苏科版八年级数学上册练习8.docx

合集下载

初二数学苏教版上册练习题

初二数学苏教版上册练习题

初二数学苏教版上册练习题题目一:整数的加减运算1. 计算:(-11)+12-(-7)-(-9)+(-3)解:根据整数加减法的规则,先按照括号内的运算,然后从左到右进行计算。

=(-11)+12-(-7)-(-9)+(-3)=(-11)+12+7+9+(-3)=12+7+9-11-3=19答:计算结果为19。

2. 简化:(-13)+5-15+8解:按照整数的加减法规则从左到右进行计算。

=(-13)+5-15+8=-13+5-15+8=-8-15+8=-23+8=-15答:简化结果为-15。

3. 先做加法再做减法:(-8)-(-16)+20-(-6)解:根据整数的加减法规则,先做括号内的运算,然后从左到右进行计算。

=(-8)-(-16)+20-(-6)=(-8)+16+20+6=16+20+(-8)+6=36-8=28答:计算结果为28。

题目二:数的乘法和除法1. 计算:(-4)×(-5)×(-2)解:两个负数相乘得正数,三个负数相乘还是正数。

=(-4)×(-5)×(-2)=20×(-2)=-40答:计算结果为-40。

2. 计算:36÷(-6)÷3解:先算除法,再比较正负号。

=36÷(-6)÷3=(-6)÷3=-2答:计算结果为-2。

3. 计算:(-2)×(-3)÷6解:先算乘法,再比较正负号。

=(-2)×(-3)÷6=6÷6=1答:计算结果为1。

题目三:分数的加减与乘除1. 计算:(-3/4)-(-1/2)解:根据分数加法的规则,先执行括号里的操作,然后做减法。

=(-3/4)-(-1/2)=(-3/4)+(1/2)=(-3/4)+(2/4)=(-3+2)/4=-1/4答:计算结果为-1/4。

2. 计算:(-4/5)×(3/4)解:负数相乘结果为正数。

苏科版八年级数学上册期末复习练习(8).docx

苏科版八年级数学上册期末复习练习(8).docx

初中数学试卷 马鸣风萧萧八年级上期末复习小练习(8)一、选择题1.在实数: 3.14159,364,1.010010001…… , , 722 中,无理数的( ) A .1个 B .2个 C .3个 D .4个2.设三角形的三边长分别等于下列各组数,能构成直角三角形的是 ( )A .31,41,51 B. 4,5,6 C. 5,6,10 D. 6,8,10 3. 下列性质中,等腰三角形具有而直角三角形不一定具有的是( ) A .内角和等于180° B .有一个角的平分线垂直于这个角的对边C .有两个锐角的和等于90°D .有两条边的平方和等于第三条边的平方 4.P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y =-12x 图象上的两点,下列判断中正确是 A .y 1>y 2 B .y 1<y 2 ( )C .当x 1<x 2时,y 1<y 2D .当x 1<x 2时,y 1>y 2 5.已知一次函数y=kx+b 的图象经过第一、二、四象限,则kb 的值可以是( )A .-1 B.0 C. 2 D. 任意实数6.根据下表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( ) x-2 0 1 y3 p 0 A.1 B.-1 C.3 D.-37.如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN+∠ANM 的度数为( )A. 130°B. 120°C. 110°D. 100°二、填空题8.已知两条线段的长为3cm和4cm,当第三条线段的长为时,这三条线段能组成一个直角三角形。

9.已知点P(3,-1)关于x轴的对称点Q的坐标是(a+b,a-b),则a b的值为.10.如图,图中点A所表示的实数为_____________.11.若三角形三边分别为5,12,13,则它最长边上的中线长是.12.已知一次函数y=x+m和y=x+n的图象都与x轴分别交于(-2,0),则mn=______.三、解答题13.(1)(-1)3+(3+1)0+9(2)125(x-1)3=-64;14.如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.15.如图表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB,求这两个函数的关系式及两直线与x轴围成的三角形的面积.。

苏科版八年级数学上册初二第一学期练习

苏科版八年级数学上册初二第一学期练习

初中数学试卷初二第一学期数学练习一、选择题1、下列函数①3yx=;②3xy=;③y xπ=;④13xy+=,是一次函数的是()A.①③ B.①④ C.②③④ D.①③④4.一次函数y=-3x+2的图像不经过...…………………………………………()A.第一象限B.第二象限 C.第三象限 D.第四象限5.一次函数y kx b=+,当k<0,b<0时,它的图象大致为()6.小吴今天到学校参加初中毕业会考,从家里出发走10分钟到离家500米的地方吃早餐,吃早餐用了20分钟;再用10分钟赶到离家1000米的学校参加考试.下列图象中,能反映这一过程的是()A. B. C. D.二、填空题xyxOyOxyOyOA B C D7.函数()1232++-=-axay a是一次函数,则 a= ;函数()112-++=axay是正比例函数,则a= .8.函数x1y-=中自变量x的取值范围是 .9.已知点A(a-1,2a-3)在一次函数1y x=+的图象上,则实数a= .10.点A的坐标),(yx满足条件x−3+(y−1)2=0,则点A的位置在第象限.11. 一次函数y(2)21k x k=-++的图象不经过第四象限.则k的取值范围是__________.12、若点(-1,y1)、(-2,y2)都在直线y=-4x+5上,则y1y2(填“>”、“=”或“<”).13.函数y=32x-4的图像与两个坐标轴围成的三角形面积为__________.14.在平面直角坐标系中,点P(a-1,a)是第二象限内的点,则a的取值范围是__________.15、若一次函数y=(m-3)x+(m-1)的图像经过原点,则m= ;请写出图象与直线y=2x+1平行,且经过点(0,-1)的一次函数的解析式16、如图,长方体的底面边长分别为2 cm和4 cm,高为5 cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为____ __.17. 如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为 _______ 三、解答题19.小明平时喜欢玩“QQ农场”游戏,本学期八年级数学备课组组织了几次数学反馈性测试,小明的数学成绩如下表:第16题第17题(1)以月份为x 轴,成绩为y 轴,根据上表提供的数据在下面的直角坐标系中描点; (2)观察①中所描点的位置关系,猜想y 与x 之间的函数关系,并求出所猜想的函数关系式;21、.已知一次函数y =(1 2m )x +m +1,求当m 为何值时.(1)y 随x 的增大而增大? (2)图象经过第一、二、四象限?(3)图象经过第一、三象限? (4)m 为何值时,与直线y =-3x +2平行?24、(1)观察与发现:将矩形纸片AOCB 折叠,使点C 与点A 重合,点B 落在点B ′ 处(如图1),折痕为EF .小明发现△ AEF 为等腰三角形,你同意吗?请说明理由.AB OCEFB ′图1(2)实践与应用:以点O 为坐标原点,分别以矩形的边OC 、OA 为x 轴、y 轴建立如图所示的直角坐标系,若顶点B 的坐标为(9,3),请求出折痕EF 的长及EF 所在直线的函数关系式.26.如图,在平面直角坐标系中,点A (0,b ),点B (a ,0),点D (d ,0),且a 、b 、d 满足1+a +3-b +(2-d )2=0,DE ⊥x 轴且∠BED =∠ABO ,直线AE 交x 轴于点C .(1)求A 、B 、D 三点的坐标; (2)求直线AE 的解析式; (3)求△ABC 的面积.27、如图,直线l:y=2x +2与坐标轴分别交于A 、B 两点,直线m 经过点C(1,0)且与x 轴垂直. (1)求点A 、B 的坐标;(2)设点P 是直线m 上的一个动点,求PA+PB 的最小值及点P 的坐标;(3)在直线m 上存在点M ,使△MAB 为等腰三角形,直接写出所有符合条件的点M 的坐标; (4)在直线m 上存在点N ,使△BAN 是以∠BAN 为直角的直角三角形,画出示意图并求出符合条件的点N 的坐标; (备用图)。

八年级数学上学期第八周周练试题(含解析) 苏科版-苏科版初中八年级全册数学试题

八年级数学上学期第八周周练试题(含解析) 苏科版-苏科版初中八年级全册数学试题

某某省某某市盱眙县黄花塘中学2015-2016学年八年级数学上学期第八周周练试题一、选择题:1.下列交通标志图案是轴对称图形的是()A.B.C.D.2.下面几何图形中:(1)线段;(2)角;(3)等腰三角形;(4)直角三角形;(5)平行四边形.其中一定是轴对称图形的有()个.A.1 B.2 C.3 D.43.桌面上有A,B两球,若要将B球射向桌面任意一边,使一次反弹后击中A球,则如图所示8个点中,可以瞄准的点有()个.A.1 B.2 C.4 D.6二、填空题:4.距离为20cm的两点A和A′关于直线MN成轴对称,则A到直线MN的距离为.5.如图,△ABC中,∠C=90°,AB=13,AC=5,BC=12,点O为∠CAB和∠CBA的平分线的交点,则OP=.三、解答题:6.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.7.已知:如图,AC平分∠BAD,CE⊥AB与点E,CF⊥AD与点F,且BC=DC,你能说出BE与DF的数量关系吗?为什么?8.已知△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC的延长线于F.求证:∠BAF=∠ACF.2015-2016学年某某省某某市盱眙县黄花塘中学八年级(上)第八周周练数学试卷参考答案与试题解析一、选择题:1.下列交通标志图案是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【专题】常规题型.【分析】根据轴对称的定义结合选项所给的特点即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.【点评】本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下面几何图形中:(1)线段;(2)角;(3)等腰三角形;(4)直角三角形;(5)平行四边形.其中一定是轴对称图形的有()个.A.1 B.2 C.3 D.4【考点】轴对称图形.【分析】根据轴对称图形的概念对各小题分析判断后即可得解.【解答】解:(1)线段是轴对称图形;(2)角是轴对称图形;(3)等腰三角形是轴对称图形;(4)直角三角形不一定是轴对称图形;(5)平行四边形不是轴对称图形;综上所述,一定是轴对称图形的有3个.故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.桌面上有A,B两球,若要将B球射向桌面任意一边,使一次反弹后击中A球,则如图所示8个点中,可以瞄准的点有()个.A.1 B.2 C.4 D.6【考点】生活中的轴对称现象.【专题】应用题.【分析】根据题意分析可得:分别找出入射点B和反射点B,看看是否符合即可.【解答】解:由图可知可以瞄准的点有2个..故选B.【点评】本题考查轴对称图形的定义.如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.解此题关键是找准入射点和反射点.二、填空题:4.距离为20cm的两点A和A′关于直线MN成轴对称,则A到直线MN的距离为10cm .【考点】轴对称的性质.【分析】根据两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线即可得出结论.【解答】解:∵距离为20cm的两点A和A′关于直线MN成轴对称,∴A到直线MN的距离=cm=10cm.故答案为:10cm.【点评】本题考查的是轴对称的性质,熟知关于轴对称的两个图形全等是解答此题的关键.5.如图,△ABC中,∠C=90°,AB=13,AC=5,BC=12,点O为∠CAB和∠CBA的平分线的交点,则OP= 2 .【考点】角平分线的性质.【分析】作OE⊥BC,OF⊥AC,根据垂直定义得出∠C=∠CFO=∠OEC=90°,即可推出四边形CFOE是矩形,根据角平分线性质求出OE=OF=OP,即可推出矩形CFOE是正方形,设OE=OP=OF=x,则AP=AF=5﹣x,BP=BE=12﹣x,根据PA+PB=AB=13,列出等式即可解得.【解答】解:作OE⊥BC,OF⊥AC,∴∠C=∠CFO=∠OEC=90°,∴四边形CFOE是矩形;∵∠CAB,∠CBA的平分线相交于点O,OE⊥BC,OF⊥AC,OP⊥AB,∴OE=OP=OF,∴四边形CFOE是正方形,设OE=OP=OF=x,则AP=AF=5﹣x,BP=BE=12﹣x,∴5﹣x+12﹣x=13,解得x=2,∴OP=OE=2.故答案为2.【点评】本题考查了角平分线的性质,正方形的判定,证得四边形CFOE是正方形是解题的关键.三、解答题:6.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.【考点】作图-轴对称变换.【分析】(1)关于轴对称的两个图形,各对应点的连线被对称轴垂直平分.做BM⊥直线l于点M,并延长到B1,使B1M=BM,同法得到A,C的对应点A1,C1,连接相邻两点即可得到所求的图形;(2)由图得四边形BB1 C1C是等腰梯形,BB1=4,CC1=2,高是4,根据梯形的面积公式进行计算即可.【解答】解(1)如图,△A1B1C1是△ABC关于直线l的对称图形.(2)由图得四边形BB1C1C是等腰梯形,BB1=4,CC1=2,高是4.∴S四边形BB1C1C=,==12.【点评】此题主要考查了作轴对称变换,在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:①由已知点出发向所给直线作垂线,并确定垂足;②直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;③连接这些对称点,就得到原图形的轴对称图形.7.已知:如图,AC平分∠BAD,CE⊥AB与点E,CF⊥AD与点F,且BC=DC,你能说出BE与DF的数量关系吗?为什么?【考点】角平分线的性质;全等三角形的判定与性质.【分析】根据角平分线的性质得出CE=CF,然后根据HL证得RT△DCF≌RT△ECB,即可证得BE=DF.【解答】解:BE=DF,∵∠1=∠2,CE⊥AB,CF⊥AD,∴CE=CF,在RT△DCF和RT△ECB中,,∴RT△DCF≌RT△ECB(HL),∴BE=DF.【点评】本题考查了角平分线的性质以及全等三角形的判定和性质,熟练掌握性质定理是解题的关键.8.已知△ABC中,AD是∠BA C的平分线,AD的垂直平分线交BC的延长线于F.求证:∠BAF=∠ACF.【考点】线段垂直平分线的性质.【专题】证明题.【分析】由FE是AD的垂直平分线得到FA=FD,再根据等边对等角得到∠FAD=∠FDA,而∠BAF=∠FAD+∠1,∠ACF=∠FDA+∠2,其中由AD是∠BAC的平分线可以得到∠1=∠2,所以就可以证明题目结论.【解答】证明:∵AD是∠BAC的平分线,∴∠1=∠2,∵FE是AD的垂直平分线,∴FA=FD(线段垂直平分线上的点到线段两端的距离相等),∴∠FAD=∠F DA(等边对等角),∵∠BAF=∠FAD+∠1,∠ACF=∠FDA+∠2,∴∠BAF=∠ACF.【点评】此题利用了角平分线的性质、线段的垂直平分线性质、等腰三角形的性质等知识,有一点难度.。

