轴对称中几何动点最值问题总结
对称问题中的最值
轴对称在几何最值问题中的应用: 一:两点与一条直线: 1、两点在直线异侧: 问题1 :如图,“西气东输”是造福子孙后代的创世工程.要在燃气管道l 上修建一个泵站,分别向A ,B 两城镇供气.泵站修在什么地方, 可使所用的输气管线最短? 实际问题数学化:已知:如图,点A 、B 在直线l 的异侧,在l 上找点P ,使P A+PB 最小(即P A 与PB 的和最小).问题的求解要使P A +PB 最小,在连接AB 的线中,线段AB 最短. 解:连结AB ,交直线l 于点P ,点P 为所求.思考:1、如图,点A 、B 在直线l 的异侧,在l 上找点P , 使P A-PB 的绝对值最小(即P A 与PB 的差的绝对值最小)(线段AB 的垂直平分线与直线l 的交点P 为所求,P A=PB ,0PA PB -=最小)2、如图,点A 、B 在直线l 的异侧,在l 上找点P ,使P A-PB 的绝对值最大(即P A 与PB 的差的绝对值最大) (点B 关于直线l 的对称点'B ,直线'AB 交直线l 于点P 为所求,AP BP AP B P AB ''-=-=最大)3、游戏规则如下:如图,在操场上有两定点A 、B 和一条直线l ,每组两名同学一人在点A ,一人在点B ,(A、B 距直线l 的距离不等),两人在线l 上找一点P ,分别沿直 线运动到该点,通过测算,两人距离之差绝对值越大,该 小组就胜利,如果你是小组组长,怎样找这样一点保证一 定胜利?将问题数学化:已知:如图,点A 、点B 在直线l 的异侧(点A 、点B 距直线l 距离不等),在l 上找点P 使|P A -PB |最大.4、如果A 、B 两城镇在河流的异侧,架一座桥(垂直于河岸) 连通两岸,选择一个架桥点使从A 城镇到B 城镇距离最短, 架桥点选在何处呢?AlAlB2、两点在直线的同侧:已知:A 、B 两点在直线l 的同侧,点A ′与A 关于直线l 对称,连接A ′B 交l 于P 点,设A ′B=a (1)求AP+BP ;(2)若点M 是直线l 上异于P 点的任意一点,求证:AM+BM >AP+BP问题2 (教材42页探究)如图,要在燃气管道l 上修建一个泵站,分别向A ,B两城镇供气.泵站修在什么地方,可使所用的输气管线最短?实际问题数学化已知: 如图,点A 、B 在直线l 的同侧.在l 上找点P ,使P A+PB 最小.问题的求解点B 关于直线l 的对称点'B ,连接'AB 交直线l 于点P如果P 1是异于点P 的一点,你能证明AP 1+BP 1> AP +BP 吗?证明:连接B 1P 1. 由轴对称性质,BP 1=B 1P 1,BP =B 1P . 所以 AP 1+BP 1=AP 1+ B 1P 1, AP +BP =AP+ B 1P =AB 1, 在△AP 1B 1中,AP 1+B 1P 1>AB 1, 即 AP 1+BP 1 > AP +BP .所以P A+PB 最小思考:1、已知:如图,直线 和点A ,B ,试在直线 上找一点P ,使△PAB 的周长最小,并说明理由。
巧用圆转化轴对称中的最值问题
2022年5月下半月㊀备考指南㊀㊀㊀㊀巧用圆转化轴对称中的最值问题◉广州市真光中学㊀苏国东㊀㊀摘要:轴对称中的最值问题常出现在动态几何压轴题中,其中一类最值问题可通过构造辅助圆,转化为圆上一点到圆外一点或一直线的距离最值问题进行解决.关键词:圆;转化;轴对称;最值问题1引言轴对称背景下的几何动点最值问题,是初中数学的重难点问题,常见于压轴题,对学生的直观想象㊁数学建模㊁推理运算能力和素养有较高要求.其中一类最值可通过巧妙构造辅助圆,转化为与圆有关的距离最值,从而解决问题.2转化为圆上一点到圆外一点的距离最值结论:设圆的半径为r ,圆心O 到圆外一点A 的距离为d ,则圆上任意一点P 到点A 的最大距离为d +r ,最小距离为d -r.图1如图1,分别连接O ,A ,P ,由三角形三边关系可知,P A ɤP O +O A =P 1O +O A =P 1A ,P A ȡO A -O P =O A -O P 2=P 2A .所以当点P 在P 1的位置,即点O 在线段P A 上时,P A 取得最大值d +r ,当点P 在P 2的位置,即点P 在线段O A 上时,P A 取得最小值d -r .利用这一结论,往往可以快速地解决关于圆上动点的最值问题,做到化动为静,转为定量计算.在部分压轴题中,圆是被隐藏起来的,当题意中出现定点㊁定长等相关信息时,往往可考虑构造辅助圆解题.特别地,在特定的轴对称背景下,对称前后的对应线段长度相等且共顶点,也就具备了构造辅助圆的条件.图2例1㊀如图2,矩形A B C D 中,A B =3,B C =4,点P 是边A D 上一动点,将әA B P 沿B P 折叠后得әB P M ,求点D 到点M 的最短距离.解析:因为将әA B P 沿B P 折叠后得到әB P M ,由轴对称的性质可得B A =B M =3,所以点M 在以点B 为圆心,3为半径的圆上运动.如图3,当B ,M ,D 三点共线时,D M 最小.因为A B =3,B C =4,可求得B D =5,此时D M =B D -B M =5-3=2.图3㊀㊀㊀图4例2㊀如图4,已知菱形A B C D 的边长为23,点A 在x 轴负半轴上,点B 在坐标原点,点D 的坐标为(-3,3),抛物线y =a x 2+b (a ʂ0)的顶点E 在D C 边上,并经过A B 边的中点.(1)求该抛物线的解析式;(2)点C 关于直线y =k x +3(k ʂ0)的对称点是C ᶄ,求点C ᶄ到点A 的最短距离.解析:(1)由题意得A B 的中点坐标为(-3,0),C D 的中点E 坐标为(0,3),利用待定系数法可求得该抛物线的解析式为y =-x 2+3;(2)因为直线y =k x +3(k ʂ0)经过点E (0,3),图5点C 关于y =k x +3的对称点是点C ᶄ,由轴对称的性质可知E C =E C ᶄ=3,所以点C ᶄ在以点E 为圆心,3为半径的圆上运动,如图5.当A ,C ᶄ,E 三点共线时,A C ᶄ最小.在R t әA O E 中,A O =23,O E =3,所以A E =21,此时A C ᶄ=A E -E C ᶄ=21-3.通过上述解法还可得出,当点C ᶄ落在A E 的延长95Copyright ©博看网. All Rights Reserved.备考指南2022年5月下半月㊀㊀㊀线上时,A C ᶄ可取得最大值21+3.3转化为圆上一点到圆外一直线的距离最值结论:设圆的半径为r ,圆心O 到圆外一条直线l的距离为d ,则圆上任意一点P 到直线l 的最大距离为d +r ,最小距离为d -r .图6如图6,连接O P ,作PH 垂直l 于点H ,易知PH +O P ȡO H 1=O P 1+P 1H 1,即PH ȡP 1H 1,所以当点P 在P 1的位置,即点P 在线段O H 上时,P H 取得最小值d -r ;又因为P H ɤP O +O H 1=P 2O +O H 1=P 2H 1,即PH ɤP 2H 1,所以当点P 在P 2的位置,即点O 在线段PH 上时,PH 取得最大值d +r .同上述方法,可以在特定的轴对称问题中构造辅助圆,借助以上结论快速找到解决最值问题的突破口.图7例3㊀如图7,在R tәA B C中,øC =90ʎ,A C =3,B C =4,点E 在边A C 上,C E =1,点D 是边B C 上的动点,将әC D E 沿D E 翻折得到әC ᶄD E ,求әA B C ᶄ面积的最小值.解析:因为将әC D E 沿D E 翻折得到әC ᶄD E ,由轴对称的性质可知E C =E C ᶄ=1,所以点C ᶄ在以点E 为圆心,1为半径的圆上运动.图8如图8,作C ᶄH 垂直A B 于点H ,在点C ᶄ运动的过程中,E C ᶄ+C ᶄH ȡE H ,当点E ,C ᶄ,H 三点共线时C ᶄH 最小.由已知可得A E =2,A B =5,根据әAH E ʐәA C B ,有E H B C =A E A B ,故E H 4=25,所以E H =85,C ᶄH =85-1=35.此时әA B C ᶄ面积最小,最小值为12ˑA B ˑC ᶄH =32.4构造轴对称转化为与圆有关的距离最值由上述案例可知,在特定的轴对称背景下的最值问题可以转化为与圆相关的最值问题简便求解.更进一步的,在部分最值问题中,还可以考虑通过将图形翻折,构造出某组对应线段共顶点的轴对称模型,巧用圆化解问题.图9例4㊀如图9,在әA B C 中,øB A C =120ʎ,点D 在әA B C 的内部或边上,点E 在әA B C 的外部,满足A D =A E =2,B E =4,C D =1,øC A D +øC A E =180ʎ.(1)求证:øA B C +øA C B =øB A E +øC A D ;(2)线段B C 的长度是否存在最大值,若存在,求出该值,若不存在,请说明理由.图10解析:(1)如图10,延长E A 至点F .因为øC A D +øC A E =180ʎ,所以øC A F =øC A D ,所以øB A E +øC A D =øB A E +øC A F=180ʎ-øB A C =øA B C +øA C B ,即øA B C +øA C B =øB A E +øC AD ;图11(2)如图11,将线段B E 沿B A 翻折后得到线段B E ᶄ,由对称性可知B E ᶄ=B E =4,所以点E ᶄ在以点B 为圆心,4为半径的圆上运动.连接A E ᶄ,E ᶄD ,因为øB A C =120ʎ,所以øE A B +øC A F =60ʎ.由于A B ,A C 分别平分øE A E ᶄ,øD A F ,所以øB A E ᶄ+øD A C =60ʎ,øE ᶄA D =60ʎ.因为A E ᶄ=A E =A D =2,故әA E ᶄD 为等边三角形,E ᶄD =2,所以B C ɤB E ᶄ+E ᶄD +D C =4+2+1=7.当点E ᶄ,D 落在B C 边上时,B ,E ᶄ,D ,C 四点共线,此时B C 存在最大值,该值为7.Z06Copyright ©博看网. All Rights Reserved.。
