浙江省台州市2020届高考数学基础知识专题训练18无答案文

合集下载

2020届高考文科数学复习练习题(二):函数 专题训练

2020届高考文科数学复习练习题(二):函数 专题训练

专题二函数函数是中学数学中的重点内容,是描述变量之间依赖关系的重要数学模型.本章内容有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——一次函数、二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等.§2-1 函数【知识要点】要了解映射的概念,映射是学习、研究函数的基础,对函数概念、函数性质的深刻理解在很多情况下要借助映射这一概念.1、设A,B是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射.记作f:A→B,其中x叫原象,y叫象.2、设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种映射叫做集合A上的一个函数.记作y=f(x),x∈A.其中x叫做自变量,自变量取值的范围(数集A)叫做这个函数的定义域.所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域.函数的值域由定义域与对应法则完全确定.3、函数是一种特殊的映射.其定义域和值域都是非空的数集,值域中的每一个元素都有原象.构成函数的三要素:定义域,值域和对应法则.其中定义域和对应法则是核心.【复习要求】1.了解映射的意义,对于给出对应关系的映射会求映射中指定元素的象与原象.2.能根据函数三要素判断两个函数是否为同一函数.3.掌握函数的三种表示法(列表法、图象法和解析法),理解函数符号f(x)(对应法则),能依据一定的条件求出函数的对应法则.4.理解定义域在三要素的地位,并会求定义域.【例题分析】例1 设集合A和B都是自然数集合N.映射f:A→B把集合A中的元素x映射到集合B中的元素2x+x,则在映射f作用下,2的象是______;20的原象是______.【分析】由已知,在映射f作用下x的象为2x+x.所以,2的象是22+2=6;设象20的原象为x,则x的象为20,即2x+x=20.由于x∈N,2x+x随着x的增大而增大,又可以发现24+4=20,所以20的原象是4.例2 设函数则f(1)=______;若f(0)+f(a)=-2,则a的所有可能值为______.【分析】从映射的角度看,函数就是映射,函数解析式就是映射的法则.所以f(1)=3.又f(0)=-1,所以f(a)=-1,当a≤0时,由a-1=-1得a=0;当a>0时,由-a2+2a+2=-1,即a2-2a-3=0得a=3或a=-1(舍).综上,a=0或a=3.例3 下列四组函数中,表示同一函数的是( )(A) (B)(C) (D)【分析】(A)(C)(D)中两个函数的定义域均不同,所以不是同一函数.(B)中两个函数的定义域相同,化简后为y=|x|及y=|t|,法则也相同,所以选(B).【评析】判断两个函数是否为同一函数,就是要看两个函数的定义域与法则是否完全相同.一般有两个步骤:(1)在不对解析式进行变形的情况下求定义域,看定义域是否一致.(2)对解析式进行合理变形的情况下,看法则是否一致.例4 求下列函数的定义域(1) (2)(3) (4)解:(1)由|x-1|-1≥0,得|x-1|≥1,所以x-1≥1或x-1≤-1,所以x≥2或x≤0.所以,所求函数的定义域为{x|x≥2或x≤0}.(2)由x2+2x-3>0得,x>1或x<-3.所以,所求函数的定义域为{x|x>1或x<-3}.(3)由得x<3,且x≠0,x≠1,所以,所求函数的定义域为{x|x<3,且x≠0,x≠1}(4)由所以-1≤x≤1,且x≠0.所以,所求函数定义域为{x|-1≤x≤1,且x≠0}.例5 已知函数f(x)的定义域为(0,1),求函数f(x+1)及f(x2)的定义域.【分析】此题的题设条件中未给出函数f(x)的解析式,这就要求我们根据函数三要素之间的相互制约关系明确两件事情:①定义域是指x的取值范围;②受对应法则f制约的量的取值范围在“已知”和“求”当中是一致的.那么由f(x)的定义域是(0,1)可知法则f制约的量的取值范围是(0,1),而在函数f(x+1)中,受f直接制约的是x+1,而定义域是指x的范围,因此通过解不等式0<x+1<1得-1<x<0,即f(x+1)的定义域是(-1,0).同理可得f(x2)的定义域为{x|-1<x<1,且x≠0}.例6 如图,用长为l的铁丝弯成下部为矩形,上部为半圆形的框架,若矩形的底边长为2x,求此框架围成的面积y与x的函数关系式,并指出定义域.解:根据题意,AB=2x.所以,根据问题的实际意义.AD>0,x>0.解所以,所求函数定义域为【评析】求函数定义域问题一般有以下三种类型问题.(1)给出函数解析式求定义域(如例4),这类问题就是求使解析式有意义的自变量的取值范围.正确的解不等式或不等式组在解决这类问题中是重要的.中学数学中常见的对变量有限制的运算法则有:①分式中分母不为零;②偶次方根下被开方数非负;③零次幂的底数要求不为零;④对数中的真数大于零,底数大于零且不等于1;⑤y=tan x,则,k∈Z.(2)不给出f(x)的解析式而求定义域(如例5).其解决办法见例5的分析.(3)在实际问题中求函数的定义域(如例6).在这类问题中除了考虑解析式对自变量的限制,还应考虑实际问题对自变量的限制.另外,在处理函数问题时要有一种随时关注定义域的意识,这是极其重要的.比如在研究函数单调性、奇偶性、最值等问题时,首先要考虑的就是函数的定义域.例7 (1)已知,求f(x)的解析式;(2)已知,求f(3)的值;(3)如果f(x)为二次函数,f(0)=2,并且当x=1时,f(x)取得最小值-1,求f(x)的解析式;(4)*已知函数y=f(x)与函数y=g(x)=2x的图象关于直线x=1对称,求f(x)的解析式.【分析】(1)求函数f(x)的解析式,从映射的角度看就是求对应法则,于是,我们一般有下面两种方法解决(1)这样的问题.方法一.通过这样“凑型”的方法,我们可以明确看到法则f是“原象对应于原象除以原象的平方减1”.所以,方法二.设,则.则,所以这样,通过“换元”的方法也可以明确看到法则是什么.(2)用“凑型”的方法,(3)因为f(x)为二次函数,并且当x=1时,f(x)取得最小值-1,所以,可设f(x)=a(x-1)2-1,又f(0)=2,所以a(0-1)2-1=2,所以a=3.f(x)=3(x-1)2-1=3x2-6x+2.(4)这个问题相当于已知f(x)的图象满足一定的条件,进而求函数f(x)的解析式.所以,可以类比解析几何中求轨迹方程的方法求f(x)的解析式.设f(x)的图象上任意一点坐标为P(x,y),则P关于x=1对称点的坐标为Q(2-x,y),由已知,点Q在函数y=g(x)的图象上,所以,点Q的坐标(2-x,y)满足y=g(x)的解析式,即y=g(2-x)=22-x,所以,f(x)=22-x.【评析】由于已知条件的不同,求函数的解析式的常见方法有象(1)(2)所用到的“凑形”及“换元”的方法;有象(3)所用到的待定系数法;也有象(4)所用到的解析法.值得注意的是(4)中所用的解析法.在求函数解析式或者求轨迹方程时都可以用这种方法,是一种通法.同时也表明函数和它的图象与曲线和它的方程之间有必然的联系.例8 已知二次函数f(x)的对称轴为x=1,且图象在y轴上的截距为-3,被x轴截得的线段长为4,求f(x)的解析式.解:解法一设f(x)=ax2+bx+c,由f(x)的对称轴为x=1,可得b=-2a;由图象在y轴上的截距为-3,可得c=-3;由图象被x轴截得的线段长为4,可得x=-1,x=3均为方程ax2+bx+c=0的根.所以f(-1)=0,即a-b+c=0,所以a=1.f(x)=x2-2x-3.解法二因为图象被x轴截得的线段长为4,可得x=-1,x=3均为方程f(x)=0的根.所以,设f(x)=a(x+1)(x-3),又f(x)图象在y轴上的截距为-3,即函数图象过(0,-3)点.即-3a=-3,a=1.所以f(x)=x2-2x-3.【评析】二次函数是非常常见的一种函数模型,在高中数学中地位很重.二次函数的解析式有三种形式:一般式y=ax2+bx+c;顶点式y=a(x-h)2+k,其中(h,k)为顶点坐标;双根式y=a(x-x1)(x-x2),其中x1,x2为函数图象与x轴交点的横坐标,即二次函数所对应的一元二次方程的两个根.例9 某地区上年度电价为0.8元/kW·h,年用电量为a kW·h.本年度计划将电价降到0.55元/kW·h至0.75元/kW·h之间,而用户期望电价为0.40元/kW·h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.30元/kW·h.(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;(2)设k=0.2a,当电价最低定为多少时,仍可保证电力部门的收益比上年至少增长20%?解:(1)依题意,当实际电价为x元/kW·h时,用电量将增加至故电力部门的收益为.(2)易知,上年度的收益为(0.8-0.3)a,依题意,且0.55≤x≤0.75,解得0.60≤x≤0.75.所以,当电价最低定为0.60元/kW·h时,仍可保证电力部门的收益比上年至少增长20%.练习2-1一、选择题1.已知函数的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N=( )(A){x|x>1} (B){x|x<1} (C){x|-1<x<1} (D)2.图中的图象所表示的函数的解析式为( )(A)(B)(C)(D)y=1-|x-1|(0≤x≤2)3.已知f(x-1)=x2+2x,则( )(A) (B) (C) (D)4.已知若f(x)=3,则x的值是( )(A)0 (B)0或 (C) (D)二、填空题5.给定映射f:(x,y)→(x+2y,x-2y),在映射f下(0,1)的象是______;(3,1)的原象是______.6.函数的定义域是______.7.已知函数f(x),g(x)分别由下表给出x 1 2 3 x 1 2 3f(x) 1 3 1 g(x) 3 2 1则f[g(1)]的值为______;满足f[g(x)]>g[f(x)]的x的值是______.8.已知函数y=f(x)与函数y=g(x)=2x的图象关于点(0,1)对称,则f(x)的解析式为______.三、解答题9.已知f(x)=2x+x-1,求g(-1),g[f(1)]的值.10.在如图所示的直角坐标系中,一运动物体经过点A(0,9),其轨迹方程为y=ax2+c(a<0),D=(6,7)为x轴上的给定区间.为使物体落在区间D内,求a的取值范围.11.如图,直角边长为2cm的等腰Rt△ABC,以2cm/s的速度沿直线l向右运动,求该三角形与矩形CDEF重合部分面积y(cm2)与时间t的函数关系(设0≤t≤3),并求出y的最大值.§2-2 函数的性质【知识要点】函数的性质包括函数的定义域、值域及值的某些特征、单调性、奇偶性、周期性与对称性等等.本章着重研究后四个方面的性质.本节的重点在于理解与函数性质有关的概念,掌握有关判断、证明的基本方法以及简单的应用.数形结合是本节常用的思想方法.1.设函数y=f(x)的定义域为D,如果对于D内的任意一个x,都有-x∈D,且f(-x)=-f(x),则这个函数叫做奇函数.设函数y=g(x)的定义域为D,如果对于D内任意一个x,都有-x∈D,且g(-x)=g(x),则这个函数叫做偶函数.由奇函数定义可知,对于奇函数y=f(x),点P(x,f(x))与点(-x,-f(x))都在其图象上.又点P与点关于原点对称,我们可以得到:奇函数的图象是以坐标原点为对称中心的中心对称图形;通过同样的分析可以得到,偶函数的图象是以y轴为对称轴的轴对称图形.2.一般地,设函数y=f(x)的定义域为A,区间MA.如果取区间M中的任意两个值x1,x2,改变量x=x2-x1>0,则当y=f(x2)-f(x1)>0时,就称函数y=f(x)在区间M上是增函数;当y=f(x2)-f(x1)<0时,就称函数y=f(x)在区间M上是减函数.如果一个函数在某个区间M上是增函数或是减函数,就说这个函数在这个区间M上具有单调性,区间M称为单调区间.在单调区间上,增函数的图象是上升的,减函数的图象是下降的.3.一般的,对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域中的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期.4.一般的,对于函数f(x),如果存在一个不为零的常数a,使得当x取定义域中的每一个值时,f(a+x)=f(a-x)都成立,则函数y=f(x)的图象关于直线x=a对称.【复习要求】1.理解函数的单调性、最大值、最小值及其几何意义;会用定义证明函数的单调性,会利用函数的单调性处理有关的不等式问题;2.了解函数奇偶性的含义.能判断简单函数的奇偶性.3.了解函数周期性的含义.4.了解函数单调性、奇偶性和周期性之间的联系,并能解决相关的简单问题.【例题分析】例1 判断下列函数的奇偶性.(1) (2)(3)f(x)=x3-3x; (4)(5)解:(1)解,得到函数的定义域为{x|x>1或x≤0},定义域区间关于原点不对称,所以此函数为非奇非偶函数.(2)函数的定义域为{x|x≠0},但是,由于f(1)=2,f(-1)=0,即f(1)≠f(-1),且f(1)≠-f(-1),所以此函数为非奇非偶函数.(3)函数的定义域为R,又f(-x)=(-x)3-3(-x)=-x3+3x=-f(x),所以此函数为奇函数.(4)解,得-1<x<1,又所以此函数为奇函数.(5)函数的定义域为R,又,所以此函数为奇函数.【评析】由函数奇偶性的定义,可以得到下面几个结论:①一个函数是奇(或偶)函数的必要不充分条件是定义域关于原点对称;②f(x)是奇函数,并且f(x)在x=0时有定义,则必有f(0)=0;③既是奇函数又是偶函数的函数,其解析式一定为f(x)=0.判定函数奇偶性按照其定义可以分为两个步骤:①判断函数的定义域是否关于原点对称;②考察f(-x)与f(x)的关系.由此,若以奇偶性为标准可以把函数分为奇函数,偶函数,既奇又偶函数和非奇非偶函数四类.例2 设函数f(x)在R上有定义,给出下列函数:①y=-|f(x)|;②y=xf(x2);③y=-f(-x);④y=f(x)-f(-x).其中必为奇函数的有______.(填写所有正确答案的序号)【分析】①令F(x)=-|f(x)|,则F(-x)=-|f(-x)|,由于f(x)与f(-x)关系不明确,所以此函数的奇偶性无法确定.②令F(x)=xf(x2),则F(-x)=-xf[(-x)2]=-xf(x2)=-F(x),所以F(x)为奇函数.③令F(x)=-f(-x),则F(-x)=-f[-(-x)]=-f(x),由于f(x)与f(-x)关系不明确,所以此函数的奇偶性无法确定.④令F(x)=f(x)-f(-x),则F(-x)=f(-x)-f[-(-x)]=f(-x)-f(x)=-F(x),所以F(x)为奇函数.所以,②④为奇函数.例3 设函数f(x)在R上有定义,f(x)的值不恒为零,对于任意的x,y∈R,恒有f(x+y)=f(x)+f(y),则函数f(x)的奇偶性为______.解:令x=y=0,则f(0)=f(0)+f(0),所以f(0)=0,再令y=-x,则f(0)=f(x)+f(-x),所以f(-x)=-f(x),又f(x)的值不恒为零,故f(x)是奇函数而非偶函数.【评析】关于函数方程“f(x+y)=f(x)+f(y)”的使用一般有以下两个思路:令x,y为某些特殊的值,如本题解法中,令x=y=0得到了f(0)=0.当然,如果令x=y=1则可以得到f(2)=2f(1),等等.令x,y具有某种特殊的关系,如本题解法中,令y=-x.得到f(2x)=2f(x),在某些情况下也可令y=,y=x,等等.总之,函数方程的使用比较灵活,要根据具体情况作适当处理.在不是很熟悉的时候,要有试一试的勇气.例4 已知二次函数f(x)=x2+bx+c满足f(1+x)=f(1-x),求b的值,并比较f(-1)与f(4)的大小.解:因为f(1+x)=f(1-x),所以x=1为二次函数图象的对称轴,所以,b=-2.根据对称性,f(-1)=f(3),又函数在[1,+∞)上单调递增,所以f(3)<f(4),即f(-1)<f(4).