苏科版八年级数学上册第8周周练试卷

苏科版八年级数学上册第8周周练试卷

苏科版八年级数学上册第8周周练试卷制卷人班级姓名得分一、选择题(4*6=24)1.下列条件中,不能判定△ABC≌△A′B′C′的是()A.AB=A′B′,∠A=∠A′,AC=A′C′B.AB=A′B′,∠A=∠A′,∠B=∠B′C.AB=A′B′,∠A=∠A′,∠C=∠C′D.∠A=∠A′,∠B=∠B′,∠C=∠C′2.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS3.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F4.如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论①AS=AR;②QP ∥AR;③△BPR≌△QSP中()A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确5.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD 相交于点O,且AB≠AD,则下列判断不正确的是()A.△ABD≌△CBD B.△ABC是等边三角形 C.△AOB≌△COB D.△AOD≌△COD 6.下列命题中,不正确的是()A.各有一个角为95°,且底边相等的两个等腰三角形全等B.各有一个角为40°,且底边相等的两个等腰三角形全等C.各有一个角为40°,且其所对的直角边相等的两个直角三角形全等D.各有一个角为40°,且有斜边相等的两个直角三角形全等二、填空题(4*4=16)7.如图,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP= 时,才能使△ABC和△APQ全等.8.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是.9.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,∠1=30°,则∠2的度数为.10.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题11.(14)已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.12.(14)如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD为一边作等边三角形CDE,连接AE.(1)求证:△CBD≌△CAE.(2)判断AE与BC的位置关系,并说明理由.13.(14)如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于P.(1)求证:△ABE≌△CAD;(2)求∠PBQ的度数.14.(18)如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB 的中点.如果点P 在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.当一个点停止运动时时,另一个点也随之停止运动.设运动时间为t.(1)用含有t的代数式表示CP.(2)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?。

2024-2025学年苏科版八年级上册数学周末作业(第8周)

2024-2025学年苏科版八年级上册数学周末作业(第8周)

ABC DBA八年级上数学周末作业(第8周)班级_________姓名__________ 1.已知在△ABC 中,△ACB=90°,AC >BC.(1)在AC 上找一点D ,使得DA=DB ;(尺规作图,保留痕迹)(2)在(1)的条件下,若点D 恰在∠ABC 的平分线上,试求∠A 的度数.2. 两个城镇A ,B 与一条公路CD ,一条河流CE 的位置如图所示.某人要修建一座避暑山庄,要求该山庄到A ,B 两点的距离必须相等,到直线CD 和直线CE 的距离也必须相等,且在∠DCE 的内部,请画出该避暑山庄的位置P.(不写作法,保留作图痕迹)FEFEB3. 如图,在△ABC 中,AD 是高,E ,F 分别是AB ,AC 的中点. (1)若AB=10,AC=8,求四边形AEDF 的周长; (2)试问:EF 与AD 有怎样的位置关系?请证明你的结论.4. 如图,长方形纸片ABCD ,沿折痕AE 折叠边AD ,使点D 落在边BC 上的点F 处.已知AB=8,S △ABF =24,求EC 的长.5. 如图,在△ABC 中,∠ACB=90°,AB=5 cm ,BC=3 cm.若点P 从点A 出发,以每秒2 cm 的速度沿折线A —C —B —A 运动,设运动时间为t s (t >0) (1)若点P 在AC 上,且满足PA=PB ,求出此时t 的值;(2)若点P恰好在∠BAC的平分线上,求出此时t的值.P备用图6.如图△,在4×8的网格纸中,每个小正方形的边长都为1,动点P,Q分别从点D,A同时出发向右移动,点P的运动速度为每秒1个单位长度,点Q的运动速度为每秒0.5个单位长度,当点P运动到点C时,两个点都停止运动,设运动时间为t s(0<t<8)(1)请在4×8的网格纸中画出t为6时的线段PQ,并求出其长度;(2)当t为何值时,△PQB是以BP为底的等腰三角形?QbcbcccBCDP7. 如图①是硬纸板做成的两个全等的直角三角形,两直角边的长分别为a 和b ,斜边长为c ,图②是以c 为直角边的等腰直角三角形.请你将他们拼成一个能证明勾股定理的图形. (1)画出拼成的这个图形的示意图,并指出它是什么图形; (2)用这个图形证明勾股定理;(3)假设图①中的直角三角形有若干个,你能运用图①中所给的直角三角形拼出另一个能证明勾股定理的图形吗?请画出拼后的示意图(无需证明).① ②8. 如图,在Rt △ABC 中,∠B=90°,AB=3 cm ,BC=4 cm ,点D 在AC 上,AD=1 cm ,点P 从点A 出发,沿AB 匀速运动;点Q 从点C 出发,沿C →B →A →C 的路径匀速运动.两点同时出发,在点B 处首次相遇后,点P 的运动速度每秒提高了2 cm ,并沿B →C →A 的路径匀速运动;点Q 保持速度不变,并继续沿原路径匀速运动,两点在点D 处再次相遇后停止运动.设点P 原来的速度为x cm/s.(1)点Q 的速度为________cm/s ;(用含x 的代数式表示) (2)求点P 原来的速度.。

苏科版八年级数学上册练习8

苏科版八年级数学上册练习8

初中数学试卷 金戈铁骑整理制作初二1、2部数学周末练习 班级姓名 家长签字 一、选择题1.下列的说法:①轴对称和轴对称图形意义相同;②轴对称图形必轴对称;③轴对称和轴对称图形的对称轴都是一直线;④轴对称图形的对称点一定在对称轴的两旁,其中正确的有 ( ).A .1个B .2个C .3个D .4个2.在△ABC 和△A'B'C'中,下面能得到△ABC ≌△A'B'C'的条件是( ).A .AB =A'B',AC =A'C ,∠B =∠B' B .AB =A'B',BC =B'C ,∠A =∠A'C .AC =A'C',BC =B'C',∠C =∠C'D .AC =A'C',BC =B'C',∠B =∠B'第3题 第4题 第6题 第7题 第10题3.如图,已知EA ⊥AB ,BC ∥EA ,EA =AB =2BC ,D 为AB 的中点,则下面式子中不能成立的是( ).A .∠3=60°B .DE ⊥AC C .DE =ACD .∠2=∠34.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC =∠BOC 的依据是( ).A .SSSB .ASAC .AASD .角平分线上的点到角两边距离相等5.下列图形中对称轴最多的是 ( ).A .圆B .正方形C .等边三角形D .线段6.如图,在四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为4,则BE 等于( ).A.1 B.3 C.2 D.2.57.如图,点A在DE上,点F在AB上,且AC=CE,∠1=∠2=∠3,则DE的长等于( ).A.DC B.BC C.AB D.AE+AC8.下列说法正确的有几个( ).⑴全等的两个图形一定对称.⑵成轴对称的两个图形一定全等. ⑶若两个图形关于某直线对称,则它们的对应点一定位于对称轴的两侧. ⑷若点A、点B关于某直线MN对称,则直线MN垂直平分AB.A.1个B.2个C.3个D.4个二、填空题9、线段的点到线段两端的距离相等;到线段两端距离相等的点在线段的.10.如图,已知AC=BD,要使△ABC≌△DCB,则只需一个适当的条件是_______ ____.(填一个即可)11.如图,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到_______位置时,才能使△ABC≌△QPA.第11题第12题12如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE= cm.三、解答题13、如图,在△ABC中,AB=AC=3cm,AB的垂直平分线交AC 于点N,△BCN的周长是5cm,则BC的长等于多少厘米?14.如图,四边形ABCD中,CD∥AB,E是AD中点,CE交BA延长线于点F.(1)试说明:CD=AF;(2)若BC=BF,试说明:BE⊥CF.A CB E D15、如图,△ABC 中,∠BAC=90度,AB=AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E .求证:BD=2CE .16、如图,已知长方形ABCD 中,AD =6cm ,AB =4cm ,点E 为AD 的中点.若点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BC 上由点B 向点C 运动。

八年级上册苏州数学全册全套试卷练习(Word版 含答案)

八年级上册苏州数学全册全套试卷练习(Word版 含答案)

