八年级数学下册第1章直角三角形1.2直角三角形的性质和判定(第1课时)教案(新版)湘教版
北师大版八年级下册数学《1.2第1课时直角三角形的性质与判定》说课稿
北师大版八年级下册数学《1.2 第1课时直角三角形的性质与判定》说课稿一. 教材分析北师大版八年级下册数学《1.2 第1课时直角三角形的性质与判定》这一课时,主要让学生了解直角三角形的性质与判定。
在学习了勾股定理和三角函数的基础上,本节课让学生通过观察、实验、推理等方法,探索并证明直角三角形的性质,从而加深对勾股定理的理解和应用。
二. 学情分析八年级的学生已经掌握了基本的代数知识和几何知识,对于观察、实验、推理等方法有一定的了解和运用能力。
但是,对于证明直角三角形的性质和判定,还需要老师在课堂上进行引导和讲解。
三. 说教学目标1.知识与技能:让学生掌握直角三角形的性质和判定方法。
2.过程与方法:培养学生通过观察、实验、推理等方法探索数学问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作能力和自主学习能力。
四. 说教学重难点1.教学重点:直角三角形的性质和判定方法。
2.教学难点:证明直角三角形的性质和判定。
五.说教学方法与手段1.教学方法:采用问题驱动法、实验探究法、小组合作法等。
2.教学手段:多媒体课件、黑板、几何模型等。
六. 说教学过程1.导入新课:通过一个实际问题,引发学生对直角三角形性质的思考。
2.自主学习:让学生通过观察、实验、推理等方法,探索直角三角形的性质。
3.合作交流:学生分组讨论,分享探索成果,互相提问,解决问题。
4.讲解与演示:老师对学生的探索成果进行点评,讲解直角三角形的性质和判定方法,并进行现场演示。
5.练习巩固:让学生进行一些有关直角三角形性质和判定的练习题,巩固所学知识。
6.课堂小结:让学生总结本节课所学内容,老师进行补充。
七. 说板书设计板书设计如下:直角三角形的性质与判定a.直角三角形的两个锐角互余b.直角三角形的斜边最长c.直角三角形的两条直角边互相垂直d.如果一个三角形有一个角是直角,那么它是直角三角形e.如果一个三角形的两边长满足a^2 + b^2 = c^2,那么这个三角形是直角三角形八. 说教学评价1.课堂参与度:观察学生在课堂上的发言、提问、练习等情况,了解学生的参与程度。
八下第1章直角三角形1-1直角三角形的性质和判定Ⅰ第2课时含30°角的直角三角形的性质习题新版湘教版
腰长为12 m,则底边上的高是( B
A.4 m
B.6 m
C.10 m
D.12 m
)
(第6题)
7.(母题:教材P8习题T6)如图,在△ABC中,∠C=90°,点
E是边AC上的点,且∠1=∠2,DE垂直平分边AB,垂足
为点D.若EC=3 cm,则AE的长为 6 cm
∴∠B=30°,∴∠BAC= (180°-∠B)=75°.
②如图(b),AC=BC,AD⊥BC交BC的延长线于点D,
AD在三角形的外部,∴∠CAB=∠B.由题意知AD= BC=
AC,∴∠ACD=30°=∠B+∠CAB.
∵∠B=∠CAB,∴∠BAC= ∠ACD=15°.
③如图(c),AC=AB,AD⊥BC,BC边为等腰三角形底
交BC于点D,E为AB上一点,连接DE,则下列说法错误的
是( D
)
A.∠CAD=30°
B.AD=BD
C.BD=2CD
D.CD=ED
3.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC
绕点C按顺时针方向旋转一定角度得到△DEC,点D恰好在
AB上.
(1)若AC=4,求DE的长度;
【解】在△ABC中,∠ACB=90°,
形状
12. [新考法 分类判断法]如图,在Rt△ABC中,∠C=90°,
∠A=30°,BC=12 cm.动点P从点A出发,沿AB向点B运
动,动点Q从点B出发,沿BC向点C运动.如果动点P以2
cm/s,动点Q以1 cm/s的速度同时出发,设运动时间为t
s,解答下面的问题:
八年级数学 第1章 直角三角形 1.1 直角三角形的性质与判定(ⅰ)(第1课时)
∠A=90°-∠B,
④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有
_____①__②__③__(填序号).
世纪金榜导学号
第十七页,共三十四页。
知识点二 直角三角形斜边上中线(zhōngxiàn)的性质 (P3探究拓展)
第十八页,共三十四页。
【典例2】 如图,△ABD是以BD为斜边的等腰直 角三角形,△BCD中,∠DBC=90°, ∠BCD=60°,DC中点为E,AD与BE的延长线交于点F,求∠AFB 度数(dù shu). 世纪金榜导学号
)
C
A.75° B.65° C.55° D.45°
第七页,共三十四页。
2.具备下列条件(tiáojiàn)的△ABC中,不是直角三角形的是 ( D) A.∠A+∠B=∠C
B.∠A-∠B=∠C
第八页,共三十四页。
C.∠A∶∠B∶∠C=1∶2∶3 D.∠A=∠B=3∠C
第九页,共三十四页。
3.(2019·睢宁县期中(qī zhōnɡ))已知一个直角三角形的斜边长 为12,则其斜边上的中线长为_____6_.
第十页,共三十四页。
知识点一直角三角形两锐角(ruìjiǎo)的关系及应用 (P2议一议拓展)
第十一页,共三十四页。
【典例1】如图,在△ABC中, ∠ACB=90°,CD是高. (1)图中有几个直角三角形?是哪几个? (2)∠1和∠A有什么(shén me)关系?∠2和∠A呢?还有哪些
锐角相等?
第二十五页,共三十四页。
【火眼金睛】 如图,△ABC为等腰直角三角形,AD为斜边BC上的高,E,F分 别(fēnbié)为AB和AC的中点,试判断DE和DF的关系.