例5已知f(x)为奇函数,当x≥0时,f(x)=x2-2x,(1)求f(-1)的值;(2)当x<0时,求f(x)的解析式.解:(1)因为f(x)为奇函数,所以f(-1)=-f(1)=-(12-2×1)=1.(2)方法一:当x<0时,-x>0.所以,f(x)=-f(-x)=-[(-x)2-2(-x)]=-x2-2x.方法二:设(x,y)是f(x)在x<0时图象上一点,则(-x,-y)一定在f(x)在x>0时的图象上.所以,-y=(-x)2-2(-x),所以y=-x2-2x.例6 用函数单调性定义证明,函数y=ax2+bx+c(a>0)在区间上为增函数.证明:设,且x1<x2f(x2)-f(x1)=(ax22+bx2+c)-(ax12+bx1+c)=a(x22-x12)+b(x2-x1)=a(x2+x1)(x2-x1)+b(x2-x1)=(x2-x1)[a(x1+x2)+b]因为x1<x2,所以x2-x1>0,又因为,所以,所以f(x2)-f(x1)>0,函数y=ax2+bx+c(a>0)在区间上为增函数.例7 已知函数f(x)是定义域为R的单调增函数.(1)比较f(a2+2)与f(2a)的大小;(2)若f(a2)>f(a+6),求实数a的取值范围.解:(1)因为a2+2-2a=(a-1)2+1>0,所以a2+2>2a,由已知,f(x)是单调增函数,所以f(a2+2)>f(2a).(2)因为f(x)是单调增函数,且f(a2)>f(a+6),所以a2>a+6,解得a>3或a<-2.【评析】回顾单调增函数的定义,在x1,x2为区间任意两个值的前提下,有三个重要的问题:x=x2-x1的符号;y=f(x2)-f(x1)的符号;函数y=f(x)在区间上是增还是减.由定义可知:对于任取的x1,x2,若x2>x1,且f(x2)>f(x1),则函数y=f(x)在区间上是增函数;不仅如此,若x2>x1,且函数y=f(x)在区间上是增函数,则f(x2)>f(x1);若f(x2)>f(x1),且函数y=f(x)在区间上是增函数,则x2>x1;于是,我们可以清晰地看到,函数的单调性与不等式有着天然的联系.请结合例5例6体会这一点.函数的单调性是极为重要的函数性质,其与其他问题的联系、自身的应用都很广泛,在复习中要予以充分注意.例8 设f(x)是定义域为(-∞,0)∪(0,+∞)的奇函数,且它在区间(-∞,0)上是减函数.(1)试比较f(-2)与-f(3)的大小;(2)若mn<0,且m+n<0,求证:f(m)+f(n)>0.解:(1)因为f(x)是奇函数,所以-f(3)=f(-3),又f(x)在区间(-∞,0)上是减函数,所以f(-3)>f(-2),即-f(3)>f(-2).(2)因为mn<0,所以m,n异号,不妨设m>0,n<0,因为m+n<0,所以n<-m,因为n,-m∈(-∞,0),n<-m,f(x)在区间(-∞,0)上是减函数,所以f(n)>f(-m),因为f(x)是奇函数,所以f(-m)=-f(m),所以f(n)>-f(m),即f(m)+f(n)>0.例9函数f(x)是周期为2的周期函数,且f(x)=x2,x∈[-1,1].(1)求f(7.5)的值;(2)求f(x)在区间[2n-1,2n+1]上的解析式.解:(1)因为函数f(x)是周期为2的周期函数,所以f(x+2k)=f(x),k∈Z.所以f(7.5)=f(-0.5+8)=f(-0.5)=.(2)设x∈[2n-1,2n+1],则x-2n∈[-1,1].所以f(x)=f(x-2n)=(x-2n)2,x∈[2n-1,2n+1].练习2-2一、选择题1.下列函数中,在(1,+∞)上为增函数的是( )(A)y=x2-4x (B)y=|x| (C) (D)y=x2+2x2.下列判断正确的是( )(A)定义在R上的函数f(x),若f(-1)=f(1),且f(-2)=f(2),则f(x)是偶函数(B)定义在R上的函数f(x)满足f(2)>f(1),则f(x)在R上不是减函数(C)定义在R上的函数f(x)在区间(-∞,0]上是减函数,在区间(0,+∞)上也是减函数,则f(x)在R上是减函数(D)不存在既是奇函数又是偶函数的函数3.已知函数f(x)是R上的奇函数,并且是周期为3的周期函数,又知f(1)=2.则f(2)=( )(A)-2 (B)2 (C)1 (D)-14.设f(x)是R上的任意函数,则下列叙述正确的是( )(A)f(x)f(-x)是奇函数 (B)f(x)|f(-x)|是奇函数(C)f(x)-f(-x)是偶函数 (D)f(x)+f(-x)是偶函数二、填空题5.若函数f(x)=4x2-mx+5在区间[-2,+∞)是增函数,则m的取值范围是______;f(1)的取值范围是______.6.已知函数f(x)是定义在(-∞,+∞)上的偶函数.当x∈(-∞,0)时,f(x)=x-x4,则当x∈(0,+∞)时,f(x)=______.7.设函数为奇函数,则实数a=______.8.已知函数f(x)=x2-cos x,对于上的任意x1,x2,有如下条件:①x1>x2;②③|x1|>x2.其中能使f(x1)>f(x2)恒成立的条件序号是______三、解答题9.已知函数f(x)是单调减函数.(1)若a>0,比较与f(3)的大小;(2)若f(|a-1|)>f(3),求实数a的取值范围.10.已知函数(1)判断函数f(x)的奇偶性;(2)当a=1时,证明函数f(x)在区间[2,+∞)上是增函数.11.定义在(0,+∞)上的函数f(x)满足①f(2)=1;②f(xy)=f(x)+f(y),其中x,y 为任意正实数,③任意正实数x,y满足x≠y时,(x-y)[f(x)-f(y)]>0恒成立.(1)求f(1),f(4)的值;(2)试判断函数f(x)的单调性;(3)如果f(x)+f(x-3)≤2,试求x的取值范围.§2-3 基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质.【知识要点】1.一次函数:y=kx+b(k≠0)(1)定义域为R,值域为R;(2)图象如图所示,为一条直线;(3)k>0时,函数为增函数,k<0时,函数为减函数;(4)当且仅当b=0时一次函数是奇函数.一次函数不可能是偶函数.(5)函数y=kx+b的零点为2.二次函数:y=ax2+bx+c(a≠0)通过配方,函数的解析式可以变形为(1)定义域为R:当a>0时,值域为;当a<0时,值域为;(2)图象为抛物线,抛物线的对称轴为,顶点坐标为.当a>0时,抛物线开口向上;当a<0时,抛物线开口向下.(3)当a>0时,是减区间,是增区间;当a<0时,是增区间,是减区间.(4)当且仅当b=0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式=b2-4ac>0时,函数有两个变号零点;当判别式=b2-4ac=0时,函数有一个不变号零点;当判别式=b2-4ac<0时,函数没有零点.3.指数函数y=a x(a>0且a≠1)(1)定义域为R;值域为(0,+∞).(2)a>1时,指数函数为增函数;0<a<1时,指数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y=log a x(a>0且a≠1),对数函数y=log a x与指数函数y=a x互为反函数.(1)定义域为(0,+∞);值域为R.(2)a>1时,对数函数为增函数;0<a<1时,对数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1.5.幂函数y=xα(α∈R)幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地接近y轴,当x趋于+∞时,图象在x轴上方无限地接近x轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x∈(0,+∞)时,xα>0,所以所有的幂函数y=xα(α∈R)在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象.6.指数与对数(1)如果存在实数x,使得x n=a (a∈R,n>1,n∈N+),则x叫做a的n次方根.负数没有偶次方根.;(2)分数指数幂,;n,m∈N*,且为既约分数).,且为既约分数).(3)幂的运算性质a m a n=a m+n,(a m)n=a mn,(ab)n=a nb n,a0=1(a≠0).(4)一般地,对于指数式a b=N,我们把“b叫做以a为底N的对数”记为log a N,即b=log a N(a>0,且a≠1).(5)对数恒等式:=N.(6)对数的性质:零和负数没有对数(对数的真数必须大于零!);底的对数是1,1的对数是0.(7)对数的运算法则及换底公式:;;.(其中a>0且a≠1,b>0且b≠1,M>0,N>0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y=x,y=x2,y=x3,这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题.【例题分析】例1化简下列各式:(1); (2);(3); (4)log2[log3(log464)];(5).解:(1)(2)(3)(4)log2[log3(log464)]=log2[log3(log443)]=log2[log33]=log21=0.(5)【评析】指数、对数运算是两种重要的运算,在运算过程中公式、法则的准确、灵活使用是关键.例2已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值为8,试确定f(x)的解析式.解:解法一设f(x)=ax2+bx+c(a≠0),依题意解之得所以所求二次函数为f(x)=-4x2+4x+7.解法二f(x)=a(x-h)2+k(a≠0),为f(2)=-1,f(-1)=-1,所以抛物线的对称轴为,又f(x)的最大值为8,所以.因为(-1,-1)点在抛物线上,所以,解得a=-4.所以所求二次函数为.例3 (1)如果二次函数f(x)=x2+(a+2)x+5在区间(2,+∞)上是增函数,则a的取值范围是______.(2)二次函数y=ax2-4x+a-3的最大值恒为负,则a的取值范围是______.(3)函数f(x)=x2+bx+c对于任意t∈R均有f(2+t)=f(2-t),则f(1),f(2),f(4)的大小关系是_______.解:(1)由于此抛物线开口向上,且在(2,+∞)上是增函数,画简图可知此抛物线对称轴或与直线x=2重合,或位于直线x=2的左侧,于是有,解之得.(2)分析二次函数图象可知,二次函数最大值恒为负的充要条件是“二次项系数a<0,且判别式<0”,即,解得a∈(-∞,-1).(3)因为对于任意t∈R均有f(2+t)=f(2-t),所以抛物线对称轴为x=2,又抛物线开口向上,做出函数图象简图可得f(2)<f(1)<f(4).例4已知函数f(x)=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点的右侧,求实数m的范围.解:当m=0时,f(x)=-3x+1,其图象与x轴的交点为,符合题意;当m<0时,注意到f(0)=1,又抛物线开口向下,所以抛物线与x轴的两个交点必在原点两侧.所以m<0符合题意;当m>0时,注意到f(0)=1,又抛物线开口向上,所以抛物线与x轴的两个交点必在原点同侧(如果存在),所以若满足题意,则解得0<m≤1.综上,m∈(-∞,1].【评析】在高中阶段,凡“二次”皆重点,二次函数,一元二次方程,一元二次不等式,二次曲线都应着重去理解、掌握.例2、3、4 三个题目充分体现了数形结合思想及运动变化思想的运用.这两种数学思想在函数问题的解决中被普遍使用.例5 (1)当a≠0时,函数y=ax+b与y=b ax的图象只可能是( )(2)函数y=log a x,y=log b x,y=log c x,y=log d x的图象分别是图中的①、②、③、④,则a,b,c,d的大小关系是______.【分析】(1)在选项(A)中,由y=ax+b图象可知a<0,b>1,所以b a<b0=1(根据以为底的指数函数的性质),所以y=b ax=(b a)x应为减函数.在选项(B)中,由y=ax+b图象可知a>0,b>1,所以b a>b0=1,所以y=b ax=(b a)x应为增函数.在选项(C)中,由y=ax+b图象可知a>0,0<b<1,所以b a<b0=1,所以y=b ax=(b a)x应为减函数.与图形提供的信息相符.在选项(D)中,由y=ax+b图象可知a<0,0<b<1,所以b a>b0=1,所以y=b ax=(b a)x应为增函数.综上,选C.(2)如图,作直线y=1与函数y=log a x,y=log b x,y=log c x,y=log d x的图象依次交于A,B,C,D四点,则A,B,C,D四点的横坐标分别为a,b,c,d,显然,c<d<a<b.【评析】在本题的解决过程中,对函数图象的深入分析起到了至关重要的作用.这里,对基本初等函数图象的熟悉是前提,对图象的形态的进一步研究与关注是解决深层问题要重点学习的,例4中“注意到f(0)=1”,例5中“作直线y=1”就是具体的表现,没有“熟悉”和“深入的研究”是不可能“注意到”的,也作不出“直线y=1”.例6已知幂函数.(1)若f(x)为偶函数,且在(0,+∞)上是增函数,求f(x)的解析式;(2)若f(x)在(0,+∞)上是减函数,求k的取值范围.解:(1)因为f(x)在(0,+∞)上是增函数,所以,解得-1<k<3,因为k∈Z,所以k=0,1,2,又因为f(x)为偶函数,所以k=1,f(x)=x2.(2)因为f(x)在(0,+∞)上是减函数,所以,解得k<-1,或k>3(k∈Z).例7比较下列各小题中各数的大小(1);(2)lg2与lg(x2-x+3);(3)0.50.2与0.20.5;(4);(5);(6)a m+a-m与a n+a-n(a>0,a≠1,m>n>0)【分析】(1)函数y=log2x在区间(0,+∞)上是增函数,所以log20.6<log21=0,函数y=log0.6x在区间(0,+∞)上是减函数,所以所以.(2)由于,所以lg2<lg(x2-x+3).(3)利用幂函数和指数函数单调性.0.50.2>0.20.2>0.20.5.(4)因为.根据不等式的性质有(5)因为比较与log32,只需比较与log32,因为y=log3x是增函数,所以只需比较与2的大小,因为,所以,所以,综上,(6),当a>1时,因为m>n>0,a m>a n,a m+n>1,所以a m+a-m>a n+a-n;当0<a<1时,因为m>n>0,a m<a n,a m+n<1,所以a m+a-m>a n+a-n.综上,a m+a-m>a n+a-n.例8已知a>2,b>2,比较a+b,ab的大小.【分析】方法一(作商比较法),又a>2,b>2,所以,所以,所以a+b<ab.方法二(作差比较法),因为a>2,b>2,所以2-a<0,2-b<0,所以a+b-ab<0,即a+b<ab.方法三(构造函数)令y=f(a)=a+b-ab=(1-b)a+b,将y看作是关于a的一次函数,因为1-b<0,所以此函数为减函数,又a∈(2,+∞),y最大<f(2)=(1-b)×2+b=2-b<0,所以a+b-ab<0,即a+b<ab.【评析】两个数比较大小的基本思路:如果直接比较,可以考虑用比较法(包括“作差比较法”与“作商比较法”,如例8的方法一与方法二),或者利用函数的单调性来比较(如例7(1)(2)(3),例8的方法三).如果用间接的方法可以尝试对要比较的两数进行适当的变形,转化成对另两个数的比较,也可以考虑借助中间量来比较(如例7(4)(5)(6)).例9若log2(x-1)<2,则x的取值范围是______.解:log2(x-1)<2,即log2(x-1)<log24,根据函数y=log2x的单调性,可得x-1<4,所以x<5,结合x-1>0,所以x的取值范围是1<x<5.例10 已知A,B为函数y=log8x的图象上两点,分别过A,B作y轴的平行线与函数y=log2x的图象交于C,D两点.(1)如果A,B两点的连线经过原点O,请问C,D,O三点也共线么?证明你的结论.(2)当A,B,O三点共线并且BC与x轴平行时,求A点的坐标.略解:(1)设A(x1,log8x1),B(x2,log8x2),由于A,B,O在同一条直线上,所以又设C(x1,log2x1),D(x2,log2x2),于是有同样可得结合①式,有k OC=k OD,即C,D,O三点共线.(2)当BC∥x轴时,即。

