2012年高考数学知识点汇编知识精讲

合集下载

2012年高考数学知识点回顾复习:函数部分001

2012年高考数学知识点回顾复习:函数部分001

专题一:集合、常用逻辑用语1、 集合的子集、真子集、空集满足},,,{}{d c b a M a ⊂⊆的集合M 有 个 2、 集合的运算:交、并、补已知集合}12|{+==x y x A ,}1|{2++==x x y y B ,则B A 等于 ( )A .)}3,1(),1,0{( B.R C.),0(+∞ D.),43[+∞3、 四种命题 、全称量词与存在量词 若命题“x ∃∈R ,使得2(1)10x a x +-+<”是真命题,则实数a 的取值范围是 .4、 充分必要条件已知,a b 是实数,则“0a >且0b >”是“0a b +>且0ab >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件专题二:基本初等函数1、 函数的概念、定义域、值域已知集合{|02}M x x =≤≤,{|02}N y y =≤≤,再给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的是( )2、 函数的图像1.如图所示中的图象所表示的函数的解析式为( ) A .()3|1|022y x x =-≤≤ B .()33|1|0222y x x =--≤≤C .()3|1|022y x x =--≤≤D .()1|1|02y x x =--≤≤2.函数y=f(x)与函数y=g(x)的图象如图,则函数y=f(x)·g(x)的图象可能是 ( )3、 函数的基本性质 (1) 单调性1.求函数1x 1x y --+=的单调性。

2.求函数xx y 1-=在]2,1[上的值域是_____________(2) 奇偶性1.函数f(x)=(x -1)xx -+11的奇偶性 ;2.设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( ) A. 奇函数 B. 偶函数 C. 既是奇函数又是偶函数 D. 非奇非偶函数(3) 最值求函数2()23f x x x =--,[-2,2]的单调区间,值域和最值。

2012年高考数学重要知识点梳理及题型模板方法

2012年高考数学重要知识点梳理及题型模板方法

高中重要数学知识点梳理及题型模板方法1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

{}{}{}C B A x y y x C x y y B x y x A 、、,,,如:集合lg |),(lg |lg |======中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。

∅注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

{}{}1|032|2===--=ax x B x x x A ,如:集合 的值构成的集合为,则实数若a A B ⊂ ),,(答:⎭⎬⎫⎩⎨⎧-3101 3. 注意下列性质:{};的所有子集的个数是,……,,)集合(n n a a a 2121 ;,)若(B B A A B A B A ==⇔⊆ 24. 你会用补集思想解决问题吗?(排除法、间接法) a M M M ax ax x ,求实数且,若的解集为的不等式如:已知关于∉∈<--53052的取值范围。

())2593510555503533(22,,·∴,∵·∴,∵ ⎪⎭⎫⎢⎣⎡∈⇒⎪⎪⎭⎪⎪⎬⎫≥--∉<--∈a a a M a a M 和,“且”“或”做命题,逻辑连接词有可以判断真假的语句叫)()( 5.∧∨).(⌝“非”均为真、为真,当且仅当若q p q p ∧ 至少有一个为真、为真,当且仅当若q p q p ∨ 为假为真,当且仅当若p p ⌝6. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B 中有元素无原象。

)7. 如何求复合函数的定义域?[]的定,则函数,,的定义域是如:函数)()()(0)(x f x f x F a b b a x f -+=>->义域是 。

[]),(答:a a - 8. 求一个函数的解析式时,注明函数的定义域了吗? ()).(1x f x e x fx,求如:+=+解:01≥+=t x t ,则令 12-=t x ∴,1)(212-+=-te tf t∴()01)(212≥-+=-x x e x f x∴11. 如何用定义证明函数的单调性?(取值、作差、判正负)如何判断复合函数的单调性?[](内层)(外层),则,()()()(x f y x u u f y ϕϕ===)(log)(221a ax xx f --=[][]为减函数。

