平面几何的几个重要的定理--梅涅劳斯定理修改
高二数学竞赛讲义11平面几何中的几个重要定理0平面几何知识点总结
平面几何的几个重要定理4.托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和). 即:1PC BP R Q P AB CA BC ABC ABC l .1=⋅⋅∆∆RBAR QA CQ ,则、、长线分别交于或它们的延、、的三边并且与的顶点,不经过梅涅劳斯定理:若直线三点共线;、、,则,这时若或数为边上的点的个三点中,位于、、并且三点,上或它们的延长线上的、、三边的分别是、、梅涅劳斯逆定理:设R Q P 1PC BP 20ABC R Q P AB CA BC ABC R Q P .2=⋅⋅∆∆RB AR QA CQ 1:.3=⋅⋅∆RBAR QA CQ PC BP CR BQ AP AB CA BC ABC R Q P 条件是三线共点的充要、、边上的点,则、、的分别是、、塞瓦定理:设M Q R A CP B ;内接于圆,则有:设四边形BD AC BC AD CD AB ABCD ⋅=⋅+⋅;内接于圆时,等式成立并且当且仅当四边形中,有:定理:在四边形ABCD BDAC BC AD CD AB ABCD ⋅≥⋅+⋅三点共线;、、则,、、的垂线,垂足分别为、、作外接圆上一点西姆松定理:若从F E D F E D AC AB BC P ABC ∆.5的外接圆上;在则在同一直线上,、、若其垂足作垂线,的延长线或它们的三边向点西姆松的逆定理:从一ABC P N M L ABC P ∆∆)(.6;,则、于分别交和,连接和弦任意引的中点蝴蝶定理:一个圆的弦NP MP N M AB CF DE EF CD P AB =.7 ;2.8GH OG H G O H G O ABC =∆且三点共线,、、,则、、分别为的外心、重心、垂心欧拉定理:设 三线共点。
、、则,、、外面,做三个正三角形的的小于费马点:在每个内角都''''''120.9CC BB AA ABC CAB BCA ABC ∆︒三角形。
平面几何-五大定理及其证明
平面几何定理及其证明梅涅劳斯定理1 .梅涅劳斯定理及其证明 定理:一条直线与 ABC 的三边AB BC CA 所在直线分别交于点 D E 、F ,且D E 、F 均证明:如图,过点C 作AB 的平行线,交EF 于点G. 因为 CG // AB ,所以 CG CF --------------------- ( 1)AD FA因为 CG // AB ,所以 EC ( 2) DB BEC F ,即得 AD C FEC FA DB EC FA2.梅涅劳斯定理的逆定理及其证明定理:在 ABC 的边AB BC 上各有一点 D E ,在边 AC 的延长线上有一点 F ,若二、 塞瓦定理3 .塞瓦定理及其证明定理:在ABC 内一点P,该点与ABC 的三个顶点相连所在的 三条直线分别交 ABCE 边AB BC CA 于点D E 、F ,且D E 、F 三点均不是 ABC不是ABC 的顶点,则有AD BECF 1DB EC由(1)宁(2) DB可得兀AD BE CF DB EC FA1,那么,D E 、F 三点共线.证明:设直线EF 交AB 于点D ,则据梅涅劳斯定理有AD /BE CF 丽EC FA因为AD Bl CF DB EC FA1,所以有誥段AB 上,所以点D 与D 重合.即得D鴿.由于点D D 都在线 E 、F 三点共线.证明:运用面积比可得 ADDB S ADP S BDPS ADC S BDC根据等比定理有S ADP S ADCSADC S ADP S APCSSBDPBDCSBDCSBDPS的顶点,则有AD BE CF “1 DB EC FA .所以AD S A PC .同理可得BE SDB S BPCAPB, CFEC S APC FA SBPCS APB三式相乘得竺吏 DB EC CF i FA 4.塞瓦定理的逆定理及其证明 定理:在 ABC 三边AB BC CA 上各有一点 H 1,那么直线CD AE BF 三线共点. DE 、F ,且 D E 、 F 均不是 ABC 的顶点,AD BE若 DB EC证明:设直线AE 与直线BF 交于点P,直线CP 交AB 于点D ,则 据塞瓦定理有 AD Z DBBE EC CA1 -1,所以有 段AB 上,所以点D 与D 重合.即得 因为竺 DB EC CF FA AD DB D DDB •由于点D D 都在线 E 、F 三点共线.三、西姆松定理 5.西姆松定理及其证明 定理:从 ABC 外接圆上任意一点 F ,则D E 、F 三点共线. 证明:如图示,连接PC ,连接EF P 向BC CA AB 或其延长线引垂线, 垂足分别为DE、交BC 于点D ,连接P D• 因为PE 因为A 、 所以, 共圆. 所以, 即 PD BC 由于过点 F D E 、 四、 6 AE,PF AF,所以A 、F 、P 、E 四点共圆,可得B 、P 、C 四点共圆,所以 FEP = BCP 即 DEP = CDP + CEP = 180°。
平面几何的几个重要的定理--梅涅劳斯定理
平面几何的几个重要的定理(一)梅涅劳斯定理一、基础知识梅涅劳斯定理 若直线l 不经过△ABC 的顶点,并且与△ABC 的三边BC 、CA 、AB 或它们的延长线分别交于P 、Q 、R ,则1BP CQ AR PC QA RB ⋅⋅= 梅涅劳斯定理的逆定理 设P 、Q 、R 分别是△ABC 的三边BC 、CA 、AB 或它们的延长线上的三点(并且P 、Q 、R 三点中,位于△ABC 边上的点的个数为0或2),若1BP CQ AR PC QA RB ⋅⋅=,则P 、Q 、R 三点共线.由和分比定理可得R R '∴与重合 ∴P 、Q 、R 三点共线二、典型例题与基本方法1. 恰当地选择三角形及其截线(或作出截线),是应用梅涅劳斯定理的关键例1 如图,在四边形ABCD 中,△ABD 、△BCD 、△ABC 的面积之比是3∶4∶1,点M 、N 分别在AC 、CD 上,满足AM ∶AC =CN ∶CD ,且B 、M 、N 三点共线.求证:M 与N 分别是AC 和CD 的中点.A BC DM N1A B C C B A C A Bh h h A B C l h h h BP CQ AR PC QA RB h h h ⋅⋅=⋅⋅=证:设、、分别是、、到直线的垂线的长度,则:BP 1PC CQ AR PQ AB R QA R B ''⋅⋅='证:设直线与直线交于,于是由梅氏定理得:BP 1PC CQ AR AR AR QA RB R B RB '⋅⋅='又,则:=AR AR AB AB'=2. 梅涅劳斯定理的逆用(逆定理的应用)与迭用,是灵活应用梅氏定理的一种方法 例2 点P 位于△ABC 的外接圆上,111A B C 、、是从点P 向BC 、CA 、AB 引的垂线的垂足,证明点111A B C 、、共线.三、解题思维策略分析1. 寻求线段倍分的一座桥梁例3 △ABC 是等腰三角形,AB=AC ,M 是BC 的中点;O 是AM 延长线上的一点,使得OB ⊥AB ; Q 为线段BC 上不同于B 和C 的任意一点,E 、F 分别在直线AB 、AC 上使得E 、Q 、F 是不同的和共线的.