2020届高考数学一轮复习 第18讲 函数y=Asin(ωx+φ)的图像及简单应用学案(无答案)文

2020届高考数学一轮复习 第18讲 函数y=Asin(ωx+φ)的图像及简单应用学案(无答案)文
(2)变换作图法.


【说明】前一种方法第一步相位变换是向左(φ>0)或向右(φ<0)平移|φ|个单位,而后一种方法第二步相位变换是向左(φ>0)或向右(φ<0)平移 个单位,要严格区分,对y=Acos(ωx+φ),y=Atan(ωx+φ)同样适用.
★状元笔记
由f(x)=Asin(ωx+φ)(A>0,ω>0)的一段图像,求其解析式时,A比较容易由图得出,困难的是求待定系数ω和φ,常用如下两种方法:
A.x= - (k∈Z)B.x= + (k∈Z)
C.x= - (k∈Z)D.x= + (k∈Z)
4.已知简谐运动f(x)=2sin( x+φ)(|φ|< )的图像经过点(0,1),则该简谐运动的周期T和初相φ分别为()
A.T=6,φ= B.T=6,φ=
C.T=6π,φ= D.T=6π,φ=
【层次二】5.(2016·课标全国Ⅱ,文)函数y=Asin(ωx+φ)的部分图像如图所示,则()
f(t)=10- cos t-sin t,t∈[0,24).
(1)求实验室这一天的最大温差;
(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?
【课堂检测】如图所示,某地一天从6时到14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b.
(1)求这段时间的最大温差;
(2)写出这段曲线的函数解析式.
(1)如果图像明确指出了周期T的大小和“零点”坐标,那么由ω= 即可求出ω;确定φ时,若能求出离原点最近的右侧图像上升(或下降)的零点的横坐标x0,则令ωx0+φ=0(或ωx0+φ=π)即可求出φ.
(2)代入点的坐标.利用一些已知点(最高点、最低点或零点)坐标代入解析式.再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有所需求,则可用诱导公式变换使其符合要求.