2012高考数学基础知识点总结高分必备1

2012高考数学基础知识点总结高分必备1

2012年高考数学基础知识总结盛情2012-04-05 0一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或 补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定 ∀∈M, p(x )否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x )否定为: ∀∈M, )(X p ⌝二、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0 ③“奇+奇=奇”(公共定义域内)2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2) 或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T)4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)min a b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0三、基本初等函数1.指数式 )0(10≠=a a n na a 1=- m nm na a =2.对数式 b N a =log N a b=⇔(a>0,a ≠1)N M MN a a a log log log +=N M NM a a a log log log -=M n M a n a log log =a b b m m a log log log =ablg lg =n aa b b n l o g l o g =a bl o g 1= 注:性质01log =a 1log =a a N aNa =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数) 4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:四、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换平移:“左加右减,上正下负”)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分,并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断) 注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点 ③二分法判断函数零点---0)()(<b f a f ?五、导数及其应用1.导数几何意义)(x f 在点x 0处导数)(0'x f :指点x 0处切线斜率2.导数公式0)(='C (C 为常数) 1)(-⋅='n n x n x x x cos )(sin =' x x sin )(cos -='x x e e =')( x x /1)(ln ='.)('''v u v u ±=± .)('''uv v u uv += .)(''Cu Cu =/⎪⎭⎫ ⎝⎛v u =2''v uv v u - 'x y ='u y .'x u 3.导数应用单调性:如果0)('>x f ,则)(x f 为增函数如果0)('<x f ,则)(x f 为减函数极大值点:在x 0附近)(x f “左增右减↗↘” 极小值点:在x 0附近)(x f “左减右增↘↗”注0)(0'=x f求极值:)(x f 定义域→)('x f →)('x f 零点→列表:x 范围、)('x f 符号、)(x f 增减、)(x f 极值求[a ,b]上最值:)(x f 在(a ,b)内极值与ƒ(a)、ƒ(b)比较4.三次函数d cx bx ax x f +++=23)( c bx ax x f ++=23)(2/图象特征:“↗↘↗” “↘↗↘”0,0>∆>a 0,0>∆<a 极值情况:)(0x f ⇔>∆有极值)(0x f ⇔≤∆无极值5.定积分 定理:)()()(a F b F dx x f ba -=⎰其中)()('x f x F = 性质:⎰⎰=ba ba dx x f k dx x kf )()((k 为常数)⎰⎰⎰±=±bab abadx x g dx x f dx x g x f )()()()(应用:② 直线x =a ,x =b ,x 轴及曲线y =f(x)(f(x)≥0)围成曲边梯形面积⎰=badx x f S )(②如图,曲线y 1=f 1(x),y 2=f 2(x)在[a ,b]上围成图形的面积S =S 曲边梯形AMNB -S 曲边梯形DMNC =⎰⎰-babadxx f dx x f )()(21六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy =αtan 其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 6.特殊角的三角函数值7.基本公式 同角1cos sin22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =± ()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-= ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增注: 9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sin CB A =+ 正弦定理:A a sin =B b sin =Ccsin A R a sin 2= C B A c b a s i n :s i n :s i n ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边)cos A =bc a c b 2222-+(求角)面积公式:S △=21ab sin C 注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π 七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+= 求和:2)(1n n a a n S += d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则qp n m a a a a +=+2、等比数列 定义:)0(1≠=+q q a a nn通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤ 求最值条件是“一正二定三相等” 4.平面区域与线性规划不等式表示的平面区域判断:①在直线0Ax By C ++=一侧取一个特殊点00(,)x y(通常是原点) ②由00Ax By C ++的正负,判断0Ax By C ++>表示直线哪一侧的平面区域注:直线同侧所有点的坐标代入Ax By C ++,得到实数的符号都相同 线性规划问题的一般步骤:①设所求未知数;②列约束条件(不等式组); ③ 立目标函数;④作可行域;⑤求最优解例:设,x y 满足4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩求2z x y =+最值当l 过(5,2)A 时,z 最大, 当l 过(1,1)B 时,z 最小OyxACB430x y -+=1x = 35250x y +-=九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -= 模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=? 除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=n i rr k i i=+4 3.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论 分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量2输出语句:PRINT“提示内容”;表达式3赋值语句:变量=表达式4条件语句“IF—THEN—ELSE”语句“IF—THEN”语句IF 条件 THEN IF 条件 THEN 语句1 语句ELSE END IF语句2END IF5循环语句当型循环语句直到型循环语句WHILE 条件 DO循环体循环体WEND LOOP UNTIL 条件当型“先判断后循环”直到型“先循环后判断”三.算法案例1、求两个数的最大公约数辗转相除法:到达余数为0更相减损术:到达减数和差相等2、多项式f(x)= a n x n+a n-1x n-1+….+a1x+a0的求值秦九韶算法: v 1=a n x+a n -1 v 2=v 1x+a n -2v 3=v 2x+a n -3 v n =v n -1x+a 0 注:递推公式v 0=a n v k =v k -1X +a n -k (k=1,2,…n) 求f(x)值,乘法、加法均最多n 次3、进位制间的转换k 进制数转换为十进制数:111011.........)(.....a k a k a k a k a a a a n n n n n n +⨯++⨯+⨯=---十进制数转换成k 进制数:“除k 取余法” 例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27 v 0=2 48=1×27+21 v 1=2×5-5=5 27=1×21+6 v 2=5×5-4=21 21=3×6+3 v 3=21×5+3=1086=2×3+0 v 4=108×5-6=534v 5=534×5+7=2677十一、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=共始点中点公式:⇔=+AD AC AB 2D 是BC 中点2. 向量数量积 ⋅θcos ⋅⋅=2121y y x x +注:①,夹角:00≤θ≤1800②b a ,同向: =⋅3.基本定理 2211e e a λλ+=(21,e e不共线--基底) 平行:⇔//b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥02121=+⇔y y x x模:a =22y x + =+=+2)(夹角:=θcos ||||b a ba 注:①0∥ ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立十二、立体几何1.三视图 正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件: ①不共线的三点 ②一条直线和这直线外一点 ③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

2012年高考数学重点知识点归纳

2012年高考数学重点知识点归纳

2012年高考数学重点知识点归纳第一章 集合与简易逻辑一、集合知识1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2.集合的表示法:列举法、描述法、图形表示法. 3.集合元素的特征:确定性、互异性、无序性. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉ U 交:且并:或补:且C5. 主要性质和运算律(1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇ C(2) 等价关系:U A B A B A A B B A B U ⊆⇔=⇔=⇔= C(3) 集合的运算律:交换律:.;A B B A A B B A == 结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )6. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+ (3) card (C U A )= card(U)- card(A)(4)设有限集合A, card(A)=n,则①A 的子集个数为n 2; ②A 的真子集个数为12-n ;③A 的非空子集个数为12-n ;④A 的非空真子集个数为22-n .二.简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