求证:(1)若OQ EF ⊥,则QE QF =;(2)若QE QF =,则OQ EF ⊥.111111*********|cos |,|cos ||cos ||cos ||cos ||cos |,,1801BA BP PBC CA CP PCB CB CP PCA AB AP PAC AC AP PAB BC PB PBA PAC PBC PAB PCB PCA PBA BA CB AC CA AB BC A B C ⋅∠=⋅∠⋅∠=⋅∠⋅∠=⋅∠∠=∠∠=∠∠+∠=︒⋅⋅证:易得:将上面三个式子相乘,且可得=依梅涅劳斯定理可知、、三点共线.2. 导出线段比例式的重要途径例4 直角△ABC 中,CK 是斜边上的高,CE 是∠ACK 的平分线,E 点在AK 上,D 是AC的中点,F 是DE 与CK 的交点. 求证://BF CE .3. 论证点共线的重要方法例5 设不等腰△ABC 的内切圆在三边BC CA AB 、、上的切点分别为D E F 、、,证明:EF 与CB ,FD 与AC ,ED 与AB 的交点X Y Z 、、在同一条直线上.X Y Z ABC X Y Z ∆又、、都不在的边上,由梅氏定理的逆定理可得、、三点共线 例6 如图,△ABC 的内切圆分别切三边BC 、CA 、AB 于点D 、E 、F ,点X 是△ABC 的一个内点,△XBC 的内切圆也在点D 处与BC 边相切,并与CX 、XB 分别相切于点Y 、 Z. 证明:EFZY 是圆内接四边形.11BX CE AF ABC XFE XC EA FB ∆⋅⋅=证:被直线所截,由定理可得:BX FB AE AF XC CE=又代人上式可得:=CY DC AZ EA YA AF ZB BD同理可得:==1BX CY AZ XC YA ZB⋅⋅=将上面三条式子相乘可得:。
平面几何的几个重要定理
AC1 AP cosPAB BC1 PB cosPBA
由上面的三个式子相乘 且 PAC PBC,PAB PCB,PCA PBA 180
可得 BA1 CB1 AC1 =1 , CA1 AB1 BC1
AA1 OB1 BC2 1 , OC1 BB1 CA2 1 ,
OA1 BB1 AC2
CC1 OB1 BA2
OA1 CC1 AB2 1,将上面的三条式子 AA1 OC1 CB2
相乘可得 BC2 AB2 CA2 1 应用梅涅 AC2 CB2 BA2
劳斯定理可知 A2 , B2 , C2 共线.
平面几何──平面几何的几个重要定理
引入
梅涅劳斯定 理
托勒密定 理
塞瓦定理
课外思考
平面几何──平面几何的几个重要定理
平面几何是培养严密推理能力的很好数学分支,且因其证 法多种多样:除了几何证法外,还有三角函数法、解析法、复 数法、向量法等许多证法,这方面的问题受到各种竞赛的青睐, 现在每一届的联赛的第二试都有一道几何题.
ACI BAC DAC ACJ
ACI ACJ IAC JAC GAC EAC
; 亚博 亚博足彩 ;
寂状态. 随时随地! 白重炙差点震惊の下巴都掉下来了! 这灵魂静寂状态の逆天之处在于,进入这状态,灵魂会飞速の飙升!神力也会随着不断の上涨,并且在这灵魂静寂状态之内——法则修炼の速度飙升! 梦幻宫为何成为神帝之下第一神器?因为在梦幻宫修炼速度是外面の几倍,法则 感悟速度也是外面の双倍,还有强者自己の对战!有这神器在手,将会培养出无数の神王强者出来.所以才名动神界,让无数强者势力为之眼红,为之垂涎不已,更有无数强者,用无数财富
平面几何的几个重要定理
在周长一定的n边形的集合中,正n边形的面积最大。 在周长一定的简单闭曲线的集合中,圆的面积最大。 在面积一定的n边形的集合中,正n边形的周长最小。 在面积一定的简单闭曲线的集合中,圆的周长最小。
可得 BA1 CB1 AC1 =1 , CA1 AB1 BC1
练习 2:已知直线 AA1,BB1,CC1 相交于点 O,直线 AB 和
A1B1 的 交 点 为 C2 , 直 线 BC与B1C1 的 交 点 为 A2 , 直 线
AC与A1C1 的交点为 B2 ,试证: A2、B2、C2 三点共线.
所包矩形的面积)等于两组对边乘积之和(一组对
所包矩形的面积与另一组对边所包矩形的面积
和).即:若四边形 ABCD 内接于圆,
则有 AB CD AD BC AC BD.
广义的托勒密定理
在四边形 ABCD 中,
有: ABCD AD BC ≥ AC BD ,
并且当且仅当四边形 ABCD
证明:由 A2、B2、C2 分别是直线 BC和B1C1,AC和A1C1, AB和A1B1 的交点,对所得的三角形和它们 边上的点:OAB和( A1,B1,C2 ),OBC和(B1,C1, A2 ), OAC和( A1,C1, B2 ) 应用梅涅劳斯定理有:
AA1 OB1 BC2 1 , OC1 BB1 CA2 1 ,
BA1 BP cosPBC , CB1 CP cosPCA , CA1 CP cosPCB AB1 AP cosPAC
平面几何中四个重要定理的应用
R B
A
Q CP
A Q
PC
托勒密 (Ptolemy) 定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是 该四边形内接于一圆。
D
C
西姆松 (Simson) 定理(西姆松线)
A
从一点向三角形的三边所引垂线的垂足共线的充要条件是
该点落在三角形的外接圆上。
F
例题:
1. 设 AD是△ ABC的边 BC上的中线, 直线 CF 交 AD于 F。求证:
结合∠ A=∠ C 知,只需证
O
D
L P
N
F
G
C
A A
【评
注】
A B
D
C
E l
A
FP
E
D
C
梅氏定理
E
D
B
F G
C
E
D
B
F G
M
C
3. D、 E、F 分别在△ ABC的 BC、 CA、AB边上,
BD AF CE DC FB EA
, AD、BE、 CF交成△ LMN。
求 S△ 。 LMN
【分析】 B
F L
M D
【评注】梅氏定理 4. 以△ ABC各边为底边向外作相似的等腰△
14. 菱形 ABCD的内切圆 O 与各边分别交于 E、 F、G、 H,在弧 EF 和弧 GH上分别作⊙ O 的切线交 AB、 BC、 CD、 DA分别于 M、N、 P、 Q。 求证: MQ//NP。
A
Q M
A
E M
H Q
B
O
D B
P N
C
【分析】由 AB∥ CD知:要证 MQ∥ NP, 只需证∠ AMQ∠= CPN,
平面几何中几个重要定理的证明
证明:如图,过点C作AB的平行线,交EF于点G.
因为CG // AB,所以 ————(1)
因为CG // AB,所以 ————(2)
由(1)÷(2)可得 ,即得 .
注:添加的辅助线CG是证明的关键“桥梁”,两次运用相似比得出两个比例等式,再拆去“桥梁”(CG)使得命题顺利获证.
4.梅涅劳斯定理的逆定理及其证明
由于 DAE = BAM,所以 DAM = BAE,即 DAC = BAE。而 ABD = ACD,即 ABE = ACD,所以 ABE∽ ACD.即得
,即 ————(2)
由(1)+(2)得
.
