 的模与d,a .11.在空间直角坐标系中,已知{1,2,3}-a = ,{2,2,1}-b = ,求: (1)⋅a b ;(2) 25⋅a b ;(3) a ;(4)cos a,b .12.已知向量2332和,,a i j k b i j k c i j =-+=-+=-,计算 (1)()();a b c a c b -(2)()();a b b c +⨯+(3)()a b c ⨯.13.设向量a ,b 的直角坐标分别为{1, 3, 2}--和{2, 4, }k -,若a b ⊥,求k 的值.14.设向量{2, 1, 1}-a =,{1, 3, 0}-b =,求以、a b 为邻边构造的平行四边形面积. 15.求同时垂直于向量{3, 2, 4}-a =和纵轴的单位向量.16.已知三角形三个顶点(4, 1, 2)A -,(3, 0, 1)B -,(5, 1, 2)C ,求ABC ∆的面积.第3节 空间中的平面与直线方程在本节我们以向量为工具,在空间直角坐标系中讨论最简单的曲面和曲线——平面和直线.3.1平面与其方程首先利用向量的概念,在空间直角坐标系中建立平面的方程,下面我们将给出几种由不同条件所确定的平面的方程.3.1.1平面的点法式方程若一个非零向量n 垂直于平面π,则称向量n 为平面π的一个法向量.显然,若n 是平面π的一个法向量,则λn (λ为任意非零实数)都是π的法向量,即平面上的任一向量均与该平面的法向量垂直.由立体几何知识知道,过一个定点0000(, , )M x y z 且垂直于一个非零向量{, , }A B C n =有且只有一个平面π.设(, , )M x y z 为平面π上的任一点,由于π⊥n ,因此0M M ⊥n .由两向量垂直的充要条件,得00M M =⋅n ,而0000{, , }M M x x y y z z =---,{, , }A B C n =,所以可得0)()()(000=-+-+-z z C y y B x x A . (8-3-1)由于平面π上任意一点(, , )M x y z 都满足方程(8-3-1),而不在平面π上的点都不满足方程(8-3-1),因此方程(8-3-1)就是平面π的方程.由于方程(8-3-1)是给定点0000(, , )M x y z 和法向量{, , }A B C n =所确定的,因而称式(8-3-1)叫做平面π的点法式方程.图8-18例1 求通过点0(1, 2, 4)M -且垂直于向量{3, 2, 1}-n =的平面方程.解 由于{3, 2, 1}-n =为所求平面的一个法向量,平面又过点0(1, 2, 4)M -,所以,由平面的点法式方程(6-14)可得所求平面的方程为3(1)2(2)1(4)=0x y z --⋅++⋅-,整理,得32110x y z -+-=.例2 求过三点()12,1,4M -,()2M 1,3,2--,()3M 0,2,3 的平面π的方程. 解 所求平面π的法向量必定同时垂直于12M M 与13M M .因此可取12M M 与13M M 的向量积1213M M M M ⨯为该平面的一个法向量n .即1213n =M M M M ⨯.由于12{3, 4, 6}M M =--,13{2, 3, 1}M M =--,因此1213-631i j kn =M M M M =342⨯---149i j k,=+-,因此所求平面π的方程为0419214=--++-)()()(z y x ,化简得.015914=--+z y x一般地,过三点(,,)(1,2,3)k k k k M x y z k =的平面方程为1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 称为平面的三点式方程。
07第七章向量代数与空间解析几何
向量的线性运算有以下性质: rr rr
(1)交换律 a b b a;
r r r r r r
(2)结合律a b c a b c ,
r
r
a a , 是数;
rrr
(3)分配律 a a a
r r r r
a b a b , 是数.
3 向量平行的充分必要条件
, cos
arx
,
ary
,
arz
,
rr
a a a
那么 e 是与 a 方向相同的单位向量.
uuuuuur
例 4 已知点M 2 1, 1, 2和M1 2,0,1,求向量M1M 2
的模和方向余弦.