运用轴对称进行化归,解决几何最值问题
运用轴对称进行化归,解决几何最值问题作者:韩江来源:《初中生世界·八年级》2014年第10期未知问题可化归为已知问题,复杂问题可化归为简单问题. 化归是一种非常重要的数学思想方法,只要掌握了化归的方法,一切问题都将迎刃而解. 本文以轴对称变换为例,与同学们谈谈用化归思想解决几何最值问题.一、两个数学基本事实两点之间的所有连线中,线段最短. 如图1,线段AB最短. 把这个数学事实称为“模型1”,简称“模1”.在直线外一点与直线上各点连接的所有线段中,垂线段最短. 如图2,垂线段PH最短. 把这个数学事实称为“模型2”,简称“模2”.很多几何最值问题,都可以通过化归的方法与这两个数学模型联系起来. 最经典的莫过于“将军饮马问题”.唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题. 如图3,诗中将军在观望烽火之后从山脚下的A点出发,走到河边饮马后再到B点宿营. 请问怎样走才能使总路程最短?【解析】如图4,作点A关于直线l的对称点A′,连接A′B交直线l于点P,连接PA、PB,此时PA+PB最短. 数学原理:点A、B是定点,点P是动点,点A的对称点A′仍是定点,根据轴对称性质得PA=PA′,从而PA+PB=PA′+PB,问题就化归为“模1”,所以图4中A-P-B为最短路径,如果点P取在其他位置,都将违背“两点之间,线段最短”.把“将军饮马问题”称为“模型3”,简称“模3”. “模3”的特点是有两个定点、一个动点,两个定点在动点所在直线的同一侧.二、具体应用1. 单动点最值问题例1 如图5,正方形ABCD的边长是1,以AB为一边作等边△ABE,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为______.本题是一个较复杂的问题,它是“模1”与“模3”相结合的一个典型,熟知这两种模型,通过化归的方法,得到了一个解决此问题的好方法.三、基本策略运用轴对称进行化归,解决几何最值问题,基本策略是先找到一个定点(如果没有,可找一个合适的动点),再作此点的对称点,从而将某些线段通过轴对称进行位置变换,通常都可以将问题化归为文中的3种模型.同学们,初中数学的几何最值问题还有很多类型,比如还可以通过其他图形的变换进行化归,或者还可以用函数的方法解决,限于篇幅,本文不作赘述. 化归的方法和策略也有很多,希望通过本文能够抛砖引玉,引导你们归纳有用的数学模型,通过体悟,能够将陌生的数学问题化归为已知的数学问题. 只要掌握了化归的方法,你就找到了解决问题的钥匙.(作者单位:江苏省无锡市天一实验学校)。
中考数学动点最值问题归纳及解法
中考数学动点最值问题归纳及解法最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。
利用一次函数和二次函数的性质求最值。
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
“坐标几何题”(动点问题)分析动点个数两个一个两个问题背景特殊菱形两边上移动特殊直角梯形三边上移动抛物线中特殊直角梯形底边上移动考查难点探究相似三角形探究三角形面积函数关系式探究等腰三角形考点①菱形性质②特殊角三角函数③求直线、抛物线解析式④相似三角形⑤不等式①求直线解析式②四边形面积的表示③动三角形面积函数④矩形性质①求抛物线顶点坐标②探究平行四边形③探究动三角形面积是定值④探究等腰三角形存在性特点①菱形是含60°的特殊菱形;△AOB是底角为30°的等腰三角形。
②一个动点速度是参数字母。
③探究相似三角形时,按对应角不同分类讨论;先画图,再探究。
④通过相似三角形过度,转化相似比得出方程。
⑤利用a、t范围,运用不等式求出a、t的值。
①观察图形构造特征适当割补表示面积②动点按到拐点时间分段分类③画出矩形必备条件的图形探究其存在性①直角梯形是特殊的(一底角是45°)②点动带动线动③线动中的特殊性(两个交点D、E是定点;动线段PF长度是定值,PF=OA)④通过相似三角形过度,转化相似比得出方程。
⑤探究等腰三角形时,先画图,再探究(按边相等分类讨论)近几年共同点:①特殊四边形为背景;②点动带线动得出动三角形;③探究动三角形问题(相似、等腰三角形、面积函数关系式);④求直线、抛物线解析式;⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。
专题复习1:利用轴对称求最值_
专题复习1:利用轴对称求最值Ⅱ. 请你设计一个用时最少的方案.二、关于两(多)条线段和最小问题思路指导:此类问题一般通过适当的几何变换实现“折”转“直”。
即将连接两点的折线转化为线段最短问题1.直接运用两点间线段最短解决问题.例:如图8,已知A(1,1)B(3,-3),C为x轴上一个动点,当AC+BC最小时,C点坐标为,此时AC+BC的最小值为.练习:如图9,四边形ABCD为边长为5的正方形,以B为圆心4为半径画弧交BA与M,交BC于N,P在MN上运动,则PA+PB+PC的最小值为.2.平移后应用两点间线段最短例:已知:如图10,A(1,2),B(4,-2),C(m,0),D(m+2,0)(1)在图中作出当AC+CD+DB最小时C点的位置,并求出此时m的值(2)求AC+CD+DB的最小值.练习:如图11,NP,MQ为一段河的两岸(河的两侧为平坦的地面,可以任意穿行),NP∥MQ,河宽PQ 为60米,在NP一侧距离河岸110米处有一处藏宝处A,某人从MQ一侧距离河岸40米的B处出发,随身携带恰好横穿(与河岸垂直)河面的绳索(将绳索利用器械投掷至河对岸并固定,人扶绳索涉水过河),请计算此人从出发到目的地最少的行进路程,并确定固定绳索处(MQ一侧)到B处的最近距离.3.旋转后应用两点间线段最短例:如图12,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.⑴求证:△AMB≌△ENB;⑵①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;⑶当AM+BM+CM的最小值为31+时,求正方形的边长.练习:点O 为正方形ABCD内一点,(1)正方形边长为4,求OB+OD的最小值(2)若OB+OC+OD的最小值为26+,求正方形的边长4.对称后应用两点间线段最短数学模型已知:如图14,直线l 及直线同侧两点P、Q,在直线l 上求作点M,使线段PM+QM最小,并说明理由关系探究上图中:相等的角:线段关系:类型一:单动点单对称轴(直线同侧两线段和转化为异侧,进而应用两点间线段最短)练习:1.如图15,已知菱形ABCD的边长为6,M、N 分别为AB、BC边的中点,P为对角线AC上的一动点,则PM+PN的最小值.2. 如图16,已知菱形ABCD的边长为6,点E为AB边的中点,∠BAD=60°,点P为对角线AC上的一动点,则PE+PB的最小值..3. 如图17,已知正方形ABCD的边长为2,点M为BC 边的中点,P为对角线BD上的一动点,则PM+PC的最小值4. 如图18,正方形ABCD的面积为a,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,PD+PE的和最小值为4,则a= .5.如图19,已知⊙O的半径为1,AB、CD为⊙O的两互相垂直的直径,点M在弧AD上,且∠MOD=30°,点P为半径OD上的一动点,则PM+PA的最小值.6. 如图20,已知⊙O的半径为1,AB为⊙O的直径,C是⊙O上的一点,且∠CAB=30°点M是弧CB的中点,,点P为直径AB上的一动点,则PM+PC的最小值.7.如图21,⊙O的直径为10,A,B在圆周上,AC⊥MN,BD⊥MN,AC=6,BD=8.P为MN上一个动点,则PA+PB的最小值为.8.如图22,已知∠AOB=60°,OA=6,C为OA的中点,OD平分∠AOB,M为OD上一动点,则AM+CM的最小值为9.如图23,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),则这束光从点A到点B所经过路径的长为.10.如图24,已知抛物线y=x2-2x-3,与x轴相交于点A、B两点(点A在点B的左边),与y轴相较于点C,P 为抛物线对称轴上的一点,则PO+PC的最小值是.11.如图25,以正方形ABCD中AB为边向外作等边三角形AMB,N为对角线BD上一点,若AN+MN的最小值为2226,则正方形边长为.12.一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式;(2)O为坐标原点,设C为AB的中点,P为OB上一动点,求PC+PA取最小值时P点的坐标.13.如图27,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由14.如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(不必证明);运用与拓广:(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.