2012年高考数学主要考点文总结

2012年高考数学主要考点文总结

2012年高考数学主要考点总结高考复习资料很多,现在学生经常陷入书山题海不能自拔!高考题千变万化,万变不离其宗。

宗就是“高考考点”,我们总结了数学科高考的重点! 专题一:集合考点1:集合的基本运算 考点2:集合之间的关系 知识点训练:1.若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.¢2.设集合{}08U x x =∈<N ≤,{}1245S =,,,,{}357T =,,,则()U S T = ð( ) A .{}124,,B .{}123457,,,,,C .{}12,D .{}124568,,,,,3.已知{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,则( )A .{}6,4=⋂N M .B M N U =C .U M N C u = )( D. N N M C u = )( 专题二:函数考点3:函数及其表示 考点4:函数的基本性质考点5:一次函数与二次函数. 考点6:指数与指数函数 考点7:对数与对数函数 考点8:幂函数 考点9:函数的图像考点10:函数的值域与最值 考点11:函数的应用 考点12:函数与方程4.若372log πlog 6log 0.8a b c ===,,,则( ) A .a b c >>B .b a c >>C .c a b >>D .b c a >>5.已知函数3log ,0()2,0xx x f x x >⎧=⎨≤⎩,则1(())9f f =A.4B.14C.-4 D-146.函数y =的定义域为A.(34,1) B(34,∞) C (1,+∞) D. (34,1)∪(1,+∞)7.函数y = ) A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤D .{|01}x x ≤≤8.如果函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,则a 的取值范围是9.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( )(A )-26 (B )-18 (C )-10 (D )1010.已知⎪⎩⎪⎨⎧<+≥-=6)2(65)(x x f x x x f ,那么f (3)=( )(A )5 (B )4 (C )3 (D )211.方程122=+ny m x 与mx +ny =1在同一坐标系内的图象为( )12.用min{,,}表示,,三个数中的最小值.设(x )=min{2,+2,10-x }(x ≥0),则f (x )的最大值为A .4B .5 C.6 D .7 13.函数b ax y +=与指数函数()xb y a=在同一直角坐标系中的图象可能是( )14.在下列区间中,函数()43xf x e x =+-的零点所在的区间为A .1(,0)4-B .1(0,)4C .11(,)42D .13(,)2415.如图)(x f 的图象在P 处的切线方程是8+-=x y , 则=+)5()5(/f fxCD16题图专题三:立体几何初步考点12:空间几何体的结构、三视图和直视图考点13:空间几何体的表面积和体积考点14:点、线、面的位置关系考点15:直线、平面平行的性质与判定考点16:直线、平面垂直的判定及其性质 考点17:空间中的角 考点18:空间向量16.已知,,αβγ是三个互不重合的平面,.l m 是直线,下列命题中正确是( ) A .若,,//l l αββα⊥⊥则 B .若,//,,l l αβαβ⊥⊥则C .若,,,l m l m αβαβ⊥⊂⊂⊥则D .若,,αβαγγβ⊥⊥⊥则15.一个几何体的三视图如右图所示,其中正视图和侧视图都是边长为1的正三角形,那么这个几何体的侧面积为 . 16.如图,已知四棱锥ABCD P -中,PA ⊥平面ABCD ,直角梯形ABCD 中,BC AD //,BAD ∠=90º,AD BC 2=.(1)若PA=AB=BC=2,求四棱锥ABCD P -的体积. (2)求证:AB ⊥PD ;(3)在线段PB 上是否存在一点E ,使AE //平面PCD , 若存在,指出点E 的位置并加以证明;若不存在,请说明理由.17. 某几何体的三视图如图所示,则它的体积是 (A)283π-B .83π-C . 8-2πD . 23π 18.已知βα,表示两个不同的平面,m 为平面α内的一条直线,则""βα⊥是""β⊥m 的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件考点19:直线方程和两条直线的关系考点20:圆的方程考点21:直线与圆、圆与圆的位置关系19.经过圆22x y ++20x =的圆心,且与直线0x y +=垂直的直 线l 的方程式( )A .10x y ++=B .10x y -+=C .10x y +-=D .10x y --= 20.“a =1”是“直线2)1()(2y 22=-+-+=y a x x 与圆相切”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 21.过原点且倾斜角为60°的直线被圆2240x y y +-=所截得的弦长为( ) AB .2 C.22.“m =21”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( ) (A )充分必要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 专题五:算法初步与框图 考点22:算法初步与框图 21.程序框图如图所示:如果输入x=5, 则输出结果为A. 109B. 325C. 973D. 29122.如图,程序框图所进行的求和运算是( ) A .12 + 14 + 16 + … + 120 B .1 + 13 + 15 + … + 119 C .1 + 12 + 14 + … + 118D .12 + 12 2 + 12 3 + … + 1210考点23:任意角的三角函数、同三角函数和诱导公式考点24:三角函数的图像和性质考点25:三角函数的最值与综合运用考点26:三角恒等变换考点27:解三角形 23.函数y =sin(2x +6π)的最小正周期是 (A)2π(B) π (C) 2π (D)4π24.已知角α的终边经过点P(5,-12),则ααcos sin +的值为__。