2020届浙江省普通高校招生学业水平考试数学试题及答案解析版

2020届浙江省普通高校招生学业水平考试数学试题及答案解析版

2020届浙江省普通高校招生学业水平考试数学试题及答案解析版一、单选题1.已知集合{}1,2,4A =,{}2,4,6B =,则A B =()A .{}4B .{}1,6C .{}2,4D .{}1,2,4,6【答案】D【解析】根据集合的并集运算,即可求解. 【详解】因为集合{}1,2,4A =,{}2,4,6B = 由集合的并集定义可知{}1,2,4,6A B =故选:D 【点睛】本题考查了集合的并集运算,属于基础题. 2.()tan a π-=( ) A .tan a - B .tan a C .tan a ±D .1tan a【答案】A【解析】根据诱导公式,化简即可求解. 【详解】 由诱导公式可知()tan a π-tan a =-故选:A本题考查了诱导公式的简单应用,属于基础题. 3.66log 2log 3+=( ) A .0 B .1 C .6log 5 D .12log 5【答案】B【解析】根据对数的运算及常数对数的值即可求解. 【详解】根据对数的运算性质可知66log 2log 3+()6log 23=⨯6log 61==故选:B 【点睛】本题考查了对数的运算性质的简单应用,属于基础题. 4.圆22280x y x ++-=的半径是( ) A .2 B .3 C .6 D .9【答案】B【解析】将圆的一般方程化为标准方程,即可求得圆的半径. 【详解】因为圆22280x y x ++-= 化为标准方程可得()2219x y ++=所以圆的半径为3 故选:B本题考查了圆的一般方程与标准方程的转化,圆的标准方程的性质,属于基础题. 5.不等式12x -<( )A .{}13x x -<<B .{}13x x <<C .{1x x <-或}3x >D .{1x x <或}3x > 【答案】A【解析】根据绝对值不等式,分类讨论解不等式即可求解. 【详解】 不等式12x -<当1x ≥时,不等式可化为12x -<,即3x <.所以13x ≤< 当1x <时,不等式可化为12x -<,即1x -<.所以11x -<< 综上可知,不等式的解集为13x ,即{}13x x -<<故选:A 【点睛】本题考查了绝对值不等式的解法,分类讨论解绝对值不等式,属于基础题.6.椭圆221259x y +=的焦点坐标是()A .()5,0-,()5,0B .()0,5-,()0,5C .()4,0-,()4,0D .()0,4-,()0,4【答案】C【解析】根据椭圆的标准方程,先判断出焦点位置并求得,a b .再根据椭圆中a b c 、、的关系即可求得焦点坐标.椭圆221259x y +=所以为焦点在x 轴上,且2225,9a b == 由椭圆中222a b c =+ 可得22225916c a b =-=-= 因而4c =所以焦点坐标为()4,0-,()4,0 故选:C 【点睛】本题考查了椭圆的标准方程及简单性质,椭圆中a b c 、、的关系及焦点坐标求法,属于基础题.7.若实数x ,y 满足不等式组0,0,2,x x y x y ≥⎧⎪-≤⎨⎪+≤⎩,则2x y +的最大值是( ) A .1 B .2C .3D .4【答案】D【解析】根据不等式组,画出可行域,由可行域即可求得线性目标函数的最大值. 【详解】根据所给不等式组,画出可行域如下图所示:将12y x =-平移即可得目标函数122zy x =-+因而当经过点()0,2A 时,目标函数的截距最大 此时20224z x y =+=+⨯= 所以2x y +的最大值是4 故选:D 【点睛】本题考查了线性规划的简单应用,线性目标函数的最值求法,属于基础题.8.已知直线l 和平面α,若//l α,P α∈,则过点P 且平行于l 的直线()A .只有一条,不在平面α内B .只有一条,且在平面α内C .有无数条,一定在平面α内D .有无数条,不一定在平面α内 【答案】B【解析】假设m 是过点P 且平行于l 的直线, n 也是过点P 且平行于l 的直线,则与平行公理得出的结论矛盾,进而得出答案. 【详解】假设过点P 且平行于l 的直线有两条m 与n ,则m ∥l 且n ∥l 由平行公理得m ∥n ,这与两条直线m 与n 相交与点P 相矛盾,故过点P 且平行于l 的直线只有一条,又因为点P 在平面内,所以过点P 且平行于l 的直线只有一条且在平面内. 故选B 【点睛】本题主要考查了空间中直线与直线之间的位置关系,空间中直线与平面的位置关系.过一点有且只有一条直线与已知直线平行.9.过点()3,1A -且与直线230x y +-=垂直的直线方程是( )A .210x y ++=B .210x y +-=C .270x y -+=D .270x y --=【答案】D【解析】根据直线垂直时的斜率关系,先求得直线的斜率.再由点斜式即可求得直线方程,进而化为一般式可得解. 【详解】因为直线230x y +-=可化为1322y x =-+ 当直线垂直时的斜率乘积为1,所以2k = 因为经过点()3,1A -由点斜式可知直线方程为()123y x +=-化简可得270x y --= 故选:D 【点睛】本题考查了垂直直线的斜率关系,点斜式方程的用法,将方程化为一般式的方法,属于基础题.10.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,若60A =︒,45B =︒,3a =则b =() A .1 BC .2D【答案】D【解析】根据正弦定理,即可求得b 的值. 【详解】在ABC ∆中, 角A ,B ,C 所对的边分别是a ,b ,c 若60A =︒,45B =︒,3a = 由正弦定理可知sin sin a bA B = 代入可得3sin 60sin 45b =解得b故选:D 【点睛】本题考查了正弦定理在解三角形中的简单应用,属于基础题.11.函数()sin f x x x =⋅的图象大致是( )A .B .C .D .【答案】A【解析】根据函数的奇偶性及特殊值,可判断函数的图像. 【详解】 因为()sin f x x x =⋅而()g x x =为偶函数, ()sin h x x =为奇函数,所以()sin f x x x =⋅为奇函数,所以排除C,D.当0.001x =时, ()0.0010.0010.0010g ==>,()0.001sin0.0010h =>,所以()0.0010.001sin0.0010f =⋅>,所以排除B 选项.故选:A 【点睛】本题考查了根据函数解析式判断函数图像,利用函数的奇偶性、单调性和特殊值,可排除选项,属于基础题. 12.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .13B .23C .1D .2【答案】B【解析】根据三视图,还原出空间几何体,即可求得该几何体的体积. 【详解】由三视图可知,该几何体为三棱锥,其空间结构体如下图所示:则由三视图中的线段长度可知12112ABC S ∆=⨯⨯=则121233P ABC V -=⨯⨯=故选:B 【点睛】本题考查了三视图的简单应用,根据三视图还原空间几何体,棱锥的体积求法,属于基础题.13.设,a b ∈R ,则“0a b +>”是“330a b +>”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【解析】根据立方和公式,结合充分必要条件的判断即可得解. 【详解】因为()()()223322324b b a b a b a ab b a b a ⎡⎤⎛⎫+=+-+=+-+⎢⎥⎪⎝⎭⎢⎥⎣⎦当0a b +>时,223024b b a ⎛⎫-+> ⎪⎝⎭,所以330a b +>.即“0a b +>”是“330a b +>”的充分条件.当330a b +>时,由于223024b b a ⎛⎫-+> ⎪⎝⎭成立,所以0a b +>,即“0a b +>”是“330a b +>”的必要条件.综上可知, “0a b +>”是“330a b +>”的充要条件 故选:C 【点睛】本题考查了立方和公式的用法,充分必要关系的判断,属于基础题.14.设1F ,2F 分别是双曲线()22221,0x y a b a b -=>的左、右焦点.若双曲线上存在一点P ,使得124PF PF =,且1260F PF∠=︒,则该双曲线的离心率是( )A B .3C D【答案】B【解析】根据双曲线的定义及124PF PF =,用a 表示出12PF PF 、,再在三角形12F PF 中由余弦定理求得a c 、的关系,进而求得离心率. 【详解】1F ,2F 分别是双曲线()22221,0x y a b a b-=>的左、右焦点,且双曲线上的点P 满足124PF PF =所以121224PF PF a PF PF ⎧-=⎪⎨=⎪⎩,解得128323a PF a PF ⎧=⎪⎪⎨⎪=⎪⎩因为1260F PF∠=︒,122F F c =所以在三角形12F PF 中由余弦定理可得222121212122cos F F PF PF PF PF F PF =+-⋅∠,代入可得2222644821499332a a c a a =⨯⨯⨯+- 化简可得22913c a=,即222139c ea==所以e =故选:B 【点睛】本题考查了双曲线的定义,利用余弦定理解三角形,双曲线离心率的求法,属于基础题.15.点P 从O 出发, 按逆时针方向沿周长为l 的图形运动一周, 点O 、P 的距离(y )与点P 走过的路程(x )的函数关系如图所示.那么点P 所走过的图形是图中的( ).A .B .C .D .【答案】C【解析】【详解】易知, 选项(A)、(B)的图像是若干条线段组成的折线;选项(D)中当点P 走过的路程为2lx =时,OP 不是最大值(过点P 作OP 的垂线交椭圆于点P′, 显然, OP′>OP);选项(C)中πsin πl xy l=, 其图像如图.选C.16.设数列{}n a 满足11a =,2212n n a a -=+,2121n n a a +=-,*n N ∈,则满足4n a n -≤的n 的最大值是( ) A .7 B .9 C .12 D .14【答案】C【解析】根据数列{}n a 满足的条件,讨论n 的奇偶性,即可求得解析式.根据解析式解绝对值不等式即可求得满足条件的n 的最大值. 【详解】数列{}n a 满足11a =,2212n n a a -=+,2121n n a a +=-23a =则21211n n a a +--=则当n ∈奇数时, 12n n a +=所以4n a n -≤,代入可得142n n +-≤,解不等式可得79n -≤≤ 而*n N ∈,所以此时n 的最大值是9 则当n ∈偶数时, 22n n a =+所以若4n a n -≤,代入可得242nn +-≤,解不等式可得412n -≤≤ 而*n N ∈,所以此时n 的最大值是12 综上可知, n 的最大值是12 故选:C 【点睛】本题考查了等差数列的通项公式求法,对奇偶项分类讨论数列的性质,绝对值不等式的解法,属于中档题.17.设点A ,B 的坐标分别为()0,1,()1,0,P ,Q 分别是曲线2x y =和2log y x =上的动点,记1I AQ AB =⋅,2I BP BA =⋅.( ) A .若12II =,则()PQ AB R λλ=∈B .若12II =,则AP BQ =C .若()PQ AB R λλ=∈,则12I I = D .若AP BQ=,则12II =【答案】C【解析】根据题意,由向量数量积和投影的定义,结合平面向量共线的性质即可判断选项. 【详解】根据题意,在直线AB 上取','P Q ,且''AP BQ =.过','P Q 分别作直线AB 的垂线,交曲线2x y =于12,P P 和交2log y x =于12,Q Q .在曲线2x y =上取点3P ,使13AP AP =.如下图所示:1cos 'I AQ AB AQ AB QAB AQ AB =⋅=⋅∠=⋅2cos 'I BP BA BP BA PBA BP BA=⋅=⋅∠=⋅若''AP BQ =,则''AQ BP =若12II =,则''AQ BP =即可.此时P 可以与1P 重合,Q 与2Q 重合,满足题意,但是()PQ AB R λλ=∈不成立,且AP BQ≠所以A 、B错误;对于C,若()PQ AB R λλ=∈,则PQ AB ∥,此时必有1P 与1Q 对应(或2P 与2Q ),所以满足12I I =,所以C 正确;对于D,对于点3P ,满足13AP AP =,但此时3P 在直线AB 上的投影不在P'处,因而不满足''AQ BP =,即12I I ≠,所以D 错误综上可知,C 为正确选项 故选:C 【点睛】本题考查了平面向量数量积的意义及向量投影的应用,向量共线的特征和性质,综合性强,较为复杂,属于难题. 18.