第二十六页,共三十四页。
第二十七页,共三十四页。
湘教版数学八年级下册 直角三角形的性质和判定教案与反思
第1章直角三角形路漫漫其修远兮,吾将上下而求索。
屈原《离骚》原创不容易,【关注】店铺,不迷路!1.1直角三角形的性质和判定(Ⅰ)第1课时直角三角形的性质和判定【知识与技能】1.体验直角三角形应用的广泛性,理解直角三角形的定义,进一步认识直角三角形.2.学会用符号和字母表示直角三角形.3.经历“直角三角形两个锐角互余”的探讨,掌握直角三角形两个锐角互余的性质.4.会用“两个锐角互余的三角形是直角三角形”这个判定方法判定直角三角形.5.理解和掌握直角三角形性质“斜边上的中线等于斜边的一半”.【过程与方法】通过动手,猜想发现直角三角形的性质,引导逆向思维,探索性质的推导方法——同一法.【情感态度】体会从“一般到特殊”的思维方法和“逆向思维”方法,培养逆向思维能力.【教学重点】直角三角形性质和判定的探索及应用.【教学难点】直角三角形性质“斜边上的中线等于斜边的一半”的判定探索过程.一、创设情境,导入新课问题什么叫直角三角形?从定义可以知道直角三角形具有一个角是直角的性质,要判断一个三角形是直角三角形需要判断这个三角形中有一个角是直角.直角三角形除了有一个角是直角这条性质外还有没有别的性质呢?判断一个三角形是直角三角形除了判断一个角是直角还有没有别的方法呢?这节课我们来探究这些问题.【教学说明】引导学生回忆,并巩固所学知识.从实际问题入手,激发学生的兴趣,注意新知识的连贯性.二、思考探究,获取新知问题1直角三角形两锐角互余思考如图,在Rt△ABC中,两锐角的和∠A+∠B=______.为什么?【教学说明】通过学生思考,总结归纳得出结果,培养学生分析问题和理解问题的能力.试试看:(1)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,若∠A=40°,则∠BCD=______..(2)在△ABC中,∠B=50°,高AD、CE交于H,则∠AHC=______..【教学说明】巩固所学内容,加强对直角三角形两角之间互余的理解.问题2利用两锐角互余判断三角形是直角三角形思考如图,在△ABC中,如果∠A+∠B=90°,那么△ABC是直角三角形吗?为什么?【教学说明】让学生明白两锐角互余的三角形是直角三角形,从而得到直角三角形一种判定方法.结论有两个锐角互余的三角形是直角三角形.试试看:如图,AB∥CD,∠A和∠C的平分线相交于H点,那么△AHC是直角三角形吗?为什么?【教学说明】让学生利用所学知识解决数学问题,逐步掌握解题技巧,培养学生的应用意识和能力.问题3直角三角形斜边上的中线等于斜边的一半的探索过程思考(1)按要求作图:画一个直角三角形,并作出斜边上的中线.(2)量一量各线段的长度.(3)猜想:你能猜想出什么结论?【教学说明】经历上面的探索过程,学生很容易得出结论,并能对所学知识行提炼和归纳.问题4教材第4页例题【教学说明】让学生明确直角三角形斜边上的中线等于斜边的一半这一定理的题设及结论可以相互变换,加深它们之间的区别与联系.三、运用新知,深化理解1.如果三角形的三个内角的比是4∶5∶9,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形2.在△ABC中,若∠A=∠B+∠C,则△ABC是_______.3.图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,将△ACD沿AC边折叠,使点D落在点E处.求证:E∥AB.【教学说明】由学生独立完成,加深对所学知识的理解和运用以及检查学生掌握情况,有困难的学生教师要及时指导,并及时纠正错误,给予矫正深化.答案:1.B2.直角三角形3.证明:∵△ACD沿AC边折叠,∴△ADC≌AEC,∴∠ACE=∠ACD,∵CDAB边上的中线,∠AB=90°,∴CD=AD,∴∠CAD=∠ACD,∴∠CAD=∠ACE,∴EC∥AB.四、师生互动,课堂小结通过今天的学习,你掌握了直角三角形的哪些性质和判定方法?还有什么值得与大家共同分享的?【教学说明】梳理学习内容、方法、思路,养成系统整理知识的习惯,形成知识体系,同学之间互相取长补短,达到共同提高.1.布置作业:习题1.1中的第1、2题2.完成练习册中本课时的练习.通过练习反馈的情况来看,学生对于利用已知条件判定一个三角形是否为直角三角形这一考点比较容易上手一些,而往往忽略在直角三角形中告诉斜边上的中点利用中线这一性质解决问题.在今后的教学中让学生不断强化提高这一点.【素材积累】阿达尔切夫说过:“生活如同一根燃烧的火柴,当你四处巡视以确定自己的位置时,它已经燃完了。
湘教版八下数学1.2直角三角形的性质和判定(Ⅱ)第1课时勾股定理说课稿
湘教版八下数学1.2直角三角形的性质和判定(Ⅱ)第1课时勾股定理说课稿一. 教材分析《勾股定理说课稿》选自湘教版八年级下册数学1.2直角三角形的性质和判定(Ⅱ)第1课时。
这一课时主要介绍勾股定理的证明及其应用。
教材通过引入直角三角形的性质,引导学生探究勾股定理,并运用勾股定理解决实际问题。
本节课的内容是学生进一步学习几何的基础,对于培养学生的逻辑思维能力和空间想象力具有重要意义。
二. 学情分析在进入本节课的学习之前,学生已经学习了三角形的基本概念、分类以及性质,对直角三角形有一定的了解。
但他们对勾股定理的证明及应用尚不熟悉。
因此,在教学过程中,教师需要关注学生的认知基础,通过引导、探究、实践等方式,帮助学生理解和掌握勾股定理。
三. 说教学目标1.知识与技能目标:让学生掌握勾股定理的证明方法,并能运用勾股定理解决实际问题。
2.过程与方法目标:通过自主学习、合作探究的方式,培养学生解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们勇于探索、积极向上的精神。
四. 说教学重难点1.教学重点:勾股定理的证明及其应用。
2.教学难点:勾股定理的证明方法及如何在实际问题中运用。