2012年高考数学公式总结精华版

2012年高考数学公式总结精华版

2012年高考数学知识总结精华1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B == .3.包含关系A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=Φ U C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+ .5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个;非空的真子集有2n–2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M N f x +--<⇔()0()f x NM f x ->- ⇔11()f x N M N>--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a bk +<-<,或0)(2=k f 且22122k abk k <-<+. 9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}m i n m a x m ax ()(),()(),()2b f x f f x f p f qa=-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a bx ,2∈-=,则{}m i n ()m i n (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.13.14.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==. 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ; (4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.30.分数指数幂(1)m na =(0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质 (1)n a =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)r s r s a a a a r s Q +⋅=>∈. (2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N=-; (3)log log ()n a a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数., (2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数. 推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<.(2)2log log log 2a a am nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ). 40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 44.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s ()2(1)s i n ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±= .22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).48.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-.49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=.51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=. 53. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++.(2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +.63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.平面两点间的距离公式,A B d=||AB ==11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+- (11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔== .(2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=.(5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+.71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式 (1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; 80.夹角公式(1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A AB B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π.81. 1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A AB B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2π.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域 设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是:111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----=1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0a x b yc ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA CBb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b+=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的外部2200221x y a b⇔+>. 95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b+=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ⇔-<. 98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222by a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b-=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0A x B yC ++=相切的条件是22222A a B b c -=.100. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02pCF x =+.过焦点弦长p x x px p x CD ++=+++=212122.101.抛物线px y 22=上的动点可设为P ),2(2 y py 或或)2,2(2pt pt P P (,)x y ,其中22y px = .102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+-;(3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+. (3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212||||AB x x y y ==-=-(弦端点A ),(),,(2211y xB y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B++++--=++. 108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y +代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB = ⇔(1)OP t OA tOB =-+.||AB CD ⇔AB 、CD共线且AB CD 、不共线⇔AB tCD = 且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+.推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+,或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC 共面⇔AD xAB yAC =+⇔ (1)OD x y OA xOB yOC =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++.121.射影公式已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B点在l 上的射影'B ,则''||cos A B AB = 〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R);(4)a ·b =112233a b a b a b ++; 123.设A 111(,,)x y z ,B 222(,,)x y z ,则 AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直设111(,,)a x y z =r ,222(,,)b x y z =r,则a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式.126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r rr r(其中θ(090θ<≤o o)为异面直线a b ,所成角,,a b r 分别表示异面直线a b ,的方向向量)128.直线AB 与平面所成角sin ||||AB m arc AB m β⋅= (m为平面α的法向量). 129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角cos ||||m n arc m n θ⋅= 或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+ (当且仅当90θ= 时等号成立).134.空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB = =.135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA ,向量b =PQ ).136.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式dd =d ='E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =). 139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例). 141. 面积射影定理'cos S S θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =; (2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =. 146.球的半径是R ,则其体积343V R π=, 其表面积24S R π=.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a ,. 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理) 12n N m m m =+++ . 150.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯ . 151.排列数公式mnA =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=.152.排列恒等式(1)1(1)m m n nA n m A -=-+; (2)1mmn n n A A n m -=-; (3)11m m n n A nA --=;(4)11n n n n n n nA A A ++=-; (5)11m m m n n nA A mA -+=+. (6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+- . 153.组合数公式m n C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). 154.组合数的两个性质(1)m n C =mn n C - ; (2) m n C +1-m n C =m n C 1+. 注:规定10=n C .155.组合恒等式(1)11mm n n n m C C m --+=; (2)1m mn n n C C n m -=-; (3)11mm n n n C C m--=;(4)∑=nr r nC0=n2;(5)1121++++=++++r n r n r r r r r rC C C C C . (6)n n n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C . (8)1321232-=++++n n n n n n n nC C C C . (9)r n m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)n n n n n n n C C C C C 22222120)()()()(=++++ .156.排列数与组合数的关系m mn nA m C =⋅! . 157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n mn A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有k h h h A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +.158.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn nn nn mn nn mn nmn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--. (3)(非平均分组有归属问题)将相异的) 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n n n n p n p n n n m p m C C C N m m=⋅⋅=-.(4)(非完全平均分组有归属问题)将相异的) 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、...个相等,则其分配方法数有!...!!! (2)11c b a m C C C N m mn n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的) 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数有!!...!!21m n n n p N =.(6)(非完全平均分组无归属问题)将相异的) 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...)!!(!!...!!21c b a n n n p N m =.(7)(限定分组有归属问题)将相异的p (2m p n n n = 1+++)个物体分给甲、乙、丙,……等m 个人,物体必须被分完,如果指定甲得1n 件,乙得2n 件,丙得3n 件,…时,则无论1n ,2n ,…,m n 等m 个数是否全相异或不全相异其分配方法数恒有!!...!! (212)11m n n n n p n p n n n p C C C N m m=⋅=-.159.“错位问题”及其推广。

2012年高考数学总复习资料大全(精华版).

2012年高考数学总复习资料大全(精华版).