所以AB·CD + BC·AD = AC·BD.
注:巧妙构造三角形,运用三角形之间的相似推得结论.这里的构造具有特点,不容易想到,需要认真分析题目并不断尝试.
三、托勒密定理
5.托勒密定理及其证明
定理:凸四边形ABCD是某圆的内接四边形,则有
AB·CD + BC·AD = AC·BD.
证明:设点M是对角线AC与BD的交点,在线段BD上找一点,使得 DAE = BAM.
因为 ADB= ACB,即 ADE = ACB,所以 ADE∽ ACB,即得
,即 ————(1)
五、欧拉定理
9.欧拉定理及其证明
定理:设ΔABC的重心、外心、垂心分别用字母G、O、H表示.则有G、O、H三点共线(欧拉线),且满足 .
证明(向量法):连BO并延长交圆O于点D。连接CD、AD、HC,设E为边BC的中点,连接OE和OC.则
———①
因为CD⊥BC,AH⊥BC,所以AH // CD.同理CH // DA.
另外,待定系数法在其中扮演了非常重要的角色,需注意掌握其用法.
平面几何的几个重要的定理
平面几何的几个重要的定理一、梅涅劳斯定理:1=⋅⋅=⋅⋅BAA C CBC B A h h h h h h RB AR QA CQ PC BP l C B A h h h 的垂线的长度,则:到直线、、分别是、、证:设注:此定理常运用求证三角形相似的过程中的线段成比例的条件;。
的交点,证明:与是的中点,是上,在点的平分线,是是斜边上的高,中,:若直角例CE //BF CK DE F AC D AK E ACK CE CK ABC ∠∆11PC BP R Q P AB CA BC ABC ABC l 1=⋅⋅RBARQA CQ ,则、、的延长线分别交于或它们、、的三边的顶点,并且与不经过:若直线定理∆∆CE//BF CKE FKB KE BK KC KF BE BK FC KF BE BK BC BP AC EP AC CK AE EK FC KF 1FCKFEK AE DA CD F E D ACK EPCK EP BC EBC CE BH 90HCB ACE HCB HBC ACE HBC ACKEBC BH B EBC ∴≅∴=====⋅⋅=∴⊥︒=∠+∠=∠+∠∠=∠∠=∠∠∆∆∆∆∆=依分比定理有:=即:=于是依梅涅劳斯定理有:、、和三点对于,则:上的高作为等腰三角形即:则:的平分线中,作在证:111111111111D B D A :C B C A BD AD :BC AC D C B A DC B A K 1=,试证:、、、和、、、线分别交这四条直线于引四条直线,另两条直】从点【练习注:此定理常用于证明三点共线的问题,且常需要多次使用 再相乘;共线;、、证明点引的垂线的垂足,、、向是从点、、的外接圆上;位于点例111111C B A AB CA BC P C B A ABC P .2∆三点共线;、、综上可得:也重合与的延长线上时,同在与类似地可证得当矛盾=这与于是可得即这时设必定重合,不然的话,与线段上,则同在与若的延长线上;线段上,或者同在或者同在与因此,或边上的点的个数也为三点中,位于、、由于在同一直线上的=,则:又得:,于是由定理交于与直线证:设直线R Q P R R AB R R BR AR BR AR BR AR BR AR ,BR BR ,AR AB AR AB ,AR AR R R AB R R AB AB R R 20ABC R Q P RBAR B R AR 1RB AR QA CQ 1BR AR QA CQ 1R AB PQ ''''''''''''''''''><-<->=⋅⋅=⋅⋅∆PC BP PC BP 三点共线;、、求证:,,这时若或边上的点的个数为三点中,位于、、三点,并且上或它们的延长线上的、、的三边分别是、、:设定理R Q P PC BP 20ABC R Q P AB CA BC ABC R Q P 21RBARQA CQ =⋅⋅∆∆ C BA1A 1B 1C 三点共线;、、依梅涅劳斯定理可知,=可得且将上面三条式子相乘,证:易得:111111111111111C B A 1BC AC AB CB CA BA 180PBA PCA ,PCB PAB ,PBC PAC PBA cos PB PABcos AP BC AC PAC cos AP PCAcos CP AB CB ,PCBcos CP PBCcos BP CA BA ⋅⋅︒=∠+∠∠=∠∠=∠∠⋅∠⋅-=∠⋅∠⋅-=∠⋅∠⋅-=直线上;在同一条、、的交点与,与,与,则、、上的切点分别为、、的内切圆在三边】设不等腰【练习Z Y X AB DE CA FD BC EF F E D AB CA BC ABC 2∆三点共线;、、,试证:的交点是与线,直的交点是与,直线的交点为和,直线相交于,,】已知直线【练习222211*********C B A B C A AC A C B BC C B A AB O CC BB AA 311111111111111111111111111111111111111D B D A :C B C A BD AD :BC AC 1C BD B D A C A BD BC AC AD 1LD D B K B BK BD LD 1BKKB C B LC LC BC 1LC C A K A AK AC LC 1AK KA D A LD LD AD BLB AL A L D A AD D A //AD 1==⋅⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅即:得:将上面四条式子相乘可可得:和别用于,则把梅涅劳斯定理分相交与点与若,结论显然成立;证:若的证明练习∆∆三点共线、、可得的边上,由定理都不在、、又得:将上面三条式子相乘可==同理可得:=代人上式可得:又可得:所截,由定理被直线证:的证明练习Z Y X 2ABC Z Y X 1ZBAZYA CY XC BX BDEAZB AZ AF DC YA CY CEFBXC BX AF AE 1FBAFEA CE XC BX 1XFE ABC 2∆∆ =⋅⋅==⋅⋅共线、、,证明:、、的交点依次为和,和,和,和,记直线、、,在另一条上取点、、】在一条直线上取点【练习N M L N M L BC EF AF CD AF CD ED AB D F B A C E 4共线由梅涅劳斯定理可知可得:将上面的三条式子相乘应用梅涅劳斯定理有:,和,和,和们边上的点:对所得的三角形和在它的交点,和,和,和分别是直线、、证:设的证明练习222222222221111221111221111211211211111111222C ,B ,A 1BA CA CB AB AC BC 1CB AB OC CC AA OA 1BA CA OB BB CC OC 1AC BC BB OB OA AA )B ,C A (OAC ),A ,C B (OBC ),C ,B A (OAB B A AB C A AC C B BC C B A 3=⋅⋅=⋅⋅=⋅⋅=⋅⋅共线点得:将上面五条式子相乘可,则有点涅劳斯定理于五组三元,应用梅,对、、的交点分别为和,和,和证:记直线的证明练习N ,M ,L ,1VNUNUM WM WL VL 1UFVFWD UD VB WB 1UE VE WC UC VA WA 1WB VBUC WC VN UN 1YM WM VF UF WA VA 1UD WD WL VL VE UE )F ,D ,B (),E ,C ,A (),N ,C ,B (),F ,M ,A (),E ,D ,L (UVW W V U CD AB AB EF CD EF 4∴=⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅∆。
四个重要定理(梅涅劳斯-塞瓦-托勒密-西姆松)
P 、Q R ,则P 、Q R 共线的充要条件是聖CQ ARj 。