五. 说教学方法与手段本节课采用自主学习、合作探究的教学方法,结合多媒体课件、几何画板等教学手段,引导学生直观地理解勾股定理。
六. 说教学过程1.导入新课:通过复习三角形的基本概念、分类和性质,为学生引入勾股定理。
2.自主学习:让学生阅读教材,了解勾股定理的证明方法。
3.合作探究:学生分组讨论,选取组长汇报探究成果。
4.教师讲解:针对学生的探究成果,进行点评和讲解,引导学生深入理解勾股定理。
5.实践应用:布置练习题,让学生运用勾股定理解决实际问题。
6.课堂小结:对本节课的内容进行总结,强调勾股定理的应用。
七. 说板书设计板书设计如下:直角三角形的性质和判定(Ⅱ)1.勾股定理的证明b.相似三角形法2.勾股定理的应用a.计算直角三角形边长b.计算直角三角形面积c.解决实际问题八. 说教学评价本节课的评价方式包括课堂表现、练习题和课后作业。
《 直角三角形》(第1课时)示范公开课教学设计【部编北师大版八年级数学下册】
第一章三角形的证明1.2直角三角形教学设计第1课时一、教学目标1.进一步掌握推理证明的方法,发展演绎推理能力.2.证明直角三角形的性质定理和判定定理.3.结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立.二、教学重点及难点重点:1.了解勾股定理及其逆定理的证明方法.2.结合具体例子了解逆命题的概念,识别两个互逆命题,知道原命题成立,其逆命题不一定成立.难点:勾股定理及其逆定理的证明方法.三、教学用具多媒体课件、直尺或三角板.四、相关资源微课,知识卡片图片五、教学过程【情境导入】问题:房梁的一部分如图所示,,其中BC⊥AC,∠A=30°,AB=7.4 m,点D是AB的中点,且ED⊥AC,垂足分别是E,那么BC的长是多少?解决这个问题,主要利用了上节课已经证明的“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.”,得到BC=3.7 m.由此提问:“我们曾经探索过的直角三角形,还有哪些性质和判定方法?”.设计意图:通过问题,让学生在解决问题的同时,回顾直角三角形的一般性质.【探究新知】1.忆一忆回顾直角三角形有哪些性质和判定方法?与同伴交流.(1)直角三角形的两个锐角有怎么样的关系?为什么?(2)如果一个直角三角形有两个角互余,那么这个三角形是直角三角形吗?定理:直角三角形的两个锐角互余.定理:有两个角互余的三角形是直角三角形.(1)已知:如图,在Rt△ABC中,∠C=90°.求证:∠A+∠B=90°.证明:在△ABC中,∠A+∠B+∠C=180°.∵∠C=90°,∴∠A+∠B=180°-∠C=180°-90°=90°.(2)已知:如图,在△ABC中,∠A+∠B=90°.求证:△ABC是直角三角形.321证明:在△ABC 中,∠A +∠B +∠C =180°.∵∠A +∠B =90°,∴∠C =180°-(∠A +∠B )=180°-90°=90°.∴△ABC 是直角三角形.2.证一证我们曾利用数方格和割补图形的方法得到了勾股定理.如果利用拼图及由其推导出的定理,能够证明勾股定理吗?图1图2利用图1 的边长为a ,b ,c 的全等的四个直角三角形拼成一个以c 为边的正方形如图2,则图中的小正方形边长为(a -b ),它的面积为(a -b )2 ,四个直角三角形的面积和为(4×2ab ) 由此可得:c 2 = (a -b )2+2ab = a 2-2ab +b 2+2ab = a 2+b 2.勾股定理:直角三角形两直角边的平方和等于斜边的平方.勾股定理在西方文献中又称为毕达哥拉斯定理.反过来,如果在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的cb acba方法得出“这个三角形是直角三角形”的结论.你能证明此结论吗?师生共同来完成.已知:如图:在△ABC 中,AB 2+AC 2=BC 2求证:△ABC 是直角三角形.分析:要从边的关系,推出∠A =90°是不容易的,如果能借助于△ABC 与一个直角三角形全等,而得到∠A 与对应角(构造的三角形的直角)相等,可证.证明:作Rt △A ′B ′C ′,使∠A ′=90°,A ′B ′=AB ,A ′C ′=AC (如图),则A ′B ′2+A ′C ′2 =B ′C ′2 (勾股定理).∵AB 2+AC 2=BC 2,∴BC 2=B ′C ′2.∴BC =B ′C ′.∴△ABC ≌△A ′B ′C ′(SSS ).∴∠A =∠A ′=90°(全等三角形的对应角相等).因此,△ABC 是直角三角形.总结得勾股逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.设计意图:勾股定理及其逆定理的证明对学生有一定难度,接受并经历定理的探究过程,即明确有关定理即可.3.议一议 CB AA'B'C'观察上面两个命题,它们的条件和结论之间有怎样的关系?在前面的学习中还有类似的命题吗?通过观察,学生会发现:上面两个定理的条件和结论互换了位置,即勾股定理的条件是第二个定理的结论,结论是第二个定理的条件.这样的情况,在前面也曾遇到过.例如:“两直线平行,内错角相等”,“内错角相等,两直线平行”.“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边就等于斜边的一半”.“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°”.让学生畅所欲言,体会逆命题与命题之间的区别与联系,要能够清晰地分别出一个命题的题设和结论,能够将一个命题写出“如果……;那么……”的形式,以及能够写出一个命题的逆命题.活动中,教师应注意给予适度的引导,学生若出现语言上不严谨时,要先让这个疑问交给学生来剖析,然后再总结.活动时可以先让学生观察下面三组命题:第一组:如果两个角是对顶角,那么它们相等.如果两个角相等,那么它们是对顶角.