类型二:双动点单对称轴(在类型一基础上应用垂线段最短)例:如图,已知∠CAB=30°,BA=6,AF平分∠BAC,P,Q分别为AB,AF上的动点,则BQ+PQ的最小值为练习:1.如图29,正方形ABCD中,AE为∠BAC的平分线,M,N分别为AE,AB上的动点,若MN+BM最小值为3,则正方形边长为.2.如图30,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC 的平分线交BC于点D, M、N分别是AD和AB上的动点,则BM+MN的最小值是___________ .3.如图31,矩形ABCD中,AB=6,BC=8,M,N分别为BD,BC上的动点,则CM+MN的最小值为. 类型三:单动点双对称轴例:如图32,已知:∠AOB=30°,P为∠AOB内一点,OP=6,M,N分别为OA,OB上的动点,则△PMN的周长最小值为.练习:1.如图33,已知:∠AOB=60°,P为∠AOB内一点,OP=10,M,N分别为OA,OB上的动点,则△PMN的周长最小值为.2.如图34,两个镜子成45°角,P为夹角内一个光源,P距离交点2米,光线从P发出后经过OB,OA反射后经过点P,则光线经过的路线长为.3.如图35,已知A(3,2)为坐标平面上一点,在x,y 轴上确定点M,N,使△AMN周长最小,并求出此时M,N坐标.类型四. 双动点双对称轴例:已知P,Q为∠AOB内两个定点,M,N分别为OA,OB上的动点。
轴对称性质在几何最值问题中的应用
数学教学通 讯( 教师版 )
投稿郝 sj v . 3 o 箱: k i1 , r x @ p 6 cn
轴对称性质在几何最值问题中的应用
王 海 清
广 东惠州学 院数 学 系 5 6 0 107
豳 圉 嘉 一:
关键 词 : 黼 轴
几何 最值 问题
线B E. 而点C. 对 角线B D_ 在 D所 在 直 线
的 同侧 . 点C关 于对 角线B D的 对称 点 恰好
是 点A.连 结AE交 对 角 线 BD于 点 P. 点 P 则
数 学教学通讯 【 教师版 )
位置 决 定 . 目标 是 通过 轴 对称 性 质将 线 段
迁 至 同一直 线 上来 处 理.
C] \/、 、 厂D 、 幻,
F
A
利用 轴 对 称 性质 求 最 值 的题 目多 足 关 丁
不在 同一 直线 上 的三 点 所 构 成 的 线 段 和
问题 . 三个点 中有一 个 动点 或 是两 个 动 即
点. 下面 将对 这两 类 问题进 行 分析 、 讨论 . 解析
变 式2 如 图3 .等 边 三 角 形AB C的 边 长 为 2 为AB 中 点 . 为 B 上 的 点 , , 的 P C
同侧 . 它们 到河 边 的距离 分 别为A - m. C1 k
B = m D 3 m.现要 在河 边 C 上 建 D3 k C = k D
一
水 厂分别 向A. 两村 输送 自来水 . 设 B 铺
点E. 易得 D C AC I m, : D= E = = A E C k 3 k 在 R △A 船 中 , 、 m. t A船 i :
作 点 关 于 直 线 C D的 对 称 点 , 连 4 .
有关坐标对称及最值问题5种题型
坐标对称及最值问题是数学中的常见问题,常常出现在函数、几何、三角函数等领域。
这类问题需要运用对称思想,以及寻找最值的方法。
下面列举了5种常见的题型及相应的解法。
题型一:函数的最值对于函数f(x),其最值可能出现在最小值(f(x)min)和最大值(f(x)max)上。
对于这类问题,我们通常需要观察函数的对称性,例如,如果函数是关于原点对称的,那么最小值和最大值可能在左右两侧取得。
解法上,我们通常需要利用导数或其他方法来找到函数的极值点,从而确定最值。
题型二:两点之间的距离在两点之间的距离问题中,如果两个点关于某个轴对称,那么它们之间的距离可以通过简单的轴对称距离公式来计算。
解法上,我们通常需要利用轴对称距离公式,以及两点之间的距离公式来求解。
题型三:圆的半径的最值在圆的半径的最值问题中,如果圆关于某条直线对称,那么我们需要找到圆的半径与对称轴的位置关系,从而确定圆的半径的最值。
解法上,我们通常需要利用圆的半径公式,以及对称轴的位置关系来求解。
题型四:三角形的重心坐标在三角形的重心坐标问题中,如果三个顶点关于某条直线对称,那么我们需要找到重心坐标与对称轴的关系,从而确定重心的坐标。
解法上,我们通常需要利用重心的几何性质,以及对称轴的位置关系来求解。
题型五:椭圆的离心率在椭圆的离心率问题中,如果焦点关于某轴对称,那么我们需要找到椭圆的离心率与对称轴的关系,从而确定椭圆的离心率。
解法上,我们通常需要利用椭圆的离心率公式,以及对称轴的位置关系来求解。
总的来说,坐标对称及最值问题的解法主要依赖于对称性和位置关系。
对于不同类型的题目,我们需要灵活运用这些方法来解决问题。
同时,对于不同类型的题目,也需要进行相应的变化和拓展,以适应更复杂的情况。
希望以上信息对您有所帮助。
如果您有任何具体问题或需要进一步的解释,请随时告诉我。
动点问题求最小值的做法思路
动点问题求最小值的做法思路
1、化动为静:将动点问题转化为静态的几何问题,简化问题,使解题过程更加直观和易于操作。
这种方法适用于多种动点问题,包括但不限于求最值问题。
2、构造比例线段:在某些特定的动点问题中,通过构造比例线段来求解是最直接有效的方法。
这种方法在解决阿氏圆最值模型等题目时尤为常见。
3、利用轴对称性质:初中数学中,利用轴对称的性质可以实现“搬点移线”,从而求解几何图形中的最值问题。
这种方法依赖于基本定理,如两点之间线段最短、三角形任意两边之和大于第三边等。
4、寻找线段的“替身”或“等比替身”:在解决双动点线段问题时,找到一个与原线段长度相等或成比例的线段作为替代,是解题的关键。
这种方法有助于简化问题,找到解决问题的突破口。
5、分类讨论:当动点问题存在多种可能性时,需要进行分类讨论,以确保不遗漏任何可能的情况。
这种方法适用于那些情况复杂、可能存在多种解法的问题。
6、建立直角三角形模型:在某些情况下,通过建立直角三角形模型并利用其性质(如勾股定理)来求解是最有效的策略之一。
这种方法特别适用于涉及圆和直线的问题。
7、动态规划:虽然动态规划主要用于解决算法问题,但其思想也可以应用于某些特定的动点最值问题中。
通过定义状态、计算转移方程和确定终止条件,可以有效地求解这类问题。
利用轴对称知识求最值
利用轴对称求最小值数学题中有些求两线段之和最小的题目,同学们感到找不到思路,其实它是利用轴对称求最短距离的变形。
利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有两个:(1)两点之间线段最短;(2)三角形两边之和大于第三边。
现以部分中考题为例加以分析,希望能对同学们有所帮助。
一、两点一线的最值问题例:如图,草原上两居民点A ,B 在笔直河流l 的同旁,一汽车从A 处出发到B 处,途中需要到河边加水,问选在何处加水可使行驶的路程最短?并在图中画出这一点。
理解转化题意:将这一问题转化为数学问题,即已知直线l 及同侧的点A 和点B ,在l 上确定一点C,使AC+BC 最小。
首先我们思考若点A 和B 点分别在直线l 的两侧,则点C 的位置应如何确定,根据两点之间线段最短,点C 应是与AB 直线l 的交点,如图(2),这就是说,设线段AB 交l 于点C ,点C /是直线上异于点C 的任意一点,总有AC+BC <AC /+BC /。
因此,解决上述问题的关键是将点A (或点B )移至l 的另一侧(设点A 移动后的点为A /),且使A 、A /到直线l 上任意点的距离相等,利用轴对称可达到这一目的。
解:如图(3),作点A 关于直线l 的对称点A /,连接A /B 交l 于点C ,则点C 的位置就是汽车加水的位置,即汽车选在点C 处可使行驶的路程最短。
二、两点两线的最值问题已知两个定点位于平面内两个相交的的直线之间,要在两条直线上确定两个动点使得线段和最短。
这类问题中动点满足最值的位置是由动点和定点所在的直线位置决定,可以通过轴对称图形的性质“搬点移线”(在保持线段的长度不变的情况下将某点搬至某线段所在的直线),将所求线段移到同一直线上就可以了。
例:(课本P47练习题9),如图(4)A 点为马厩,B 点为帐篷,牧马人一天要从马厩牵出马,先到草地边某一点牧马,然后到河边去饮水,再回到帐篷,请你确定一天的最短路程。
中考数学复习:专题三:动点或最值问题
点拨:在 Rt△AOB 中,∵∠ABO=30°,AO=1,∴AB=2,BO = 22-12= 3,①当点 P 从 O→B 时,如图 1、图 2 所示,点 Q 运动的 路程为 3;②当点 P 从 B→C 时,如图 3 所示,这时 QC⊥AB,则∠ACQ =90°,∵∠ABO=30°,∴∠BAO=60°,∴∠OQD=90°-60°= 30°,∴cos30°=ACQQ,∴AQ=cosC3Q0°=2,∴OQ=2-1=1,则点 Q 运动的路程为 QO=1;③当点 P 从 C→A 时,如图 3 所示,点 Q 运动的 路程为 QQ′=2- 3;④当点 P 从 A→O 时,点 Q 运动的路程为 AO=1, ∴点 Q 运动的总路程为 3+1+2- 3+1=4,故答案为 4
【点评】 本题主要考查轴对称的应用,利用最小值的常规解法确定 出点A的对称点,从而确定出AP+PQ的最小值的位置是解题的关键,利 用条件证明△AA′D是等边三角形,借助几何图形的性质可以减少复杂的 计算.