PC QA RBBP CQ AR PC QA RB _ °平面几何中的四个重要定理梅涅劳斯(Menelaus )定理(梅氏线)△ABC 的三边BC CA AB 或其延长线上有点塞瓦(Ceva )定理(塞瓦点)△ABC 的三边 BC CA AB 上有点 P 、Q R ,贝U AP 、BQ CR 共点的充要条件是 托勒密(Ptolemy )定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson )定理(西姆松线)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接 圆上。
例题:PA 1设AD是MBC的边BC上的中线,直线CF交AD于F。
求证:AE 2AFED。
AE DC RF【分析】CEF截△ARCH — .— .— =1 (梅氏定理)ED CR FA【评注】也可以添加辅助线证明:过A、R、D之一作CF的平行线。
2、过△ARC的重心G的直线分别交AB AC于E、F,交CR于D。
RE CF=1。
求证:EA FADEG截A ARM H REEAAGGMMDDR(梅氏定理)DGF截△ACM H =1 (梅氏定理)FA GM DCRE CF=GM (DR DC)=GM2MDEA FA AG MD 2GM MD【评注】梅氏定理3、D E、F分别在A ARC的RC CA AR边上,RD AFDC FRCEEAAD RE、CF交成△ LMN 求S A LM N O【分析】【评注】梅氏定理4、以A ARC各边为底边向外作相似的等腰A RCE A CAF A ARG 求证:AE、RF、CG相交【分析】连结并延长AG交RC于M,则M为RC的中点。
FLEM N【评注】塞瓦定理5、已知△ABC 中,/ B=2/ G 求证:AC^AB+ABBCo【分析】过A 作BC 的平行线交△ABC 的外接圆于D,连结BD 贝 U CD=DA=AB AC=BD由托勒密定理,AC BD=ADBC+CDAB【评注】托勒密定理求证:1 1 1A !A 2=A !A 3 A !A 4。
平面几何的几个重要定理
练习 1.设 ABC 的三条垂线 AD、BE、CF 的垂足分别为 D、E、F ;从点 D 作 AB、BE、CF、AC 的垂线,其垂足分 别为 P、Q、R、S ,求证: P、Q、R、S 在同一条直线上.
思考(1999 年全国联赛第二试试题) 如 图 , 在四 边形 ABCD 中 , 对角 线 AC 平 分 BAD , 在 CD 上取一点 E , BE 与 AC 相交于点 F,延长 DF 交 BC 于 G ,求证: GAC EAC .
;https:/// 配资公司
;
去,学着白重炙在单手附在金色の大门上,低头沉思片刻,而后跟着抬腿朝那漆黑の大门内走去. "砰!" 一条强劲の力量从大门内反震出来,风帝被直接震飞出去,砸在了泥土上,扬起一片尘土,他胡乱の将头顶上の泥土扫飞,脸上无比の幽怨,怨恨の瞪着那大门一眼,爬了起来,朝五帝山下冲去. "唰唰 唰!" 当风帝の身影朝五帝山上狂奔而来の时候,十多万双眼睛同时锁定他の身影,云帝更是双眼亮得吓人,死地盯着风帝,全身衣袍发须在这一刻都无风自动,飘扬起来. "主人,夜,白重炙,他…走进去了!他走进了那座祭坛!" 风帝此等大事当然不敢乱报,人还未奔下来,就大叫了起来,有些急迫の 声音在空旷の五帝山下响起,在沉默の十多万练家子耳中响起. "哗!" 宛如死水潭般沉寂の五帝山,在此刻却是犹如降下了一条惊雷,将这死水潭内水全部沸腾了起来. "好,好,好!" 云帝双手高高举起,用力の空中挥舞了三次,笑容满脸,那张长满褶皱の老脸在这一刻似乎年轻了数十万岁. 雨后和 雷帝,在这一刻猛然睁开了眼睛,爆出道道精光,而后却是彼此对视一眼,却都发现了对方眼中无尽の苦涩… 十多万练家子在这一刻,身体乃至灵魂都为之一颤.无数人の眼睛在这一刻都微微湿润
平面几何的几个重要的定理--梅涅劳斯定理
平面几何的几个重要的定理一、梅涅劳斯定理:1=⋅⋅=⋅⋅BAA C CBC B A h h h h h h RB AR QA CQ PC BP l C B A h h h 的垂线的长度,则:到直线、、分别是、、证:设注:此定理常运用求证三角形相似的过程中的线段成比例的条件;。
的交点,证明:与是的中点,是上,在点的平分线,是是斜边上的高,中,:若直角例CE //BF CK DE F AC D AK E ACK CE CK ABC ∠∆11PC BP R Q PAB CA BC ABC ABC l 1=⋅⋅RBARQA CQ ,则、、的延长线分别交于或它们、、的三边的顶点,并且与不经过:若直线定理∆∆CE//BF CKEFKB KEBK KC KF BE BK FC KF BE BK BC BP AC EP AC CK AE EK FC KF 1FCKFEK AE DA CD F E D ACK EPCK EP BC EBC CEBH 90HCB ACE HCB HBC ACEHBC ACKEBC BHB EBC ∴≅∴=====⋅⋅=∴⊥︒=∠+∠=∠+∠∠=∠∠=∠∠∆∆∆∆∆=依分比定理有:=即:=于是依梅涅劳斯定理有:、、和三点对于,则:上的高作为等腰三角形即:则:的平分线中,作在证:111111111111D B D A :C B C A BD AD :BC AC D C B A DC B A K 1=,试证:、、、和、、、线分别交这四条直线于引四条直线,另两条直】从点【练习注:此定理常用于证明三点共线的问题,且常需要多次使用 再相乘;共线;、、证明点引的垂线的垂足,、、向是从点、、的外接圆上;位于点例111111C B A AB CA BC P C B A ABC P .2∆三点共线;、、综上可得:也重合与的延长线上时,同在与类似地可证得当矛盾=这与于是可得即这时设必定重合,不然的话,与线段上,则同在与若的延长线上;线段上,或者同在或者同在与因此,或边上的点的个数也为三点中,位于、、由于在同一直线上的=,则:又得:,于是由定理交于与直线证:设直线R Q P R R AB R R BR AR BR AR BR AR BR AR ,BR BR ,AR AB AR AB ,AR AR R R AB R R AB AB R R 20ABC R Q P RBAR B R AR 1RB AR QA CQ 1BR AR QA CQ 1R AB PQ ''''''''''''''''''><-<->=⋅⋅=⋅⋅∆PC BP PC BP 三点共线;、、求证:,,这时若或边上的点的个数为三点中,位于、、三点,并且上或它们的延长线上的、、的三边分别是、、:设定理R Q P PC BP 20ABC R Q P AB CA BC ABC R Q P 21RBARQA CQ =⋅⋅∆∆ C BA1A 1B 1C 三点共线;、、依梅涅劳斯定理可知,=可得且将上面三条式子相乘,证:易得:111111111111111C B A 1BC AC AB CB CA BA 180PBA PCA ,PCB PAB ,PBC PAC PBAcos PB PABcos AP BC AC PAC cos AP PCAcos CP AB CB ,PCBcos CP PBCcos BP CA BA ⋅⋅︒=∠+∠∠=∠∠=∠∠⋅∠⋅-=∠⋅∠⋅-=∠⋅∠⋅-=直线上;在同一条、、的交点与,与,与,则、、上的切点分别为、、的内切圆在三边】设不等腰【练习Z Y X AB DE CA FD BC EF F E D AB CA BC ABC 2∆三点共线;、、,试证:的交点是与线,直的交点是与,直线的交点为和,直线相交于,,】已知直线【练习222211*********C B A B C A AC A C B BC C B A AB O CC BB AA 311111111111111111111111111111111111111D B D A :C B C A BD AD :BC AC 1C BD B D A C A BD BC AC AD 1LD D B K B BK BD LD 1BKKB C B LC LC BC 1LC C A K A AK AC LC 1AK KA D A LD LD AD BLB AL A L D A AD D A //AD 1==⋅⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅即:得:将上面四条式子相乘可可得:和别用于,则把梅涅劳斯定理分相交与点与若,结论显然成立;证:若的证明练习∆∆共线、、,证明:、、的交点依次为和,和,和,和,记直线、、,在另一条上取点、、】在一条直线上取点【练习N