第二组:如果小明患了肺炎,那么他一定发烧.如果小明发烧,那么他一定患了肺炎.第三组:三角形中相等的边所对的角相等.三角形中相等的角所对的边相等.上面每组中两个命题的条件和结论也有类似的关系吗?与同伴交流.不难发现,每组第二个命题的条件是第一个命题的结论,第二个命题的结论是第一个命题的条件.▲在两个命题中,如果一个命题条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题,相对于逆命题来说,另一个就为原命题.再来看“议一议”中的三组命题,它们就称为互逆命题,如果称每组的第一个命题为原命题,另一个则为逆命题.请同学们判断每组原命题的真假.逆命题呢?在第一组中,原命题是真命题,而逆命题是假命题.在第二组中,原命题是真命题,而逆命题是假命题.在第三组中,原命题和逆命题都是真命题.由此我们可以发现:原命题是真命题,而逆命题不一定是真命题.设计意图:通过几对数学和生活中的命题,引导学生观察这些成对命题的结论与条件之间的关系,并归纳出它们的共性,得到互逆命题的概念.注意原命题正确,其逆命题不一定正确.4.想一想要写出原命题的逆命题,需先弄清楚原命题的条件和结论,然后把结论变换成条件,条件变换成结论,就得到了逆命题.请学生写出命题“如果两个有理数相等,那么它们的平方相等”的逆命题,它们都是真命题吗?答:逆命题是“如果两个有理数的平方相等,那么它们相等”,原命题是真命题,逆命题是假命题.从而引导学生思考:原命题是真命题吗?逆命题一定是真命题吗? 并通过具体的实例说明.如果有些命题,原命题是真命题,逆命题也是真命题,那么我们称它们为互逆定理.其中逆命题称为原命题(即原定理)的逆定理.能举例说出我们已学过的互逆定理?如我们刚证过的勾股定理及其逆定理,“两直线平行,内错角相等”与“内错角相等,两直线平行”.“全等三角形对应边相等”和“三边对应相等的三角形全等”、“等边对等角”和“等角对等边”等.设计意图:本环节关键是让笑死我验证逆命题的正确性,并能意识到一对互逆命题的真假性不一定一致.【典例精讲】例 1 如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A.相等B.互补C.相等或互补D.相等或互余解析:C.如图(1)所示,已知AB=A′B′,BC=B′C′,AD⊥BC于点D,A′D′上B′C′于D′点,且AD=A′D′,根据HL可判定Rt△ABD≌Rt△A′B′D′,从而证得∠B=∠B′.如图(2)所示,可知此时两角互补.例2 说出下列命题的逆命题,并判断每对命题的真假;(1)四边形是多边形;(2)两直线平行,内旁内角互补;(3)如果ab =0,那么a =0,b =0.解析:互逆命题和互逆定理的概念,学生接受起来应不会有什么困难,尤其是对以“如果……那么……”形式给出的命题,写出其逆命题较为容易,但对于那些不是以这种形式给出的命题,叙述其逆命题有一定困难.可先分析命题的条件和结论,然后写出逆命题.解:(1)多边形是四边形.原命题是真命题,而逆命题是假命题.(2)同旁内角互补,两直线平行.原命题与逆命题同为真命题.(3)如果a =0,b =0,那么ab =0.原命题是假命题,而逆命题是真命题.设计意图:例题巩固了本节所学知识,在解答过程中,引导学生分析解决问题的方法.【课堂练习】1.以下各组数为边的三角形中,不是直角三角形的是( )A .3+1,3-1,22B .4,7.5,8.5C .7,24,25D .3.5,4.5,5.52.在直角三角形中,锐角顶点所引的两条线中线长为5的斜边长( )A .10 B.CD.3.如图,EA ⊥AB ,BC ⊥AB ,EA =AB =2BC ,D 为AB 中点,有以下结论:(1)DE =AC ;(2)DE ⊥AC ;(3)∠CAB =30°;(4)∠EAF =∠ADE ,其中结论正确的是( )A . (1),(3)B . (2),(3)C . (3),(4)D . (1),(2),(4) 4.如图所示,∠ACB =90°,BC =DB ,AC =AE ,则∠DCE=( )A .60°B .50°C .45°D .30°F ED CBA5.直角三角形两直角边长分别为6和 8,则斜边上的高为_________.6.如图所示,在高为3m ,斜坡长为5m 的楼梯表面铺地毯,至少需要地毯多少米?设计意图:及时巩固所学知识,了解学生的学习效果,增强学生灵活运用知识的能力. 参考答案:1.D 2.D . 3.D . 4.C .5.4.86.解析:毯子的长度恰好等于直角三角形两直角边的长度之和.解:52-32=16=42,∴3+4=7.∴至少需要地毯7米.六、课堂小结1.直角三角形的性质和判定定理:三角形的两个锐角互余.定理:有两个角互余的三角形是直角三角形.勾股定理:如果直角三角形两直角边分别为a 、b ,斜边为c ,那么a 2+b 2=c 2.即直角三角形两直角边的平方和等于斜边的平方.勾股定理在西方文献中又称为毕达哥拉斯定理.勾股定理的逆定理:如果三角形两边的平方和等于第三边平方,那么这个三角形是直角三角形.2.命题与逆命题在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.E D CBA3.定理与逆定理如果一个定理的逆命题经过证明是真命题,那么它是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.设计意图:通过小结,使学生梳理本节所学内容,理解直角三角形的相关定理和逆定理,综合运用直角三角形的相关定理解决问题.七、板书设计1.2直角三角形(1)1.直角三角形的性质和判定2.命题与逆命题3.定理与逆定理。
湘教版初中数学八年级下册课程目录与教学计划表
湘教版初中数学八年级下册课程目录与教学计划表
教材课本目录是一本书的纲领,是教与学的路线图。
不管是做教学计划、实施教学活动,还是做复习安排、工作总结,都离不开目录。
目录是一本书的知识框架,要做到心中有书、胸有成竹,就从目录开始吧!