[对应训练] 2.(1)(2016·贵港)如图,抛物线 y=-112x2+32x+53与 x 轴交于 A,B 两点,与 y 轴交于点 C.若点 P 是线段 AC 上方的抛物线上一动点,当 △ACP 的面积取得最大值时,点 P 的坐标是( B ) A.(4,3) B.(5,3152) C.(4,3152) D.(5,3)
解决最值问题的两种方法: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连接直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆的所有弦中,直径最长. (2)运用代数证法: ①运用配方法求二次三项式的最值; ② 运用一元二次方程根的判别式.
【例 2】 (2016·雅安)如图,在矩形 ABCD 中,AD=6,AE⊥BD, 垂足为 E,ED=3BE,点 P,Q 分别在 BD,AD 上,则 AP+PQ 的最小 值为( D )
初中数学动点最值问题解题技巧总结
初中数学动点最值问题解题技巧总结示例文章篇一:哎呀呀,同学们,你们有没有被初中数学里的动点最值问题难倒过呀?反正我之前是被搞得晕头转向的!不过呢,经过我一番苦苦摸索,还真总结出了一些超有用的解题技巧,今天就来和大家分享分享。
咱们先来说说啥是动点最值问题。
就好比有个小调皮的点,在图形里到处乱跑,然后让咱们找它跑到啥位置的时候能得到最大或者最小的值。
这可不像找藏起来的糖果那么简单哟!那怎么解决呢?首先,咱们得学会用“两点之间线段最短”这个宝贝定理。
比如说,有A、B 两个点,那连接这两个点的线段AB 不就是最短的距离嘛。
这就像从家到学校,咱们走直线肯定是最近的路呀,难道还能绕个大圈子?再说说“垂线段最短”。
假如有一条直线l,还有一个点P,那从点P 向直线l 作垂线,垂足为Q,线段PQ 就是点P 到直线l 最短的距离。
这就好比你站在河边,要到河里打水,肯定是垂直下去打水最近,要是斜着走,那不是多走冤枉路嘛!还有一种常见的方法是利用三角形的三边关系。
两边之和大于第三边,两边之差小于第三边。
比如说有三角形ABC,AB 边长是5,AC 边长是3,那BC 的长度就在2 到8 之间。
这就好像三个人手拉手,两边的人胳膊加起来肯定要比中间那个人的胳膊长呀!有一次,我和同桌一起做一道动点最值问题。
题目说在一个直角三角形里,有一个动点P,让咱们找P 点在啥位置的时候,PA + PB 的值最小。
我一开始毫无头绪,急得直抓脑袋,嘴里嘟囔着:“这可咋办呀?”同桌倒是挺冷静,他说:“咱们想想刚刚学的那些方法呀!”然后我俩就一起琢磨,突然我灵光一闪:“哎呀,这不就可以用两点之间线段最短嘛!”最后我们成功解出了这道题,那种喜悦,简直没法形容!还有一次,数学老师在课堂上讲一道特别难的动点最值问题,好多同学都听得云里雾里的。
老师就耐心地一遍又一遍解释,还说:“同学们,别着急,咱们慢慢理清楚思路。
”最后大家终于明白了,都忍不住欢呼起来。
所以呀,同学们,动点最值问题虽然看起来很难很可怕,但只要咱们掌握了这些解题技巧,再加上多做练习,多和同学老师讨论,就一定能把它拿下!你们说是不是呀?我相信,只要咱们肯努力,就没有解决不了的数学难题!示例文章篇二:哎呀呀,同学们,你们是不是一碰到初中数学里的动点最值问题就头疼得要命呀?反正我之前是这样的!但是后来我发现,只要掌握了一些小技巧,这类题也没那么可怕啦!就拿那种在三角形里找动点最值的题来说吧。
八年级数学利用轴对称解几何动点最值问题分类总结(将军饮马)
利用轴对称解几何动点最值问题分类总结(将军饮马)轴对称的作用是“搬点移线”,可以把图形中比较分散、缺乏联系的元素集中到“新的图形”中,为应用某些基本定理提供方便。
比如我们可以利用轴对称性质求几何图形中一些线段和的最大值或最小值问题。
利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个:(1)两点之间线段最短;(2)三角形两边之和大于第三边;(3)垂线段最短。
初中阶段利用轴对称性质求最值的题目可以归结为:两点一线,两点两线,一点两线三类线段和的最值问题。
下面对三类线段和的最值问题进行分析、讨论。
(1)两点一线的最值问题:(两个定点+ 一个动点)问题特征:已知两个定点位于一条直线的同一侧,在直线上求一动点的位置,使动点与定点线段和最短。
核心思路:这类最值问题所求的线段和中只有一个动点,解决这类题目的方法是找出任一定点关于直线的对称点,连结这个对称点与另一定点,交直线于一点,交点即为动点满足最值的位置。
方法:1.定点过动点所在直线做对称。
2.连结对称点与另一个定点,则直线段长度就是我们所求。
变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。
1.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小。
(2)一点两线的最值问题:(两个动点+一个定点)问题特征:已知一个定点位于平面内两相交直线之间,分别在两直线上确定两个动点使线段和最短。
核心思路:这类问题实际上是两点两线段最值问题的变式,通过做这一定点关于两条线的对称点,实现“搬点移线”,把线段“移”到同一直线上来解决。
变异类型:1.如图,点P是∠MON内的一点,分别在OM,ON上作点A,B。
使△PAB的周长最小。
2.如图,点A是∠MON外的一点,在射线OM上作点P,使PA与点P到射线ON的距离之和最小。
(3)两点两线的最值问题:(两个动点+两个定点)问题特征:两动点,其中一个随另一个动(一个主动,一个从动),并且两动点间的距离保持不变。
中考数学专题复习 利用轴对称或平移解决最值问题
河岸 l1∥l2,在 l1 与 l2 之间建一 座桥,使点 A 到点 B 距离最短, 设 l1 与 l2 之间的距离为 d,将 点 A 向下平移距离 d 到点 A′, 连接 A′B 交 l2 于点 P,过点 P 作 PQ⊥l1 于点 Q,则 AQ+PQ +BP 最短.
上一页 返回导航 下一页
点 A,点 B 在直线同侧, 在直线 l 上找一点 P,使 AP=BP,连接 AB,作 线段 AB 的垂直平分线, 交直线 l 于点 P,则 PA =PB.
上一页 返回导航 下一页
2.如图,在平面直角坐标系中,点 A(-2,4),B(4,2),在 x 轴上取 一点 P,使点 P 到点 A 和点 B 的距离之和最小,则点 P 的坐标是( C )
A.(-2,0) C.(2,0)
B.(4,0) D.(0,0)
上一页 返回导航 下一页
3.如图所示,A,B 两个单位分别位于一条封闭式街道的两旁,现准 备合作修建一座过街天桥,那么桥建在何处才能使由 A 到 B 的路线最短? 注意,天桥必须与街道垂直,天桥的宽度不计.请在图中画出天桥的位置, 不写画法,保留画图痕迹即可.