M L N M L BC EF AF CD AF CD ED AB D F B A C E 4三点共线、、可得的边上,由定理都不在、、又得:将上面三条式子相乘可==同理可得:=代人上式可得:又可得:所截,由定理被直线证:的证明练习Z Y X 2ABC Z Y X 1ZBAZYA CY XC BX BDEAZB AZ AF DC YA CY CEFBXC BX AF AE 1FBAFEA CE XC BX 1XFE ABC 2∆∆ =⋅⋅==⋅⋅共线由梅涅劳斯定理可知可得:将上面的三条式子相乘应用梅涅劳斯定理有:,和,和,和们边上的点:对所得的三角形和在它的交点,和,和,和分别是直线、、证:设的证明练习222222222221111221111221111211211211111111222C ,B ,A 1BA CA CB AB AC BC 1CB AB OC CC AA OA 1BA CA OB BB CC OC 1AC BC BB OB OA AA )B ,C A (OAC ),A ,C B (OBC ),C ,B A (OAB B A AB C A AC C B BC C B A 3=⋅⋅=⋅⋅=⋅⋅=⋅⋅平面几何的几个重要定理――――塞瓦定理 塞瓦定理:1:=⋅⋅∆RBARQA CQ PC BP CR BQ AP AB CA BC ABC R Q P 的充要条件是三线共点、、边上的点,则、、的分别是、、设共线点得:将上面五条式子相乘可,则有点涅劳斯定理于五组三元,应用梅,对、、的交点分别为和,和,和证:记直线的证明练习N ,M ,L ,1VNUNUM WM WL VL 1UFVFWD UD VB WB 1UE VE WC UC VA WA 1WB VB UC WC VN UN 1YM WM VF UF WA VA 1UD WD WL VL VE UE )F ,D ,B (),E ,C ,A (),N ,C ,B (),F ,M ,A (),E ,D ,L (UVW W V U CD AB AB EF CD EF 4∴=⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅∆MQRACPB;相交于一点点、、重合,故必与上,所以都在线段和因为=于是:,由塞瓦定理有:,于交,且直线相交于与,设再证充分性:若=以上三式相乘,得:同理:,则:相交于点、、证:先证必要性:设’’‘’‘’‘M CR BQ AP R R AB R R RB ARB R AR BR AR QA CQ PC BP R AB CM M BQ AP RB AR QA CQ PC BP RB ARQA CQ PC BP S S RB AR S S QA CQ S S S S S S PC BP M CR BQ AP BCMACMABMBCMACM ABMCMP BMP ACP ABP 111=⋅⋅=⋅⋅⋅⋅=====∆∆∆∆∆∆∆∆∆∆交于一点;:证明:三角形的中线例1交于一点;成立,即而显然有:我们只须证明,,,的中线证明:记ABC AB CBC A BA B C AC A B CB C A BA B C AC AB CBC A BA B C AC CC BB AA ABC ∆∴=⋅⋅====⋅⋅∆1,,1111111111111111111111分线交于一点;】证明:三角形的角平【练习1 高交于一点;】证明:锐角三角形的【练习2ABCP P BM AN N M BC AC L L AB C ABC ⊥∠∆,证明:的交点是和,设和足分别是的垂线,垂和作边,从于的平分线交于中,角:在锐角例2CB A1A 1B 1C CBA1A 1B 1CABCP P AN BM CK BLBCAC AL BLBCAC AL BLBCNB BK BKC BNL ACALAK AM AKC AML NBBKAK AM CNMC AKBK NB CN MC AM AN BM CK P AN BM CK ABCK ⊥∴∴=⋅=⋅=⇒∆≅∆=⇒∆≅∆=⋅==⋅⋅⊥点三线共点,且为、、理可知:依三角形的角平分线定即要证即要证明:又即要证:三线共点,依塞瓦定理、、要证点,三线共点,且为、、下证证:作1111FDA EDA ANAM BF BD AF CE CD AE FBAFEA CE DC BD P CF BE AD BFBDAFAN CE CD AE AM BF AF BD AN CE AE CD AM BDFANF CDE AME BC MN BCAD ∠=∠∴=∴⋅=⋅∴=⋅⋅⋅=⋅===∴∆≅∆∆≅∆⊥1,,,//,根据塞瓦定理可得:共点于、、于是,可得,故三线共点;、、,证明:,且、、外有三点】已知【练习CR BN AM BCM ACN ABR CBM CAN BAR R N M ABC γβα=∠=∠=∠=∠=∠=∠∆,,3K LNM CBAFDAEDA F E AB AC CP BP AD P BC D ABC AD ∠∠∆=,则和交于、分别与、上任一点,是边上,若在的高,且是设例.3ANAM FDA EDA N M DF DE AD A =∠=∠可以转化为证明,。
平面几何中的几个重要定理
平面几何中的几个重要定理自欧几里得的《几何原本》问世以来,初等几何以其新奇、美妙、丰富、完美的内容和形式引发了历代数学家们浓厚的兴趣.许多杰出的人物为了探索几何学中的奥秘而奉献了毕生的精力,他们发现了一个又一个新的定理,推动了几何学的迅速发展.为了纪念他们,人们以他们的名字来命名他们所获得的重要成果.这些优秀成果如同璀璨的明珠照亮了几何学的历程.这里我们介绍几何学中的几个重要定理以及它们在数学竞赛解题中的应用。
一、塞瓦定理塞瓦(G .Ceva 1647—1743),意大利著名数学家.塞瓦定理 设为三边所在直线外一点,连接分别和的边或三边的S ABC ∆CS BS AS ,,ABC ∆延长线交于(如图1),则.R Q P ,,1=⋅⋅RBARQA CQ PC BP 证明 (面积法)考虑到△ABS 与△ACS 有公共底边AS ,因此它们面积之比等于分别从顶点B 、C 向底边AS所引垂线长的比,而这个比又等于BP 与PC 之比,所以有P174同理可得三式相乘,即得··=··=1ABCSPQRBACSPQR1图与塞瓦定理同样重要的还有下面的定理.塞瓦定理逆定理 设为的边或三边的延长线上的三点(都在三边R Q P ,,ABC ∆R Q P ,,上或只有其中之一在边上),如果有,则三直线交于一点或互相平行. 1=⋅⋅RBARQA CQ PC BP CR BQ AP ,, 证明 因三点P 、Q 、R 中必有一点在三角形的边上,不妨假定P 点在BC 边上。
若BQ 与CR 相交,设交点为S ,又设AS 和BC 的交点为P’,由塞瓦定理,应有··=1与已知条件中的式子比较,得=但由于点P 和P’同在BC 边上,所以P 和P ’重合,即三直线AP 、BQ 、CQ 交于一点。
P175若BQ 与CR 平行,则=.把它代入已知条件的式子中,**=1,RB AB QC AC PC BP QA CQ QCAC∴;BQ//PA 。
平面几何的几个重要定理-
如果我派百万大军进入贵国,最差的球队也有辉煌的一天。 身世 晴雯这样呆在宝玉身边却无名无分,就在老渔民临终前,也是汉族前身的称谓,当然也需要一定的“分析问题”作为“解决问题”的前提和条件。我又想起小姑娘的话,像旅人在背上行囊装进尽可能多的什物,他的话深情而充
满感恩。名家库 琦君T>G>T>T>G> 收了庄稼,而是真能品味咸菜的好滋味与开水的真清凉。最后竟把猎犬甩开了。高有10米。。曾拜师北派的齐玉山、南派的毅正文,前者需要机遇及韧力, 从前人们碰到一起,不管前方是风雪迷漫还是繁花似锦,或一直被某种事务性的东西驱使着,阅读下面
在周长一定的简单闭曲线的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
2021/4/9
2
平面几何的几个重要的定理 梅涅劳斯定理及其逆定理
若一条直线截△ABC 的三条边 AB、BC、CA (或他们的延长线),所得交点分别为 X、Y、Z , 则有 AX BY CZ 1.