八年级上册苏州数学全册全套试卷练习(Word版含答案)一、八年级数学三角形填空题(难)∠=,边AB的垂直平分线交边BC于点D,边AC的垂直平分线1.在ABC中,BACα∠的度数为______.(用含α的代数式表示)交边BC于点E,连结AD,AE,则DAE【答案】2α﹣180°或180°﹣2α【解析】分两种情况进行讨论,先根据线段垂直平分线的性质,得到∠B=∠BAD,∠C=∠CAE,进而得到∠BAD+∠CAE=∠B+∠C=180°-a,再根据角的和差关系进行计算即可.解:有两种情况:①如图所示,当∠BAC⩾90°时,∵DM垂直平分AB,∴DA=DB,∴∠B=∠BAD,同理可得,∠C=∠CAE,∴∠BAD+∠CAE=∠B+∠C=180°−α,∴∠DAE=∠BAC−(∠BAD+∠CAE)=α−(180°−α)=2α−180°;②如图所示,当∠BAC<90°时,∵DM垂直平分AB,∴DA=DB,∴∠B=∠BAD,同理可得,∠C=∠CAE,∴∠BAD+∠CAE=∠B+∠C=180°−α,∴∠DAE=∠BAD+∠CAE−∠BAC=180°−α−α=180°−2α.故答案为2α−180°或180°−2α.点睛:本题主要考查垂直平分线的性质.根据题意准确画出符合题意的两种图形是解题的关键.2.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.【答案】12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.3.已知a、b、c为△ABC的三边,化简:|a+b﹣c|-|a﹣b﹣c|+|a﹣b+c|=______.--【答案】3a b c【解析】【分析】根据三角形的三边关系判断绝对值内式子的正负,然后利用绝对值的性质去掉绝对值,再去括号合并同类项即可.【详解】解:∵a、b、c为△ABC的三边,∴a+b>c,a-b<c,a+c>b,∴a+b-c>0,a-b-c<0,a-b+c>0,∴|a+b-c|-|a-b-c|+|a-b+c|=(a+b-c)+(a-b- c)+(a-b+c)=a+b-c+a-b- c+a-b+c=3a-b-c.故答案为:3a-b-c.【点睛】本题主要考查了三角形的三边关系定理和利用绝对值的性质进行化简,利用三角形的三边关系得出绝对值内式子的正负是解决此题的关键.4.若(a﹣4)2+|b﹣9|=0,则以a、b为边长的等腰三角形的周长为_______.【答案】22【解析】【分析】先根据非负数的性质列式求出a、b再根据等腰三角形和三角形三边关系分情况讨论求解即可.【详解】解:根据题意得,a-4=0,b-9=0,解得a=4,b=9,①若a=4是腰长,则底边为9,三角形的三边分别为4、4、9,不能组成三角形,②若b=9是腰长,则底边为4,三角形的三边分别为9、9、4,能组成三角形,周长=9+9+4=22.【点睛】本题主要考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,解决本题的关键是要熟练掌握非负数的非负性质和三角形三边关系.5.如果一个n 边形的内角和是1440°,那么n=__.【答案】10【解析】∵n 边形的内角和是1440°,∴(n−2)×180°=1440°,解得:n=10.故答案为:10.6.如图,在△ABC 中,∠A=70°,点O 到AB,BC,AC 的距离相等,连接BO ,CO ,则∠BOC=________.【答案】125°【解析】【分析】根据角平分线性质推出O 为△ABC 三角平分线的交点,根据三角形内角和定理求出∠ABC+∠ACB ,根据角平分线定义求出∠OBC+∠OCB ,即可求出答案. 【详解】:∵点O 到AB 、BC 、AC 的距离相等,∴OB 平分∠ABC ,OC 平分∠ACB ,∴12OBC ABC ∠=∠,12OCB ACB ∠=∠, ∵∠A=70°,∴∠ABC+∠ACB=180°-70°=110°, ∴1110552OBC OCB ∠+∠=⨯︒=︒, ∴∠BOC=180°-(∠OBC+∠OCB )=125°;故答案为:125.【点睛】本题主要考查平分线的性质,三角形内角和定理的应用,能求出∠OBC+∠OCB 的度数是解此题的关键.二、八年级数学三角形选择题(难)7.如图,ABC ∆中,100ABC ∠=︒,且AEF AFE ∠=∠,CFD CDF ∠=∠,则EFD ∠ 的度数为( )A .80°B .60°C .40°D .20°【答案】C【解析】【分析】 连接FB ,根据三角形内角和和外角知识,进行角度计算即可.【详解】解:如图连接FB ,∵AEF AFE ∠=∠,CFD CDF ∠=∠,∴AEF AFE EFB EBF ∠=∠=∠+∠,CFD CDF BFD FBD ∠=∠=∠+∠∴AFE CFD EFB EBF BFD FBD ∠+∠=∠+∠+∠+∠,即AFE CFD EFD EBD ∠+∠=∠+∠,又∵180AFE EFD DFC ∠+∠+∠=︒,∴2180EFD EBD ∠+∠=︒,∵100ABC ∠=︒,∴180100=402EFD ︒-︒∠=︒, 故选:C .【点睛】此题考查三角形内角和和外角定义,掌握三角形内角和为180°,三角形一个外角等于不相邻两内角之和是解题关键.8.如图:∠A+∠B+∠C+∠D+∠E+∠F 等于( )A.180°B.360°C.270°D.540°【答案】B【解析】【分析】先根据三角形的外角,用∠AGE表示出∠A,∠B;用∠EMC表示出∠E,∠F;用∠CNA 表示出∠C,∠D,然后再根据对顶角相等的性质解出它们的度数即可【详解】解:如图:∵∠AGE是△ABG的外角∴∠AGE=∠A+∠B;同理:∠EMC=∠E+∠F;∠CNA=∠C+∠D∴∠A+∠B+∠C+∠D+∠E+∠F=∠AGE+∠EMC+∠CNA又∵∠AGE+∠EMC+∠CAN是△MNG的三个外角∴∠AGE+∠EMC+∠CAN=360°故选:B.【点睛】本题主要考查了三角形外角及其外角和,其中找出三角形的外角是解答本题的关键.9.已知△ABC的两条高分别为4和12,第三条高也为整数,则第三条高所有可能值为()A.3和4 B.1和2 C.2和3 D.4和5【答案】D【解析】【分析】先设长度为4、12的高分别是a、b边上的,边c上的高为h,△ABC的面积是S,根据三角形面积公式,可求a=24S;b=212S;c=2Sh,结合三角形三边的不等关系,可得关于h的不等式,解不等式即可. 【详解】 设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么a=24S ;b=212S ;c=2S h∵a-b <c <a+b , ∴24S -212S <c <24S +212S , 即 3S <2S h <23S , 解得3<h <6,∴h=4或h=5,故选D.【点睛】主要考查三角形三边关系;利用三角形面积的表示方法得到相关等式是解决本题的关键.10.已知△ABC 的两条高的长分别为5和20,若第三条高的长也是整数,则第三条高的长的最大值为( )A .5B .6C .7D .8【答案】B【解析】设△ABC 的面积为S ,所求的第三条高线的长为h ,则三边长分别为,,,根据三角形的三边关系为 ,解得 ,所以h 的最大整数值为6,即第三条高线的长的最大值为6.故选B .点睛:本题主要考查了三角形的面积公式,三角形三边关系定理及不等式组的解法,有一定难度.利用三角形的面积公式,表示出△ABC 三边的长度,从而运用三角形三边关系定理,列出不等式组是解题的关键,难点是解不等式组.11.下列多边形中,不能够单独铺满地面的是( )A .正三角形B .正方形C .正五边形D .正六边形【答案】C【解析】【分析】由镶嵌的条件知,在一个顶点处各个内角和为360°.【详解】∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.故选C.【点睛】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.12.如图,三角形ABC中,D为BC上的一点,且S△ABD=S△ADC,则AD为()A.高B.角平分线C.中线D.不能确定【答案】C【解析】试题分析:三角形ABD和三角形ACD共用一条高,再根据S△ABD=S△ADC,列出面积公式,可得出BD=CD.解:设BC边上的高为h,∵S△ABD=S△ADC,∴,故BD=CD,即AD是中线.故选C.考点:三角形的面积;三角形的角平分线、中线和高.三、八年级数学全等三角形填空题(难)13.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为 .41.【解析】作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD ,即∠BAD=∠CAD′,在△BAD 与△CAD′中,BA CA BAD CAD AD AD =⎧⎪∠=∠'⎨⎪='⎩, ∴△BAD ≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=22()=32=42AD AD +',∠D′DA+∠ADC=90°由勾股定理得CD′=22()=932=41DC DD +'+∴BD=CD′=41,故答案为41.14.如图,AD 是△ABC 的角平分线,DF⊥AB,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为48和36,求△EDF 的面积________.【答案】6【解析】【分析】作DM=DE 交AC 于M ,作DN ⊥AC ,利用角平分线的性质得到DN=DF ,将三角形EDF 的面积转化为三角形DNM 的面积来求.【详解】作DM=DE 交AC 于M ,作DN ⊥AC ,∵AD 是△ABC 的角平分线,DF ⊥AB ,∴DF=DN,∵DE=DG,∴DG=DM,∴Rt△DEF≌Rt△DMN(HL),∵DG=DM, DN⊥AC,∴MN=NG,∴△DMN≌△DNG,∵△ADG和△AED的面积分别为48和36,∴S△MDG=S△ADG-S△ADM=48-36=12,∴S△DEF=12S△MDG=1212=6,故答案为:6【点睛】本题考查了角平分线的性质及全等三角形的判定及性质,正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求是解题关键.15.AD,BE是△ABC的高,这两条高所在的直线相交于点O,若BO=AC,BC=a,CD=b,则AD的长为______.【答案】AD的长为a-b或b-a或a+b或12a或b.【解析】【分析】分别讨论△ABC为锐角三角形时、∠A、∠B、∠C分别为钝角时和∠A为直角时五种情况,利用AAS证明△BOD≌△ACD,可得BD=AD,根据线段的和差关系即可得答案.【详解】①如图,当△ABC为锐角三角形时,∵AD、BE为△ABC的两条高,∴∠CAD+∠AOE=90°,∠CBE+∠BOD=90°,∵∠BOD=∠AOE,∴∠CAD=∠OBD,又∵∠ODB=∠ADC=90°,OB=AC,∴△BOD≌△ACD,∴AD=BD,∵BC=a,CD=b,∴AD=BD=BC-CD=a-b.②如图,当∠B为钝角时,∵∠C+∠CAD=90°,∠O+∠CAD=90°,∴∠C=∠O,又∵∠ADC=∠ODB=90°,OB=AC,∴△BOD≌△ACD,∴BD=AD,∴AD=CD-BC=b-a.③如图,当∠A为钝角时,同理可证:△BOD≌△ACD,∴AD=BC-CD=a-b.④如图,当∠C为钝角时,同理可证:△BOD≌△ACD,∴AD=BD=BC+CD=a+b.⑤当∠B为直角时,点O、D、B重合,OB=0,不符合题意,当∠C为直角时,点O、C、D、E重合,CD=0,不符合题意,如图,当∠A为直角时,点A、E、O重合,∵OB=AC,∠CAB=90°,∴△ABC是等腰直角三角形,∵AD⊥BC,∴AD是Rt△ABC斜边中线,∴AD=AD=12BC=12a=b.综上所述:AD的长为a-b或b-a或a+b或12a或b.故答案为:a-b或b-a或a+b或12a或b【点睛】本题主要考查全等三角形的判定与性质,全等三角形的判定方法有:SSS、AAS、ASA、SAS、HL等,注意:SAS时,角必须是两边的夹角,SSA和AAA不能判定两个三角形全等.灵活运用分类讨论的思想是解题关键.16.如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形,∠ADC=30°,若CD=6,BD=6.5,则AD=_________.【答案】2.5【解析】解:以CD为边向外作出等边三角形DCE,连接AE,∵∠ADC=30°,∴∠ADE=90°,在△ACE 与△BCD中,∵AC=BC,∠ACE=∠BCD,CE=DC,∴△ACE≌△BCD,∴BD=AE=6.5,∴AD2+DE2=AE2,∴AD3+62=6.52,∴AD=2.5.故答案为:2.5.17.如图,AD=AB,∠C=∠E,AB=2,AE=8,则DE=_________.【答案】6【解析】根据三角形全等的判定“AAS”可得△ADC≌△ABE,可得AD=AB=2,由AE=8可得DE=AE-AD=6.故答案为:6.点睛:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.如图,在△ABC中,∠B=∠C,BD=CE,BE=CF.若∠A=40°,则∠DEF的度数为____.【答案】70°【解析】由等腰三角形的性质得出∠B=∠C=70°,再根据SAS证得△BDE≌△CEF,得出∠BDE=∠CEF,运用三角形的外角性质得出∠CEF+∠DEF=∠B+∠BDE,即可得出∠DEF=∠B=70°.点睛:此题主要考查了等腰三角形的性质,解题时,利用等腰三角形的性质和三角形全等的判定证得∠BDE=∠CEF,然后根据三角形外角的性质可求解.四、八年级数学全等三角形选择题(难)19.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=12BF;④AE=BG.其中正确的是A.①②B.①③C.①②③D.①②③④【答案】C【解析】【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出CE=AE=12AC,又因为BF=AC所以CE=12AC=12BF,连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°−∠BFD,∠DCA=90°−∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中.∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=12 AC.又由(1),知BF=AC,∴CE=12AC=12BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD.又DH⊥BC,∴DH垂直平分BC.∴BG=CG.在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.故选C.【点睛】本题考查了等腰直角三角形、等腰三角形的判定与性质、全等三角形的判定与性质.此类问题涉及知识点较多,需要对相关知识点有很高的熟悉度.20.在ABC ∆中,已知AB BC =,90ABC ∠=︒,点E 是BC 边延长线上一点,如图所示,将线段AE 绕点A 逆时针旋转90︒得到AF ,连接CF 交直线AB 于点G ,若53BC CE =,则AG BG=( )A .73B .83 C .113 D .133【答案】D【解析】【分析】过点F 作FD ⊥AG ,交AG 的延长线于点D, 设BC=5x ,利用AAS 证出△FAD ≌△AEB ,从而用x 表示出AD ,BD ,然后利用AAS 证出△FDG ≌△CBG ,即可用x 表示出BG,AG 从而求出结论.【详解】解:过点F 作FD ⊥AG ,交AG 的延长线于点D∵53BC CE = 设BC=5x ,则CE=3x∴BE=BC +CE=8x∵5AB BC x ==,90ABC ∠=︒,∴∠BAC=∠BCA=45°∴∠BCA=∠CAE +∠E=45°由旋转可知∠EAF=90°,AF=EA∴∠CAE +∠FAD=∠EAF -∠BAC=45°∴∠FAD=∠E在△FAD 和△AEB 中90FAD E D ABE AF EA ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△FAD ≌△AEB∴AD=EB=8x ,FD=AB∴BD=AD -AB=3x ,FD=CB在△FDG 和△CBG 中90FDG CBG FGD CGBFD CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△FDG ≌△CBG∴DG=BG=12BD=32x ∴AG=AB +BG=132x ∴13132332xAG x BG == 故选D .【点睛】此题考查的是全等三角形的判定及性质,掌握构造全等三角形的方法和全等三角形的判定及性质是解决此题的关键.21.已知:如图,在长方形ABCD 中,AB=4,AD=6.延长BC 到点E ,使CE=2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC-CD-DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,△ABP 和△DCE 全等.A .1B .1或3C .1或7D .3或7 【答案】C【解析】【分析】 分两种情况进行讨论,根据题意得出BP=2t=2和AP=16-2t=2即可求得.【详解】解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16-2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故选C.【点睛】本题考查全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.22.如图,在△ABC中,AB=BC,90ABC∠=︒,点D是BC的中点,BF⊥AD,垂足为E,BF交AC于点F,连接DF.下列结论正确的是()A.∠1=∠3 B.∠2=∠3 C.∠3=∠4 D.∠4=∠5【答案】A【解析】【分析】如图,过点C作BC的垂线,交BF的延长线于点G,则CG BC⊥,先根据直角三角形两锐角互余可得BAD CBG∠=∠,再根据三角形全等的判定定理与性质推出1G∠=∠,又根据三角形全等的判定定理与性质推出3G∠=∠,由此即可得出答案.【详解】如图,过点C作BC的垂线,交BF的延长线于点G,则CG BC⊥,即90BCG∠=︒,90AB BC ABC=∠=︒45BAC ACB∠∴∠==︒904545GCF BCG ACB∴∠=∠-∠=︒-︒=︒BF AD⊥1190BAD CBG∴∠+∠=∠+∠=︒BAD CBG∴∠=∠在BAD∆和CBG∆中,90BAD CBGAB BCABD BCG∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()BAD CBG ASA∴∆≅∆,1BD CG G∴=∠=∠点D是BC的中点CD BD CG∴==在CDF∆和CGF∆中,45CD CGDCF GCFCF CF=⎧⎪∠=∠=︒⎨⎪=⎩()CDF CGF SAS∴∆≅∆3G∴∠=∠13∠∠∴=故选:A.【点睛】本题是一道较难的综合题,考查了直角三角形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造两个全等的三角形是解题关键.23.如图,点B,F,C,E在同一条直线上,点A,D在直线BE的两侧,AB∥DE,BF=CE,添加一个适当的条件后,仍不能使得△ABC≌△DEF()A.AC=DF B.AC∥DF C.∠A=∠D D.AB=DE【答案】A【解析】【分析】根据AB∥DE证得∠B=∠E,又已知BF=CE证得BC=EF,即已具备两个条件:一边一角,再依次添加选项中的条件即可判断.【详解】∵AB∥DE,∴∠B=∠E,∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,若添加AC=DF,则不能判定△ABC≌△DEF,故选项A符合题意;若添加AC∥DF,则∠ACB=∠DFE,可以判断△ABC≌△DEF(ASA),故选项B不符合题意;若添加∠A=∠D,可以判断△ABC≌△DEF(AAS),故选项C不符合题意;若添加AB=DE,可以判断△ABC≌△DEF(SAS),故选项D不符合题意;故选:A.【点睛】此题考查三角形全等的判定定理,熟练掌握定理,并能通过定理去判断条件是否符合全等是解决此题的关键.24.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( )①AD平分∠BAC;②作图依据是S.A.S;③∠ADC=60°;④点D在AB的垂直平分线上A.1个B.2个C.3个D.4个【答案】C【解析】①根据作图的过程可以判定AD是∠BAC的∠平分线;②根据作图的过程可以判定出AD的依据;③利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质求∠ADC的度数;④利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点在AB的中垂线上.解:如图所示,①根据作图的过程可知,AD是∠BAC的∠平分线;故①正确;②根据作图的过程可知,作出AD的依据是SSS;故②错误;③∵在△ABC中,∠C=90°,∠B=30°,∴∠CBA=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=12∠CAB=30°,∴∠3=90°-∠2=60°,即∠ADC=60°.故③正确;④∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故④正确;故选C.“点睛”此题主要考查的是作图-基本作图,涉及到角平分线的作法以及垂直平分线的性质,熟练根据角平分线的性质得出∠ADC的度数是解题的关键.五、八年级数学轴对称三角形填空题(难)25.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N 分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH== 5.∵BM+MN 的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.26.如图,已知,点E 是线段AB 的中点,点C 在线段BD 上,8BD =,2DC =,线段AC 交线段DE 于点F ,若AF BD =,则AC =__________.【答案】10.【解析】【分析】延长DE 至G ,使EG=DE ,连接AG ,证明BDE AGE ∆≅∆,而后证明AFG ∆、CDF ∆是等腰三角形,即可求出CF 的长,于是可求AC 的长.【详解】解:如图,延长DE 至G ,使EG=DE ,连接AG ,∵点E 是线段AB 的中点,∴AE=BE,∴在BDE ∆和AGE ∆中,BE AE BED AEGDE EG =⎧⎪∠=∠⎨⎪=⎩, ∴BDE AGE ∆≅∆,∴AG=BD, BDE AGE ∠=∠,∵AF=BD=8,∴AG=AF,∴AFG AGE ∠=∠∵AFG DFC ∠=∠,∴BDE DFC ∠=∠,∴FC=DC,∴FC=2,∴AC=AF+FC=8+2=10.【点睛】本题考查了等腰三角形的性质与判定以及全等三角形的判定与性质,能利用中点条件作辅助线构造全等三角形是解题的关键.27.如图,△ABC 中,AB =AC =12厘米,BC =9厘米,点D 为AB 的中点,如果点P 在线段BC 上以v 厘米/秒的速度由B 点向C 点运动,同时点Q 在线段CA 上由C 点向A 点运动。

苏教版八年级上册数学练习附答案

苏教版八年级上册数学练习附答案

八年级上册数学练习(本卷满分150分,考试时间为120分钟)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在相应括号内)1.如图,下列图案是我国几家银行的标志,其中是轴对称图形的有( )第1题A.1个B.2个C.3个D.4个2.如图所示,a 、b 、c 错误!未找到引用源。