2012高中数学高考知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。

∅ 注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ⊆⇔== (3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==,4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x aM M M a --<∈∉50352的取值范围。

()(∵,∴·∵,∴·,,)335305555015392522∈--<∉--≥⇒∈⎡⎣⎢⎫⎭⎪M a a M a aa5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝ 若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。

)原命题与逆否命题同真、同假;逆命题与否命题同真同假。

7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B 中有元素无原象。

2012年高考数学复习重点知识点90条

2012年高考数学复习重点知识点90条

7.1.1 积分技术与椭圆积分 18世纪的这些数学家们以高度的技巧,将牛顿和莱布尼兹的无限小算法施行到 各类不同的函数上,不仅发展了微积分本身,而且作出了许多影响深远的新发现。 在这方面,积分技术的推进尤为明显。 约翰· 伯努利和欧拉在他们的论著中使用变量代换和部分分式等方法求出了许多 困难的积分,这些方法已经成为今天微积分教材中求函数积分的常用方法。 当18世纪的数学家们考虑无理函数的积分时,他们正在打开一片新天地。因为 他们发现许多这样的积分不能用已知的初等函数来表示,例如雅可布· 伯努利在求双 纽线(极坐标下方程为 r 2 = a2 cos2θ )弧长时,得到弧长积分: 2 r a s dr 4 4 0 a r 在天文学中很重要的椭圆弧长计算则引导到积分:
Leonhard Euler
欧拉渊博的知识,无穷无尽的创作精力 和空前丰富的著作,都是令人惊叹不已的! 他从19岁开始发表论文,直到76岁,半个多 世纪写下了浩如烟海的书籍和论文.到今几 乎每一个数学领域都可以看到欧拉的名字, 从初等几何的欧拉线,多面体的欧拉定理, 立体解析几何的欧拉变换公式,四次方程的 欧拉解法到数论中的欧拉函数,微分方程的 欧拉方程,级数论的欧拉常数,变分学的欧 拉方程,复变函数的欧拉公式等等,数也数 不清.他对数学分析的贡献更独具匠心,《 无穷小分析引论》一书便是他划时代的代表 作,当时数学家们称他为"分析学的化身" . 欧拉是科学史上最多产的一位杰出的数 学家,据统计他那不倦的一生,共写下了886 本书籍和论文,其中分析、代数、数论占40% ,几何占18%,物理和力学占28%,天文学占 11%,弹道学、航海学、建筑学等占3%,彼得 堡科学院为了整理他的著作,足足忙碌了四 十七年。
欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不 限于简单的运算,高等数学一样可以用心算去完成.有一个例子足以说明他的本领, 欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一 个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来.欧拉在 失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题. 欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信 ,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑 的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉 格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格 朗日的工作得以发表和流传,并赢得巨大的声誉.他晚年的时候,欧洲所有的数学家 都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师." 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升 定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的 要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地 说:"我死了",欧拉终于"停止了生命和计算" . 欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜 不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的. 欧拉在数学上的建树很 多,对著名的哥尼斯堡七桥问题的解答开创了图论的研究。欧拉还发现 ,不论什么 形状的凸多面体,其顶点数v、棱数e、面数f之间总有v-e+f=2这个关系。v-e+f被称为 欧拉示性数,成为拓扑学的基础概念。在数论中,欧拉首先引进了重要的欧拉函数 φ (n),用多种方法证明了费马小定理。以欧拉的名字命名的数学公式、定理等在数学 书籍中随处可见, 与此同时,他还在物理、天文、建筑以至音乐、哲学方面取得了辉 煌的成就。

2012年高考数学复习重点知识点

2012年高考数学复习重点知识点

年高考数学复习重点知识点1.已知集合A、B,当A B 时,你是否注意到“极端”情况:A 或 B ;求集合的子集时是否忘记?2.对于含有 n 个元素的有限集合 M, 其子集、真子集、非空子集、非空真子集的个数依次为2 n , n 2 n 1,n2.2 1, 23.反演律:C I( A B) C I A C I B ,C I (A B) C I A C I B。

4.“p 且 q”的否定是“非p 或非 q”;“ p 或 q”的否定是“非p 且非 q”。

5.命题的否定只否定结论;否命题是条件和结论都否定。

6.函数的几个重要性质:①如果函数 y f x 对于一切x R ,都有 f a x f a x ,那么函数y f x 的图象关于直线x a 对称y f x a 是偶函数;②若都有 f a x f b x ,那么函数y f x 的图象关于直线a by f a x 与函数x 对称;函数2y f b x 的图象关于直线x a b对称;2③函数 y f x 与函数 y f x 的图象关于直线x 0 对称;函数y f x 与函数 y f x 的图象关于直线 y 0对称;函数y f x 与函数 y f x 的图象关于坐标原点对称;④若奇函数 y f x 在区间 0, 上是增函数,则y f x 在区间,0 上也是增函数;若偶函数y f x 在区间0, 上是增函数,则y f x 在区间,0 上是减函数;⑤函数 y f x a (a 0) 的图象是把y f x的图象沿 x 轴向左平移 a 个单位得到的;函数y f x a ((a 0) 的图象是把y f x 的图象沿x轴向右平移 a 个单位得到的;⑥函数 y f x +a( a 0) 的图象是把y f x 助图象沿y轴向上平移a个单位得到的;函数y f x +a( a 0) 的图象是把y f x 助图象沿y轴向下平移 a 个单位得到的。

7.求一个函数的解析式和一个函数的反函数时,你标注了该函数的定义域了吗?8.函数与其反函数之间的一个有用的结论: f 1 a b f b a. 原函数与反函数图象的交点不全在y=x 上(例如: y 1f1只能理解为 y f1x 在x+a处的函数值。

2012年高考数学数列知识点及题型大总结_(1)

2012年高考数学数列知识点及题型大总结_(1)

2012年高考数学数列知识点及题型大总结等差数列知识要点1.递推关系与通项公式m n a a d n a a d d n a a d m n a a d n a a d a a mn n n m n n n n --=--=--=-+=-+==-+1;)1()()1(1111变式:推广:通项公式:递推关系:为常数)即:特征:m k m kn n f a d a dn a n n ,(,)(),(1+==-+=),为常数,(m k m kn a n +=是数列{}n a 成等差数列的充要条件。