A.(-1,0) C.54,0
B.12,0 D.(1,0)
上一页 返回导航 下一页
类型三:“一点两线”或“两点两线”求周长最小
文字说明
图示
文字说明
点 A,B 分别在∠MON 的
点 A,B 分别在∠MON 的边
边 OM 和 ON 上,点 P 在
OM 和 ON 上,点 P,Q 在
∠MON 内部,分别作点 P
上一页 返回导航 下一页
类型二:“一线两点”型(一动点+两定点)求距离最大
文字说明
图示
文字说明
轴对称性质在几何最值问题中的应用
轴对称性质在几何最值问题中的应用作者:王海清来源:《数学教学通讯(教师阅读)》2008年第12期广东惠州学院数学系 516007摘要:随着新课标的实施,利用轴对称性质求解几何最值问题已经成为近几年中考和竞赛的热点. 本文主要讨论两类常见的利用轴对称性质求最值的问题.关键词:轴对称性质;几何最值问题在近几年的中考和数学竞赛中,常常遇到利用轴对称性质求解几何图形中一些线段和的最大值或最小值问题. 轴对称的作用是迁线、迁角,把图形中比较分散、缺乏联系的元素集中到某个新的基本图形中,为应用某些定理提供方便.从教学的角度看,教师应教会学生处理这类问题的方法,但更要让学生理解方法背后所运用的数学知识,还要能清楚说明理由,使之知其然亦知其所以然. 利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有两个:(1)两点之间线段最短;(2)三角形两边之和大于第三边.笔者对近年的考题进行分析后发现,利用轴对称性质求最值的题目多是关于不在同一直线上的三点所构成的线段和问题,即三个点中有一个动点或是两个动点. 下面将对这两类问题进行分析、讨论.[⇩]有一点未被确定的最值问题这类最值问题所求的线段和中只有一个动点,已知的两个定点在动点所在直线的同一侧. 解决这类题的方法是找任一定点关于动点所在直线的对称点,连结这个对称点与另一定点交动点所在直线于一点,交点即为动点满足最值的位置.例1如图1,A,B两个村子在河CD的同侧,它们到河边的距离分别为AC=1km,BD=3km. CD=3km . 现要在河边CD上建一水厂分别向A,B两村输送自来水. 铺设水管的工程费用为每千米20 000元. 请在CD上选择水厂位置O,使铺设水管的费用最省(画图表示),并求得铺设水管的总费用F.[A][C][A′][O′][O][B][D][E]图1解析如果点A,B在河CD的异侧,显然点O即为AB与河CD所在直线的交点.因此,可设法在保持AO长不变的情况下,将点A移至直线CD的另一侧来考虑.作点A关于直线CD的对称点A′,连结A′B交直线CD于点O,则AO+BO=A′O+BO=A′B. 由两点间线段最短可得此时的线段和AO+BO最小,所以水厂应建在点O处. 在直线CD上另外任取一点O′,因为AO′=A′O′,利用三角形的三边关系显然有AO′+BO′>AO+BO.过点A′作A′E垂直于BD的延长线于点E,易得DE=A′C=AC=1km,A′E=CD=3km .在Rt△A′BE中,A′B===5km. 所以总费用F=5×20000=105元.变式1如图2,已知正方形ABCD的边长为3,E在BC上,且BE=2,P在BD上,则PE +PC的最小值为()[A][D][P][B][E][C][E][P]图2A. 2B.C. D.解析动点P在正方形ABCD的对角线BD上,而点C,E在对角线BD所在直线的同侧,点C关于对角线BD的对称点恰好是点A. 连结AE交对角线BD于点P,则点P即为PE+PC 取得最小值的位置. 由轴对称性质知PE+PC=AE. 利用勾股定理易知AE==,即答案为B.变式2如图3,等边三角形ABC的边长为2,M为AB的中点,P为BC上的点,设PA+PM的最大值和最小值分别为Smax和Smin,则S-S等于()[A][M][B][P][C][A′]图3A. 4B. 4C. 3D. 3解析(1)因为PM≤CM,PA≤CA,所以当点P与点C重合时,PM+PA的值最大. 易求CM=,所以Smax=2+.(2)定点A,M在动点P所在线段BC的同侧. 作点A关于BC边的对称点A′,连结A′M 交BC边于点P,由轴对称性质知,PM+PA的最小值即为A′M的长度. 连结A′C,由∠ACA′=120°,∠ACM=30°,得∠A′CM=90°,且A′C=AC=2,CM=. 所以A′M==. 即PA+PM 的最小值Smin=.所以S-S=(2+)2-2=4,答案为B.[⇩]有两点未被确定的最值问题这类最值问题所要求的线段和中只有一个定点,另外两个都是动点. 动点满足最值的位置由定点和动点所在直线的位置决定,目标是通过轴对称性质将线段迁至同一直线上来处理.例2如图4,∠AOB=45°,角内有一点P,PO=10,在角的两边分别有点Q,R(均不同于O),则△PQR周长的最小值为______.[P′][P″][R′][O][Q′][Q][A][P][B][R]图4解析点Q,R未定,要使△PQR的周长最小,可设法在保持QP,RP长度不变的情况下,将点P分别移至OA,OB的另一侧来考虑,使得△PQR的三条边刚好落在QR所在的直线上.作点P关于OA的对称点P′,关于OB的对称点P″. 连结P′P″,分别交OA,OB于点Q,R. 由轴对称性质得QP=QP′,RP=RP″. 由两点间线段最短得△PQR周长的最小值为P′P″的长. 点Q,R即是满足周长取得最小值的点. 分别在OA,OB上另外任取一点Q′,R′,△PQ′R′的周长=R′P″+R′Q′+Q′P′>P′P″.连结OP′,OP″,由对称性得OP′=OP″=OP=10,∠P′OP″=90°. 所以P′P″=10. 即△PQR的周长最小值为10.变式1如图5,在河湾处M点有一个观察站,观察员要从M点出发,先到AB岸,再到CD岸,然后返回M点,则该船应该走的最短路线是_________. (先画图,再用字母表示)解析此题与例2基本一致. 作点M关于直线AB的对称点M′,关于直线CD的对称点M″,连结M′M″分别交直线AB,CD于点P,Q,则MP+PQ+QM是船行驶的最短路线.变式2如图6,在矩形ABCD中,AB=20cm,BC=10cm,若在AC,AB上各取一点M,N,使BM+MN的值最小,求这个最小值.[A][N][B][M][C][D][B′][O]图6解析点B,N在点M所在直线的同侧,利用轴对称性质在保持MB长度不变的情况下,将点B移至AC的另一侧来考虑问题.作点B关于直线AC的对称点B′,BB′交AC于点O,于是BM+MN=B′M+MN. 点N在直线AB上,点B′在直线AB外,过点B′作B′N垂直于AB于点N,交AC于点M. 由直线外一点到直线上的最短距离为这点到直线上的垂线段的长度,得B′N的长为BM+MN的最小值. 点M,N为满足条件的点.连结AB′. 在△ABC中,AB=20cm,BC=10cm,由面积相等得AC×BO=AB×BC. 于是BO=4cm,所以BB′=8cm . 在△ABO中,由勾股定理得AO==8cm . 在△ABB′中,由面积相等得AB×B′N=BB′×AO,得B′N=16cm . 即BM+MN的最小值为16cm .。
轴对称中的最值模型问题(将军饮马)重难点题型专训(学生版)-初中数学
轴对称中的最值模型问题(将军饮马等)重难点题型专训题型一将军饮马之线段和最值题型二将军饮马之线段差最值题型三将军饮马之两定一动最值题型四三点共线最大值题型五双对称关系求周长最小值题型六两定两动型最值题型七两动一定最值题型八费马点最值问题将军饮马中最短路径问题四大模型一两定点在直线的异侧问题1作法图形原理在直线l 上找一点P ,使得P A+PB 的和最小。
连接AB ,与直线l 的交点P 即为所求。
两点之间,线段最短,此时P A +PB 的和最小。
二两定点在直线的同侧问题2:将军饮马作法图形原理在直线l 上找一点P ,使得P A +PB 的和最小。
作B 关于直线l 的对称点C ,连AC ,与直线l 的交点P 即为所求。
化折为直;两点之间,线段最短,此时P A +PB 的和AC 最小。
三两动点一定点问题问题3:两个动点作法图形原理作P 关于OA 的对称点P 1,作P 关于OB 的对称两点之间,线段最短,此时PC +PD +CD点P 在锐角∠AOB 的内部,在OA 边上找一点C ,在OB 边上找一点D ,,使得PC +PD +CD 的和最小。
点P 2,连接P 1P 2。
的和最小。
四造桥选址问题问题4:造桥选址作法图形原理直线m ∥n ,在m ,n 上分别求点M 、N ,使MN ⊥m ,MN ⊥n ,且AM +MN +BN 的和最小。
将点A 乡向下平移MN 的长度得A 1,连A 1B ,交n 于点N ,过N作NM ⊥m 于M 。
两点之间,线段最短,此时AM +MN +BN 的最小值为A 1B +MN 。