分别表示△ABC 的三边长,则下面与△ABC 错误!未找到引用源。

一定全等的三角形是( )3.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这样做的根据是( )A.两点之间的线段最短B.长方形的四个角都是直角C.长方形是轴对称图形D.三角形有稳定性4.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形? 应该带( )A.第1块B.第2 块C.第3 块D.第4块第2题1234第4题 B C 第3题 第5题5.如图,已知AB ∥CD,AD ∥BC ,AC 与BD 交于点O ,AE ⊥BD 于点E ,CF ⊥BD 于点F ,那么图中全等的三角形有( )A.5对B.6对C.7对D.8对6.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB 的依据是( )A .SASB .ASAC .AASD .SSS7.如图,在△ABC 中,分别以点A 和点B 为圆心,大于21AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD .若△ADC 的周长为10,AB=7,则△ABC 的周长为( )A .7B .14C .17D .20 8.将一正方形纸片按图1中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的( )二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在相应横线上)9.在英文大写字母A 、E 、M 、S 、U 、P 中是轴对称图形的是 . 10.如图,两个三角形关于某直线成轴对称,则∠ 的度数为___________.B ACD (1)(2) (3)(4) 图1 B ′C ′D ′O ′A ′O DC B A 第6题第7题11.如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是 (添加一个条件即可).12.如图所示,AB=AC ,AD=AE ,∠BAC=∠DAE ,∠1=25°,∠2=30°,则∠3= . 13.如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则D 到AB 的距离为_________. 14.如图,已知∠O =35°,CD 为OA 的垂直平分线,则∠ACB 的度数为___ ___.15.如图,分别作出点P 关于OA 、OB 的对称点P 1、P 2,连结P 1P 2, 分别交OA 、OB 于点M 、N ,若P 1P 2=5cm ,则△PMN 的周长为___________.16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某一个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出所有可能的结果的序号: .17.如图所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为 .18.如图,方格纸中△ABC 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC 全等的格点三角形共有__________个(不含△ABC).第12题第8题第11题第13题第14题B 第15题第16题第17题 第18题三、解答题(本大题共有10小题,共96分.请在指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题满分8分)利用正方形网格线作图.⑴ 在线段AC 上找一点M ,使点M 到AB 和BC 的距离相等;⑵ 在射线BM 上找一点N ,使NB=NC .20.(本题满分8分)认真观察图(1)的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1:____________________________________; 特征2:_____________________________________.(2)请在图(2)中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.21.(本题满分8分)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED. 22.(本题满分8分)如图,BC =40cm ,DE 是线段AB 的垂直平分线,与BC 相交于E ,AC =24cm ,求△ACE 的周长.图(1) 图(2)E D CB A第22题第21题第19题23.(本题满分10分)八(5)班同学上数学活动课,利用角尺平分一个角(如图).设计了如下方案:(Ⅰ)∠AOB 是一个任意角,将角尺的直角顶点P 介于射线OA 、OB 之间,移动角尺使角尺两边相同的刻度与M 、N 重合,即PM=PN ,过角尺顶点P 的射线OP 就是∠AOB 的平分线.(Ⅱ)∠AOB 是一个任意角,在边OA 、OB 上分别取OM=ON ,将角尺的直角顶点P 介于射线OA 、OB 之间,移动角尺使角尺两边相同的刻度与M 、N 重合,即PM=PN ,过角尺顶点P 的射线OP 就是∠AOB 的平分线. (1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由.(2)在方案(Ⅰ)PM=PN 的情况下,继续移动角尺,同时使PM ⊥OA ,PN ⊥OB.此方案是否可行?请说明理由. 24.(本题满分10分)如图,ABC ∆中,点D 是BC 中点,连接AD 并延长到点E ,连接BE .(1)若要使EBD ACD ∆∆≌,应添上条件: ; (2)证明上题;(3)在ABC ∆中,若5=AB ,3=AC ,可以求得BC 边上的中线AD 的取值范围是4<AD .请看解题过程:由EBD ACD ∆∆≌得:ED AD =,3==AC BE ,因此BE AB AE +<,即8<AE ,而AE AD 21=,则4<AD .请参考上述解题方法,求>AD .25.(本题满分10分)已知:如图,AD=AE, ∠ADC =∠AEB,BE 与CD 相交于点O,(1)在不添加任何辅助线的情况下,请写出由已知条件可得出的结论;(例如,可得到△ADC ≌△AEB ,∠DOE =∠BOC ,∠DOB =∠EOC 等)你写出的结论不得有上述所举之例,只要求写出4个即可:① ; ② ;③ ;④ ; (2)就你写出的其中的一个结论,说明其理由.B 第24题第25题26.(本题满分10分)如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E ,F 在AC 上,且BD =DF. (1)试说明:CF =EB.(2)若AE=6,CD=4,试求四边形AFDB 的面积.27.(本题满分12分)如图1和图2,∠ACB=90°,AC =BC ,BD⊥DE,AE⊥DE,垂足分别为D 、E .(1)图1中,①证明:△ACE≌△CBD;②若AE =a ,BD =b ,计算△ACB 的面积. (2)图2中,若AE =a ,BD =b ,(b>a )计算梯形ADBE 的面积.28.(本题满分12分)锐角为45o的直角三角形的两直角边长也相等,这样的三角形称为等腰直角三角形.我们常用的三角板中有一块就是这样的三角形,也可称它为等腰直角三角板.把两块全等的等腰直角三角板按如图1放置,其中边BC 、FP 均在直线l 上,边EF 与边AC 重合. (1)将△EFP 沿直线l 向左平移到图2的位置时,EP 交AC 于点Q ,连结AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(2)将△EFP 沿直线l 向左平移到图3的位置时,EP 、AC 的延长线交于点Q ,连结AP ,BQ .你认为(1)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.命题、校对:万扣明、史美芹第26题 第27题图1图2 第28题把答案直接填写在相应横线上)9. 10. 11. 12. 13. 14. 15. 16. 17. 18.三、解答题(本大题共有10小题,共96分.请在指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题满分8分) 20.(本题满分8分)(1)特征1:_________________________ _______________________;特征2:___________________ _____ _________________________. (2)21.(本题满分8分)图(2) 第19题 第21题22.(本题满分8分)23.(本题满分10分) (1)(2)24.(本题满分10分)(1)若要使EBD ACD ∆∆≌,应添上条件: ; (2)证明上题;(3) >AD .E D CBA第22题第24题25.(本题满分10分)(1)①;②;③;④;(2)26.(本题满分10分)(1)(2)27.(本题满分12分)(1) ①第25题第26题第27题② (2)28.(本题满分12分)(1)(2)图1图2第28题11 八年级数学练习参考答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在相应括号内)把答案直接填写在相应横线上)9.A 、E 、M 、U 10. 60° 11.如∠B =∠C ,AD=AE 12.55° 13.4 14.70° 15.5cm 16.②③④ 17.80° 18.7三、解答题20-21.(略) 22.64cm23. (1)方案(Ⅰ)不可行.缺少证明三角形全等的条件. 2分方案(Ⅱ)可行. 3分 证明:(略)5分(2)当∠AOB 是直角时,此方案可行. 6分∵四边形内角和为360°,又若PM ⊥OA,PN ⊥OB,∠OMP=∠ONP=90°,∠MPN=90°, ∴∠AOB=90°∵若PM ⊥OA,PN ⊥OB,且PM=PN∴OP 为∠AOB 的平分线.8分当∠AOB 不为直角时,此方案不可行. 10分24.(1)如AD=DE (3分)(2)证明略(4分)(3)1(3分)25.(1)略(4分)(2)证明略(6分)26.(1) 证明略(5分) (2)24(5分)27.(1) ① 证明略(4分)②21a 2+21b 2(4分)(2)21b 2-21a 2(4分) 28.(1) 相等、垂直(6分) (2)结论仍然成立(6分)。

八年级数学上册全套同步练习题有答案详解苏科版(新版)

八年级数学上册全套同步练习题有答案详解苏科版(新版)