如图,在圆锥SO 中,A ,B 是O 上的动点,BB '是O的直径,M ,N 是SB 的两个三等分点,()0AOB θθπ∠=<<,记二面角N OA B --,M AB B '--的平面角分别为α,β,若αβ≤,则θ的最大值是()A .56π B .23πC .2πD .4π【答案】B【解析】设底面圆的半径为r ,OS a =,以'B B 所在直线为x 轴,以垂直于'B B 所在直线为y 轴,以OS 所在直线为z 轴建立空间直角坐标系,写出各个点的坐标.利用法向量求得二面角N OA B --与M AB B '--夹角的余弦值.结合αβ≤即可求得θ的取值范围,即可得θ的最大值. 【详解】设底面圆的半径为r ,OS a =,以'B B 所在直线为x 轴,以垂直于'B B 所在直线为y 轴,以OS 所在直线为z 轴建立空间直角坐标系,如下图所示:则由()0AOB θθπ∠=<<可得()()()0,0,0,,0,0,0,0,O B r S a ,()()cos ,sin ,0,',0,0A r r B r θθ-M ,N 是SB 的两个三等分点则22,0,,,0,3333ra r a M N ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭所以()2cos ,sin ,0,,0,33r a OA r r ON θθ⎛⎫== ⎪⎝⎭ 设平面NOA 的法向量为()111,,m x y z =则00m OA m ON ⎧⋅=⎨⋅=⎩,代入可得()()()111111,,cos ,sin ,002,,,0,033x y z r r r a x y z θθ⎧⋅=⎪⎨⎛⎫⋅= ⎪⎪⎝⎭⎩化简可得1111cos sin 02033x r y r x r az θθ+=⎧⎪⎨+=⎪⎩ 令11x =,解得11cos 2,sin ry z aθθ=-=-所以cos 21,,sin r m a θθ⎛⎫=--⎪⎝⎭ 平面OAB 的法向量为()0,0,1n =由图可知, 二面角N OA B --的平面角α为锐二面角,所以二面角N OA B --的平面角α满足cos 1m n m nα⋅==⋅+设二面角M AB B '--的法向量为()222,,k x y z =()2'cos ,sin ,0,cos ,sin ,33ra B A r r r AM r r θθθθ⎛⎫=+=-- ⎪⎝⎭则'00k B A k AM ⎧⋅=⎨⋅=⎩代入可得()()()222222,,cos ,sin ,002,,cos ,sin ,033x y z r r r r a x y z r r θθθθ⎧⋅+=⎪⎨⎛⎫⋅--= ⎪⎪⎝⎭⎩化简可得2222222cos sin 02cos sin 033x r x r y r x r az x r y r θθθθ++=⎧⎪⎨--+=⎪⎩令21x =,解得221cos 2,sin ry z aθθ--==-所以1cos 21,,sin r k a θθ--⎛⎫=-⎪⎝⎭ 平面AB B '的法向量为()0,0,1h =由图可知, 二面角M AB B '--的平面角β为锐二面角,所以二面角M AB B '--的平面角β满足cos 1k h k hβ⋅==⋅⎛+由二面角的范围可知0αβπ≤≤≤结合余弦函数的图像与性质可知cos cos αβ≥≥化简可得1cos 2θ≤-,且0θπ<<所以203πθ<≤所以θ的最大值是23π故选:B 【点睛】本题考查了空间直角坐标系在求二面角中的综合应用,根据题意建立合适的空间直角坐标系,求得平面的法向量,即可求解.本题含参数较多,化简较为复杂,属于难题.二、填空题19.设等比数列{}n a 的前n 项和为()*n S n N ∈,若22a =,34a =,则1a =______,4S =______. 【答案】1 15【解析】根据等比数列的通项公式,可求得1a 与q .再求得4a ,即可求得4S 的值. 【详解】因为数列{}n a 为等比数列,由等比数列的通项公式可知11n n a a q -=而22a=,34a =所以2123124a a q a a q ==⎧⎨==⎩,解方程组可得112a q =⎧⎨=⎩所以3341128a a q ==⨯= 所以41234+++S a a a a =124815=+++=故答案为:1;15 【点睛】本题考查了等比数列通项公式的简单应用,前n 项和的求法,属于基础题.20.设u ,v 分别是平面a ,β的法向量,()1,2,2u =-,()2,4,v m =--.若a β∥,则实数m =______. 【答案】4【解析】根据两个平面平行时,其法向量也平行,即可求得参数m 的值.因为a β∥,且u ,v 分别是平面a ,β的法向量 则u v ∥因为()1,2,2u =-,()2,4,v m =-- 所以存在λ,满足u v λ= 则()()1,2,22,4,m λ-=--即12242m λλλ=-⎧⎪=-⎨⎪-=⎩解得124m λ⎧=-⎪⎨⎪=⎩ 所以4m = 故答案为:4 【点睛】本题考查了平面平行时法向量的关系,平行向量的坐标表示及关系,属于基础题.21.在中国古代数学著作《就长算术》中,鳖臑(biēnào )是指四个面都是直角三角形的四面体.如图,在直角ABC ∆中,AD 为斜边BC 上的高,3AB =,4AC =,现将ABD ∆沿AD 翻折AB D '∆,使得四面体AB CD '为一个鳖臑,则直线B D '与平面ADC 所成角的余弦值是______.【答案】916【解析】作'B M CD ⊥于交CD 于M ,可证明'B M ⊥平面ACD ,则'B DM ∠即为B D '与平面ADC 的夹角.根据线段关系即可求解.作'B M CD ⊥于交CD 于M因为,'AD CD AD DD ⊥⊥ 且'CD DD D ⋂= 所以AD ⊥平面'DB C 而AD ⊂平面ACD 所以平面ACD ⊥平面'DB C又因为平面ACD 平面'DB C DC =,且'B M CD ⊥ 所以'B M ⊥平面ACD则'B DM ∠即为B D '与平面ADC 的夹角 因为直角ABC ∆中,3AB =,4AC = 所以229165BC AB AC +=+=341255AB AC AD BC ⨯⨯===则22221216455DC AC AD ⎛⎫=-=-= ⎪⎝⎭所以169'555DB BC DC =-=-= 在直角三角形'B DC 中,9'95cos 'cos '16165DB B DM B DC DC ∠=∠=== 故答案为:916【点睛】本题考查了空间几何体中直线与平面的夹角求法,直线与平面垂直关系的判定,对空间想象能力和计算能力要求较高,属于中档题. 22.已知函数()226f x x ax =+--,若存在a R ∈,使得()f x 在[]2,b 上恰有两个零点,则实数b 的最小值是______.【答案】2+【解析】根据函数()f x 存在a R ∈在[]2,b 上恰有两个零点,则求得当2x =时满足条件的a .再由当x b =时取到零点,即可求得b 的值. 【详解】 因为函数()226f x x ax =+--,()f x 在[]2,b 上恰有两个零点则必在2x =与x b =时恰好取到零点的边界 若2x =时,()f x 的零点满足()2222260f a =+--=解方程求得2a =或4a =- 当2a =时, ()2226f x x x =+--,满足()f x 在[]2,b 上恰有两个零点 则()22260f b bb =+--=,且2b >解方程可得2b =(舍)或4b =-(舍) 当4a =-时, ()2426f x x x =---,满足()f x 在[]2,b 上恰有两个零点 则()24260f b bb =---=,且2b >解方程可得2b =-(舍)或2b =+综上可知,当2b =+()f x 在[]2,b 上恰有两个零点故答案为:2+【点睛】本题考查了含绝对值函数零点的分类讨论,注意恰有两个零点条件的应用,根据边界取等时能刚好取得,属于中档题.三、解答题23.已知函数()2sin cos 66f x x x ππ⎛⎫⎛⎫=--⎪ ⎪⎝⎭⎝⎭,x ∈R (Ⅰ)求3f π⎛⎫⎪⎝⎭的值; (Ⅱ)求()f x 的最小正周期; (Ⅲ)求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的值域.【答案】(Ⅰ)3f π⎛⎫= ⎪⎝⎭Ⅱ)π(Ⅲ)⎡⎤⎢⎥⎣⎦【解析】(Ⅰ)将3π代入解析式,即可求得3f π⎛⎫⎪⎝⎭的值. (Ⅱ)根据正弦的二倍角公式化简后,即可求得()f x 的最小正周期.(Ⅲ)根据正弦函数的图像与性质,可求得()f x 在0,2π⎡⎤⎢⎥⎣⎦上的值域. 【详解】(Ⅰ)2sin cos 33636f πππππ⎛⎫⎛⎫⎛⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12sin cos 266222ππ==⨯⨯=即3f π⎛⎫= ⎪⎝⎭(Ⅱ)因()sin 2sin 263f x x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭故()f x 的最小正周期22T ππ== (Ⅲ)当0,2x π⎡⎤∈⎢⎥⎣⎦时,22,333x πππ⎡⎤-∈-⎢⎥⎣⎦因此当233x ππ-=-,即0x =时,()3min f x =-当232x ππ-=,即512x π=时,()max 1f x =所以()f x 在0,2π⎡⎤⎢⎥⎣⎦上的值域为3,1⎡⎤-⎢⎥⎣⎦. 【点睛】本题考查了正弦函数的求值,正弦函数的图像与性质简单应用,属于基础题.24.如图,设抛物线21C x y =与()22:20C y px p =>的公共点M 的横坐标为()0t t >,过M 且与1C 相切的直线交2C 于另一点A ,过M 且与2C 相切的直线交1C 于另一点B ,记S 为MBA ∆的面积.(Ⅰ)求p 的值(用t 表示);(Ⅱ)若1,24S ⎡⎤∈⎢⎥⎣⎦,求t 的取值范围. 注:若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行也不重合,则称该直线与抛物线相切.【答案】(Ⅰ)32t p =;(Ⅱ)24,33t ⎡⎤∈⎢⎥⎣⎦【解析】(Ⅰ)将M 的横坐标为t 代入抛物线1C 解析式可得()2,M t t ,再代入抛物线2C 解析式,化简即可用t 表示p 的值.(Ⅱ)设出点A 的坐标,结合M 的坐标即可表示出直线MA 的方程.联立抛物线1C ,根据相切时判别式0∆=可得2kt ,表示出直线MA 的方程.利用两点式表示出直线MA 的斜率,即可用t 表示出点A 的坐标.同理可求得B 点的坐标.进而利用两点间距离公式表示出MB ,利用点到直线距离公式求得A 到直线MB 的距离,即可表示出MBA ∆的面积S .结合S 的取值范围,即可求得t 的取值范围. 【详解】(Ⅰ)因点M 在抛物线1C :2x y =上,故()()2,0M t t t >又点M 在抛物线2C :()220y px p =>上,故()222t pt =,则32t p =(Ⅱ)设点()11,A x y ,直线MA 的方程为()2y k x t t =-+联立方程组22(),,y k x t t x y ⎧=-+⎨=⎩消去y ,得220x kx kt t -+-=则()()222420k kt t k t ∆=--=-=因此2kt即直线MA 的方程为22y tx t =-则直线MA 的斜率223112211132y t y t t k ty x t y t tt --====-+- 从而212t y =-,即2,42t t A ⎛⎫- ⎪⎝⎭同理,直线MB 的方程为222t t y x =+,点2,24t t B ⎛⎫- ⎪⎝⎭因此2t MB t =-=点2,42t t A ⎛⎫- ⎪⎝⎭到直线MB :2022t t x y -+=的距离29t d ==故MBA ∆的面积23911272232t t S MB d ===即32732t S =因为1,24S ⎡⎤∈⎢⎥⎣⎦即31272432t ≤≤ 解得24,33t ⎡⎤∈⎢⎥⎣⎦. 【点睛】本题考查了直线与抛物线的位置关系,利用韦达定理分析直线与抛物线的交点问题,两点间距离公式及点到直线距离公式的应用,综合性强,属于难题.。