注意:本专题部分题目涉及勾股定理,各位同学可以学习完第3章后再完成该专题训练.勾股定理公式:a 2+b 2=c 2【经典例题一将军饮马之线段和最值】1.如图,在△ABC 中,AB =AC ,分别以点A 、B 为圆心,以适当长为半径画弧,两弧分别交于E 、F ,画直线EF ,D 为BC 的中点,M 为直线EF 上任意一点,若BC =5,△ABC 的面积为15,则BM +MD 的最小长度为()A.5B.6C.7D.82.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD平分∠BAC,若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.1.2B.2.4C.4.8D.9.63.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的角平分线,若E,F分别是AD和AC上的动点,则EC+EF的最小值是.4.唐朝著名诗人李颀的代表作品《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河”,其中隐含着一个有趣的数学问题.如图1,诗中将士在观望烽火之后从山脚下的A点出发,走到河边饮马后再到B点宿营.请问在何处饮马才能使总路程最短?我们可以用轴对称的方法解决这个问题.(1)如图2,作点B关于直线l的对称点B ,连接AB 与直线l交于点C,点C就是所求的位置.理由:如图3,在直线l上另取不同于点C的任一点C ,连接AC ,BC ,B C ,因为点B、B 关于直线l对称,点C、C 在直线l上,所以CB=,C B=,所以AC+CB=AC+CB =,在△AC B 中,依据,可得AB <AC +C B ,所以AC+CB<AC +C B ,即AC+CB最小.(2)迁移应用:如图4,△ABC是等边三角形,N是AB的中点,AD是BC边上的中线,AD=6,M是AD上的一个动点,连接BM、MN,则BM+MN的最小值是.【经典例题二将军饮马之线段差最值】5.如图,在△ABC中,AB=CB,∠B=100°.延长线段BC至点D,使CD=BC,过点D作射线DP∥AB,点E为射线DP上的动点,分别过点A,D作直线EC的垂线AM,DN.当AM-DN的值最大时,∠ACE的度数为.6.如图,AB⎳DP,E为DP上一动点,AB=CB=CD,过A作AN⊥EC交直线EC于N,过D作DM ⊥EC交直线EC于点M,若∠B=114°,当AN-DM的值最大时,则∠ACE=.7.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.已知△ABC的顶点均在格点上.(1)画出格点三角形ABC关于直线DE对称的△A B C ;(2)△A B C 的面积是(3)在直线DE上找出点P,使P A-PC最大,并求出最大值为.(保留作图痕迹)8.如图,已知△ABC的三个顶点在格点上.(1)画出△A1B1C1,使它与△ABC关于直线MN对称;(2)在直线MN上画出点D,使∠BDM=∠CDN.(3)在直线MN上画出点P,使P A-PC最大.【经典例题三将军饮马之两定一动最值】9.小王准备在红旗街道旁建一个送奶站,向居民区A,B提供牛奶,要使A,B两小区到送奶站的距离之和最小,则送奶站C的位置应该在( ).A. B.C. D.10.(2023春·黑龙江齐齐哈尔·八年级校考阶段练习)如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11.(2023春·全国·八年级专题练习)如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是.12.(2023·江苏·八年级假期作业)如图,在△ABC中,AB=AC,∠BAC=120°,AB边的垂直平分线DE交AB于点D,若AE=3,(1)求BC的长;(2)若点P是直线DE上的动点,直接写出P A+PC的最小值为.【经典例题四三点共线最大值】13.如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点N,交AB于点M,AB=12cm,△BMC的周长是20cm,若点P在直线MN上,则P A-PB的最大值为.14.如图,AC,BD在AB的同侧,AC=2,BD=8,AB=10,M为AB的中点,若∠CMD=120°,则CD的最大值为()A.12B.15C.18D.2015.如图,△ABC为等腰直角三角形,∠ACB=90°,M在△ABC的内部,∠ACM=4∠BCM,P为射线CM上一点,当|P A-PB|最大时,∠CBP的度数是.16.如图,方格图中每个小正方形的边长为1,点A、B、C、M、N都在格点上.(1)画出△ABC关于直线MN对称的△A1B1C1.(2)若以N点为原点建立平面直角坐标系,点B的坐标为0,5,则△ABC关于x轴对称△A2B2C2,写出点A2,C2的坐标.(3)在直线MN上找点P使PB-P A的最大值.最大,在图形上画出点P的位置,并直接写出PB-P A【经典例题五双对称关系求周长最小值】17.如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找到一点M、N,使得△AMN的周长最小,则∠AMN+∠ANM的度数为()A.100°B.110°C.120°D.130°18.如图,在四边形ABCD中,∠A=∠C=90°,∠B=32°,在边AB,BC上分别找一点E,F使△DEF的周长最小,此时∠EDF=()A.110°B.112°C.114°D.116°19.如图,在△ABC中,AB=AC=10cm,BC=9cm,AB的垂直平分线交AB于点M,交AC于点N,在直线MN上存在一点P,使P、B、C三点构成的△PBC的周长最小,则△PBC的周长最小值为.20.在草原上有两条交叉且笔直的公路OA、OB,在两条公路之间的点P处有一个草场,如图,∠AOB=30°,OP=6.5.现在在两条公路上各有一户牧民在移动放牧,分别记为M、N,若存在M、N使得△PMN的周长最小,则△PMN周长的最小值是.21.几何模型:条件:如图1,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使P A+PB的值最小.解法:作点A关于直线l的对称点A ,连接A B,则A B与直线l的交点即为P,且P A+PB的最小值为线段A B的长.(1)根据上面的描述,在备用图中画出解决问题的图形;(2)应用:①如图2,已知∠AOB=30°,其内部有一点P,OP=12,在∠AOB的两边分别有C、D两点(不同于点O),使△PCD的周长最小,请画出草图,并求出△PCD周长的最小值;②如图3,∠AOB=20°,点M、N分别在边OA、OB上,且OM=ON=2,点P,Q分别在OB、OA上,则MP+PQ+QN的最小值是.22.如图,在四边形ABCD中,∠BAD=∠B=∠D=90°,AD=AB=4,E是AD中点,M是边BC上的一个动点,N是边CD上的一个动点,则AM+MN+EN的最小值是.23.如图,在等边△ABC中,AC=12,AD是BC边上的中线,点P是AD上一点,且AP=5.如果点M、N分别是AB和AD上的动点,那么PM+MN+NB的最小值为.【经典例题七两动一定最值】24.如图,在锐角三角形ABC中,AB=6,△ABC的面积为18,BD平分∠ABC,若E、F分别是BD、BC上的动点,则CE+EF的最小值为.25.如图所示,在等边△ABC中,点D、E、F分别在边BC、AB,AC上,则线段DE+DF的最小值是()A.BC边上高的长B.线段EF的长度C.BC边的长度D.以上都不对26.如图,在△ABC中,∠ABC=90°,BC=8,AC=10,点P、Q分别是边BC、AC上的动点,则AP+PQ的最小值等于()A.4B.245C.5 D.48527.如图,在等腰△ABC中,AB=AC=8,∠ACB=75°,AD⊥BC于D,点M、N分别是线段AB、AD上的动点,则MN+BN的最小值是.【经典例题八费马点最值问题】28.【问题提出】(1)如图1,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM,CM.若连接MN,则△BMN的形状是.(2)如图2,在Rt△ABC中,∠BAC=90°,AB+AC=10,求BC的最小值.【问题解决】(3)如图3,某高新技术开发区有一个平行四边形的公园ABCD,AB+BC=6千米,∠ABC=60°,公园内有一个儿童游乐场E,分别从A、B、C向游乐场E修三条AE,BE,CE,求三条路的长度和(即AE+ BE+CE)最小时,平行四边形公园ABCD的面积.29.已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermat po int).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为6的等腰直角三角形DEF的费马点,则PD+PE+PF=()A.6B.32+6C.63D.930.定义:若P为△ABC内一点,且满足∠APB=∠BPC=∠CP A=120°,则点P叫做△ABC的费马点.(1)如图1,若点O是等边△ABC的费马点,且OA+OB+OC=18,则这个等边三角形的高的长度为;(2)如图2,已知△ABC,分别以AB、AC为边向外作等边△ABD与等边△ACE,线段CD、BE交于点P,连接AP,求证:点P是△ABC的费马点;(3)应用探究:已知有A、B、C三个村庄的位置如图3所示,能否在合适的位置建一个污水处理站Q,使得该处理站分别连接这三个村庄的水管长度之和最小?如果能,请你说明该如何确定污水处理站Q的位置,并证明该位置满足设计要求.31.