课程目录教学计划、进度、课时安排
第1章直角三角形
1.1 直角三角形的性质和判定(Ⅰ)
1.2 直角三角形的性质和判定(Ⅱ)
1.3 直角三角形全等的判定
1.4 角平分线的性质
小结与复习
第2章四边形
2.1 多边形
2.2 平行四边形
2.2.1 平行四边形的性质
2.2.2 平行四边形的判定
2.3 中心对称和中心对称图形
2.4 三角形的中位线
2.5 矩形
2.5.1 矩形的性质
2.5.2 矩形的判定
2.6 菱形
2.6.1 菱形的性质
2.6.2 菱形的判定
2.7 正方形
小结与复习
第3章图形与坐标
3.1 平面直角坐标系
3.2 简单图形的坐标表示
3.3 轴对称和平移的坐标表示
小结与复习
第4章一次函数
4.1 函数和它的表示法
4.2 一次函数
4.3 一次函数的图象
4.4 用待定系数法确定一次函数表达式4.5 一次函数的应用
小结与复习
第5章数据的频数分布
5.1 频数与频率
5.2 频数直方图
小结与复习
总复习。
八年级数学下册第1章直角三角形1.2直角三角形的性质和判定Ⅱ第1课时勾股定理教学反思湘教版
勾股定理整章书的内容很少,就勾股定理和勾股定理的逆定理,这节课是勾股定理的第一课时,本节课主要是和学生一起探究勾股定理的认识。
在教学的过程中感觉有几个方面需要转变的。
一、转变师生角色,让学生自主学习。
由于高效课堂中教学模式需要进行学生自主讨论交流学习,在探究勾股定理的发现时分四人一小组由同学们合作探讨作图,去发现有的直角三角形的三边具有这种关系,有的直角三角形不具有这种性质.可仍然证明不了我们的猜想是否正确。
之后用拼图的方法再来验证一下.让学生们拿出准备好的直角三角形和正方形,利用拼图和面积计算来证明a2+b2 =c2(学生分新课标下要求教师个人素质越来越高,教师自身要不断及时地学习学科专业知识,接受新信息,对自己及时充电、更新,而且要具有幽默艺术的语言表达能力。
既要有领导者的组织指导能力,更重要的是要有被学生欣赏佩服的魅力,只有学生配合你,信任你,喜欢你,教师才能轻松驾御课堂,做到应付自如,高效率完成教学目标。
“教师教,学生听,教师问,学生答,教师出题,学生做”的传统教学模式,已严重阻碍了现代教育的发展。
这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1平方米到底有多大?因此,高效课堂上要求老师一定要改变角色,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。
二、转变教学方式,让学生探索、研究、体会学习过程。
学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节,感受不到数学与生活的联系,这是当今课堂教学存在的普遍问题,对于我们这儿的学生起点低、数学基础差、实践能力差,对学生的各种能力培养非常不利的。
湘教版八年级数学下册第一章《 直角三角形的性质和判定(Ι)》公开课课件
解 轮船在航行过程中, 如果与A岛的距离始终大于20海里, 则轮船就不会触暗礁.
在图1-8中,过A点作AD⊥OB,垂足为D.
在Rt△AOD中,
AO=30 3海里,∠AOD=30°.
于是AD =
1 2
A
O
北
= 1230 3
≈ 25.98( 海里 ) .
60°
>20(海里)
所以轮船不会触礁.
30 3
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/7/302021/7/302021/7/302021/7/307/30/2021
• 14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年7月30日星期五2021/7/302021/7/302021/7/30
图1-5
证明:因 所为 以C ∠D 1= ∠1 2AA ,B = (等B D 边= 对A 等D ,角)
∠2=∠B .
根据三角形内角和性质,有
∠A+∠B+∠ACB =180°,
即得∠A+∠B+∠1+∠2=180°,
2(∠A+∠B)=180°.
图1-5
所以
∠A+∠B =90°.
根据直角三角形判定定理,所以△ABC是直角三角形.
练习
1.在Rt△ABC中,斜边上的中线CD=2.5cm ,则斜边 AB的长是多少?
解 AB=2CD=2×2.5=5(cm).
2.如图,AB∥CD,∠BAC和∠ACD的平分线相交于H 点,E为AC的中点,EH=2. 那么△AHC是直角三角 形吗?为什么?若是,求出AC的长.
湘教版八年级数学下册《直角三角形的性质和判定(Ⅱ)》教案
第1章直角三角形1.2 直角三角形的性质和判定(Ⅱ)第1课时勾股定理【知识与技能】1.让学生体验勾股定理的探索过程.2.掌握勾股定理.3.学会用勾股定理解决简单的几何问题.【过程与方法】经历操作、归纳和猜想,用面积法推导作出肯定结论的过程,来了解勾股定理.【情感态度】了解我国古代数学家发现、推导和应用勾股定理中的贡献与成就,增进爱国主义情感,体验探索发现的过程和知识运用,增强学习数学的自信.【教学重点】勾股定理【教学难点】勾股定理的应用一、创设情境,导入新课问题向学生展示国际数学大会(ICM——2002)的会标图徽,并简要介绍其设计思路.可以首次提出勾股定理.【教学说明】激发学生爱好数学的情感和学习勾股定理的兴趣,调动他们的积极性.教师讲课前,先让学生完成预习.二、思考探究,获取新知勾股定理的验证做一做:教材第9页“做一做”【教学说明】通过测量,学生自主探究,对于直角三角形这一性质有个初步了解.议一议:教材第9页“议一议”【教学说明】引导学生计算,让学生进一步体会探索勾股定理的过程,并对勾股定理拓展应用,进一步体会数形结合的思想.想一想:教材第10页“探究”【教学说明】通过拼图活动,充分调动学生的思维,进一步激发学生的求知欲望,同时加深了学生对新知识的理解.例:教材第11页例1【教学说明】学生初步运用勾股定理解决问题,能够学以致用.三、运用新知,深化理解1.若Rt△ABC中,∠C=90°,且c=37,a=12,则b的值为()A.50B.35C.34D.262.一直角三角形的斜边长比直角边长大2,另一直角边长为6,则斜边长为()A.4B.8C.10D.123.如图,在△ABC中,∠ACB=90°,AB=5cm,BC=3cm,CD⊥AB 于D,求CD的长.4.已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.求证:AB=BC.【教学说明】由学生独立完成,加深对所学知识的理解和运用,对于有困难的学生教师给予点拨,及时调整教学中的缺漏并加以强化,在完成上述题目后,学生自主完成练习册中本课时的对应训练部分.答案:1.B 2.C3.解:∵△ABC中,∠ACB=90°,∴由勾股定理有AC2=AB2-BC2=52-32=16,∴AC=4.又∵S△ABC=1/2AB·CD=1/2AC·BC,∴CD=AC·BC/AB=12/5(cm)4.证明:连接AC,∵∠ABC=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2,∴AB=BC.