2.等差中项:若c b a ,,成等差数列,则b 称c a 与的等差中项,且2ca b +=;c b a ,,成等差数列是c a b +=2的充要条件。

3.前n 项和公式2)(1n a a S n n +=; 2)1(1dn n na S n -+=),()(,)2(22212为常数即特征:B A BnAn S Bn An n f S n da n d S n n n +=+==-+=是数列{}n a 成等差数列的充要条件。

4.等差数列{}n a 的基本性质),,,(*∈N q p n m 其中⑴q p n m a a a a q p n m +=++=+,则若反之,不成立。

⑵d m n a a m n)(-=- ⑶m n m n na a a +-+=2⑷n n n n n S S S S S 232,,--仍成等差数列。

5.判断或证明一个数列是等差数列的方法:①定义法:)常数)(*+∈=-N n d a a n n (1⇒{}n a 是等差数列②中项法:)221*++∈+=N n a a a n n n (⇒{}n a 是等差数列③通项公式法:),(为常数b k bkn a n +=⇒{}n a 是等差数列④前n 项和公式法:),(2为常数B A BnAn S n +=⇒{}n a 是等差数列练习:1.等差数列{}n a 中,)(31,1201191210864C a a a a a a a 的值为则-=++++A .14B .15C .16D .171651203232)(32)2(31318999119=⋅==-=+-=-a d a d a a a a2.等差数列{}n a 中,12910S S a =>,,则前10或11项的和最大。

2012年高考数学公式—必备知识

2012年高考数学公式—必备知识

2012年高考数学公式1 元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.A A ∅⇔≠∅Ø2 集合12{,,,}n a a a 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n -个.3 二次函数的解析式的三种形式:(1) 一般式2()(0)f x ax bx c a =++≠;(2) 顶点式2()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式) (3) 零点式12()()()(0)f x a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,设为此式)(4)切线式:02()()(()),0x kx d f x a x a =-+≠+。

(当已知抛物线与直线y kx d =+相切且切点的横坐标为0x 时,设为此式)4 真值表: 同真且真,同假或假 56 )充要条件: (1)、p q ⇒,则P 是q 的充分条件,反之,q 是p 的必要条件;(2)、p q ⇒,且q ≠> p ,则P 是q 的充分不必要条件; (3)、p ≠> p ,且q p ⇒,则P 是q 的必要不充分条件;4、p ≠> p ,且q ≠> p ,则P 是q 的既不充分又不必要条件。

7 函数单调性:增函数:(1)、文字描述是:y 随x 的增大而增大。

(2)、数学符号表述是:设f (x )在x ∈D 上有定义,若对任意的1212,,x x D x x ∈<且,都有12()()f x f x <成立,则就叫f (x )在x ∈D 上是增函数。

D 则就是f (x )的递增区间。

减函数:(1)、文字描述是:y 随x 的增大而减小。

(2)、数学符号表述是:设f (x )在x ∈D 上有定义,若对任意的1212,,x x D x x ∈<且,都有 12()()f x f x >成立,则就叫f (x )在x ∈D 上是减函数。

2012高考数学分类汇编---数列详解

2012高考数学分类汇编---数列详解

2012高考数学分类汇编---数列详解D22211111()()()(1)n n n n n n n n n n x x x x x x x x x x ++++++-=--+-=--+- 当14c ≤时,1211102nn n n n xc x x x x +++<≤⇒+-<⇔-与1n nxx +-同号,由212100n nn nx x c x x x x ++-=>⇒->⇔>21lim lim()lim n nnnn n n x x x c x c +→∞→∞→∞=-++⇔=当14c >时,存在N ,使121112NN N N N xx x x x +++>⇒+>⇒-与1N Nxx +-异号与数列{}nx 是单调递减数列矛盾得:当104c <≤时,数列{}nx 是单调递增数列3.北京8.某棵果树前n 前的总产量S 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高。

m 值为( )A.5B.7C.9D.11【解析】由图知6,7,8,9这几年增长最快,超过平均值,所以应该加入,因此选C 。

【答】C 4.北京10.已知}{na 等差数列nS 为其前n 项和。

若211=a ,32a S=,则2a =_______。

【解析】因为212111132132==⇒+=++⇒=+⇒=a d d a d a a a a a a S , 所以112=+=d a a,n n d n n na Sn4141)1(21+=-+=。