解 因为
uuuuuur
M1M 2 1 2, 1 0, 2 1
1, 1,1,
所以
uuuuuur M1M2
r
r
向量a的大小又称为向量的模,记作 a .模为 1 的向
量叫做单位向量;模为零的向量叫做零向量.
rr
r
r 两个向量a和r br的大小相同,方向一致,就称向量 a
和b相等,记作a b.
rr 将两个非零向量 a 和 b 平移到
同一起点,它们所在射r线间r的夹角
0 π称为向量 a 与 b 的夹
r rr r
a axi ay j az k
或写成
r
a ax,ay ,az ,
其中是数.
3.用坐标表示向量平行的充要条件
rr 前面已提到向量 b与a 平行的充要条件为,存在惟一
的数使
rr
b a,
引入向量坐标以后,此条件又能写成
bx ,by ,bz ax ,ay ,az ,
即
bx ax , by ay , bz az ,
高等数学第八章
第八章 向量代数与空间解析几何(数学一)第一节 向量代数中的若干运算一、向量的概念1.定义:既有大小又有方向的量称为向量。
2.坐标形式:),,(z y x a a a a =ρ3.模与方向余弦:记a ρ与x 轴、y 轴、z 轴正向的夹角分别为γβα,,,则 222cos zyxx aa a a ++=α,222cos zy x y aa a a ++=β, 222cos zyxz aa a a ++=λ且方向余弦间满足关系1cos cos cos 222=++γβα。
γβα,,描述了向量a ρ的方向,常称它们为向量的方向角(在0与π之间)。
a ρ的模可以表示为222zy x a a a a ++=ρ。
向量a ρ同方向上的单位向量常记为︒a ρ。
二、向量的运算设三个向量),,(321321a a a k a j a i a a =++=ρρρρ,),,(321321b b b k b j b i b b =++=ρρρρ, ),,(321321c c c k c j c i c c =++=ρρρρ,常数λ。
1.与差:加法 ),,(332211b a b a b a b a +++=+ρρ 减法 ),,(332211b a b a b a b a ---=-ρρ2.数乘:),,(321a a a a λλλλ=ρ3.数量积(i)定义:数⎪⎪⎭⎫ ⎝⎛⋂⋅=⋅b a b a b a ρρρρρρ,cos ,称为b a ρρ,为数量积也称点积,记为b a ρρ⋅。
其中⎪⎪⎭⎫ ⎝⎛⋂b a ρρ,为向量b a ρρ,间夹角(在0与π之间)。
(ii)性质:①a a a ρρρ⋅=2;②0b a ρρ⋅表示向量a ρ在向量b ρ上的投影,a j b a bρρρρPr 0=⋅;③a b b a ρρρρ⋅=⋅。
(iii)计算:①232221a a a a ++=ρ;②332211b a b a b a b a ++=⋅ρρ。
8.2空间解析几何与向量代数 曲面方程(4)
z
M 0
y
M'
x=x(t), y=y(t), z=z(t).
x
0
y
解: 设时间 t 为参数. 初始时刻 (t = 0),动
点在 A(a, 0, 0) 处,经 时刻 t , 动点运动到 M(x, y, z).
z M
0
x A
y = | OM' | sin t = a sin t.
y
x A
参数方程
的轨迹叫做柱面. C 叫做准线, l 叫做母线.
定义: 一条平面曲线 绕其平面上一条定直线旋转 一周 所形成的曲面叫做旋转曲面. 轴. 例如 : 该定直线称为旋转
表示母线平行于 z 轴的椭圆柱面. 表示母线平行于 z 轴的平面. (且 z 轴在平面上)
准线 xoz 面上的曲线 l3.
例 设 yz 平面有一已知曲线 C,它的方程为 f (y, z)=0. 将曲线绕 z 轴旋转一周,得一曲面. 求此旋转面的方程。 设旋转面上任一点 M(x, y, z).
x = acos t, y = asin t , z = vt.