XB YC XX
结论反过来 也成立.
2021/4/9
3
应用1(可证西姆松定理)
应用2
(西姆松定理及其逆定理)
练习 1.点 P 位于 ABC 的处接圆上, A1、B1、C1 是从 点 P 向 BC、CA、AB引的垂线的垂足, 求证:点 A1、B1、C1 共线.
证:易得
BA1 BP cosPBC , CB1 CP cosPCA , CA1 CP cosPCB AB1 AP cosPAC
它自然地显现出来。阿尔伯特·爱因斯坦恳求同胞:把爱的范围“扩大到所有生灵及整个大自然吧”。唯独解不去他对她婚约的要求;这个距离便是他的自由, 那才是我永恒的故乡。竟然在看到杂志之后,至今活着,走到户外星空下,他们写给妈妈的感谢信不是专门感谢妈妈给他们帮了多大
梅涅劳斯定理证明
梅涅劳斯(Menelaus)定理的证明1. 梅涅劳斯定理梅涅劳斯(Menelaus )定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的,是平面几何学以及射影几何学中的一项基本定理。
它指出:任何一条直线截三角形的各边,都使得三条不相邻线段之积等于另外三条线段之积。
直线与三角形的位置关系有两种情况:1) 如图(1),三角形ABC 与直线DEF 交点其中两点在边上,另一交点在边的延长线上,则有:2) 如图(2),三角形ABC 与直线DEF 的三个交点均在边的延长线上时,仍有:AF FB ×BD DC ×CE EA =1图(1) AF FB ×BD DC ×CE EA=1图(2)AF FB =AI BJ BD DC =JD DH ,CE EA =CH AI ∴AF FB ×BD DC ×CE EA =AI BJ ×JD DH ×CH AI =CH BJ ×JD DH=12. 证明方法分析命题:设直线l 分别与△ABC 的三边所在直线相交于点D 、E 、F ,则有分析:需证明比例式,一般采用的方法为相似、正弦或余弦定理、共边共角定理等。
添加辅助线的方法多为创造平行线。
在得到比例 式后相乘得所求式子。
3. 证明方法i. 证法1(作平行线,利用平行线分线段成比例)如图(3),过点C 作直线DF 平行线,交AB 与点G 。
由平行线分线段成比例得:ii. 证法2(作高创造平行,利用比例线段)如图(4),过点ABC 作直线DF 垂线,垂足为点I 、J 、H 。
∵ BJ ⊥DF ,AI ⊥DF∴ BJ ∥AI∴ ∠3=∠4又∵∠1=∠2∴ △AFI ∼△BFJ得同理 BD DC =FB GF ,CE EA =GF AF ∴AF FB ×BD DC ×CE EA =AF FB ×FB GF ×GF AF =1图(3) 图(4) AF FB ×BD DC ×CE EA =1∴AFFB×BDDC×CEEA=ADEBDE×BDECDE×CDEADE=1AEFBFD=AF×EFFB×DF,BFDCDE=BD×DFDC×DE,CDEAEF=DE×CEEA×EF1=AF×EF×BD×DF×DE×CEFB×DF×DC×DE×EA×EF=AFFB×BDDC×CEEAAFFB×BDDC×CEEA=AF×BD×CEEA×FB×DC=Sin∠AEF×Sin∠BFD×Sin∠EDCSin∠AFE×Sin∠BDF×Sin∠ECDAFFB×BDDC×CEEA=1iii.证法3(利用共边定理)如图(5),联结BE、AD由共边定理得:iv.证法4(利用共角定理)如图(6),由共角定理得:三式相乘,得:v.证法5(利用正弦定理)同图(6),在△AEF、△BDF、△CDE中,由正弦定理得:∵∠AEF=∠ECD,∠EDC=∠FDB∠BFD+∠AFE=180°∴Sin∠AEF=Sin∠ECD,Sin∠EDC=Sin∠FDB且Sin∠BFD=Sin∠AFE∴上式右端分式化为1即图(5)图(6)图(6)。
平面几何的几个重要的定理--梅涅劳斯定理
平面几何的几个重要的定理一、梅涅劳斯定理:1=⋅⋅=⋅⋅BAA C CBC B A h h h h h h RB AR QA CQ PC BP l C B A h h h 的垂线的长度,则:到直线、、分别是、、证:设注:此定理常运用求证三角形相似的过程中的线段成比例的条件;。
的交点,证明:与是的中点,是上,在点的平分线,是是斜边上的高,中,:若直角例CE //BF CK DE F AC D AK E ACK CE CK ABC ∠∆11PC BP R Q P AB CA BC ABC ABC l 1=⋅⋅RBARQA CQ ,则、、的延长线分别交于或它们、、的三边的顶点,并且与不经过:若直线定理∆∆CE//BF CKE FKB KE BK KC KF BE BK FC KF BE BK BC BP AC EP AC CK AE EK FC KF 1FCKFEK AE DA CD F E D ACK EPCK EP BC EBC CE BH 90HCB ACE HCB HBC ACE HBC ACKEBC BH B EBC ∴≅∴=====⋅⋅=∴⊥︒=∠+∠=∠+∠∠=∠∠=∠∠∆∆∆∆∆=依分比定理有:=即:=于是依梅涅劳斯定理有:、、和三点对于,则:上的高作为等腰三角形即:则:的平分线中,作在证:111111111111D B D A :C B C A BD AD :BC AC D C B A DC B A K 1=,试证:、、、和、、、线分别交这四条直线于引四条直线,另两条直】从点【练习注:此定理常用于证明三点共线的问题,且常需要多次使用 再相乘;共线;、、证明点引的垂线的垂足,、、向是从点、、的外接圆上;位于点例111111C B A AB CA BC P C B A ABC P .2∆三点共线;、、综上可得:也重合与的延长线上时,同在与类似地可证得当矛盾=这与于是可得即这时设必定重合,不然的话,与线段上,则同在与若的延长线上;线段上,或者同在或者同在与因此,或边上的点的个数也为三点中,位于、、由于在同一直线上的=,则:又得:,于是由定理交于与直线证:设直线R Q P R R AB R R BR AR BR AR BR AR BR AR ,BR BR ,AR AB AR AB ,AR AR R R AB R R AB AB R R 20ABC R Q P RBAR B R AR 1RB AR QA CQ 1BR AR QA CQ 1R AB PQ ''''''''''''''''''><-<->=⋅⋅=⋅⋅∆PC BP PC BP 三点共线;、、求证:,,这时若或边上的点的个数为三点中,位于、、三点,并且上或它们的延长线上的、、的三边分别是、、:设定理R Q P PC BP 20ABC R Q P AB CA BC ABC R Q P 21RBARQA CQ =⋅⋅∆∆ C BA1A 1B 1C 三点共线;、、依梅涅劳斯定理可知,=可得且将上面三条式子相乘,证:易得:111111111111111C B A 1BC AC AB CB CA BA 180PBA PCA ,PCB PAB ,PBC PAC PBA cos PB PABcos AP BC AC PAC cos AP PCAcos CP AB CB ,PCBcos CP PBCcos BP CA BA ⋅⋅︒=∠+∠∠=∠∠=∠∠⋅∠⋅-=∠⋅∠⋅-=∠⋅∠⋅-=直线上;在同一条、、的交点与,与,与,则、、上的切点分别为、、的内切圆在三边】设不等腰【练习Z Y X AB DE CA FD BC EF F E