四、师生互动,课堂小结本节课你学到了什么知识?同学们还存在哪些困惑?【教学说明】让学生畅所欲言,使学生概括能力、语言表达能力进一步得到提高,完善了学生对知识的梳理.1.布置作业:习题1.2中的第1、4题.2.完成练习册中本课时练习的作业部分.1.2 直角三角形的性质和判定(Ⅱ)第2课时勾股定理的实际应用【知识与技能】1.勾股定理从边的方面进一步刻画直角三角形的特征,学生将在原有的基础上对直角三角形有更深刻的认识和理解.2.掌握直角三角形三边关系——勾股定理及直角三角形的判别条件——勾股定理的逆定理.【过程与方法】1.放手学生从多角度地了解勾股定理.2.提高学生亲自动手的能力.【情感态度】1.学会运用勾股定理来解决一些实际问题,体会数学的应用价值.2.尽可能的给学生提供有关勾股定理的材料,给予交流的机会,并在与他人交流的过程中,敢于发表不同的见解,在交流活动中获得成功的体验.【教学重点】应用勾股定理有关知识解决有关问题.【教学难点】灵活应用勾股定理有关知识解决有关问题.一、创设情境,导入新课问题勾股定理的内容是什么?它揭示了直角三角形三边之间的关系,今后我们来看看这个定理的应用.【教学说明】教师创设问题,有针对性地复习了勾股定理,对本节课的应用勾股定理解决实际的问题打下了坚实的基础.教师讲课前,先让学生完成预习.二、思考探究,获取新知问题勾股定理的应用思考教材第12页“动脑筋”【教学说明】提出问题,提供学生参与数学活动的时间与空间,调动学生的观察能动性,引导学生建立数学模型,提高学生分析问题、解决问题的能力.例:教材第12页例2【教学说明】以古代的数学问题为背景,一方面及时巩固勾股定理的运用,另一方面让学生感受到数学文化.三、运用新知,深化理解1.直角三角形中已知其中的两条边长是4和5,则第三条边等于()A.3B.41C.3或41D.无法确定2.在Rt△ABC中,AB=c,BC=a,AC=b,∠B=90°.①已知a=5,b=12,求c;②已知a=20,c=29,求b.3.如图,圆柱形无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口1cm的F处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛,所能走的最短路线的长度.【教学说明】由学生独立完成,以加深对知识的理解和运用,便于了解学生掌握情况,给有困难的学生给予指导,及时纠正他们出现的错误,并改正强化,在完成上述题目后,教师引导学生完成练习册中本课时的对应训练部分.答案:1.C3.解:将曲面沿AB展开,如图,过C作CE⊥AB于E,在Rt△ECF 中,∠E=90°,EF=18-1-1=16(cm),CE=1/2×60=30(cm),由勾股定理,得CF=223016+=34(cm)+=22CE EF四、师生互动,课堂小结通过本节课的学习,给同学们谈谈你的收获是什么?你认为自己还在哪些问题上存在疑问?与大家共同交流.【教学说明】学生自已总结归纳加深印象.引导学生进一步掌握解决实际问题的关键是抽象出相应的数学模型.1.布置作业:习题1.2中的第5、9题.2.完成练习册中本课时练习的作业部分.1.2 直角三角形的性质和判定(Ⅱ)第3课时勾股定理的逆定理【知识与技能】1.探索并掌握直角三角形判别的方法——勾股定理逆定理.2.会应用勾股逆定理判别一个三角形是否是直角三角形.3.通过三角形三边的数量关系来判断它是否为直角三角形,培养学生数形结合的思想.【过程与方法】通过“创设情境——实验验证——理论释意——应用”的探索过程,让学生感受知识的乐趣.【情感态度】1.通过合作交流学习的发展体验获取数学知识的感受.2.通过对勾股定理逆定理的探究,激发学生学习数学的兴趣和创新精神.【教学重点】理解和应用直角三角形的判定方法.【教学难点】理解勾股定理的逆定理.一、创设情境,导入新课问题据说,古埃及人曾用下面的方法画直角:他们用13个等距离的结把一根绳子分成等长的12段,一个工匠同时握住绳子的第1个结和第13个结,两个助手分别握住第4个结和第8个结,拉紧绳子,就会得到一个直角三角形,其直角在第4个结处.【教学说明】利用古埃及人画直角的方法,让学生体验从实际问题中发现数学,同时明确了本节课所研究的问题,既进行了数学史的教育,又锻炼了学生观察探究的能力,激发了他们渴求知识的欲望,教师讲课前,先让学生完成预习.二、思考探究,获取新知问题勾股定理的逆定理的证明探究教材第14页“探究”【教学说明】让学生有充分的探究、讨论的空间,体会逆定理的发生、发展、形成的过程,让学生亲身体验成功的喜悦,再次感受到数形结合的思想方法的应用.勾股定理的应用例:教材第15页例3、例4 【教学说明】加深对勾股定理逆定理的理解,并能初步的应用逆定理.三、运用新知,深化理解1.下列命题中是假命题的是()A.△ABC中,若∠B=∠C-∠A,则△ABC是直角三角形B.△ABC中,若a2=(b+c)(b-c),则△ABC是直角三角形C.△ABC中,若∠A∶∠B∶∠C=3∶4∶5,则△ABC是直角三角形D.△ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形2.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为__________,此三角形的形状为________.3.若a、b、c是△ABC的三边长,且满足a2c2-b2c2=a4-b4,试判定这个三角形的形状.4.探险队里的A组由驻地出发,以12km/h的速度前进,同时,B 组也由驻地出发,以9km/h的速度向另一个方向前进,2小时后同时停下来,这时A、B两组相距30km,那么A、B两组行驶的方向成直角吗?说明理由.【教学说明】由学生自主完成,考验学生学习过程中存在的问题,适时给予引导、点拨,并有针对性地加强训练.在完成上述题目后,让学生完成练习册中本课时的对应训练部分.答案:1. C 2. 6,8,10;直角三角形3.∵a2c2-b2c2=a4-b4,∴c2(a2-b2)=(a2+b2)(a2-b2),当a2-b2=0时,即(a+b)(a-b)=0,因为a>0,b>0,所以a+b≠0,a-b=0,即a=b,此时为等腰三角形,当a2-b2≠0时,则有c2=a2+b2,根据勾股定理的逆定理此时为直角三角形.综上可得这个三角形的形状为等腰三角形或直角三角形.4.∵(12×2)2+(9×2)2=30∴A,B两组行驶方向成直角.四、师生互动,课堂小结通过学习,你能判断一个三角形是否为直角三角形吗?还有哪些困惑?请与同学们共同操作.1.布置作业:习题1.2中的第2、8题.2.完成练习册中本课时练习的作业部分.。
北师大版八年级数学下册第一章1.2.1直角三角形的性质与判定课件
(3)一个三角形中相等的边所对的角相等; 一个三角形中相等的角所对的边相等. 上面每组中两个命题的条件和结论也有类似的关系吗?
与同伴交流.
1.在两个命题中,如果一个命题的条件和结论分别 是另一个命题的结论和条件,那么这两个命题称 为互逆命题,其中一个命题称为另一个命题的逆 命题.