在讲直线与平面之关系时,曾介绍过如何求空 间直线在某平面上的投影. 下面介绍一般的空间曲 线在坐标面上的投影. 设空间曲线 C: F1(x, y, z)=0, F2(x, y, z)=0,
z C
若点 M(x, y, z)满足(5.7), 则 (x, y) 满足(5.8). 故 C 上的点均在柱面(5.8)上. 即 C 是柱面 (5.8)上的 一条曲线. 故 C 在 xy 平 面的投影为 H (x , y ) = 0 z=0 (5.9) 投影方程
例5.4 若空间中点 M 在圆柱面 x2+y2=a2上以角速 度 绕 z 轴旋转,同时又以线速度 v 沿平行于 z 轴的正方向上升 (其中, v 都是常数). 则点 M 构成 的图形为螺旋线. 试建立其方程.
微积分下册知识点
微积分(下)知识点微积分下册知识点第一章 空间解析几何与向量代数(一) 向量及其线性运算1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面;2、 线性运算:加减法、数乘;3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式;4、 利用坐标做向量的运算:设),,(z y x a a a a = ,),,(z y x b b b b = ,则 ),,(z z y y x x b a b a b a b a ±±±=±, ),,(z y x a a a a λλλλ= ;5、 向量的模、方向角、投影:1) 向量的模:222z y x r ++= ;2) 两点间的距离公式:212212212)()()(z z y y x x B A -+-+-=3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,,4) 方向余弦:rz r y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα 5) 投影:ϕcos Pr a a j u=,其中ϕ为向量a 与u 的夹角。
(二) 数量积,向量积1、 数量积:θcos b a b a=⋅ 1)2a a a =⋅2)⇔⊥b a 0=⋅b a微积分(下)知识点 z z y y x x b a b a b a b a ++=⋅2、 向量积:b a c⨯= 大小:θsin b a ,方向:c b a ,,符合右手规则1)0=⨯a a 2)b a //⇔0=⨯b a zy x z y x b b b a a a k j i b a =⨯ 运算律:反交换律 b a a b⨯-=⨯(三) 曲面及其方程1、 曲面方程的概念:0),,(:=z y x f S2、 旋转曲面: yoz 面上曲线0),(:=z y f C ,绕y 轴旋转一周:0),(22=+±z x y f 绕z 轴旋转一周:0),(22=+±z y x f3、 柱面:0),(=y x F 表示母线平行于z 轴,准线为⎪⎩⎪⎨⎧==00),(z y x F 的柱面 4、 二次曲面(不考)1) 椭圆锥面:22222z b y a x =+ 2) 椭球面:1222222=++cz b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:1222222=-+cz b y a x 4) 双叶双曲面:1222222=--cz b y a x 5) 椭圆抛物面:z b y a x =+2222 6) 双曲抛物面(马鞍面):z by a x =-2222 7) 椭圆柱面:12222=+by a x 8) 双曲柱面:12222=-by a x 9) 抛物柱面:ay x =2(四) 空间曲线及其方程 1、 一般方程:⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F2、 参数方程:⎪⎪⎩⎪⎪⎨⎧===)()()(t z z t y y t x x ,如螺旋线:⎪⎪⎩⎪⎪⎨⎧===btz t a y t a x sin cos 3、 空间曲线在坐标面上的投影⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F ,消去z ,得到曲线在面xoy 上的投影⎪⎩⎪⎨⎧==00),(z y x H(五) 平面及其方程1、 点法式方程:0)()()(000=-+-+-z z C y y B x x A法向量:),,(C B A n = ,过点),,(000z y x2、 一般式方程:0=+++D Cz By Ax截距式方程:1=++cz b y a x 3、 两平面的夹角:),,(1111C B A n = ,),,(2222C B A n = ,222222212121212121cos C B A C B A C C B B A A ++⋅++++=θ⇔∏⊥∏21 0212121=++C C B B A A⇔∏∏21// 212121C C B B A A ==4、 点),,(0000z y x P 到平面0=+++D Cz By Ax 的距离:222000C B A DCz By Ax d +++++=(六) 空间直线及其方程1、 一般式方程:⎪⎩⎪⎨⎧=+++=+++022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程:p