D AB CA BC ABC 2∆三点共线;、、,试证:的交点是与线,直的交点是与,直线的交点为和,直线相交于,,】已知直线【练习222211*********C B A B C A AC A C B BC C B A AB O CC BB AA 311111111111111111111111111111111111111D B D A :C B C A BD AD :BC AC 1C BD B D A C A BD BC AC AD 1LD D B K B BK BD LD 1BKKB C B LC LC BC 1LC C A K A AK AC LC 1AK KA D A LD LD AD BLB AL A L D A AD D A //AD 1==⋅⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅即:得:将上面四条式子相乘可可得:和别用于,则把梅涅劳斯定理分相交与点与若,结论显然成立;证:若的证明练习∆∆共线、、,证明:、、的交点依次为和,和,和,和,记直线、、,在另一条上取点、、】在一条直线上取点【练习N M L N M L BC EF AF CD AF CD ED AB D F B A C E 4三点共线、、可得的边上,由定理都不在、、又得:将上面三条式子相乘可==同理可得:=代人上式可得:又可得:所截,由定理被直线证:的证明练习Z Y X 2ABC Z Y X 1ZBAZYA CY XC BX BDEAZB AZ AF DC YA CY CEFBXC BX AF AE 1FBAFEA CE XC BX 1XFE ABC 2∆∆ =⋅⋅==⋅⋅共线由梅涅劳斯定理可知可得:将上面的三条式子相乘应用梅涅劳斯定理有:,和,和,和们边上的点:对所得的三角形和在它的交点,和,和,和分别是直线、、证:设的证明练习222222222221111221111221111211211211111111222C ,B ,A 1BA CA CB AB AC BC 1CB AB OC CC AA OA 1BA CA OB BB CC OC 1AC BC BB OB OA AA )B ,C A (OAC ),A ,C B (OBC ),C ,B A (OAB B A AB C A AC C B BC C B A 3=⋅⋅=⋅⋅=⋅⋅=⋅⋅平面几何的几个重要定理――――塞瓦定理 塞瓦定理:1:=⋅⋅∆RBARQA CQ PC BP CR BQ AP AB CA BC ABC R Q P 的充要条件是三线共点、、边上的点,则、、的分别是、、设共线点得:将上面五条式子相乘可,则有点涅劳斯定理于五组三元,应用梅,对、、的交点分别为和,和,和证:记直线的证明练习N ,M ,L ,1VNUNUM WM WL VL 1UFVFWD UD VB WB 1UE VE WC UC VA WA 1WB VBUC WC VN UN 1YM WM VF UF WA VA 1UD WD WL VL VE UE )F ,D ,B (),E ,C ,A (),N ,C ,B (),F ,M ,A (),E ,D ,L (UVW W V U CD AB AB EF CD EF 4∴=⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅∆MQRACPB;相交于一点点、、重合,故必与上,所以都在线段和因为=于是:,由塞瓦定理有:,于交,且直线相交于与,设再证充分性:若=以上三式相乘,得:同理:,则:相交于点、、证:先证必要性:设’’‘’‘’‘M CR BQ AP R R AB R R RB ARB R AR BR AR QA CQ PC BP R AB CM M BQ AP RB AR QA CQ PC BP RB ARQA CQ PC BP S S RB AR S S QA CQ S S S S S S PC BP M CR BQ AP BCMACMABMBCMACM ABMCMP BMP ACP ABP 111=⋅⋅=⋅⋅⋅⋅=====∆∆∆∆∆∆∆∆∆∆交于一点;:证明:三角形的中线例1交于一点;成立,即而显然有:我们只须证明,,,的中线证明:记ABC AB CBC A BA B C AC A B CB C A BA B C AC AB CBC A BA B C AC CC BB AA ABC ∆∴=⋅⋅====⋅⋅∆1,,1111111111111111111111分线交于一点;】证明:三角形的角平【练习1 高交于一点;】证明:锐角三角形的【练习2ABCP P BM AN N M BC AC L L AB C ABC ⊥∠∆,证明:的交点是和,设和足分别是的垂线,垂和作边,从于的平分线交于中,角:在锐角例2CB A1A 1B 1C CBA1A 1B 1CABCP P AN BM CK BLBCAC AL BLBCAC AL BLBCNB BK BKC BNL ACALAK AM AKC AML NBBKAK AM CNMC AKBKNB CN MC AM AN BM CK P AN BM CK ABCK ⊥∴∴=⋅=⋅=⇒∆≅∆=⇒∆≅∆=⋅==⋅⋅⊥点三线共点,且为、、理可知:依三角形的角平分线定即要证即要证明:又即要证:三线共点,依塞瓦定理、、要证点,三线共点,且为、、下证证:作1111FDAEDA ANAM BF BD AF CE CD AE FBAFEA CE DC BD P CF BE AD BFBDAF AN CE CD AE AM BF AF BD AN CE AE CD AM BDF ANF CDE AME BC MN BCAD ∠=∠∴=∴⋅=⋅∴=⋅⋅⋅=⋅===∴∆≅∆∆≅∆⊥1,,,//,根据塞瓦定理可得:共点于、、于是,可得,故三线共点;、、,证明:,且、、外有三点】已知【练习CR BN AM BCM ACN ABR CBM CAN BAR R N M ABC γβα=∠=∠=∠=∠=∠=∠∆,,3K LNMCBAFDAEDA F E AB AC CP BP AD P BC D ABC AD ∠∠∆=,则和交于、分别与、上任一点,是边上,若在的高,且是设例.3ANAM FDA EDA N M DF DE AD A =∠=∠可以转化为证明,。
平面几何四大定理
.平面几何四个重要定理四个重要定理:梅涅劳斯(Menelaus)定理(梅氏线)△ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R ,则P 、Q 、R 共线的充要条件是 1RB ARQA CQ PC BP =⋅⋅。
塞瓦(Ceva)定理(塞瓦点)△ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是1RBAR QA CQ PC BP =⋅⋅。
托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)该点落在三角形的外接圆上。
例题:1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。
求证:FBAF2ED AE =。
【分析】CEF 截△ABD →1FABFCB DC ED AE =⋅⋅(梅氏定理)【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平行线。