2.如果一个定理的逆命题经过证明是真命题,那么 它也是一个定理,其中一个定理称为另一个定理 的逆定理,这两个定理称为互逆定理.
证明: 如图(2) ,作Rt △A′B′C′ ,使
∠A′=90° A′B′=AB, A′C′=AC,
则A′B′ 2+A′C′ 2 =B′C′ 2(勾股定理). ∵AB2+AC2=BC2 , ∴BC2 = B′C′ 2. ∴BC = B′C′. ∴△ABC≌ △A′B′C′ (SSS). ∴ ∠A=∠A′=90°(全等三角形的对应角相等). 因此, △ABC是直角三角形.
例3 判断下列命题的真假,写出逆命题,并判断逆命题 的真假: (1)如果两条直线相交,那么它们只有一个交点; (2)如果a>b,那么a2>b2; (3)如果两个数互为相反数,那么它们的和为零; (4)如果ab<0,那么a>0,b<0.
导引:根据题目要求,先判断原命题的真假,再将原命题 的题设和结论部分互换,写出原命题的逆命题,最 后判断逆命题的真假.
AB·CD,
∴AC·BC=AB·CD.又由方法一知AB=15,
∴CD= 9 12 = 36 ,即点C到AB的距离为 3 6 .
15 5
5
新知小结
应用方程思想求线段的长很常见,而用面积法求 线段的长更是简化了计算步骤,使解题过程变得 简明 易懂.
巩固新知
1 在△ABC中,已知∠A=∠B=45°,BC=3, 求AB的长.
八年级下册数学第一章直角三角形全章教案(新湘教版)
八年级数学下教案陈敏第一章直角三角形§1.1直角三角形的性质和判定(Ⅰ)(第1课时)教学目标:1、掌握“直角三角形的两个锐角互余”定理。
2、掌握“有两个锐角互余的三角形是直角三角形”定理。
3、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。
教学过程:一、复习提问:(1)什么叫直角三角形?(2)直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?二、新授(一)直角三角形性质定理1请学生看图形:1、提问:∠A与∠B有何关系?为什么?2、归纳小结:定理1:直角三角形的两个锐角互余。
3、巩固练习:练习1(1)在直角三角形中,有一个锐角为520,那么另一个锐角度数(2)在Rt△ABC中,∠C=900,∠A -∠B =300,那么∠A= ,∠B= 。
练习2 在△ABC中,∠ACB=900,CD是斜边AB上的高,那么,(1)与∠B互余的角有(2)与∠A相等的角有。
(3)与∠B相等的角有。
(二)直角三角形的判定定理11、提问:“在△ABC中,∠A +∠B =900那么△ABC是直角三角形吗?”2、利用三角形内角和定理进行推理3、归纳:有两个锐角互余的三角形是直角三角形练习3:若∠A= 600,∠B =300,那么△ABC是三角形。
(三)直角三角形性质定理2归纳:直角三角形斜边上的中线等于斜边的一半。
三、巩固训练:练习4:在△ABC中,∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。
练习5:已知:∠ABC=∠ADC=90O,E是AC中点。
求证:(1)ED=EB(2)∠EBD=∠EDB(3)图中有哪些等腰三角形?练习6 已知:在△ABC中,BD、CE分别是边AC、AB上的高,M是BC的中点。
如果连接DE,取DE的中点O,那么MO与DE有什么样的关系存在?四、小结:这节课主要讲了直角三角形的那两条性质定理和一条判定定理?1、2、3、五、课后反思:§1.1直角三角形的性质和判定(Ⅰ)(第2课时)一、教学目标:1、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。
湘教版八年级下册数学第1章 直角三角形 勾股定理
*4.【中考·陕西】如图,在 3×3 的网格中,每个小正方形的边长
均为 1,点 A,B,C 都在格点上,若 BD 是△ABC 的高,则
BD 的长为( D ) A.1103 13 B.193 13 C.183 13 D.173 13 【点拨】由勾股定理得 AC= 22+32= 13. ∵S△ABC=3×3-12×1×2-12×1×3-12×2×3=72, ∴12AC·BD=72,∴ 13·BD=7,∴BD=71313.
*5.【中考·娄底】由 4 个直角边长分别为 a,b 的直角三角形围成 的“赵爽弦图”如图所示,根据大正方形的面积 c2 等于小正方 形的面积(a-b)2 与 4 个直角三角形的面积 2ab 的和证明了勾 股定理 a2+b2=c2,还可以用来证明结论:若 a>0,b>0 且 a2+b2 为定值,则当 a________b 时,ab 取得最大值.
【点拨】过 A 作 AE⊥BC,垂足为 E, ∵AB=AC,∴EC=BE=12BC=4,∴AE= 52-42=3. ∵D 是线段 BC 上的动点(不含端点 B,C),∴3≤AD<5, ∵AD 的长为正整数,∴AD=3 或 AD=4, ∴点 D 的个数共有 3 个. 此题易因没看清题意,得出 3≤AD≤5,从而得到错误答案 A.
AB= AC2+BC2= 22+(2 22)=2 3.∵D 是 AB 的中点,∴BD=CD= 3.
设 DE=x,由勾股定理得( 3)2-x2=(2 2)2-( 3+x)2,解得 x= 33,
∴在 Rt△BED 中,BE=
BD2-DE2=
(
32-
332)=2
3
6 .