浙江省台州市2020届高考数学基础知识专题训练17无答案文

浙江省台州市2020届高考数学基础知识专题训练17无答案文

基础知识专题训练17一、考试要求二、基础知识 (1)统计1、 抽样方法:简单随机抽样(抽签法、随机数表法);系统抽样;分层抽样。

注:每个个体被抽到的概率都相等nN补:总体——要考察的对象的全体;个体——每一个考察对象;样本——总体中被抽取的考察对象的集体;样本容量——样本中个体的数目 2、 总体分布的估计:用样本估计总体,是研究统计问题的一个基本思想方法,即用样本平均数估计总体平均数(即总体期望值――描述一个总体的平均水平);用样本方差估计总体方差(方差和标准差是描述一个样本和总体的波动大小的特征数,方差或标准差越小,表示这个样本或总体的波动越小,即越稳定)。

一般地,样本容量越大,这种估计就越精确。

总体估计要掌握:(1)“表”(频率分布表);(2)“图”(频率分布直方图)。

频率分布表——全距、组距、频数、频率的求法 频率直方图的画法及横纵轴的表示 茎叶图——茎、叶的表示提醒:直方图的纵轴(小矩形的高)一般是频率除以组距的商(而不是频率),横轴一般是数据的大小,小矩形的面积表示频率。

3、总体特征数的估计:①,,21x x ……n x 的平均数=x ; ②设一组数据,,21x x ……n x ,其平均数为x ,则其方差=2S (=212)()(1x x n n i i -∑=); 标准差=S③,,21kx kx ……n kx 的平均数为 ;方差为 (用x 、2S 表示)④,,21b kx b kx ++……b kx n +的平均数为 ;方差为 。