等边三角形重难点易错点解析题一:题面:如图,△ABC为等边三角形,点D,E,F分别在AB,BC,CA边上,且△DEF是等边三角形,求证:△ADF≌△CFE.题二:题面:已知,在Rt△ABC中,∠C=90°,∠BAC=30°,AB=10,那么BC= .金题精讲题一:题面:如图,△ABC是等边三角形,分别延长AB至F,BC至D,CA至E,使AF=3AB,BD=3BC,CE=3CA,求证:△DEF是等边三角形.题二:题面:如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连结AE. 求证:AE∥BC.题三:题面:如图,已知:△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线交AB于E,交BC于F,DG为AC的垂直平分线,交AC于G,交BC于D,若BC=15cm,则DF长为 .题四:题面:如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP 的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为( )A.2 B.23 C.3 D.3思维拓展题面:等腰三角形的底边长为6,底边上的中线长为4,它的腰长为( )A.7 B.6 C.5 D.4课后练习详解重难点易错点解析题一:答案:见详解详解:∵△ABC为等边三角形,∴∠A=∠C=60°.∴∠ADF+∠AFD=120°.∵△DEF是等边三角形,∴∠DFE=60°,DF=EF.∴∠AFD+∠CFE=120°.∴∠ADF=∠CFE.在△ADF和△CFE中∠A=∠C,∠ADF=∠CFE,DF=EF,∴△ADF≌△CFE.题二:答案:5详解:∵在Rt△ABC中,∠C=90°,∠BAC=30°,∴BC:AB=1:2,∵AB=10,∴BC=5.金题精讲题一:答案:见详解详解:∵△ABC是等边三角形,∴∠EAF=∠FBD=∠DCE=120°.∵AB=BC=CA,AF=3AB,BD=3BC,CE=3CA,∴AF=BD=CE即AB+BF=BC+CD=CA+AE.∴AE=BF=CD,∴△AEF≌△BFD≌△DCE.∴EF=FD=DE.即△DEF是等边三角形.题二:答案:见详解详解:∵△ABC和△DEC是等边三角形,∴BC=AC,CD=CE,∠ABC=∠BCA=∠ECD=60°.∴∠BCA∠DCA=∠ECD∠DCA,即∠BCD=∠ACE.∵在△ACE和△BCD中,AC=BC,∠ACE=∠BCD,CD=CE,∴△ACE≌△BCD(SAS).∴∠EAC=∠DBC=60°=∠ACB.∴AE∥BC.题三:答案:5cm.详解:连接AF、AD,∵AB=AC,∠BAC=120°,∴∠B=∠C=(180°−∠BAC)÷2=30°,∵EF、DG分别为线段AB、AC的垂直平分线,∴BF=AF,AD=CD,∠B=∠BAF=30°,∠C=∠CAD=30°,∵∠AFD与∠ADF分别是△ABF与△ACD的外角,∴∠AFD=∠B+∠BAF=30°+30°=60°,∠ADF=∠C+∠CAD=30°+30°=60°,∴△ADF是等边三角形,∴AF=FD=AD,∵BF=AF,AD=CD,BC=15cm,∴AF=FD=AD=BF=CD,∴3DF=BC=15,∴DF=5cm.题四:答案:C.详解:∵△ABC是等边三角形,点P在∠ABC的平分线上,∴∠EBP=∠QBF=30°,∵BF=2,FQ⊥BP,∴BQ=BF•cos30°=2×3=32.∵FQ是BP的垂直平分线,∴BP=2BQ=23.在Rt△BEP中,∵∠EBP=30°,∴PE=12BP=3.故选C.思维拓展答案: C.详解:如图,△ABC中AB=AC,AD是BC边上的中线,根据等腰三角形三线合一的性质,AD⊥BC.在Rt△ABD中,B D=12×6=3,AD=4,根据勾股定理,得AB=5.故选C.等边三角形重难点易错点解析题一:题面:如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD平分∠ACB交AE于D,且∠CDE=60°.求证:△CBE为等边三角形.题二:题面:已知:如图,△ABC中,∠C=90°,学习等边三角形时,我们知道,如果∠A=30°,那么AB=2BC,由此我们猜想,如果AB=2BC,那么∠A=30°,请你利用轴对称变换,证明这个结论.金题精讲题一:题面:已知:如图,△BCE、△ACD分别是以BE、AD为斜边的直角三角形,且BE=AD,△CDE 是等边三角形.求证:△ABC是等边三角形.题二:题面:如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.题三:题面:如图,△ABC中,AB=8,AC=11,BC边上的垂直平分线分别交AC、BC于点E、D,则△ABE 的周长等于 .题四:题面:如图,△ABC是等边三角形,点D是边BC上(除B、C外)的任意一点,∠ADE=60°,且DE交△ABC外角∠ACF的平分线CE于点E.(1)求证:∠1=∠2;(2)求证:AD=DE.思维拓展题面:已知等腰△ABC中,AD⊥BC于点D,且AD=12BC,则△ABC底角的度数为( )A.45° B.75° C.45°或75° D.60°课后练习详解重难点易错点解析题一:答案:见详解详解:∵CA=CB,CE=CA,∴BC=CE,∠CAE=∠CEA,∵CD平分∠ACB交AE于D,且∠CDE=60°,∴∠ACD=∠DCB=45°,∠DAC+∠ACD=∠EDC=60°,∴∠DAC=∠CEA=15°,∴∠ACE=150°,∴∠BCE=60°,∴△CBE为等边三角形题二:答案:∠A=30°.详解:如图,延长BC至点D,使CD=BC,连接AD,则△ABC和△ADC关于直线AC成轴对称,∴AB=AD,BD=2BC,∠BAC=∠DAC,∵AB=2BC,∴AB=BD,∴AB=AD=BD,∴△ABD是等边三角形,∴∠BAD=60°,∴∠BAC=12∠BAD=12×60°=30°.金题精讲题一:答案:见详解详解:∵△CDE是等边三角形,∴EC=CD,∠1=60°.∵BE、AD都是斜边,∴∠BCE=∠ACD=90°在Rt△BCE和Rt△ACD中,EC=DC,BE=AD∴Rt△BCE≌Rt△ACD(HL).∴BC=AC.∵∠1+∠2=90°,∠3+∠2=90°,∴∠3=∠1=60°.∴△ABC是等边三角形.题二:答案:见详解详解:(1)∵△ABC是等边三角形,∴∠ABC=60°.∵∠EFB=60°,∴∠ABC=∠EFB.∴EF∥DC(内错角相等,两直线平行). ∵DC=EF,∴四边形EFCD是平行四边形.(2)连接BE.∵BF=EF,∠EFB=60°,∴△EFB是等边三角形.∴EB=EF,∠EBF=60°.∵DC=EF,∴EB=DC.∵△ABC是等边三角形,∴∠ACB=60°,AB=AC.∴∠EBF=∠ACB.∴△AEB≌△ADC(SAS).∴AE=AD.题三:答案:19.详解:∵BC边上的垂直平分线是DE,∴BE=CE,∵AB=8,AC=11,∴△ABE的周长为:AB+AE+BE=AB+AE+CE=AB+AC=8+11=19.故答案为:19.题四:答案:见详解详解:(1)∵△ABC是等边三角形,∠ADE=60°∴∠ADE=∠B=60°,∠ADC=∠2+∠ADE=∠1+∠B∴∠1=∠2.(2)如图,在AB上取一点M,使BM=BD,连接MD.∵△ABC是等边三角形∴∠B=60°∴△BMD是等边三角形,∠BMD=60°.∠AMD=120°.∵CE是△ABC外角∠ACF的平分线,∴∠ECA=60°,∠DCE=120°.∴∠AMD=∠DCE,∵BA BM=BC BD,即MA=CD.在△AMD和△DCE中∠1=∠2,AM=DC,∠AMD=∠DCE,∴△AMD≌△DCE(ASA).∴AD=DE.思维拓展答案:C.详解:根据题意画出图形,注意分别从∠BAC是顶角与∠BAC是底角去分析,然后利用等腰三角形与直角三角形的性质,即可求得答案:如图1:AB=AC,∵AD⊥BC,∴BD=CD=12BC,∠ADB=90°.∵AD=12BC,∴AD=BD. ∴∠B=45°.即此时△ABC底角的度数为45°.如图2,AC=BC,∵AD⊥BC,∴∠ADC=90°.∵AD=12BC,∴AD=12AC,∴∠C=30°.∴∠CAB=∠B=(1800-∠A)÷2=75°.即此时△ABC底角的度数为75°.综上所述,△ABC底角的度数为45°或75°.故选C.等腰三角形1重难点易错点解析题一:题面:下列命题说法中:(1)等腰三角形一定是锐角三角形(2)等腰三角形有一个外角等于120°,这一个三角形一定是等边三角形(3)等腰三角形中有一个外角为140°,那么它的底角为70°(4)等腰三角形是轴对称图形,它有3条对称轴错误的有( )个金题精讲题一:题面:如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.题二:题面:等腰三角形的顶角为80°,则它的底角是( )A.20°B.50° C.60° D.80°题三:题面:如图,在△ABC中,∠ABC和∠A CB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )A.6 B.7 C.8 D.9题四:题面:如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB 于F,且AB>AC,求证:BF=AC+AF.思维拓展题面:如图,∠MAN是一钢架,且∠MAN=18°,为了使钢架更加坚固,需在其内部添加一些钢管BC,CD,DE,…添加的钢管长度都与AB相等,则最多能添这样的钢管 .课后练习详解重难点易错点解析题一:答案:3.详解:(1)错误,三个内角分别为20°,20°,140°的等腰三角形是钝角三角形;(2)正确;(3)错误,等腰三角形中有一个外角为140°,那么它的底角为70°或40°;(4)错误,等腰三角形是轴对称图形,它有1条对称轴.错误的有3个.金题精讲题一:答案:见详解详解:(1)∵AC⊥BC,BD⊥AD,∴△ABC与△BAD是直角三角形,在△ABC和△BAD中,∵ AC=BD,AB=BA,∠ACB=∠BDA =90°,∴△ABC≌△BAD(HL).∴BC=AD.(2)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴OA=OB.∴△OAB是等腰三角形.题二:答案:B.详解:∵等腰三角形的一个顶角为80°,∴底角故选B. 题三:答案:D.详解:∵∠ABC、∠ACB的平分线相交于点E,∴∠MBE=∠EBC,∠ECN=∠ECB,∵MN∥BC,∴∠EBC=∠MEB,∠NEC=∠ECB.∴∠MBE=∠MEB,∠NEC=∠ECN.∴BM=ME,EN=CN.∴MN=ME+EN,即MN=BM+CN.∵BM+CN=9∴MN=9.故选D.题四:答案:见详解详解:过D作DN⊥AC,垂足为N,连接DB、DC,则DN=DF(角平分线性质),DB=DC(线段垂直平分线性质),又∵DF⊥AB,DN⊥AC,∴∠DFB=∠DNC=90°,在Rt△DBF和Rt△DCN中∵DB=DC,DF=DN,∴Rt△DBF≌Rt△DCN(HL)∴BF=CN,在Rt△DFA和Rt△DNA中∵AD=AD,DF=DN,∴Rt△DFA≌Rt△DNA(HL)∴AN=AF,∴BF=AC+AN=AC+AF,即BF=AF+AC.思维拓展答案:4.详解:∵BC=AB,∴∠BCA=∠A=18°,∴∠DBC=∠BCA+∠A=36°.同理,∠CDB=∠DBC=36°,∴∠DCE=∠CDB+∠A=54°,∠DEC=∠DCE=54°,∴∠FDE=∠DEC+∠A=72°,∠DFE=∠FDE=72°,∴∠FEM=∠DFE+∠A=90°.再作与AB相等的线段时,90°的角不能是底角,则最多能作出的线段是:BC、CD、DE、EF,共有4条.故答案是:4.等腰三角形2重难点易错点解析题一:题面:下列说法:①顶角相等的两个等腰三角形的底角一定相等;②底边相等的两个等腰三角形全等;③腰长相等且有一个角是20°的两个等腰三角形全等.其中正确的有 .金题精讲题一:题面:如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:(1)△ABD≌△ACD;(2)BE=CE题二:题面:如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=900,AB=AC.若∠1=20°,则∠2的度数为( )A. 25°B. 65°C. 70°D. 75°题三:题面:如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )A. 20B. 12C. 14D. 13题四:题面:如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PQ相交于点P,过点P分别作PN⊥AB于N,PM⊥AC于点M,求证:BN=CM.思维拓展题面:如图,∠AOB是一建筑钢架,∠AOB=10°,为使钢架更加稳固,需在内部添加一些钢管EF、FG、GH、HI、IJ,添加钢管的长度都与OE相等,则∠BIJ= .课后练习详解重难点易错点解析题一:答案:①.详解:①两个等腰三角形的顶角相等,根据三角形内角和定理可知底角一定相等,故是正确的;②底边相等的两个等腰三角形,不满足两个三角形全等的条件,故是错误的;③腰长相等且有一个角是20°的两个等腰三角形,不满足两个三角形全等的条件,故是错误的.故答案为:①.金题精讲题一:答案:见详解详解:(1)∵D是BC的中点,∴BD=CD.在△ABD和△ACD中,∵BD=CD,AB=AC,AD=AD(公共边),∴△ABC≌△ACD(SSS).(2)由(1)知△ABD≌△ACD,∴∠BAD=∠CAD,即∠BAE=∠CAE. 在△ABE和△ACE中,∵AB=AC,∠BAE=∠CAD,AE=AE,∴△ABE≌△ACE(SAS).∴BE=CE(全等三角形的对应边相等). 题二:答案:B.详解:∵∠BAC=90°,AB=AC,∴∠ACB=45°.∵∠1=20°,∴∠ACB+∠1=65°.又∵a∥b,∴∠2=∠ACB+∠1=65°.故选B.题三:答案:C.详解:∵AB=AC,AD平分∠BAC,BC=8,∴根据等腰三角形三线合一的性质得AD⊥BC,C D=BD=12BC=4.∵点E为AC的中点,∴根据直角三角形斜边上的中线等于斜边的一半得DE=CE=12AC=5.∴△CDE的周长=CD+DE+CE=4+5+5=14.故选C. 题四:答案:见详解详解:连接PB,PC,∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,∴PM=PN,∠PMC=∠PNB=90°,∵P在BC的垂直平分线上,∴PC=PB,在Rt△PMC和Rt△PNB中PC=PB,PM=PN,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.思维拓展答案:60°.详解:∵OE=EF=FG=GH=HI=IJ,∴∠1=∠AOB=10°,∠2=∠3,∠4=∠5,∠6=∠7,∠8=∠9,∴∠2=∠O+∠1=20°=∠3,∴∠4=∠O+∠3=30°=∠5,∠6=∠O+∠5=40°=∠7,∠8=∠O+∠7=50°=∠9,∠BIJ=∠O+∠9=60°角平分线的性质与判定1重难点易错点解析题一:题面:如图,PC、PB是∠ACB、∠ABC的平分线,∠A=40°,∠BPC= .金题精讲题一:题面:如图,OB、OC分别平分∠ABC与∠ACB,MN∥BC,若AB=24,AC=36,则△AMN的周长是.题二:题面:如图,在△ABC中,AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,AD与EF相交于点O.求证:AD⊥EF.题三:题面:如图,四边形ABCD中,BC=DC,对角线AC平分∠BAD,且AB=21,AD=9,BC=D C=10,求AC的长.思维拓展题面:如图,△ABC中,AB=AC,∠B的平分线交AC于D,且BC=BD=AD,则CD BC的值为.课后练习详解重难点易错点解析题一:答案:110°.详解:∵∠A=40°,∴∠ABC+∠ACB,又∵BP平分∠ABC,CP平分∠ACB,∴∠PCB=12∠ACB,∠PBC=12∠ABC,∴∠PBC+∠PCB=12(∠ABC+∠ACB)=12×140°=70°,∴∠BPC=180°(∠PBC+∠PCB)=110°.金题精讲题一:答案:60.详解:∵OB平分∠ABC,∴∠ABO=∠OBC,∵MN∥BC,∴∠OBC=BOM,∴∠ABO=∠BOM,∴BM=OM,同理可得CN=ON,∴△AMN的周长=AM+MO+ON+AN=AM+BM+CN+AN=AB+AC,∵AB=24,AC=36,∴△AMN的周长=24+36=60.题二:答案:AD⊥EF.详解:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠EDO=∠FDO,在△DEF中,DE=DF,∠EDO=∠FDO,∴DO⊥EF,∴AD⊥EF.题三:答案:AC长为17.详解:过C作CE⊥AB,延长AD作CF⊥AD,∴∠CEA=90°,∠CFD=90°,∵AC平分∠BAD,∴CF=CE(角平分线上的点到角的两边的距离相等),又∵BC=DC,∴△CFD≌△CEB(HL),∴DF =EB ,同理可得△ACF ≌△ACE ,∴AF =AE ,∴AD +DF =AB BE ,即9+DF BE ,解得DF =BE =6,由勾股定理得,AC =22222222==15106AF CF AF CD DF ++-+-=17.答:AC 长为17.思维拓展 答案:152-+ 详解:设==CD CDxBC AD ,∵AB=AC ,∴∠ABC=∠ACB ,∵BC=BD=AD ,BD 平分∠ABC ,∴∠A=∠ABD=∠DBC ,∠C=∠BDC=∠ABC , ∴∠ABC=2∠A ,∠C=2∠A ,∴∠A=∠ABD=∠DBC=36°,∠C=∠BDC=∠ABC=72°, ∵∠ABC=∠C=∠BDC ,∴△BCD ∽△ABC . ∴BC ACCDBC =, 又BC=BD=AD ,∴AD2=AC•DC.∵AD2=AC•DC,==CDCDxBC AD ,AC=AD+CD ,∴AD2=(AD+CD)•CD,AD2=(AD+x•AD )•x•AD,x(1+x)=1,,x=152-±(负值舍去).即x=152-+.角平分线的性质与判定2重难点易错点解析题一:题面:如图,PB、PC分别是△ABC的外角平分线,它们相交于点P,求证:点P在∠A的平分线上.金题精讲题一:题面:已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若BC=16cm,则△ODE的周长是多少cm?题二:题面:如图,已知AD是△ABC的角∠BAC的角平分线,DF垂直AB于F,DE垂直AC于E,求证:AE=AF,AD平分∠EDF.题三:题面:如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于E,AD+AB=2AE.求证:∠B+∠ADC=180°.思维拓展题面:如图,已知△ABC中,∠BAC:∠ABC:∠ACB=4:2:1,AD是∠BAC的平分线.求证:AD=AC AB.课后练习详解重难点易错点解析题一:答案:点P在∠A的平分线上.详解:作PM⊥AC于M,PN⊥BC于N,PE⊥AB于E,∵PB、PC分别是△ABC的外角平分线,∴PM=PN,PN=PE,∴PM=PE,∵PM⊥AC,PE⊥AB,∴点P在∠A的平分线上.金题精讲题一:答案:16cm.详解:∵OC、OB分别是∠ACB、∠ABC的角平分线,∴∠5=∠6,∠1=∠2,∵OD∥AB,OE∥AC,∴∠4=∠6,∠1=∠3.∴∠4=∠5,∠2=∠3,OD=BD,OE=CE.∵BC=16cm,∴△ODE的周长=OD+DE+OE=BD+DE+CE=BC=16cm.题二:答案:AE=AF.AD平分∠EDF.详解:∵DF⊥AB,DE⊥AC,∴∠AFD=∠AED=90°,∵AD是∠BAC的角平分线,∴∠EAD=∠FAD,∵∠EAD+∠AED+∠ADE=180°,∠DAF+∠AFD+∠ADF=180°,∴∠ADE=∠ADF,即AD平分∠EDF,∴AE=AF.题三:答案:∠B+∠ADC=180°.详解:延长AD,过C作CF垂直AD的延长线于点F,∵AC平分∠BAD,∴∠FAC=∠EAC,∵CE⊥AB,CF⊥AD,∴∠DFC=∠CEB=90°,∴△AFC≌△AEC,∴AF=AE,CF=CE,∵2AE=AB+AD,又∵AD=AF DF,AB=AE+BE,AF=AE,∴2AE=AE+BE+AE DF,∴BE=DF,∵∠DFC=∠CEB=90°,CF=CE,∴△CDF≌△CEB,∴∠ABC=∠CDF,∵∠ADC+∠CDF=180°,∴∠B+∠ADC=180°.思维拓展答案:AD=AC AB.