【答案】A
9.如图,正方形 ABCD 的边长为 2,其面积标记为 S1,以 CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角
北师大版八年级下册数学《1.2 第1课时 直角三角形的性质与判定》教学设计
北师大版八年级下册数学《1.2 第1课时直角三角形的性质与判定》教学设计一. 教材分析北师大版八年级下册数学《1.2 第1课时直角三角形的性质与判定》教材,主要介绍了直角三角形的性质与判定方法。
内容包括:直角三角形的定义、性质以及直角三角形的判定方法。
通过本节课的学习,使学生掌握直角三角形的性质与判定,为后续学习勾股定理和相似三角形打下基础。
二. 学情分析学生在七年级已经学习了三角形的性质和分类,对三角形有了一定的认识。
但直角三角形的性质和判定较为抽象,需要通过实例和动手操作来加深理解。
此外,学生可能对数学证明过程感到困难,需要教师在教学中给予引导和帮助。
三. 教学目标1.知识与技能:掌握直角三角形的性质与判定方法。
2.过程与方法:通过观察、操作、探究、归纳等方法,培养学生的几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养合作意识,体验成功的喜悦。
四. 教学重难点1.重点:直角三角形的性质与判定方法的运用。
2.难点:对直角三角形性质与判定方法的理解和应用。
五. 教学方法采用启发式教学法、小组合作学习法、直观演示法、实践操作法等,引导学生主动探究、积极思考,提高学生的几何思维能力。
六. 教学准备1.准备直角三角形的相关图片和实例。
2.准备几何画图工具,如直尺、圆规、三角板等。
3.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)教师通过展示生活中常见的直角三角形的实例,如建筑工人使用的勾股尺、三角板等,引导学生回顾直角三角形的定义,激发学生的学习兴趣。
2.呈现(10分钟)教师利用多媒体展示直角三角形的性质与判定方法,引导学生观察、思考,并通过几何画图工具进行实际操作,让学生感受直角三角形的性质与判定方法。
3.操练(10分钟)教师提出一些有关直角三角形性质与判定的问题,学生进行小组讨论,引导学生运用所学知识解决问题。
在此过程中,教师应及时给予指导和鼓励,提高学生的问题解决能力。
直角三角形的性质和判定-湘教版八年级数学下册优秀学案设计
第1章 直角三角形1.1 直角三角形的性质和判定第1课时 直角三角形的性质和判定学习目标1、熟练掌握直角三角形的性质、判定和运用.2、在实际的操作中去发现直角三角形的特性,并能自主探究证明方法. 一、自主学习认真阅读教材P1-4页内容,掌握以下基础知识: 1、三角形的内角和是 .2、在直角三角形中,两个锐角的和是 .3、直角三角形的判定定理: .4、动手操作:如图,画出直角三角形ABC 斜边的中线;猜一猜,量一量;这条中线与斜边在长度上有什么关系?AB= CD=探究得出:在直角三角形中,斜边上的中线等于 . 写出证明过程:BDCA二.合作探究1、如图,在三角形ABC 中,∠A+∠B=90°,求证:三角形ABC 是一个直角三角形.2、如图,在直角三角形ABC 中,CD 是斜边AB 上的中线. (1)若AB=6cm,求CD 的长;(2)若CD=6cm,求AB 的长.BDCA3、如果三角形一边上的中线等于这条边的一半,求证:这个三角形是直角三角形.AC BBDCA4、如图,AB//CD ,∠BAC 和∠ACD 的平分线相交于点H,E 为AC 的中点. 求证:(1)△ACH 是Rt △;(2)AC=2EH.HE DBCA四、巩固小结通过本节课的学习,你有哪些收获?五、当堂测评1、直角三角形中,到三个顶点的距离相等的点是 .2、如图,在直角三角形ABC 中,CD 是斜边AB 上的中线.(1)若DB=5cm,则CD= ;(2)若CD=12cm,则AB= ; (3)若∠A=40°,则∠BDC= ;(4)若AB+CD=15cm,则AB= ,CD= .BDC A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直角三角形的性质和判定
教学目标
1.知识与技能:掌握直角三角形的性质“直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半”,掌握直角三角形的性质“直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30度”
2. 过程与方法:通过自主学习的发展体验获取数学知识的感受;
3.情感态度与价值观:通过有关勾股定理的历史讲解,对学生进行德育教育
重
点难点1、重点:直角三角形的性质
2、难点::直角三角形性质的应用
教
学
观察、比较、合作、交流、探索
策
略
教学活动课前、课中反思
一、 创设情境,导入新课
1 直角三角形有哪些性质?
(1)两锐角互余;( 2)斜边上的中线等于斜边
的一半
2 按要求画图:
(1)画∠MON ,使∠MON=30°,
(2)在OM 上任意取点P ,过P 作ON 的垂线PK ,
垂足为K ,量一量PO,PK 的长度,PO,PK 有什么关系?
(3) 在OM 上再取点Q,R ,分别过Q,R 作
ON 的垂线QD,RE,垂足分别为D,E ,量一量
QD ,OQ ,它们有什么关系?量一量RE,OR ,
它们有什么关系?
由此你发现了什么规律?
直角三角形中,如果有一个锐角等于通过自主学习的发展体验获取数学知识的感受 D C B A K P O
M
30°,那么它所对的直角边等于斜边的一半。
为什么会有这个规律呢?这节课我们来研究这个问题.
二、合作交流,探究新知
1 探究直角三角形中,如果有一个锐角等于30°,那么它所对的直角边为什么等于斜边的一半。
如图,Rr△ABC中,∠A=30°,BC为什么会等
于1
2AB
分析:要判断BC=1
2 AB,可以考虑取AB的中
D
C
B
A
点,如果如果BD=BC,那么BC=1
2AB,由于∠A=30°,所以∠B=60°,
如果BD=BC,则△BDC一定是等边三角形,所以考虑判断△BDC是等边三角形,你会判断吗?
由学生完成
归纳:直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
这个定理的得出除了上面的方法外,你还有没有别的方法呢?
先让学生交流,得出把△ABC沿着AC翻折,利用等边三角形的性质证明。
2 上面定理的逆定理
上面问题中,把条件“∠A=30°”与结论“BC=1
2AB”交换,结论还成
立吗?
学生交流
方法(1)取AB的中点,连接CD,判断△BCD是等边三角形,得出∠B=60°,从而
∠A=30°
(2)沿着AC翻折,利用等边三角形性质得出。
(3)你能把上面问题用文字语言表达吗?
归纳:直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30度。
三、应用迁移,巩固提高
1、定理应用
例1、 在△ABC 中,△C=90°,∠B=15°,DE 垂直平分AB ,垂足为点E ,交BC 边于点D,BD=16cm ,则AC 的长为
______
例2、 如图在△ABC 中,若∠BAC=120°,A B=AC,AD ⊥AC 于点A ,BD=3,则BC=______.
2 实际应用
例3、(P5) 在A 岛周围20海里水
E D C A B D C A B
域有暗礁,一轮船由西向东航行到O处时,发现A岛在北偏东60°的方
向,且与轮船相距303海里,该轮船如果不改变航向,有触礁的危险吗?
四、课堂练习,巩固提高
五、反思小结,拓展提高北
东
B
D
A
O
直角三角形有哪些性质?怎样判断一个三角形是直角三角形?
六、作业布置:
课后反思。