(2)统计案例1.变量相关关系:当自变量一定时,因变量的取值带有一定的随机性的两个变量之间的关系称为相关关系回归分析: 对具有相关关系的两个变量进行统计分析的方法叫做回归分析通俗地讲,回归分析是寻找相关关系中非确定性关系的某种确定性. (1)散点图:(2)回归直线 2. 回归分析(1)相关系数()()niix x y y r --=∑当0r >时,表明两个变量正相关; 当0r <时,表明两个变量负相关.r 的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常||r 大于0.75时,认为两个变量有很强的线性相关性.(2)相关指数22121()()niii nii y y R y y ∧==-=-∑∑2R 的值越大,说明残差平方和越小,也就是说模型的拟合效果越好.在线性回归模型中, 2R 表示解释变量对预报变量变化的贡献率, 2R 越接近于1,表示回归的效果越好.3.独立性检验(2)列联表:列出两个分类变量的频数表,称为列联表.假设有两个分类变量X 和Y,它们的可能取值分别为1122{,}{,}x y x y 和,其样本频数列联表(称为2×2列联表)为2×2列联表图1乙甲7518736247954368534321构造一个随机变量22()()()()()n ad bc K a b c d a c b d -=++++,其中a b c d +++为样本容量.附:三、基础训练1.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是( ) A .分层抽样 B .简单随机抽样 C .系统抽样 D .以上都不对2. 某公司在甲、乙、丙、丁四个地区分别有150个,120个,180个,150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②;则完成①②这两项调查采用的抽样方法依次是 ( )A .分层抽样,系统抽样B .分层抽样,简单随机抽样法/C .系统抽样,分层抽样 D .简单随机抽样法,分层抽样法 3. 某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上的人,用分层抽样的方法从中抽取20人,各年龄段分别抽取多少人( ) A .7,5,8B .9,5,6C .6,5,9D .8,5,74.某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,现将这500名学生按1~500进行编号,并均分为50组,若第4组抽的是34号,第9组抽的是84号,那么第12组应抽几号? ( ) A .102 B .120 C .112 D .1145. 图1是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是( ) A .65 B .64 C .63 D .626.已知样本数据x 1,x 2,…,x 10,其中x 1,x 2,x 3的平均数为a ,x 4,x 5,x 6,…,x 10的平均数为b ,则样本数据的平均数为( )(A )2b a + (B )1073b a + (C )1037b a + (D )10ba + 7.同一总体的两个样本,甲样本的方差是2-1,乙样本的方差是3-2,则( )(A )甲的样本容量小 (B )甲的样本平均数小 (C )乙的平均数小 (D )乙的波动较小8.某校有500名学生参加毕业会考,其中数学成绩在85~100分之间的有共180人,这个分数段的频数是( )(A )180 (B )0.36 (C )0.18 (D )5009.某校男子足球队16名队员的年龄如下:17 17 18 18 16 18 17 15 18 18 17 16 18 17 18 14这些队员年龄的众数与中位数分别是…………………( )(A )17岁与18岁 (B )18岁与17岁 (C )17岁与17岁 (D )18岁与18岁 10.下列两个变量之间的关系中,哪个是函数关系 ( ) A.学生的性别与他的数学成绩 B.人的工作环境与健康状况 C.女儿的身高与父亲的身高 D. 正三角形的边长与面积11、设两个变量x 和y 之间具有线性相关关系,它们的相关系数是r ,y 关于x 的回归直线的斜率是b ,纵截距是a ,那么必有( ) (A) b 与r 的符号相同 (B) a 与r 的符号相同 (C) b 与r 的相反 (D) a 与r 的符号相反12、一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y=7.19x+73.93用这个模型预测这个孩子10岁时的身高,则正确的叙述是( ) (A)身高一定是145.83cm (B)身高在145.83cm 以上 (C)身高在145.83cm 以下 (D)身高在145.83cm 左右13、两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下 ,其中拟合效果最好的模型是( )(A)模型1的相关指数2R 为0.98 (B) 模型2的相关指数2R 为0.80 (C)模型3的相关指数2R 为0.50 (D) 模型4的相关指数2R 为0.2514、工人月工资(元)依劳动生产率(千元)变化的回归直线方程为ˆ6090yx =+,下列判断正确的是( )(A)劳动生产率为1000元时,工资为50元 (B)劳动生产率提高1000元时,工资提高150元 (C)劳动生产率提高1000元时,工资提高90元 (D)劳动生产率为1000元时,工资为90元15.由右表可计算出变量,x y 的线性回归方程为( ) A. ˆ0.350.15y x =-+ B. ˆ0.350.25y x =-+ C. ˆ0.350.15y x =+ D. ˆ0.350.25y x =+16.若由一个2×2列联表中的数据计算得到χ2=3.528,那么( ) (A)有95%的把握认为这两个变量有关系 (B)有95%的把握认为这两个变量存在因果关系 (C)有99%的把握认为这两个变量有关系 (D)没有充分的证据显示这两个变量之间有关系17.某班主任对全班50名学生进行了作业量多少的调查,数据如下表:则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为( ) (A)99%(B)95%(C)90% (D)无充分依据18.从含有N 个个体的总体中一次性地抽取n 个个体,假定其中每个个体被抽取的机会相等,则总体中每个个体被抽取的概率都等于 。

浙江省台州市2020届高考数学 基础知识专题训练13(无答案)文

浙江省台州市2020届高考数学 基础知识专题训练13(无答案)文

基础知识专题训练13一、考试要求二、基础知识1、数系的扩充:N Z Q R C2、形式:),(R b a bi a z ∈+=,其中,b a ,分别为复数z 的实部和虚部复数z 是实数⇔ ;复数z 是虚数⇔ ; 复数z 是纯虚数⇔ 。

3、di c bi a +=+⇔4、运算:=+++)()(di c bi a ; =+-+)()(di c bi a ;=++))((di c bi a ;=++dic bia . 若N n ∈,则=ni4 ;=+14n i ;=+24n i ;=+34n i .共轭复数:①复数yi x z +=的共轭复数=z②性质:z z =; R z z z ∈⇔=; yi z z x z z 2,2=-=+; 5、复数bi a z +=的模||z =设C z ∈,则满足2||=z 的点Z 的集合表示的图形 三、基础训练 1.计算31ii-=+( ). A. 1+2i B. 1–2i C. 2+i D. 2–i 2.设复数134z i =-,223z i =-+,则复数21z z -在复平面内对应的点位于( ). A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限3. 已知()1a bi i i +=-,其中a 、b R ∈, i 为虚数单位,则a 、b 的值分别是( ).A. i ,i -B. 1,1C. 1,1-D. i ,1- 4.0a =是复数(,)a bia b R +∈为纯虚数的( )A .充分条件 B.必要条件 C.充要条件 D.非充分非必要条件 5、复数21ii-的虚部是 6、若复数21(1)z a a i =-++(a R ∈)是纯虚数,则z = .7、201211i i +⎛⎫ ⎪-⎝⎭=8、若∈+=-b a i b iia ,,2其中R ,i 是虚数单位,则ab -的值为 9、如果复数i a a a a z )23(222+-+-+=为纯虚数,那么实数a 的值为10、复数i a a a a z )2(222--+-=)(对应的点在虚轴上,则=a 11、已知复数z 满足()()25,i z i -=是虚数单位则z =12、在复平面内, 复数 1 + i 与31+i 分别对应向量A O ρ和B O ρ, 其中O 为坐标原点,则B A ρ=13、复数13i z =+,21i z =-,则复数12zz 在复平面内对应的点位于 象限14、复数(3)(2)i m i +-+对应的点在第三象限内,则实数m 的取值范围是。

2020年浙江省台州市大战中学高三数学文测试题含解析

2020年浙江省台州市大战中学高三数学文测试题含解析

2020年浙江省台州市大战中学高三数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知函数f(x)=x3+ax2+bx+c,若f(x)在区间(﹣1,0)上单调递减,则a2+b2的取值范围( )A.B.C.D.参考答案:C【考点】函数的单调性与导数的关系.【专题】计算题.【分析】由函数在区间(﹣1,0)上是单调递减,得到导函数小于等于0恒成立即f′(﹣1)≤0且f′(0)≤0代入得到一个不等式组,可以把而a2+b2可视为平面区域内的点到原点的距离的平方,则由点到直线的距离公式求出即可得到最小值.【解答】解:(1)依题意,f′(x)=3x2+2ax+b≤0,在(﹣1,0)上恒成立.只需要即可,也即,而a2+b2可视为平面区域内的点到原点的距离的平方,由点到直线的距离公式d2==,∴a2+b2的最小值为.则a2+b2的取值范围.故选C.【点评】考查学生利用导数研究函数的单调性的能力,理解二元一次不等式组与平面区域的关系,考查数形结合思想.属于基础题.2. 函数的零点所在的区间为A. B. C. D.参考答案:B试题分析:由于,,因此,故函数在区间内有零点,故答案为B.考点:函数零点的判断.3. 要得到函数的图象,只需将函数的图象()A. 向左平移2个单位长度B. 向右平移2个单位长度C. 向上平移1个单位长度D. 向下平移1个单位长度参考答案:C【分析】利用对数的运算法则先进行化简,结合函数的图象变换法则进行判断即可.【详解】解:,故只需将函数的图象向上平移1个单位长度,即可得到,故选:C.【点睛】本题主要考查函数的图象与变换,结合对数的运算法则是解决本题的关键,属于基础题.4. 函数的单调增区间是A. (-∞,2]B.[0,2]C.[2,4]D.[2,+∞)参考答案:B5. 设命题p:,,则为()A.B.C.D.参考答案:D由已知得:命题:,,命题:6. 设,则“直线与直线平行”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:B略7.由5学生组成两个调查小组进行社会实践,其中甲、乙两人必须在同一组的分组个数共有()A.4 B.5 C.6 D.7参考答案:答案:D8. 已知向量=(1,x﹣2),=(2,﹣6y)(x,y∈R+),且∥,则的最小值等于()A.4 B.6 C.8 D.12参考答案:B【考点】基本不等式;平行向量与共线向量.【专题】不等式的解法及应用;平面向量及应用.【分析】利用向量共线定理可得x+3y=2.再利用“乘1法”与基本不等式的性质即可得出.【解答】解:∵∥,∴2(x﹣2)﹣(﹣6y)=0,化为x+3y=2.又x,y∈R+,∴===6,当且仅当x=3y=1时取等号.∴的最小值等于6.故选:B.【点评】本题考查了向量共线定理、“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.9. 设f′(x)是函数f(x)的导函数,且f′(x)>2f(x)(x∈R),f()=e(e为自然对数的底数),则不等式f(lnx)<x2的解集为()A.(0,)B.(0,)C.(,)D.(,)参考答案:B【考点】导数的运算.【专题】计算题;转化思想;综合法;导数的概念及应用;不等式的解法及应用.【分析】构造函数F(x)=,求出导数,判断F(x)在R上递增.原不等式等价为F(lnx)<F(),运用单调性,可得lnx<,运用对数不等式的解法,即可得到所求解集.【解答】解:可构造函数F(x)=,F′(x)==,由f′(x)>2f(x),可得F′(x)>0,即有F(x)在R上递增.不等式f (lnx )<x 2即为<1,(x >0),即<1,x >0.即有F ()==1,即为F (lnx )<F (),由F (x )在R 上递增,可得lnx <,解得0<x <.故不等式的解集为(0,),故选:B .【点评】本题考查导数的运用:求单调性,考查构造法的运用,以及单调性的运用,对数不等式的解法,属于中档题. 10. 若,,,则,,的大小关系是( ) A .B .C .D .参考答案:C ∵,,,∴.故选C .二、 填空题:本大题共7小题,每小题4分,共28分11. 已知正项等比数列的前项积为,已知,则参考答案:考点:等比数列.【思路点晴】本题主要考查等比数列的性质,考查新定义数列的理解,考查指数运算和指数相等的概念. 在等比数列中,若,,,且,则,特殊地,时,则,是的等比中项. 若数列是等比数列,且公比不为,是其前项的和,,那么,,成等比数列.12. 已知复数z =(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________参考答案:,故答案为.13.定义在上的函数既是偶函数又是周期函数,若的最小正周期是,且当时,,则的值为______.参考答案:试题分析:考点:函数的周期性,函数的奇偶性,求函数值. 14. 已知函数, 若, 则实数的取值范围 .参考答案:略 15.的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且,则.参考答案:试题分析:由题意得,,,.考点:等比中项;余弦定理. 16. 已知直三棱柱中,,侧面的面积为,则直三棱柱外接球表面积的最小值为 .参考答案:试题分析:根据题意,设,则有,从而有其外接球的半径为,所以其比表面积的最小值为.考点:几何体的外接球,基本不等式.17. 不等式对于任意的恒成立,则实数的取值范围为。