z z n y y m x x 000-=-=-方向向量:),,(p n m s = ,过点),,(000z y x3、 参数式方程:⎪⎪⎩⎪⎪⎨⎧+=+=+=ptz z nt y y mt x x 000 4、 两直线的夹角:),,(1111p n m s = ,),,(2222p n m s = ,222222212121212121cos p n m p n m p p n n m m ++⋅++++=ϕ⇔⊥21L L 0212121=++p p n n m m⇔21//L L 212121p p n n m m ==5、 直线与平面的夹角:直线与它在平面上的投影的夹角,222222sin p n m C B A CpBn Am ++⋅++++=ϕ⇔∏//L 0=++Cp Bn Am⇔∏⊥L pC n B m A ==第二章 多元函数微分法及其应用(一) 基本概念1、 距离,邻域,内点,外点,边界点,聚点,开集,闭集,连通集,区域,闭区域,有界集,无界集.2、 多元函数:),(y x f z =,图形:3、 极限:A y x f y xy x =→),(lim ),(),(00 4、 连续:),(),(lim 00),(),(00y x f y x f y xy x =→5、 偏导数: xy x f y x x f y x f x x ∆-∆+=→∆), (), (lim ),(0000000 yy x f y y x f y x f y y ∆-∆+=→∆),(),(lim ),(0000000 6、 方向导数:βαcos cos y f x f l f ∂∂+∂∂=∂∂其中βα,为l 的方向角.7、 梯度:),(y x f z =,则j y x f i y x f y x gradf y x ),(),(),(000000+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
hechuanfu
东南大学
x 2 y 8 0 L1 : 的方向向量为 2 x 12 y z 16 0 i j k a1 1 2 0 {2, 1, 16} , M 1 ( 2, 3, 16 ) L1 ,
东南大学
曲线与曲面
习题课
hechuanfu
东南大学
一、填空题
2 2 4 x 9 y 36 绕 x 轴旋转 1. xoy平 面 上的双曲线
2 2 2 4 x 9 y 9 z 36 。 而成的旋转曲面的方程为
(旋转双叶双曲面)
2. yoz平 面 上的直线 2 y 3 z 1 0 绕 z 轴旋转而成
Dr d R C
所求圆的半径为r R 2 d 2 10 2 6 2 8.
hechuanfu
2 2 2 4 ( x y ) ( 3 z 1 ) 的旋转曲面的方程为 。 1 (顶点在 (0,0, ) 的圆锥面) 3
hechuanfu
东南大学
2 xoz 平 面 3. 上的抛物线z 5 x 绕 x 轴旋转而成的
旋转曲面的方程为 y z 5 x
2
2
。
(旋转抛物面)
x2 y2 z 4.曲线 L: 2 z 1 x
i j k a MM 1 21 a MM 1 1 7 0 {0, 0, 21} ,d 。 a 50 1 14 0
hechuanfu
东南大学
x 1 y 1 z 5 2.求过点 M (1,2,5) 且与直线 L1 : 相交, 2 3 2 j { 0 , 1 , 0 } 45 并和向量 成 角的直线 L 的方程。
2 12 1
x 2 y 3 z 16 L1 的标准方程为 ; 2 1 16
hechuanfu
东南大学
x 2 y 4 0 L2 : 的方向向量为 2 x 12 y z 16 0 i j k a2 1 2 0 {2, 1, 8} , M 2 ( 0, 2, 8 ) L2 , 2 12 1
平面 的法向量 为n , 解:设过 L 垂直于平面z 1 的 i j k A( 2,2,0)L, n 1 7 5 {7,1,0},
二、解答题
0 0 1
: 7( x 2)1( y 2) 0( z 0) 0,
即 7 x y 16 0 。
曲线方程为
( y2 z 2 )2 32( y2 z 2 ) 0 x 0
。
1 2 2 解:两式相减得 x ( y z ) ,代入第一式得 8
( y 2 z 2 ) 2 32( y 2 z 2 ) 0 ,
故曲线 L 在 yoz平 面 上的投影曲线方程为
( y 2 z 2 )2 32( y 2 z 2 ) 0 . x0
东南大学
∴ [aa1 M 1 M ] 2 0 l m 3 1 n 2 2( n l ) 0 ,∴l n 。 0
①
a j m 1 2 2 2 ∵ cos 45 ,∴ m l n 0 。② 2 a j l 2 m 2 n2
把②代入①得 m 2n ,
hechuanfu
东南大学
7 x y 16 0 L1 : , z 1 i j k L1 的方向向量为 a 7 1 0 {1,7,0} , a 50 。 0 0 1
M (1, 2, 1) , M1 (0, 16, 1)L1 , MM 1 { 1, 14 , 0} ,
解:球面 ( x 3)2 ( y 2)2 ( z 1)2 100 的球心为C (3,2,1) ,球半径R10 .