定义:若P为△ABC内一点,且满足∠APB=∠BPC=∠CP A=120°,则点P叫做△ABC的费马点.(1)如图1,若点O是高为3的等边△ABC的费马点,则OA+OB+OC=;(2)如图2,已知P是等边△ABD外一点,且∠APB=120°,请探究线段P A,PB,PD之间的数量关系,并加以证明;(3)如图3,已知△ABC,分别以AB、AC为边向外作等边△ABD与等边△ACE,线段CD、BE交于点P,连接AP,求证:①点P是△ABC的费马点;②P A+PB+PC=CD.32.若一个三角形的最大内角小于120°,则在其内部有一点所对三角形三边的张角均为120°,此时该点叫做这个三角形的费马点.如图1,当△ABC三个内角均小于120°时,费马点P在△ABC内部,此时∠APB=∠BPC=∠CP A=120°,P A+PB+PC的值最小.(1)如图2,等边三角形ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数.为了解决本题,小林利用“转化”思想,将△ABP绕顶点A旋转到△ACP 处,连接PP ,此时△ACP ≌△ABP,这样就可以通过旋转变换,将三条线段P A,PB,PC转化到一个三角形中,从而求出∠APB=.(2)如图3,在图1的基础上延长BP,在射线BP上取点D,E,连接AE,AD.使AD=AP,∠DAE=∠P AC,求证:BE=P A+PB+PC.(3)如图4,在直角三角形ABC中,∠ABC=90°,∠ACB=30°,AB=1,点P为直角三角形ABC的费马点,连接AP,BP,CP,请直接写出P A+PB+PC的值.33.(2024八年级上·浙江·专题练习)如图,△ABC中,点D在BC边上,过D作DE⊥BC交AB于点E,P为DC上的一个动点,连接P A、PE,若P A+PE最小,则点P应该满足()A.P A=PCB.P A=PEC.∠APE=90°D.∠APC=∠DPE34.(24-25八年级上·全国·课后作业)如图,在四边形ABCD中,BC∥AD,CD⊥AD,P是CD边上的一动点,要使P A+PB的值最小,则点P应满足的条件是()A.P A=PBB.PC=PDC.∠APB=90°D.∠BPC=∠APD35.(23-24八年级下·四川巴中·期末)如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当长为半径画弧,两弧分别交于E、F,画直线EF,D为BC的中点,M为直线EF上任意一点,若BC=5,△ABC 的面积为15,则BM+MD的最小长度为()A.5B.6C.7D.836.(23-24八年级下·河南郑州·阶段练习)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN周长最小,则∠AMN+∠ANM的度数为()A.60°B.120°C.90°D.45°37.(23-24八年级上·湖南湘西·期末)在某草原上,有两条交叉且笔直的公路OA、OB,如图,∠AOB=30°,在两条公路之间的点P处有一个草场,OP=4.现在在两条公路上各有一户牧民在移动放牧,分别记为M、N,存在M、N使得△PMN的周长最小.则△PMN周长的最小值是( ).A.4B.6C.8D.1238.(22-23八年级下·福建漳州·期中)如图,在△ABC中,AB=AC,BC=6,S△ABC=18,D是BC中点,EF垂直平分AB,交AB于点E,交AC于点F,在EF上确定一点P,使PB+PD最小,则这个最小值为()A.3B.6C.9D.1239.(23-24八年级上·福建福州·期中)在平面直角坐标系xOy中,A0,4,动点B在x轴上,连接AB,将线段AB绕点A逆时针旋转60°至AC,连接OC,则线段OC长度最小为()A.0B.1C.2D.340.(22-23七年级下·山东济南·阶段练习)如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找到一点M、N,使得△AMN的周长最小,则∠AMN+∠ANM的度数为()A.100°B.110°C.120°D.130°41.(21-22八年级上·四川广元·期末)如图所示,在四边形ABCD中,AD=2,∠A=∠D=90°,∠B=60°,BC=2CD,在AD上找一点P,使PC+PB的值最小;则PC+PB的最小值为()A.4B.3C.5D.642.(21-22八年级上·广东广州·期中)在Rt △ABC 中,∠C =90°,∠A =30°,点P 是边AC 上一定点,此时分别在边AB ,BC 上存在点M ,N 使得△PMN 周长最小且为等腰三角形,则此时AP PC 的值为()A.12B.1C.32D.243.(2024七年级下·全国·专题练习)如图,△ABC 中,AB =AC ,BC =5,S △ABC =15,AD ⊥BC 于点D ,EF 垂直平分AB ,交AC 于点F ,在EF 上确定一点P ,使PB +PD 最小,则这个最小值为.44.(23-24七年级下·陕西西安·阶段练习)如图,在四边形ABCD 中,∠B =∠D =90°,在BC ,CD 上分别找一点M ,N ,使△AMN 周长最小,此时∠MAN =80°,则∠BAD 的度数为.45.(23-24七年级下·山东济南·期末)在草原上有两条交叉且笔直的公路OA 、OB ,在两条公路之间的点P 处有一个草场,如图,∠AOB =30°,OP =6.5.现在在两条公路上各有一户牧民在移动放牧,分别记为M、N,若存在M、N使得△PMN的周长最小,则△PMN周长的最小值是.46.(22-23七年级下·广东河源·期末)如图,在四边形ABCD中,∠A=∠C=90°,∠B=36°,在边AB、BC上分别找一点E、F,使△DEF周长最小,此时∠EDF=.47.(22-23八年级上·广东东莞·期中)如图,点A-2,1,点P是在x轴上,且使P A+PB最小,写,B2,3出点P的坐标.48.(22-23八年级上·湖南岳阳·期中)如图,直线l垂直平分△ABC的AB边,在直线l上任取一动点O,连结OA、OB、OC.若OA=5,则OB=.若AC=9,BC=6,则△BOC的最小周长是.49.(22-23八年级上·四川绵阳·期中)在平面直角坐标系xOy中,点A的坐标是0,2,点B在x轴的负半轴上且∠ABO=30°,点P与点O关于直线AB对称,在y轴上找到一点M,使PM+BM的值最小,则这个最小值为.50.(22-23八年级上·海南海口·期中)如图,在四边形ABCD中,∠A=∠C=90°,∠B=36°,在边AB,BC上分别找一点E,F使△DEF的周长最小.此时∠EDF的大小是.51.(22-23八年级上·湖北黄石·期末)如图,已知∠AOB=30°,OC平分∠AOB,在OA上有一点M,OM=103cm,现要在OC,OA上分别找点Q,N,使QM+QN最小,则其最小值为cm.52.(21-22八年级上·福建厦门·期末)小河的两条河岸线a∥b,在河岸线a的同侧有A、B两个村庄,考虑到施工安全,供水部门计划在岸线b上寻找一处点Q建设一座水泵站,并铺设水管PQ,并经由P A、PB 跨河向两村供水,其中QP⊥a于点P.为了节约经费,聪明的建设者们已将水泵站Q点定好了如图位置(仅为示意图),能使三条水管长PQ+P A+PB的和最小.已知P A=1.6km,PB=3.2km,PQ=0.1km,在A村看点P位置是南偏西30°,那么在A村看B村的位置是.53.(22-23八年级上·云南昆明·期末)如图,△ABC的三个顶点坐标分别为A2,3.,B1,1,C5,3(1)作出△ABC关于y轴对称的图形△A1B1C1.(2)求△A1B1C1的面积;(3)在x轴上找一点P,使得PC+PB最小,请直接写出点P的坐标.54.(24-25八年级上·黑龙江哈尔滨·阶段练习)如图,在平面直角坐标系中,已知A-3,4,B-1,2,C1,3.(1)在平面直角坐标系中画出△ABC,将△ABC平移得到△A B C ,已知A 1,-1,则C 坐标是.(2)求出△ABC的面积;(3)在x轴上有一点P,使得P A+PB的值最小,保留作图痕迹.55.(23-24八年级下·广东深圳·期末)【综合实践活动】【问题背景】如图1,A,B表示两个村庄,要在A,B一侧的河岸边建造一个抽水站P,使得它到两个村庄的距离和最短,抽水站P应该修建在什么位置?【数学建模】小坤发现这个问题可以用轴对称知识解决,他先将实际问题抽象成如下数学问题:如图2,A,B是直线l同侧的两个点,点P在直线l上.P在何处时,P A+PB的值最小.画图:如图3,作B关于直线l的对称点B ,连结AB 与直线l交于点P,点P的位置即为所求.证明:∵B和B 关于直线l对称∴直线l垂直平分BB∴PB=,∴P A+PB=P A+PB根据“”(填写序号:①两点之间,线段最短;②垂线段最短;③两点确定一列条直线.)可得P A+ PB 最小值为(填线段名称),此时P点是线段AB 和直线l的交点.【问题拓展】如图4,村庄B的某物流公司在河的对岸有一个仓库C(河流两侧河岸平行,即GD∥EF),为了方便渡河,需要在河上修建一座桥MN(桥的长度固定不变,等于河流的宽度且与河岸方向垂直),请问桥MN修建在何处才能使得B到C的路线最短?请你画出此时桥MN的位置(保留画图痕迹,否则不给分).