详解:在AC上截取AE=AB,连DE,如图,设∠C=x,∵∠BAC:∠ABC:∠ACB=4:2:1,∴∠BAC=4x,∠B=2x,∵AD是∠BAC的平分线,∴∠3=∠4=2x,∵在△ABD 和△AED 中,AB =A E ,∠3=∠4,AD =AD ,∴△ABD ≌△AED (SAS ),∴∠B =∠1=2x ,∴∠1=∠4,∴DA =DE ,∵∠1=∠2+∠C ,∠C =x ,∴∠2=2x x =x ,即∠2=∠C ,∴ED =EC ,∴DA =EC ,∴AC =AE +EC =AB +AD , 即AD =AC AB .立方根与实数1 题一:有如下命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是1或0,其中错误的是( )A .①②③B .①②④C .②③④D .①③④题二:下列说法:①无限小数都是无理数;②无理数都是无限小数;③带根号的数都是无理数;④所有有理数都可以用数轴上的点表示;⑤数轴上所有点都表示有理数;⑥所有实数都可以用数轴上的点表示;⑦数轴上所有的点都表示实数,其中正确的有 .题三:若|a b +2|与1a b +-互为相反数,求22a +2b 的立方根.题四:已知一个铜质的五棱柱的底面积为16cm 2,高为4cm ,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是_____.题五:把下列各数分别填在相应的括号内:3323.14,,9,25, 3.131131113,27,12,0,2,1,300%35π------整数{ …};分数{ …};无理数{ …}.题六:按要求分别写出一个大于8且小于9的无理数:(1)用一个平方根表示:;(2)用一个立方根表示:;(3)用含π的式子表示:;(4)用构造的方法表示:.题七:下面4种说法:①两个无理数的差一定是无理数;②两个无理数的商一定是无理数;③一个无理数与一个有理数的差仍是无理数;④一个无理数与一个有理数的积仍是无理数.其中,正确的说法个数为( )A.1 B.2 C.3 D.4立方根与实数 课后练习参考答案题一: B . 详解:①负数有立方根,故错误;②一个实数的立方根是正数、0、负数,故错误;③一个正数或负数的立方根与这个数同号,故正确;④如果一个数的立方根是这个数本身,那么这个数是±1或0,故错误.故选B .题二: ②④⑥⑦.详解:∵无限不循环小数小数是无理数,无限循环小数是有理数,∴①错误;∵无理数都是无限小数正确,∴②正确; ∵如4=2,4是有理数,不是无理数,∴③错误;∵所有有理数和无理数都可以用数轴上的点表示,∴④正确;∵数轴上所有点都表示实数,∴⑤错误;∵所有实数都可以用数轴上的点表示正确,∴⑥正确;∵数轴上所有的点都表示实数正确,∴⑦正确; 即正确的有②④⑥⑦.题三: 2.详解:∵|ab +2|与1a b +-互为相反数, ∴|a b +2|+1a b +-=0,∴a −b +2=0,a +b −1=0,解得a =12-,b =32, ∴22a +2b =22×(12-)+2×32= 11+3= 8, ∵(2)3= 8,∴22a +2b 的立方根是2.题四: 4cm .详解:∵铜质的五棱柱的底面积为16cm 2,高为4cm ,∴铜质的五棱柱的体积V =16×4=64cm 3,设熔化后铸成一个正方体的铜块的棱长为a cm ,则a 3=64,解得a =4cm . 题五: 见详解. 详解:整数{39,27,0,2,300%---…};分数{23.14, 3.131131113,15--…}; 无理数{3,25,123π-…}.题六: (1)66;(2)3555;(3)5+π;(4)8.248372147284….详解:根据8=64,9=81写出64与81之间的一个数即可;根据8=3512,9=3729,写出3512与3729之间的一个数即可;根据π的值,写出符合条件的数即可;根据无理数的定义写出一个无规律的数即可.故答案为:(1)66;(2)3555;(3)5+π;(4)8.248372147284….题七: A . 详解:①两个无理数的差一定是无理数,错误,如:220-=; ②两个无理数的商一定是无理数,错误,如:313=;③一个无理数与一个有理数的差仍是无理数,正确;④一个无理数与一个有理数的积仍是无理数,错误,例如:2×0=0.则其中正确的有1个.故选A .立方根与实数2题一:有如下命题:①无理数就是开方开不尽的数;②一个实数的立方根不是正数就是负数;③无理数包括正无理数,0,负无理数;④如果一个数的立方根是这个数本身,那么这个数是l 或0.其中错误的个数是( )A .1B .2C .3D .4题二:下列说法中,正确的有( )个(1)无限小数都是无理数; (2)无理数都是无限小数;(3)正实数包括正有理数和正无理数; (4)实数可以分为正实数和负实数两类.A .1B .2C .3D .4题三:若8a +与(b 27)2互为相反数,求33a b -的立方根.题四:一块棱长6m 的正方体钢坯,重新溶铸成一个横截面积18m 2的长方体钢坯,铸成的长方体钢坯有多长?题五:把下列各数分别填在相应的括号内:32514 3.142 3.1,0,1.410,211,,43612π---⨯-,,,,, 整数{ …};分数{ …};无理数{ …}.题六:按要求分别写出一个大于4且小于5的无理数:(1)用一个平方根表示:;(2)用一个立方根表示:;(3)用含π的式子表示:;(4)用构造的方法表示:.题七:关于无理数,有下列说法:①2个无理数之和可以是有理数;②2个无理数之积可以是有理数;③开方开不尽的数是无理数;④无理数的平方一定是有理数;⑤无理数一定是无限不循环小数.其中,正确的说法个数为( )A.1 B.2 C.3 D.4立方根与实数课后练习参考答案题一:D.详解:①开方开不尽的数是无理数,但无理数就是开方开不尽的数是错误的,故①错误;②一个实数的立方根不是正数就是负数,还可能包括0,故②错误;③无理数包括正无理数,0,负无理数,不包括0,故③错误;④如果一个数的立方根是这个数本身,那么这个数是l或0,这个数还可能是-1,故④错误.故选D.题二:B.详解:(1)无限不循环小数是无理数,故本小题错误;(2)符合无理数的定义,故本小题正确;(3)符合实数的分类,故本小题正确;(4)实数分正实数、负实数和0,故本小题错误.故选B.-.题三:35a+与(b27)2互为相反数,详解:∵8a++(b27)2 =0,∴8a+≥0,(b27)2≥0,而8a+=0,(b27)2=0,∴8∴a= 8,b=27,∴33a b -= 23= 5. ∴33a b -的立方根为35-.题四: 12m . 详解:根据题意,得6×6×6÷18=216÷18=12(m),答:锻成的钢材长12m .题五: 见详解. 详解:整数{3140,1.410,211,4-⨯-,,…};分数{25 3.14 3.1361-,,…}; 无理数{22π-,…}. 题六: (1)17;(2)367;(3)1+π;(4)4.1234567895432867….详解:根据4=16,5=25写出16与25之间的一个数即可;根据8=364,9=3125,写出364与3125之间的一个数即可;根据π的值,写出符合条件的数即可;根据无理数的定义写出一个无规律的数即可.故答案为:(1)17;(2)367;(3)1+π;(4)4.1234567895432867….题七: D .详解:①2个无理数之和可以是有理数,如2(32)3+-=,本选项正确,②2个无理数之积可以是有理数,如(32)(32)1+-=,本选项正确, ③开方开不尽的数是无理数,本选项正确,④无理数的平方一定是有理数,如2π:本选项错误,⑤无理数一定是无限不循环小数,本选项正确,故选D .平方根与算术平方根1 题一:25的平方根是 .题二:已知()b a c 23240-+-+-=,求a b c -+的值.题三:()27-的平方根是 . 题四:已知a 、b 、c 满足b a 4=-,ab c 4=+,求a +b +c 的值.题五:已知一个正数的平方根分别是a 和2a +3,求这个正数.题六:已知 1.7201 1.311≈,17.201 4.147≈,求0.0017201-的值是多少?题七:解方程:2(x +2)2+2=4.平方根与算术平方根 课后练习参考答案题一: 5±. 详解:∵25=5,∴5的平方根是5±.故25的平方根是5±.题二: 3. 详解:∵()b a c 23240-+-+-=∴a 2=0,b 3=0,c4=0, ∴a =2,b =3,c =4. ∴a b c -+=234-+=3.题三: 7±. 详解:∵()277-=,∴7的平方根是7±.故()27-的平方根是7±.题四: 8. 详解:∵ab a b c 4=⨯=+, 把b a 4=-代入上式得:a a c (4)4⨯-=+,a a c 44--=,a c 2(2)--=,根据开方的结果都为非负数,可得c =0,a =4,把a =4代入得b =4,所以a +b +c =8.题五: 81.详解:由题意得,a +2a +3=0,解得a = 6,则3a =9,故这个正数为81.题六: 0.04147-.详解:∵ 1.7201 1.311≈,17.201 4.147≈,∴0.00172010.04147-≈-.题七:1,3.详解:等式两边同时减去2,得2(x +2)2=2,等式两边同时除于2,得(x +2)2=1,则x +2=1或x +2= 1,解得x = 1或x = 3.平方根与算术平方根2题一:43的平方根是 .题二:已知a 、b 、c 满足()b a c 258180-+-+-=,求a 、b 、c 的值. 题三:()49-的平方根是 .题四:已知实数a 、b 满足:a b b 2=---,求a b 的值. 题五:若一个正数的平方根分别为3a +1和a ,求这个正数.题六:已知54.037.35≈,求54030000的值是多少?题七:解方程:3(x +2)2+6=33.平方根与算术平方根课后练习参考答案 题一: ±8.详解:∵43=64, 而8或的平方等于64,∴43的平方根是±8.题二: 22,5,32. 详解:由题意得,b 50-=,a 80-=,c 180-=, 解得a 822==,b 5=,c 1832==.题三: 9±.详解:∵()4981-=,∴81的平方根是9±.故()49-的平方根是9±. 题四: 1.详解:∵b 中,b ≥0,b -中,b ≥0,即b ≤0,∴b =0,a = 2,∴a b =(2)0=1.题五: 196.详解:3a a =0,解得a = 5,则3a +1=3×(5)+1=-14,故这个正数为(14)2 =196. 题六: 7350. 详解:∵54.037.35≈, ∴5403000054.0310000007.3510007350=⨯≈⨯=.题七: 1,5.详解:等式两边同时减去6,得3(x +2)2=27,等式两边同时除于3,得(x +2)2=9,则x +2=3或x +2= 3,解得x =1或x = 5.平面直角坐系 题一:在平面直角坐标系中,对于点P (2,5),下列说法错误的是( )A .P (2,5)表示这个点在平面内的位置B .点P 的纵坐标是5C .它与点(5,2)表示同一个点D .点P 到x 轴的距离是5题二:学完了“平面直角坐标系”后,贝贝同学在笔记本上写了下列一些体会:①如果一个点的横,纵坐标都为零,则这个点是原点;②如果一个点在x轴上,那它一定不属于任何象限;③纵轴上的点的横坐标均相等,且都等于零;④纵坐标相同的点,分布在平行于y轴的某条直线上.其中你认为正确的有______(把正确的序号填在横线上).题三:在平面直角坐标系中,下列各点位于第四象限的是( )A.(2,3) B.(2,1) C.(2,3) D.(3,2)题四:在平面直角坐标系中,点,3)所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限题五:(1)已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是;(2)若(x y1)2+|3x+2y1|=0,则点P(x,y)在第象限;(3)如果点M(a,b)在第二象限,那么点N(b,a)在第象限.题六:(1)如果P(m+3,2m+4)在y轴上,那么点P的坐标是;(2)在平面直角坐标系中,如果mn>0,那么点(m,|n|)一定在第象限;(3)如果点(a,b)在第二象限,那么a,b)在第象限.题七:将平面直角坐标系内某个图形各点的横坐标都乘以-1,纵坐标不变,所得图形与原图形的关系是( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.两图形重合题八:将点(0,0),(5,4),(3,0),(5,1),(5,,(3,0),(4,,(0,0),在下面的平面直角坐标系A中描出,并将点顺次连接.做如下变化:(对以下问题请将图形代码填入相应的括号内)(1)横坐标保持不变,纵坐标分别乘以1,再将所得的点用线段依次连接起来,所得的图案是________;(2)纵坐标保持不变,横坐标分别加3,再将所得的点用线段依次连接起来,所得的图案是_______.题九:如图所示,若在某棋盘上建立直角坐标系,使“将”位于点(1,,“象”位于点(3,,则“炮”位于点( )A.(1,3) B.(2,1)C.(2,2) D.(1,2)题十:如图是某学校的平面示意图,在8×8的正方形网格中,如果实验楼所在位置的坐标为,.(1)请画出符合题意的平面直角坐标系;(2)在(1)的平面直角坐标系内表示下列位置:旗杆_____,校门_____,图书馆_____,教学楼______.题十一:(1)已知点P(3a8,a1),若点P在y轴上,则点P的坐标为______;(2)已知点M(2x3,3x)在第一象限的角平分线上,则M坐标为______.题十二:(1)已知P点坐标为(2a+1,a3),点P在x轴上,则点P的坐标为______;(2)已知点P(2m5,m1),当m=______时,点P在二、四象限的角平分线上.题十三:(1)若P(a+2,a1)在y轴上,则点P的坐标是______;(2)点P(2m1,m1)在第三象限,则整数m=______,此时点P到x轴距离为______.题十四:(1)已知P点在第三象限,且到x轴距离是2,到y轴距离是3,则P点的坐标是______;(2)已知点A(1,2a+2)到x轴的距离是到y轴距离的2倍,则a的值为______.题十五:如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序实数对(p,q)是点M的“距离坐标”.根据上述定义,有以下几个结论:①“距离坐标”是(0,1)的点有1个;②“距离坐标”是(5,6)的点有4个;③“距离坐标”是(a,a)(a为非负实数)的点有4个.其中正确的有( )A.0 B.1 C.2 D.3题十六:某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第n 棵树种植在点P n (x n ,y n )处,其中x 1=1,y 1=1,当n ≥2时,111215([][])5512[][]55n n n n n n x x n n y y ----⎧=+--⎪⎪⎨--⎪=+-⎪⎩,[a ]表示非负实数a 的整数部分,例如[2.6]=2,[0.2]=0.按此方案,第2009棵树种植点的坐标为( )A .(4,2010)B .(5,2009)C .(4,402)D .(5,401)平面直角坐系课后练习参考答案题一:C.详解:根据点P(2,5),可知:A.P(2,5)表示这个点在平面内的位置,故此选项错误;B.点P的纵坐标是5,故此选项错误;C.它与点(5,2)表示的不是同一个点,故此选项正确;D.点P到x轴的距离是5,故此选项错误.故选:C.题二:①②③.详解:①说法是正确的,这是原点的特点.②x轴上的点不属于任何象限,这是平面直角坐标系的特点,正确.③纵轴上的点的横坐标都为0,而0既不是正数,也不是负数,正确.④纵坐标相同的点,分布在平行于x轴的某条直线或者就是x轴,故④错误.题三:C.详解:第四象限点的坐标特点为横坐标为正,纵坐标为负,只有选项C符合条件,故选C.题四:B.详解:∵点,3)的横坐标是负数,纵坐标是正数,∴点在平面直角坐标系的第二象限,故选B.题五:(1)(3,4);(2)四;(3)四.详解:(1)∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4);(2)∵(x y1)2+|3x+2y1|=0,∴x−y−1=0,3x+2y−1=0,解得x=0.6,y= 0.4,∴点P(x,y)在第四象限;(3)∵点M(a,b)在第二象限,∴a<0,b>0,∴点N(b,a)的坐标符号是(+,,∴点N(b,a)在第四象限.题六:(1)(0,;(2)一、二;(3)一.详解:(1)∵P(m+3,2m+4)在y轴上,∴m+3=0,解得m= 3,2m+4= 2,∴点P的坐标是(0,;(2)∵mn>0,∴m和n同号,当m和n都是正数时,m>0,|n|>0,则点在第一象限,当m,n都是负数时,m<0,|n|>0,则这个点在第二象限,∴点(m,|n|)一定在第一象限或第二象限;(3)点(a,b)在第二象限,则a<0,b>0,那么a,b)中,a>0,b>0,故a,b)在第一象限.题七:B.详解:由题意得:两个图形中对应两点的纵坐标相同,横坐标互为相反数,则这两点关于y 轴对称,那么所在的图形关于y轴对称,故选B.题八:见详解.详解:根据题意在平面直角坐标系A描出的图案如下图;(1)所得到图案为B;(2)所得到的图案为C.题九:B.详解:以“将”位于点(1,为基准点,则“炮”位于点,,即,1).故选B.题十:见详解.详解:(1)建立平面直角坐标系如图所示;(2)旗杆:(0,0),校门:,0),图书馆:,3),教学楼:,2).题十一:(1)(0,53);(2)(1,1).详解:(1)∵点P(3a8,a1)在y轴上,∴3a8=0,解得a=83,∴a1=831=53,点P的坐标为(0,53);(2)∵点M(2x3,3x)在第一象限的角平分线上,∴2x3=3x,∴x=2,∴2x3=2×23=1,∴点M的坐标为(1,1).题十二:(1)(7,0);(2)2.详解:(1)点P在x轴上则其纵坐标是0,即a3=0,a=3,则点P的坐标为(7,0);(2)∵点P在第二、四象限的夹角角平分线上,∴2m5+(m1)=0,解得:m=2.题十三:(1)(0,;(2)0,1.详解:(1)∵P(a+2,a1)在y轴上,∴a+2=0,解得a= 2,∴点P的坐标是 (0,;(2)∵点P(2m1,m1)在第三象限,∴2m1<0,m1<0,解得1<m<0.5,∴整数m=0,∴点P的坐标为,,∴此时点p到x轴距离为|1|=1.题十四:(1),;(2)0或2.详解:(1)∵第三象限内点的横坐标<0,纵坐标<0,点P到x轴的距离是2,到y轴的距离为3,∴点P的纵坐标为,横坐标为,因而点P的坐标是,;(2)∵点A(1,2a+2)到x轴的距离是到y轴距离的2倍,∴|2a+2|=2×1,∴2a+2=2或2a+2= 2,解得a=0或a= 2.题十五:B.详解:如上图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序非负数实数对(p、q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列两个结论:(Ⅰ)若pq≠0,则“距离坐标”为(p、q)的点有且仅有4个;(Ⅱ)若pq=0,且p+q≠0.①p=0,q=1,则“距离坐标”为(0,1)的点有且仅有2个;故此选项①“距离坐标”是(0,1)的点有1个错误;②得出(5,6)是与l1距离是5的点是与之平行的两条直线与l2的距离是6的也是与之平行的两条直线,这四条直线共有4个交点.所以此选项正确;③易知若a=0,坐标点在l1与l2的交点上,所以只有1个这样的点,故此选项错误;故正确的有1个;故选B.题十六:C.详解:当n=1时,P1=(1,1);当2≤n≤5时,P2,P3,P4,P5的坐标分别为(2,1)、(3,1)、(4,1)、(5,1);当n=6时,P6=(1,2);当7≤n≤10时,P7,P8,P9,P10的坐标分别为(2,2)、(3,2)、(4,2)、(5,2);当n=11时,P11=(1,3);当12≤n≤15时,P12,P13,P14,P15的坐标分别为(2,3)、(3,3)、(4,3)、(5,3)…通过以上数据可以得出:当n=1+5x时,P n的坐标为(1,x+1),而后面四个点的纵坐标均为x+1,横坐标则分别为2,3,4,5.因为2009=1+5×401+3,所以P2009的横坐标为4,纵坐标为402.故本题选C.全等三角形的多次判定题一:如图,已知△ABC中,∠ACB=90°,AC=BC,D为AC上一点,延长BC到E,使得CE=CD.求证:BD⊥AE.题二:如图,BD是∠ABC的平分线,AB=BC,点E在BD上,连接AE、CE,作DF⊥AE、DG⊥CE,垂足分别是F、G,求证:DF=DG.题三:如图,已知AB=AD,点E、F分别是CD、BC的中点,BF=CE,求证:AE=AF.。