过点 C 作直线垂直于平面2 x 2 y z 9 0 ,得直线方程:
x 3 2t x 3 y 2 z 1 ,化为参数方程: y 2 2t , 2 2 1 z 1 t
x 1 y 2 z 5 解:设直线 L 的方程为 , l m n
L 的方向向量为a {l , m, n} ,
取 M1 (1, 1, 5)L1 , M 1 M {0, 1, 0} ,
L1 的方向向量为 a1 {2, 3, 2} 。
∵L 与 L1 相交,
hechuanfu
x y2 z8 L2 的标准方程为 。 2 1 8 ∵ L1 与 L2 在同一平面上,且 a1 与 a2 不平行,
∴ L1 与 L2 相交。
hechuanfu
东南大学
2 2 2 ( x 3) ( y 2) ( z 1) 100 4. 求圆 的圆心和半径 . 2 x 2 y z 9 0
a 2 a 2 a 2 6 半径 R AG ( a ) ( 0 ) ( 0 ) a , 3 3 3 3
6 2 2 2 S ( a ) a 。 3 3
hechuanfu
东南大学
x2 y2 z ,求 1.已知直线 L: 1 7 5
(1)L 在平面 z 1 上的投影 L1 的方程; (2)点 M (1,2,1) 到 L1 的距离 d。
2 2 2 x y 1 ; (1)关于 xoy平 面 的投影柱面的方程为
z 1 x2 (2)在 xoz平 面上的投影曲线的方程为 。 y 0
hechuanfu
东南大学
( x 2) 2 z 2 4 5.曲线 L: 在 yoz 平 面 上的投影 2 2 ( x 2 ) y 4
的交线 L 是两条相交直线, 并写出它们的标准方程。
x 2 4 y 2 2z (1) 解:L: , 2 x 12 y z 16 0 ( 2)
,
(2)代入(1)得
( x 2 )2 [ 2( y 3 )] 2 0 (1) L: , L L1 L2 , 2 x 12 y z 16 0 ( 2 )
∴ l : m : n1: 2 : 1 ,③
x 1 y 2 z 5 x 1 y 2 z 5 故直线 L 的方程为 或 。 1 1 1 2 1 2
hechu2 x 12 y z 16 0 与双曲抛物面 x 2 4 y 2 2 z
hechuanfu
东南大学
x 2 y2 z2 a 2 S 6.圆 L: 的面积 x y z a
2 2 a 3
。
解: L 是平面 x y z a 上过点A(a ,0,0) ,B(0,a ,0) ,
C (0,0,a ) 的圆,
a a a 圆心就是 ABC 的重心 G,其坐标为 G( , , ) , 3 3 3
代入平面方程 2 x 2 y z 9 0 ,得
hechuanfu
东南大学
2(3 2t ) 2(2 2t )(1 t ) 909t 180t 2.
所求圆心为 D(1, 2, 3).
球心到平面 2 x 2 y z 9 0 的距离为 23 2( 2)11 9 18 d 6 , 3 2 2 ( 2)2 ( 1)2