2020年浙江省台州市新建中学高三数学文测试题含解析

2020年浙江省台州市新建中学高三数学文测试题含解析

2020年浙江省台州市新建中学高三数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 若,则()....参考答案:A略2. 已知各项不为0的等差数列满足:,数列的等比数列,且,则( )A.16B.8C.4D.2参考答案:A3. 若一个几何体的三视图如图所示,则此几何体的体积为A. B.5 C. D.4参考答案:【知识点】简单几何体三视图,棱柱的体积.G2 G7【答案解析】D 解析:由图可知,此几何体为直六棱柱,底面六边形可看做两个全等的等腰梯形,上底边为1,下底边为3,高为1,∴棱柱的底面积为棱柱的高为1∴此几何体的体积为V=4×1=4,故选D.【思路点拨】先根据三视图判断此几何体为直六棱柱,再分别计算棱柱的底面积和高,最后由棱柱的体积计算公式求得结果.4. 已知双曲线的左、右焦点分别为F1,F2,点P在双曲线的右支上,且,则双曲线离心率的取值范围是A. B. C.(1,2] D.参考答案:B由双曲线定义可知,从而,双曲线的离心率取值范围为.故选B.5. f (x)的定义在R上的奇函数,它的最小正周期为T,则的值为()A.0 B. C.T D.-参考答案:A6. 已知函数f(x)=e x+x,对于曲线y=f(x)上横坐标成等差数列的三个点A,B,C,给出以下判断:①△ABC一定是钝角三角形;②△ABC可能是直角三角形;③△ABC可能是等腰三角形;④△ABC不可能是等腰三角形.其中,正确的判断是()A.①③ B.①④ C.②③ D.②④参考答案:B考点:数列与函数的综合.专题:综合题;压轴题;探究型;数形结合;数形结合法.分析:由于函数f(x)=e x+x,对于曲线y=f(x)上横坐标成等差数列的三个点A,B,C,由函数的定义及函数单调性进行判断即可得出正确选项,对于①正确,由函数的图象可以得出,角ABC是钝角,②亦可由此判断出;③④可由变化率判断出.解答:解:由于函数f(x)=e x+x,对于曲线y=f(x)上横坐标成等差数列的三个点A,B,C,且横坐标依次增大由于此函数是一个单调递增的函数,故由A到B的变化率要小于由B到C的变化率.可得出角ABC一定是钝角故①对,②错.由于由A到B的变化率要小于由B到C的变化率,由两点间距离公式可以得出AB<BC,故三角形不可能是等腰三角形,由此得出③不对,④对.故选B.点评:此题考查了数列与函数的综合,求解本题的关键是反函数的性质及其变化规律研究清楚,由函数的图形结合等差数列的性质得出答案.7. 已知函数满足,且的导函数,则的解集为()A. B. C. D.参考答案:D设, 则,,对任意,有,即函数在R上单调递减,则的解集为,即的解集为,选D.8. 等差数列的前m项的和是30,前2m项的和是100,则它的前3m项的和是A.130 B.170 C.210 D.260参考答案:B9. 已知,如果执行右边的程序框图,那么输出的S等于(A)17.5 (B)35(C)175 (D)350参考答案:略10. “”是“”的()A .充分不必要条件 B.必要不充分条件C .充要条件 D. 既不充分也不必要条件参考答案:B因为“”是“”的逆否命题是“”是“”的必要不充分条件,选B二、填空题:本大题共7小题,每小题4分,共28分11. 曲线在处的切线的斜率参考答案:2试题分析:,所以切线的斜率,故答案为2考点:导数的几何意义.12. 已知抛物线方程为,直线的方程为,在抛物线上有一动点P到y轴的距离为,P到直线的距离为,则的最小值为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基础知识专题训练18
一、考试要求
二、基础知识
1、随机事件的概念
在一定的条件下所出现的某种结果叫做事件。

(1)随机事件:在一定条件下可能发生也可能不发生的事件; (2)必然事件:在一定条件下必然要发生的事件; (3)不可能事件:在一定条件下不可能发生的事件。

2、随机事件的概率
事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率n
m
总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P (A )。

由定义可知0≤P (A )≤1,显然必然事件的概率是1,不可能事件的概率是0。

3,互斥事件及对立事件
(1)事件A 与B 的两个事件称为互斥事件。

(2)如果事件A 、B 互斥,那么事件A+B 发生的概率P(A+B)= (3) 对立事件(A ): 的两个事件。

P (A )=1-P(A) (4) A,B 为对立事件,则A,B 为互斥事件;A.B 为互斥事件,则A,B 不一定为对立事件
4、古典概型
(1)古典概型的两大特点:① ;②
(2)古典概型的概率计算公式:P (A )= 5、古典概型
(1)古典概型的两大特点:① ;②
(2) 几何概型的概率计算公式:P (A )= 三、基础训练
1. 下列事件中,属于随机事件的是( ). A 掷一枚普通正六面体骰子所得的点数不超过6. B 买一张体育彩票中奖. C 太阳从西边落下.
D 口袋中装有10个红球,从中摸出一个白球.
2. 从1,2,3,…9这9个自然数中任取两个数,分别有下列事件;(1)恰有一个奇数和恰有一个偶数;(2)至少有一个奇数和两个都是偶数;(3)两个都是奇数和两个都是偶数;(4)至少有一个奇数和至少有一个偶数,其中为互斥事件的是
A (1)
B (2)(4)
C (2)(3)
D (3)
3. 从2件一等品和2件二等品中任取2件,是对立事件的为( )
A 至少有1件二等品与全是二等品
B 至少有1件一等品与至少有1件二等品
C 恰有1件二等品与恰有2件二等品
D 至少有1件二等品与全是一等品 4. 从甲、乙、丙三人中任选两名代表,甲被选中的概率为( )
A.21
B.31
C.3
2
D. 1
5.一枚硬币连掷3次,只有一次出现正面的概率是 ( )
A.
83 B.32 C.31 D.4
1 6 从分别写有A 、B 、C 、D 、E 的5张卡片中,任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率为 A.
51 B.52 C.103 D.107 7. 某小组共有5名学生,其中女生2名,现选举2名代表,至少有1名女生当选的概率为
A.
7
10 B.15
8 C.53 D.1
8 取一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m 的概率是.
A.
21 B.3
1
C.41
D.不确定 9. 在1万 km 2
的海域中有40 km 2
的大陆架贮藏着石油,假如在海域中任意一点钻探,钻到油层面的概率是.
A.
2511 B.2491 C.2501 D.252
1
10.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,
0.28,计算这个射手在一次射击中:射中10环或7环的概率是_______
11、在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同。

现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是 12、先后抛掷两枚均匀的正方体骰子,骰子朝上的点数分别为x 、y ,则1log 1x y +=的概率为________
13.如图,一颗豆子随机扔到桌面上,假设豆子不落在线上, 则它落在阴影区域的概率为________.
14、向圆2
2
4x y +=所围成的区域内随机地丢一粒豆子,则豆子落在直线
320x y -+=上方的概率是_____________.
15、一个袋子中装有分别标注数字1,2,3,4的四个小球,这些小球除标注的数字外完全相同。

从中随机取出2个小球,每个小球被取出的可能性相等。

(1)若不放回抽取,求取出的两个球的标号至少有一个大于2的概率; (2)若放回抽取,求取出的两个球的标号恰好相同的概率。

16.已知向量()1,2=-a ,(),x y =b .
(Ⅰ)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足1a b →→
•=-的概率; (Ⅱ)若,x y ∈[]1,6,求满足0a b →

•>的概率.。

相关文档
最新文档