八年级数学上册第8讲全等三角形综合课后练习新版苏科版

八年级数学上册第8讲全等三角形综合课后练习新版苏科版

第8讲 全等三角形综合题一: 如图,已知∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是( ).A 、AB =ACB 、BD =CDC 、∠B =∠CD 、∠BDA =∠CDA题二: 在△ABC 中,AB >AC ,点D 、E 分别是边AB 、AC 的中点,点F 在BC 边上,连接DE ,DF ,EF ,则添加下列哪一个条件后,仍无法判定△BFD 与△EDF 全等( ).A 、EF ∥AB B 、BF =CFC 、∠A =∠DFED 、∠B =∠DEF题三: 如图所示,AB = AC ,要说明△ADC ≌△AEB ,需添加的条件不能是( ).A .∠B =∠C B .AD = AE C .∠ADC =∠AEB D .DC = BE题四: 如图,已知,,点A 、D 、B 、F 在一条直线上,要使△≌△,还需添加一.个.条件,这个条件可以是.题五: 如图,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ).B AC DBEFA 、△ACE ≌△BCDB 、△BGC ≌△AFCC 、△DCG ≌△ECFD 、△ADB ≌△CEA题六: 如图,在△ABC 中,AB =AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ;②△BAD ≌△BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ;上述结论一定正确的是( ).A .①②③B .②③④C .①③⑤D .①③④题七: 如图,已知AB=AC ,AD=AE ,求证BD=CE .题八: 如图,点A 、E 、B 、D 在同一条直线上,AE =DB ,AC =DF ,AC ∥DF .请探索BC 与EF 有怎样的位置关系?并说明理由. A C E DB。

苏科版八年级数学上册平面直角坐标系单元测试卷8

苏科版八年级数学上册平面直角坐标系单元测试卷8

苏科版八年级数学上册平面直角坐标系单元测试卷8一、选择题(共10小题;共50分)1. 若点与点关于轴对称,则,的值分别是, B. ,, D. ,2. 全英羽毛球公开赛混双决赛,中国组合鲁恺/黄雅琼,对阵马来西亚里约奥运亚军陈炳顺/吴柳萤,鲁恺/黄雅琼两名小将的完美配合结果获胜.如图是羽毛球场地示意图,轴平行于场地的中线,轴平行于场地的球网线,设定鲁恺的坐标是,黄雅琼的坐标是,则坐标原点为A. B. C. D.3. 平面直角坐标系内,点一定不在A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第步向右走个单位,第步向右走个单位,第步向上走个单位,第步向右走个单位依此类推,第步的走法是:当能被整除时,则向上走个单位;当被除,余数为时,则向右走个单位;当被除,余数为时,则向右走个单位,当走完第步时,棋子所处位置的坐标是A. B. C. D.5. 在国外留学的叔叔送给聪聪一个新奇的玩具——智能流氓兔.它的新奇之处在于若第一次向正南跳一下,第二次就掉头向正北跳两下,第三次又掉头向正南跳三下……而且每一跳的距离为 .如果流氓兔位于原点处,第一次向正南跳(记轴正半轴方向为正北,个单位为),那么跳完第次后,流氓兔所在位置的坐标为A. B. C. D.6. 如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话记录,若下列有一种走法能从邮局出发走到小杰家,则此走法为A. 向北直走米,再向西直走米B. 向北直走米,再向东直走米C. 向北直走米,再向西直走米D. 向北直走米,再向东直走米7. 一只跳蚤在第一象限及轴、轴上跳动,在第一秒钟,它从原点跳动到,然后接着按图中箭头所示方向跳动 [ 即 ],且每秒跳动一个单位,那么第秒时跳蚤所在位置的坐标是A. B. C. D.8. 如图所示,等边三角形的边长依次为,,,,其中,,,,,,按此规律下去,则的坐标为A. B.C. D.9. 如图,直线与轴、轴分别交于,两点,把绕点顺时针旋转后得到,则点的坐标是A. B.D.10. 在某台风多影响地区,有互相垂直的两条主干线,以这两条主干线为轴建立直角坐标系,单位长为万米.最近一次台风的中心位置是,其影响范围的半径是万米,则下列四个位置中受到了台风影响的是A. B. C. D.二、填空题(共6小题;共31分)11. 如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点,“炮”位于点,写出“兵”所在位置的坐标.12. 如图所示,马戏团的位置用表示.(1)喷泉的位置用(,)表示,假山的位置用(,)表示;(2)有序数对表示的位置,表示的位置.13. 写出一个第二象限内的点的坐标:.14. 在平面直角坐标系中,已知,,点在轴上,的面积是,则点的坐标是.15. 五子棋的比赛规则是一人执黑子,一人执白子,两人轮流出棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋所在点的坐标是,黑棋所在点的坐标是,现在轮到黑棋走,黑棋放到点的位置就获得胜利,点的坐标是.16. 如图,在直角坐标系中,第一次将变换成,第二次将变换成,第三次将变换成,依此类推,已知,,,,,,(1)观察每次变化后的三角形,找出规律,按此规律再将变换成,则的坐标为,的坐标为;(2)若按上述规律,将进行次变换,得,比较每次变换三角形顶点的变化规律,探索顶点的坐标为,顶点的坐标为.三、解答题(共8小题;共104分)17. 写出如图直角坐标平面内各点的坐标.,,,,,18. 已知:三角形平移后得三角形,点平移后得,又已知,,求,点的坐标,画图并说明经过了怎样的平移.19. (1)已知点在轴上,求点的坐标.(2)已知两点,,若轴,求的值,并确定的取值范围.20. 如图是某市部分地点的简图,已知文化宫在区,火车站在区.(1)将,,,,及,,,,分别填入相应的括号中.(2)在区有一商场,请在图中标出商场的位置.21. 某村过去是一个缺水的村庄,由于兴修水利,现在家家户户都用上自来水.据村委会主任徐伯伯讲,以前全村多户人家只有五口水井:第一口在村委会的院子里,第二口在村委会北偏东方向处,第三口在村委会正西方向处,第四口在村委会东南方向处,第五口在村委会正南方向处.请你根据徐伯伯的话,和同学们一起讨论,画图表示这个村庄五口水井的位置.22. 已知:三角形在如图所示的网格中.()将三角形的各条边按放大,得到三角形,请在网格中画出三角形;()将()中画出的三角形的各条边按缩小,得到三角形,请在网格中画出三角形.23. 如图,在边长为的正方形网格中,的顶点均在格点上,建立平面直角坐标系后,点的坐标为,点的坐标为.(1)画出绕点逆时针旋转后得到的.(2)画出关于原点对称的.24. 在数轴上,已知在纸面上有一数轴(如图),折叠纸面.(1)若表示的点与表示的点重合,则表示的点与何数表示的点重合.(2)若表示的点与表示的点重合,表示的点与何数表示的点重合.(3)将表示的点与表示的点之间的线段折叠次,展开后,请写出所有的折点表示的数.答案第一部分1. C2. B3. C4. C5. C【解析】用“”表示正南方向,用“”表示正北方向.根据题意,得流氓兔最后所在位置的坐标为.6. A7. B8. A ,由规律可知,是第个等边三角形的第个顶点,在第四象限内,坐标为,,则横坐标为,纵坐标绝对值,因为在第四象限,所以纵坐标为:,所以坐标为.9. B10. B第二部分【解析】建立平面直角坐标系如图,兵的坐标为.12. ,,,,游戏车,九曲桥答案不唯一14. 或【解析】设点的坐标为,则的,解得或的坐标为或.15.16. ,,,【解析】,,,纵坐标不变为,横坐标都和有关,为,;,,,纵坐标不变,为,横坐标都和有关为,.第三部分17. ;;;18. ,左移个单位,下移个单位,,.19. (1)点在轴上,,即,,点的坐标为.(2)点,,且轴,, .20. (1)横排括号内从左到右依次填,,,,;竖排括号内由下往上依次填,,,,.(2)略.21. 以村委会为原点,正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,口井的位置如图所示.22. ()如图所示,三角形即为所求;()如图所示,三角形即为所求.23. (1)如图所示,即为所求.(2)如图所示,即为所求.24. (1)折点为,,第11页(共11 页) 与重合.(2) 折点为, ,与 重合. (3) 第一次折点为,和,综上:有和。

苏科版八年级数学上册全等三角形全章练习.docx

苏科版八年级数学上册全等三角形全章练习.docx

BA A ′B ′ O C初中数学试卷 鼎尚图文**整理制作全等三角形全章练习1.如图所示,△AB C ≌△ADE ,BC 的延长线过点E ,∠ACB=∠AED=105°,∠CAD=10°, ∠B=50°,求∠DEF 的度数 。

2.如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转52°得到△A ′OB ′边A ′B ′与边OB 交于点C (A ′不在OB 上),则∠A ′CO 的度数为 。

3.如图所示,在△ABC 中,∠A=90°,D,E 分别是AC,BC 上的点,若△ADB ≌△EDB ≌△EDC,则∠C 的度数是 。

4.如图所示,把△ABC 绕点C 顺时针旋转35°,得到△A ′B ′C,A ′B ′交AC 于点D , 若∠A ′DC=90°,则∠A= 。

D E C B AA BCF D E5.如图,在梯形ABCD 中,AD ∥BC ,AB=DC,AC=DB ,已知∠ABC=60°,求∠ADC 的度数。

6.已知,如图所示,AB=AC,AD ⊥BC 于D,且AB+AC+BC=50cm,而AB+BD+AD=40cm,则AD= .7.如图,Rt △ABC 中,∠BAC=90°,AB=AC,分别过点B ,C,作过点A 的直线的垂线BD,CE,垂足为D,E ,若BD=3,CE=2,则DE= .8.如图,AD 是△ABC 的角平分线,DE ⊥AB,DF ⊥AC,垂足分别是E,F ,连接EF,交AD 于G,AD 与EF 垂直吗?证明你的结论。

D A ECBA B DCB A DC B ' DA 'CB A9.如图,已知△ABC 中,延长AC 边上的中线BE 到G ,使EG=BE ,延长AB 边上的中线CD 到F ,使DF=CD,连接AF,AG.(1) 补全图形(2) AF 于AG 的大小关系如何?证明你的结论。

苏科版八年级数学上册试题 .docx

苏科版八年级数学上册试题   .docx

初中数学试卷鼎尚图文**整理制作八年级数学试题(试卷满分:150分考试时间:120分钟)一、选择题(本大题共有8小题,每小题3分,共24分。

在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题纸相应位置.......上)1.下面有4个汽车标志图案,其中是轴对称图形的是(▲)① ② ③ ④A、②③④B、①②③C、①②④D、①③④2.下列说法中,正确的是(▲)A、斜边对应相等的两个直角三角形全等B、底边对应相等的两个等腰三角形全等C、面积相等的两个等边三角形全等D、面积相等的两个长方形全等3.下列事件中,为必然事件的是(▲)A、打开电视,正在播放江都新闻B、抛掷一枚质地均匀的硬币,落地后正面朝上C、下雨后天空出现彩虹D、早晨的太阳从东方升起4.等腰三角形的两边分别为3和6,则这个三角形的周长是(▲)A、 12B、 15C、 9D、12或155.在实数31790.8 4.1211211123π-L、、、、、中,无理数有(▲)A、2个B、3个C、4个D、5个6.下列各图像中,不是y关于x的函数图像的是(▲).A B DC7.若一个数m 用四舍五入法取近似值为2.8,则 ( ▲ )A 、 2.80m =B 、2.75 2.84m ≤≤C 、2.75 2.84m <≤D 、2.75 2.85m ≤<8.直线l 与直线23y x =-+平行,并且与直线23y x =-交于y 轴的同一点,则直线l 的解析式为 ( ▲ )23A y x =--、 23B y x =-+、 23C y x =-、 23D y x =+、 二、填空题(本大题共有10小题,每小题3分,共30分) 9.16= ▲ .10.已知等腰三角形的一个内角是80o ,则它的底角是 ▲ .11.如图,直线y kx b =+与直线y mx n =+交于32P (1,),则方程组0kx y b mx y n -+=⎧⎨-+=⎩的解是 ▲ .12.如图,13AD =,12BD =,90C ∠=o,3AC =,4BC =. 则阴影部分的面积= ▲ .13.调查市场上某种食品的色素含量是否符合国家标准,这种调查适合采用 ▲ .(填“普查”或“抽样调查”) 14.28860精确到百位是 ▲ .(用科学记数法表示). 15.已知2323y x x =-+-+,则x y -= ▲ .16.已知点P 在第二象限,且与坐标轴的距离均为2,则点P 的坐标为 ▲ .17.如图,圆柱的底面周长为48cm ,高为7cm ,一只蚂蚁从点B 出发沿着圆柱的表面爬行到点A ,现有两种路径:①折线B C A →→;②在圆柱侧面上从B 到A 的一条最短的曲线l .请分别计算这两种路径的长,较短的路径是 ▲ .(填①或②). 18.如图,在直角坐标系中,长方形OABC 的边OA 在y 轴的负半轴上,边OC 在x 轴的正半轴上,点B的坐标为84-(,),将长方形沿对角线AC 翻折,点B 落在点D 的位置.那么点D 的坐标是 ▲ .A DCB第12题图xyy=mx+ny=kx+b321O三、解答题(共96分,解答应写出必要的计算过程、推演步骤或文字说明) 19.(8分)(1)解方程:()2149x -= (2)()333227π-+--20.(8分)尺规作图,不写作法,保留作图痕迹。