【答案】12=a,n n S n 41412+=5.北京20.(本小题共13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零. 记(),S m n 为所有这样的数表组成的集合. 对于(),A S m n ∈,记()ir A 为A 的第i 行各数之和(1i m),()jc A 为A 的第j 列各数之和(1j n);记()k A 为1()r A ,2()r A ,…,()mr A ,1()c A ,2()c A ,…,()nc A 中的最小值.(1)对如下数表A ,求()k A 的值; 1 10.8-0.1 0.3- 1- (2)设数表()2,3A S ∈形如求()k A 的最大值;(3)给定正整数t ,对于所有的()2,21A S t ∈+,求()k A 的最大值.1 1 c a b 1-解:(1)由题意可知()11.2r A =,()21.2r A =-,()11.1c A =,()20.7c A =,()3 1.8c A =-∴()0.7k A =(2)先用反证法证明()1k A ≤:若()1k A >,则()1|||1|11c A a a =+=+>,∴0a >同理可知0b >,∴0a b +>,由题目所有数和为,即1a b c ++=-∴11c a b =---<-,与题目条件矛盾,∴()1k A ≤. 易知当0a b ==时,()1k A =存在,∴()k A 的最大值为1(3)()k A 的最大值为212t t ++., 首先构造满足21()2t k A t +=+的,{}(1,2,1,2, (21)i jA ai j t ===+:1,11,21,1,11,21,211...1, (2)t t t t t a a a a a a t +++-========-+, 22,12,22,2,12,22,211..., (1)(2)t t t t t t a a a a a a t t +++++========-+.经计算知,A 中每个元素的绝对值都小于1,所有元素之和为0,且1221|()||()|2t r A r A t +==+,2121121|()||()|...|()|11(2)22t t t t t c A c A c A t t t t ++++====+>+>+++,1221121|()||()|...|()|122t t t t t c A c A c A t t +++-+====+=++.下面证明212t t ++是最大值. 若不然,则存在一个数表(2,21)A S t ∈+,使得21()2t k A x t +=>+. 由()k A 的定义知A 的每一列两个数之和的绝对值都不小于x ,而两个绝对值不超过1的数的和,其绝对值不超过2,故A 的每一列两个数之和的绝对值都在区间[,2]x 中. 由于1x >,故A 的每一列两个数符号均与列和的符号相同,且绝对值均不小于1x -.设A 中有g 列的列和为正,有h 列的列和为负,由对称性不妨设g h <,则,1g t h t ≤≥+. 另外,由对称性不妨设A 的第一行行和为正,第二行行和为负.考虑A 的第一行,由前面结论知A 的第一行有不超过t 个正数和不少于1t +个负数,每个正数的绝对值不超过1(即每个正数均不超过1),每个负数的绝对值不小于1x -(即每个负数均不超过1x -). 因此()11|()|()1(1)(1)21(1)21(2)r A r A t t x t t x x t t x x=≤⋅++-=+-+=++-+<,故A 的第一行行和的绝对值小于x ,与假设矛盾.因此()k A 的最大值为212++t t 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TEL:010-64514045
QQ:806681849
7

你的首选资源互助社区
另注:三余弦公式?其中 为线面角, 为斜线与平面内直线所成的角, 为? 二、主要类型及证明方法(主要复习向量法) 1、定性: (1)直线与平面平行:向量法有几种证法;非向量法有种证法。 (2)直线与平面垂直:向量法有几种证法;非向量法有种证法。 (3)平面与平面垂直:向量法有几种证法;非向量法有种证法。 2、定量: (1)点 P 到面的距离 d= | PA cos PA, n || (2)异面直线之间的距离:(同上) (3)异面直线所成的角 : cos cos PA, n (4)直线与平面所成的角 : sin cos PA, n (5)锐二面角 : cos cos m, n 三、例题
② y f (ax), (a 0) 的图象,可将 y f ( x) 的图象上的每一点的横坐标伸长
北京天利经济文化发展公司 版权所有 TEL:010-64514045 QQ:806681849 4

你的首选资源互助社区
(0 a 1) 或缩短 (a 1) 到原来的
北京天利经济文化发展公司 版权所有 TEL:010-64514045 QQ:806681849 1

你的首选资源互助社区
④常用的结论:若 f ( x) 是奇函数,且 0 定义域 ,则 f (0) 0或f (1) f (1) ; 若 f ( x) 是偶函数,则 f (1) f (1) ;反之不然。 (4)单调性(在定义域的某一个子集内考虑) ①定义: ②证明函数单调性的方法: Ⅰ.定义法 步骤: a.设 x1 , x2 A且x1 x2 ; b.作差 f ( x1 ) f ( x2 ) ; (一般结果要分解为若干个因式的乘积, 且每一个因式的正或负号能清楚地判断出) c.判断正负号。 Ⅱ用导数证明: 若 f ( x) 在某个区间 A 内有导数, 则 f’ ( x) 0,(x A) f ( x) 在 A 内为增函数;
北京天利经济文化发展公司 版权所有
TEL:010-64514045
QQ:806681849
2

d. 函 数 y ax

ab,0 或 0,ab 上是单调递减。

b (a 0, b 0) 在 , ab 或 ab, 上 单 调 递 增 ; 在 x
2 2 2 你是否注意到必须 a 0 ;当 a =0 时,“方程有解”不能转化为 b 4ac 0 。
若原题中没有指出是“二次”方程、函数或不等式,你是否考虑到二次项系数可能 为零的情形? 2、利用二次函数的图象和性质,讨论一元二次方程实根的分布。 设 x1 , x 2 为方程 f ( x) 0, (a 0) 的两个实根。
f’ ( x) 0,(x A) f ( x) 在 A 内为减函数。
③求单调区间的方法: a.定义法: b.导数法: c.图象法: d.复合函数 y f g ( x) 在公共定义域上的单调性: 若 f 与 g 的单调性相同,则 f g ( x) 为增函数; 若 f 与 g 的单调性相反,则 f g ( x) 为减函数。 注意:先求定义域,单调区间是定义域的子集。 ④一些有用的结论: a.奇函数在其对称区间上的单调性相同; b.偶函数在其对称区间上的单调性相反; c.在公共定义域内 增函数 f ( x) 增函数 g ( x) 是增函数; 减函数 f ( x) 减函数 g ( x) 是减函数; 增函数 f ( x) 减函数 g ( x) 是增函数; 减函数 f ( x) 增函数 g ( x) 是减函数。
5、已知方程 x m x m 1 0 的两个根为一个三角形两内角的正切值,
2
试求 m 的取值范围。
北京天利经济文化发展公司 版权所有
TEL:010-64514045
QQ:806681849
6