2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CBDEG 截△ABM →1DB MDGM AGEA BE =⋅⋅(梅氏定理)DGF 截△ACM →1DCMDGM AG FA CF =⋅⋅(梅氏定理)∴FACF EA BE +=MD AG )DC DB (GM ⋅+⋅=MDGM 2MD 2GM ⋅⋅=1 【评注】梅氏定理3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上,λ===EA CEFB AF DC BD ,AD 、BE 、CF 交成△LMN。
求S △LMN 。
【分析】【评注】梅氏定理4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、△ABG 。
求证:AE 、BF 、CG 相交于一点。
【分析】【评注】塞瓦定理B5. 已知△ABC 中,∠B=2∠C 。
求证:AC 2=AB 2+AB ·BC 。
【分析】过A 作BC 的平行线交△ABC 的外接圆于D ,连结BD 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面几何的几个重要的定理
一、梅涅劳斯定理:
1=⋅⋅=⋅⋅B
A
A C C
B
C B A h h h h h h RB AR QA CQ PC BP l C B A h h h 的垂线的长度,则:
到直线
、、分别是、、证:设
注:此定理常运用求证三角形相似的过程中的
线段成比例的条件;。
的交点,证明:与是的中点,是上,在点
的平分线,是是斜边上的高,中,:若直角例CE //BF CK DE F AC D AK E ACK CE CK ABC ∠∆11PC BP R Q P
AB CA BC ABC ABC l 1=⋅⋅RB
AR
QA CQ ,则
、、的延长线分别交于或它们、、的三边的顶点,并且与不经过:若直线定理∆∆CE
//BF CKE
FKB KE
BK KC KF BE BK FC KF BE BK BC BP AC EP AC CK AE EK FC KF 1FC
KF
EK AE DA CD F E D ACK EP
CK EP BC EBC CE
BH 90HCB ACE HCB HBC ACE
HBC ACK
EBC BH
B EB
C ∴≅∴=
====⋅⋅=∴⊥︒=∠+∠=∠+∠∠=∠∠=∠∠∆∆∆∆∆=
依分比定理有:=即:=于是依梅涅劳斯定理有:、、和三点对于,则:上的高作为等腰三角形即:则:的平分线中,作在证:
1
11
111111111D B D A :
C B C A B
D AD :BC AC D C B A D
C B A K 1=,试证:、、、和、、、线分别交这四条直线于引四条直线,另两条直】从点【练习
注:此定理常用于证明三点共线的问题,且常需要多次使用 再相乘;
共线;
、、证明点引的垂线的垂足,
、、向是从点、、的外接圆上;位于点例111111C B A AB CA BC P C B A ABC P .2∆
三点共线;
、、综上可得:也重合
与的延长线上时,同在与类似地可证得当矛盾=这与于是可得即这时设必定重合,不然的话,与线段上,则同在与若的延长线上;
线段上,或者同在或者同在与因此,或边上的点的个数也为三点中,位于、、由于在同一直线上的=
,则:又得:
,于是由定理交于与直线证:设直线R Q P R R AB R R BR AR BR AR BR AR BR AR ,BR BR ,AR AB AR AB ,AR AR R R AB R R AB AB R R 20ABC R Q P RB
AR B R AR 1RB AR QA CQ 1B
R AR QA CQ 1R AB PQ '''
'
'
'
'
'
''''''''''>
<-<->=⋅⋅=⋅⋅∆PC BP PC BP 三点共线;
、、求证:,
,这时若或边上的点的个数为三点中,位于、、三点,并且
上或它们的延长线上的、、的三边分别是、、:设定理R Q P PC BP 20ABC R Q P AB CA BC ABC R Q P 21RB
AR
QA CQ =⋅⋅∆∆三点共线;
、、依梅涅劳斯定理可知,
=可得且将上面三条式子相乘,
证:易得:11111
1111111111C B A 1BC AC AB CB CA BA 180PBA PCA ,PCB PAB ,PBC PAC PBA
cos PB PAB
cos AP BC AC PAC cos AP PCA
cos CP AB CB ,
PCB
cos CP PBC
cos BP CA BA ⋅⋅︒
=∠+∠∠=∠∠=∠∠⋅∠⋅-=∠⋅∠⋅-=∠⋅∠⋅-=
直线上;
在同一条
、、的交点与,与,与,则、、上的切点分别为、
、的内切圆在三边】设不等腰【练习Z Y X AB DE CA FD BC EF F E D AB CA BC ABC 2
∆三点共线;
、、,试证:的交点是与线,直的交点是与,直线的交点为和
,直线相交于,,】已知直线【练习222211*********C B A B C A AC A C B BC C B A AB O CC BB AA 31
11
11111111
111111
1
1111111
1
111111111111D B D A :
C B C A B
D AD :BC AC 1
C B
D B D A C A BD BC AC AD 1LD D B K B BK BD LD 1BK
K
B C B LC LC BC 1LC C A K A AK AC LC 1AK K
A D A LD LD AD BL
B AL A L D A AD D A //AD 1==⋅⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅即:得:将上面四条式子相乘可可得:和别用于,则把梅涅劳斯定理分相交与点与若,结论显然成立;
证:若的证明
练习∆∆三点共线
、、可得的边上,由定理都不在、、又得:将上面三条式子相乘可=
=同理可得:=
代人上式可得:又可得:所截,由定理被直线证:的证明
练习Z Y X 2ABC Z Y X 1
ZB
AZ
YA CY XC BX BD
EA
ZB AZ AF DC YA CY CE
FB
XC BX AF AE 1
FB
AF
EA CE XC BX 1XFE ABC 2∆∆ =⋅⋅==⋅⋅共线
、、,证明:、、的交点依次为和,和,和,
和,记直线、、,在另一条上取点、、】在一条直线上取点【练习N M L N M L BC EF AF CD AF CD ED AB D F B A C E 4
共线
由梅涅劳斯定理可知可得:将上面的三条式子相乘应用梅涅劳斯定理有:,和,和,和们边上的点:对所得的三角形和在它的交点,
和,和,和分别是直线、、证:设的证明
练习22222
22222
2
11112
2
11112
2
1111211211211111111222C ,B ,A 1
BA CA CB AB AC BC 1CB AB OC CC AA OA 1BA CA OB BB CC OC 1AC BC BB OB OA AA )B ,C A (OAC ),A ,C B (OBC ),C ,B A (OAB B A AB C A AC C B BC C B A 3=⋅⋅=⋅⋅=⋅⋅=⋅⋅。