苏科版八年级数学上册练习.docx

苏科版八年级数学上册练习.docx

初中数学试卷 桑水出品八(上)数学周末练习 2016.9.3一、选择题1. 如果两个图形全等,则这个图形必定是( )A .形状相同,但大小不同B .形状大小均相同C .大小相同,但形状不同D .形状大小均不相同2. 下列叙述中错误的是( )A .能够重合的图形称为全等图形B .全等图形的形状和大小都相同C .所有正方形都是全等图形D .形状和大小都相同的两个图形是全等图形3. 在下列各组图形中,是全等的图形是( ) A. B. C. D.4. 下列四个图形中用两条线段不能分成四个全等图形的是( ) A. B. C. D.5. 已知图中的两个三角形全等,则∠α的度数是( )A .72°B .60°C .58°D .50°6. 如图,△ABC ≌△DEF ,则此图中相等的线段有( )A .1对B .2对C .3对D .4对7. 如图,△ABC≌△CDA,并且AB=CD,那么下列结论错误的是()A.∠1=∠2 B.AC=CA C.AC=BC D.∠D=∠B8. 如图所示,△ABC≌△EFD,那么()A.AB=EF,AC=DE,BC=DF B.AB=DF,AC=DE,BC=EFC.AB=DE,AC=EF,BC=DF D.AB=EF,AC=DF,BC=DE9. 如图,△ABC≌△BAD,A、C的对应点分别是B、D,若AB=9,BC=12,AC=7,则BD=()A.7 B.9 C.12 D.无法确定二、填空题10. 能够完全重合的两个图形叫做.11. 下列图形中全等图形是(填标号).12. 下列图形不一定能分成两个全等图形的是.(填序号即可)①三角形②正方形③长方形④半圆.13. 如图,将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为N,P,Q,M的四个图形,试按照“哪个正方形剪开后与哪个图形”的对应关系填空:A与对应;B与对应;C与对应;D与对应.14. (2014•淮安)如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为.第14题第15题15. 如图,△ABC≌△DEF,请根据图中提供的信息,写出x= .第16题第17题16. 如图,若△ABC≌△A1B1C1,且∠A=110°,∠B=40°,则∠C1= .17. 如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为°.18. 如图,已知△ABD≌△ACE,∠1=75°,则∠2= °.三、解答题19. 如图,试沿着虚线把图形分成两个全等图形.20. 如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.21. 如图,在图中的两个三角形是全等三角形,其中A和D、B和E是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上);(2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.22. 如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.。

苏科版八年级数学上册数学第一章全等三角形练习.docx

苏科版八年级数学上册数学第一章全等三角形练习.docx

初中数学试卷马鸣风萧萧八上数学第一章练习一、选择题:1.下列图中,与左图中的图案完全一致的是【 】2. 已知△ABC ≌△DEF ,∠A=80°,∠E=50°,则∠F的度数为【 】A、30°B 、50° C 、 80° D 、 100°3.如图,已知AC AB =,AE AD =,若要得到“ACE ABD ∆∆≌”,必须添加一个条件,则下列所添条件不恰当...的是【 】 A .CE BD = B .ACE ABD ∠=∠ C .CAE BAD ∠=∠ D .DAE BAC ∠=∠4.如图,DEF ABC ∆∆≌,点A 与D ,B 与E 分别是对应顶点,且测得cm BC 5=,cm BF 7=,则EC 长为【 】A. cm 1 B. cm 2 C. cm 3 D. cm 45.如图,ABC ∆中,oC 90=∠,AD 平分BAC ∠,过点D 作AB DE ⊥于E ,测得9=BC ,3=BE ,则BDE ∆的周长是【 】A .15 B .12 C .9 D .66.如图, AC AB =,AE AD =,BE 、CD 交于点O ,则图中全等三角形共有【 】 A .四对 B .三对 C .二对 D .一对 7.下列说法错误的是【 】A. 有两角和其中一角的对边对应相等的两个三角形全等B. 全等三角形对应的角平分线相等C. 斜边和一个锐角分别相等的两个直角三角形全等D. 在△ABC 和△A ’B ’C ’中, 若AB=BC=CA, A ’B ’=B ’C ’=C ’A ’, 则△ABC ≌△A ’B ’C ’ 8.如图,AB ⊥BC ,BE ⊥AC ,∠1=∠2,AD =AB ,则【 】 A.∠1=∠EFD B.BE =EC C.BF =DF =CD D.FD ∥BC 二、填空题:9.已知,如图,AD =AC ,BD =BC ,O 为AB 上一点,那么,图中共有 对全等三角形. 10.如图,△ABC ≌△ADE ,则,AB = ,∠E = ,若∠BAE =120°, ∠BAD =40°,则∠BAC = .11.如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是 (添加一个条件即可).12.如图,A ,B ,C 三点在同一条直线上,∠A=∠C=90°,AB=CD ,请添加一个适当的条件 ,使得△EAB ≌△BCD .13.如图,CD AB //,CD AB =,请你添加一个条件 使CDE ABF ∆∆≌,依据是 。

[推荐学习]八年级数学上册第一章全等三角形练习八无答案新版苏科版

[推荐学习]八年级数学上册第一章全等三角形练习八无答案新版苏科版

[推荐学习]八年级数学上册第一章全等三角形练习八无答案新版苏科版第一章全等三角形单元练习题八1.下列命题中正确的是 ( )A.有两条边分别相等的两个等腰三角形全等B.两腰对应相等的两个等腰三角形全等C.有两条边分别相等的两个直角三角形全等D.斜边和一条直角边对应相等的两个直角三角形全等2.如图,△ABD≌△ACE,若AB=6,AE=4,则CD 的长度为()A. 10 B. 6 C. 4 D. 23.如图,△ABC和△ADE中∠1=∠2,BC交AD 于M,AC交DE于N,则图中全等三角形的对数有()A.0对 B.1对 C.2对 D.3对4.已知图中的两个三角形全等,则∠1等于()A .AB=CDB .CE∥BFC .CE=BFD .∠E=∠F8.如图所示,△ABC 是不等边三角形,DE=BC ,以D 、E 为两个顶点作位置不同的三角形,使所作三角形与△ABC 全等,这样的三角形最多可以画出( )个.A .2B .4C .6D .89.如图,AB =AD ,BC =CD ,则全等三角形共有( )A .1对B .2对C .3对D .4对10.如图,在△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别为R 、S ,若AQ=PQ ,PR=PS ,则下列四个结论:①PA 平分∠BAC ;②AS=AR ;③QP ∥AR ;④△BRP ≌△CSP ,其中结论正确的的序号为(请将你认为正确的序号都填上)BA CED评卷人得分二、填空题11.已知△ABC≌△A′B′C′,A与A′,B与B′是对应点,△A′B′C′周长为9cm,AB=3cm,BC=4cm,则A′C′=_________cm12.如图,∠BAC=∠ABD,请你添加一个条件:_____,能使△ABD≌△BAC(只添一个即可).13.如图,在△ABD和△ACE中,有下列四个等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.以其中三个条件为题设,填入已知栏中,一个论断为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程.已知:.求证:.证明:14.如图,△ABC和△FPQ均是等边三角形,点D、E、F分别是△ABC三边的中点,点P在AB边上,连接EF、QE.若AB=6,PB=1,则QE= .15.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①A S=AR;②QP ∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).16.如图,∠1=∠2,AB=AD ,AC=AE .请将下面说明∠C=∠E 的过程和理由补充完整.证明:∵∠1=∠2( ),+∠=∠+∠∴21BAE 12________,________,DAC BAC ∴∠+∠=∠+∠=即在△ABC 和△ADE 中 ()()______________,AB AD AC AE ⎧=⎪⎨⎪=⎩已知已知()()____________________________________C E ∴∴∠=∠17.三角形ABC 中,AD 是中线,且AB=4,AC=6,求AD 的取值范围是 .18.如图,方格纸上有一个格点三角形和一条线段AB ,在这个格点纸上找一点C ,使得△ABC 与这个格点三角形全等,这样的C 点可以找到_______个。

初二上册数学练习题苏教版

初二上册数学练习题苏教版

初二上册数学练习题苏教版初二上册数学练习题是苏教版数学教材为初二学生编写的练习题。

本教材旨在帮助学生巩固和提高他们在初一学年所学到的数学知识,并为他们在初二学年的学习做好准备。

下面将给出一些典型的数学练习题作为例子。

一、代数运算1. 已知a = 2,b = 3,c = 4,请计算并简化以下运算式:(a + b) × c - (b - a)^22. 求解方程:3x + 5 = 2x + 93. 求解方程组:{ 2x + y = 8{ x - y = 2二、几何形状和测量1. 已知矩形ABCD的宽度为5 cm,长度为12 cm,请计算其面积和周长。

2. 在平面直角坐标系中,已知点A(2, 3)和点B(5, 1),请计算AB的斜率。

3. 已知一个圆的半径为8 cm,请计算其面积和周长。

三、函数与方程1. 给出函数y = 2x + 3的图像,请写出其对应的函数表达式。

2. 已知函数y = x^2 + 2x + 1,请计算其在x = 3处的函数值。

3. 解释什么是函数的斜率。

四、数据分析与统计1. 已知某班级共有40个学生,其中20个男生,20个女生。

请计算男生和女生的比例。

2. 在某次考试中,学生们的成绩分布如下:80-89分的有10人,90-99分的有8人,100分的有2人。

请绘制直方图表示成绩分布情况。

3. 如果一个班级的平均分数为85分,标准差为5分,请计算成绩在80分以上的学生的比例。

以上是初二上册数学练习题苏教版的一些例子,希望能帮助同学们巩固和提高数学知识。

通过完成这些练习题,学生们可以更好地理解和应用数学概念,为更高级的数学学习打下坚实的基础。

注:此文章仅为示例,实际文章内容请根据课本具体题目进行撰写。

江苏初二数学上册练习题答案

江苏初二数学上册练习题答案

江苏初二数学上册练习题答案题目一:计算题1. 计算 (3+4) x 5 - 6 ÷ 2 = ?解答:(3+4) x 5 - 6 ÷ 2 = (7) x 5 - 6 ÷ 2 = 35 - 3 = 32 2. 计算 12 x 5 - 6 ÷ 2 + 3 = ?解答:12 x 5 - 6 ÷ 2 + 3 = 60 - 3 + 3 = 603. 计算 20 ÷ 5 + 6 x (4 - 3) = ?解答:20 ÷ 5 + 6 x (4 - 3) = 4 + 6 x 1 = 4 + 6 = 104. 计算 10 + 5 x 2 - 3 ÷ 6 = ?解答:10 + 5 x 2 - 3 ÷ 6 = 10 + 10 - 0.5 = 20 - 0.5 = 19.5 5. 计算 8 ÷ (4 + 5) x 2 = ?解答:8 ÷ (4 + 5) x 2 = 8 ÷ 9 x 2 ≈ 1.7778 x 2 ≈ 3.5556题目二:代数表达式1. 化简表达式:2x + 3x - 4x + 5 = ?解答:2x + 3x - 4x + 5 = x + 52. 化简表达式:3(x - 2) + 4(2x + 1) = ?解答:3(x - 2) + 4(2x + 1) = 3x - 6 + 8x + 4 = 11x - 23. 计算已知 x = 2,求 3x^2 - 4x + 1 的值。

解答:将 x = 2 代入表达式,得到 3(2)^2 - 4(2) + 1 = 12 - 8 + 1 = 54. 计算已知 x = 3/4,求 (2x)^3 的值。

解答:将 x = 3/4 代入表达式,得到 (2(3/4))^3 = (3/2)^3 = 27/85. 计算已知 x = -1,求 2x^4 - 3x^3 + 5 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

马鸣风萧萧
初中数学试卷 马鸣风萧萧
初二1、2部数学周末练习 班级 姓名
家长签字 一、选择题
1.下列的说法:①轴对称和轴对称图形意义相同;②轴对称图形必轴对称;③轴对称和轴对称图形的对称轴都是一直线;④轴对称图形的对称点一定在对称轴的两旁,其中正确的有 ( ).
A .1个
B .2个
C .3个
D .4个
2.在△ABC 和△A'B'C'中,下面能得到△ABC ≌△A'B'C'的条件是( ).
A .A
B =A'B',A
C =A'C ,∠B =∠B' B .AB =A'B',BC =B'C ,∠A =∠A'
C .AC =A'C',BC =B'C',∠C =∠C'
D .AC =A'C',BC =B'C',∠B =∠B'
第3题 第4题 第6题 第7题 第10题
3.如图,已知EA ⊥AB ,BC ∥EA ,EA =AB =2BC ,D 为AB 的中点,则下面式子中不能成立的是( ).
A .∠3=60°
B .DE ⊥A
C C .DE =AC
D .∠2=∠3
4.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC =∠BOC 的依据是( ).
A .SSS
B .ASA
C .AAS
D .角平分线上的点到角两边距离相等
5.下列图形中对称轴最多的是 ( ).
A .圆
B .正方形
C .等边三角形
D .线段
6.如图,在四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为4,则BE 等于( ).
A .1
B .3
C .2
D .2.5
7.如图,点A 在DE 上,点F 在AB 上,且AC =CE ,∠1=∠2=∠3,则DE 的长等于( ).
马鸣风萧萧
A C
B E
D A .DC B .BC C .AB D .A
E +AC
8.下列说法正确的有几个 ( ).
⑴全等的两个图形一定对称. ⑵成轴对称的两个图形一定全等. ⑶若两个图形关于某直线对称,则它们的对应点一定位于对称轴的两侧. ⑷若点A 、点B 关于某直线MN 对称,则直线MN 垂直平分AB .
A .1个
B .2个
C .3个
D .4个
二、填空题
9、线段 的点到线段两端的距离相等;到线段两端距离相等的点在线段
的 .
10.如图,已知AC=BD ,要使△ABC ≌△DCB , 则只需
一个适当的条件是_______ ____.(填一个即可)
11.如图,有一个直角三角形ABC ,∠C =90°,AC =10,
BC =5,一条线段PQ =AB ,P 、Q 两点分别在AC 和过点A
且垂直于AC 的射线AX 上运动,问P 点运动到_______位置时,
才能使△ABC ≌△QPA . 第11题 第12题 12如图,BD 是∠ABC 的角平分线,DE ⊥AB 于E ,△ABC 的面积是30cm2,AB=18cm ,BC=12cm ,则DE= cm .
三、解答题
13、如图,在△ABC 中,AB =AC =3cm ,AB 的垂直平分线交AC
于点N , △BCN 的周长是5cm ,则BC 的长等于多少厘米?
14.如图,四边形ABCD 中,CD ∥AB ,E 是AD 中点,CE 交BA 延长线于点F .
(1)试说明:CD =AF ; (2)若BC =BF ,试说明:BE ⊥CF .
15、如图,△ABC 中,∠BAC=90度,AB=AC ,BD 是∠ABC 的平分线,
BD 的延长线垂直于过C 点的直线于E .
求证:BD=2CE .
16、如图,已知长方形ABCD中,AD=6cm,AB=4cm,点E为AD的中点.若点P在线段AB上以1cm/s 的速度由点A向点B运动,同时,点Q在线段BC上由点B向点C运动。

(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△AEP与△BPQ是否全等,请说明理由,并判断此时线段PE和线段PQ的位置关系;
(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△AEP与△BPQ 全等
17、已知在Rt△ABC中,AC=BC,∠C=90°,D为边AB的中点,∠EDF=90°,∠EDF绕点D旋转,它的两边分别交AC、CB(或它们的延长线)于点E、F.当∠EDF绕点D旋转到DE⊥AC于点E时(如
图(1)),易证S△DEF+S△CEF=1
2
S△ABC.(此结论可在下题证明中直接使用)
当∠EDF绕点D旋转到DE和AC不垂直时,在图(2)和图(3)这两种情况下,上述结论是否成立?若成立,请给予说明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需说明.
马鸣风萧萧。

相关文档
最新文档