【迁移应用】光明区某湿地公园如图5所示,四边形AEDC为花海景区,∠CDE=∠E=90°,AE=80米,DE=50米,长方形CFGH为人工湖景区,为了方便市民观景,公园决定修建一条步行观光路线(折线AM-MN-BN),A为起点,终点B在ED上,BD=30米,MN为湖边观景台,长度固定不变(MN =40米),且需要修建在湖边所在直线CF上,步行观光路线的长度会随着观景台位置的变化而变化,请直接写出步行观光路线的最短长度.2156.(2023九年级·四川成都·专题练习)在△ABC 中,AC =BC ,点E 在是AB 边上一动点(不与A 、B 重合),连接CE ,点P 是直线CE上一个动点.(1)如图1,∠ACB =120°,AB =16,E 是AB 中点,EM =2,N 是射线CB 上一个动点,若使得NP +MP 的值最小,应如何确定M 点和点N 的位置?请你在图2中画出点M 和点N 的位置,并简述画法;直接写出NP +MP 的最小值;(2)如图3,∠ACB =90°,连接BP ,∠BPC =75°且BC =BP .求证:PC =P A .57.(23-24七年级下·广东深圳·期末)【背景材料】对称美是我国古人和谐平衡思想的体现,常被用于建筑、器物、绘画、标识等作品的设计上,比如图1.同时,对称在解决生活中的实际问题时,也往往有很大的作用.【问题提出】某小区要在街道旁修建一个奶站,向居民区A ,B 提供牛奶,奶站应建在什么地方,才能使A ,B 到它的距离之和最短?该问题给牛奶公司造成了困扰,现向居民们征求意见.【问题解决】小明同学将小区和街道抽象出的平面图形,并用轴对称的方法巧妙地解决了这个问题.如图2,作A 关于直线m 的对称点A ,连接A B 与直线m 交于点C ,点C 就是所求的位置.(1)请你在下列阅读、应用的过程中,完成解答并填空:证明:如图3,在直线m 上另取任一点D ,连结AD ,A D ,BD ,∵直线m 是点A ,A 的对称轴,点C ,D 在m 上,22∴CA =,DA =,∴AC +CB =A C +CB =.在△A DB 中,∵A B <A D +DB ,∴A C +CB <A D +DB .∴AC +CB <AD +DB ,即AC +CB 最小.(2)如图4,在等边△ABC 中,E 是AB 上的点,AD 是∠BAC 的平分线,P 是AD 上的点,若AD =5,则PE +PB 的最小值为.【拓展应用】(3)“龙舟水”来势汹汹,深圳“雨雨雨”模式开启,深圳某学校的志愿者们在查阅地图后,画出了平面示意图5.其中,点A 表示龙潭公园,点B 表示宝能广场,点C 表示万科里,点D 表示万科广场,点E 表示龙城广场地铁站.如图6,志愿者计划在B 宝能广场和D 万科广场之间摆放一批共享雨伞,使得共享雨伞的位置到B宝能广场、C 万科里、D 万科广场和E 龙城广场地铁站的距离的和最小.若点A 与点C 关于BD 对称,请你用尺子在BD 上画出“共享雨伞”的具体摆放位置(用点G 表示).58.(24-25八年级上·全国·假期作业)如图,B、C 两点关于y 轴对称,点A 的坐标是0,b ,点C 坐标为-a ,-a -b .(1)直接写出点B 的坐标为;(2)用尺规作图,在x 轴上作出点P ,使得AP +PB 的值最小;(3)∠OAP =度.59.(21-22七年级上·陕西商洛·期末)点C 为∠AOB 内一点.23(1)在OA上求作点D,OB上求作点E,使△CDE的周长最小,请画出图形;(2)在(1)的条件下,若∠AOB=30°,OC=10,求△CDE周长的最小值.60.(23-24八年级上·湖南长沙·期末)在四边形ABCD中,∠BAD=BCD=90°,∠ABC=135°,AB=32,BC=1,在AD、CD上分别找一点E、F,使得△BEF的周长最小,求△BEF周长的最小值.61.(2023八年级上·全国·专题练习)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=6,CD平分∠ACB交斜边AB于点D,动点P从点C出发,沿折线CA-AD向终点D运动.(1)点P在CA上运动的过程中,当CP时,△CPD与△CBD的面积相等;(直接写出答案)(2)点P在折线CA-AD上运动的过程中,若△CPD是等腰三角形,求∠CPD度数;(3)若点E是斜边AB的中点,当动点P在CA上运动时,线段CD所在直线上存在另一动点M,使两线段MP、ME的长度之和,即MP+ME的值最小,则此时CP的长度(直接写出答案).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴对称中几何动点最值问题总结
轴对称的作用是“搬点移线”,可以把图形中比较分散、缺乏联系的元素集中到“新的图形”中,为应用某些基本定理提供方便。
比如我们可以利用轴对称性质求几何图形中一些线段和的最大值或最小值问题。
利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个:(1)两点之间线段最短;
(2)三角形两边之和大于第三边;
(3)垂线段最短。
初中阶段利用轴对称性质求最值的题目可以归结为:两点一线,两点两线,一点两线三类线段和的最值问题。
下面对三类线段和的最值问题进行分析、讨论。
(1)两点一线的最值问题:(两个定点+ 一个动点)
问题特征:已知两个定点位于一条直线的同一侧,在直线上求一动点的位置,使动点与定点线段和最短。
核心思路:这类最值问题所求的线段和中只有一个动点,解决这类题目的方法是找出任一定点关于直线的对称点,连结这个对称点与另一定点,交直线于一点,交点即为动点满足最值的位置。
方法:1.定点过动点所在直线做对称。
2.连结对称点与另一个定点,则直线段长度就是我们所求。
变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。
1.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小。
(2)一点两线的最值问题:(两个动点+一个定点)
问题特征:已知一个定点位于平面内两相交直线之间,分别在两直线上确定两个动点使线段和最短。
核心思路:这类问题实际上是两点两线段最值问题的变式,通过做这一定点关于两条线的对称点,实现“搬点移线”,把线段“移”到同一直线上来解决。
变异类型:
1.如图,点P是∠MON内的一点,分别在OM,ON上作点A,B。
使△PAB的周长最小。
2.如图,点A是∠MON外的一点,在射线OM上作点P,使PA与点P到射线ON的距离之和最小。
(3)两点两线的最值问题:(两个动点+两个定点)
问题特征:两动点,其中一个随另一个动(一个主动,一个从动),并且两动点间的距离保持不变。
核心思路:用平移方法,可把两动点变成一个动点,转化为“两个定点和一个动点”类型来解。
变异类型:
1.如图,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。
使四边形PAQB的周长最小。
2.如图,已知A(1,3),B(5,1),长度为2的线段PQ在x轴上平行移动,当AP+PQ+QB 的值最小时,点P的坐标为( )
3.
(4)两点两线的最值问题:(两个动点+两个定点)
问题特征:两动点分别在两条直线上独立运动,一动点分别到一定点和另一动点的距离和最小。
核心思路:利用轴对称变换,使一动点在另一动点的对称点与定点的线段上(两点之间线段最短),且这条线段垂直于另一动点的对称点所在直线(连接直线外一点与直线上各点的所有线段中,垂线段最短)时,两线段和最小,最小值等于这条垂线段的长。
变异类型:演变为多边形周长、折线段等最值问题。
1. 如图,点A是∠MON内的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小。
二、常见题目
1.如图,在等边△ABC
求EM+EC的最小值。
2.如图,在锐角△ABC
是AD和AB
3.如图,△ABC中,
则这个最小值。
1.如图,正方形ABCD
最小值为_________。
2.如图所示,正方形
对角线AC上有一点P
2
A.3
3.在边长为2
PB、PQ,则△PBQ
4.如图,四边形ABCD
求PC+PE的最小值;
Part3、矩形
1.如图,若四边形 ABCD 是矩形, AB = 10cm ,BC = 20cm ,E 为边 BC 上的一个动点,P 为 BD 上的一个动点,求 PC+PD 的最小值;
Part4、菱形
1.如图,若四边形 ABCD 是菱形, AB=10cm ,∠ABC=45°,E 为边 BC 上的一个动点,P 为 BD 上的一个动点,求 PC+PE
的最小值;
Part5、直角梯形
1.已知直角梯形 ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点 P 在 BC 上秱动,则当 PA +PD 取最小值时,△APD 中边 AP 上的高为( )
Part6、一次函数
一次函数 b kx y +=的图象与y x , 轴分别交于点).4,0(),0,2(B A
(1)求该函数的解析式;
(2)O 为坐标原点,设AB OA ,的中点分别为D C ,,P 为OB 上一动点,求 PD PC +的最小值,并求取得最小值时P 点坐标.。