你的首选资源互助社区
直线、平面、简单几何体 一、知识结构
北京天利经济文化发展公司 版权所有


你的首选资源互助社区

ቤተ መጻሕፍቲ ባይዱ
(5)函数的周期性 定义:若 T 为非零常数,对于定义域内的任一 x,使 f ( x T ) f ( x) 恒成立 则 f(x)叫做周期函数,T 叫做这个函数的一个周期。 例: (1)若函数 f ( x) 在 R 上是奇函数,且在 1 , 0 上是增函数,且 f ( x 2) f ( x) 则① f ( x) 关于 对称;② f ( x) 的周期为 函数(增、减);
③当在区间 (m, n) 内有且只有两个实根时,
0 b n m 2a f ( m) 0 f ( n) 0
④若 m x1 n p x2 q 时
f (m) f (n) 0 f ( p) f (q) 0

3、函数的图象 1、基本函数的图象:(1)一次函数、(2)二次函数、(3)反比例函数、(4)指数函 数、(5)对数函数、(6)三角函数。 2、图象的变换 (1)平移变换 ①函数 y f ( x a), (a 0) 的图象是把函数 y f ( x)的图象沿x轴 向左 平
移a个单位得到的;
移 a 个单位得到的。
(2)对称变换
北京天利经济文化发展公司 版权所有 TEL:010-64514045 QQ:806681849 3

你的首选资源互助社区
①函数 y f ( x) 与函数 y f ( x) 的图象关于直线 x=0 对称; 函数 y f ( x) 与函数 y f ( x) 的图象关于直线 y=0 对称; 函数 y f ( x) 与函数 y f ( x) 的图象关于坐标原点对称; ②如果函数 y f ( x) 对于一切 x R, 都有 f ( x a) f ( x a) ,那么 y f ( x) 的图象关于直线 x a 对称。 ③函数 y f (a x) 与函数 y f (a x) 的图象关于直线 x a 对称。 ④ y f ( x) y f ( x)
1 倍。 a
例:(1)已知函数 y f ( x) 的图象过点(1,1),则 f (4 x) 的反函数的图象 过点 。
x (2)由函数 y ( ) 的图象,通过怎样的变换得到 y log2 的图象?
x
1 2
4、函数的反函数 1、求反函数的步骤: ①求原函数 y f ( x) , ( x A) 的值域 B ②把 y f ( x) 看作方程,解出 x ( y ) ; ③x,y 互换的 y f ( x) 的反函数为 y f 2、函数与反函数之间的一个有用的结论: f

2:已知 f ( x) x 2 2 x 3, ( x 0) ,求 y f (2 x 1) 的反函数。 3:设 f ( x) 9 x 2 3 x , 则f
1
(0)

4:四十五分钟能力训练题十(13 题)。 5、函数、方程与不等式 1、“实系数一元二次方程 ax bx c 0 有实数解”转化为“ b 4ac 0 ”,
注意:①根据要求先画出抛物线,然后写出图象成立的充要条件。 ②注意端点,验证端点。 例:1、对于定义在 R 上的函数 f ( x ) 则 m 的取值范围 2、已知函数 y log2 3、若关于 x 的方程 2
4x m , 若其所以的函数值都不超过 1, x2 1

1 [ ax 2 ( a x ) ] 4 的定义域是一切实数,则
x

③ f ( x) 在(1,2)是
f ( x) = 2 ,则 f (log1 ) ④ 若x ( 0, 1 )时,
18 2

(2)设 f ( x) 是定义在 (,) 上,以 2 为周期的周期函数,且 f ( x) 为偶函数,
f ( x) = 在区间[2,3]上, f ( x) = 2( x 3) 2 4 ,则 x [0,2]时,
1
( x) , ( x B) 。 (a) b f (b) a
1
3、原函数 y f ( x) 在区间 [a, a] 上单调递增,则一定存在反函数,且反函数
y f 1 ( x) 也单调递增;但一个函数存在反函数,此函数不一定单调。
1 x ) 例 1: y 3 log( , ( x 0) 的反函数为 2
⑤ y f ( x) y f ( x )
⑥y f
1
( x) 与 y f ( x) 关于直线 y x 对称。
(3)伸缩变换 ① y af ( x), (a 0) 的图象,可将 y f ( x) 的图象上的每一点的纵坐标伸长
(a 1) 或缩短 (0 a 1) 到原来的 a 倍。
① 若 x1 m, x2 m, 则
f (m) 0 ;
北京天利经济文化发展公司 版权所有
TEL:010-64514045
QQ:806681849
5

你的首选资源互助社区
②当在区间 (m, n) 内有且只有一个实根,时,
(1) f (m) f (n) 0 (2)考虑端点,验证端点。
②函数 y f ( x a), (a 0) 的图象是把函数 y f ( x)的图象沿x轴 向 右平 ; 移 a 个单位得到的 ③函数 y f ( x) a, (a 0) 的图象是把函数 y f ( x)的图象沿y轴 向上 平
移a个单位得到的;
④函数 y f ( x) a, (a 0) 的图象是把函数 y f ( x)的图象沿y轴 向下 平

你的首选资源互助社区
2011 年高考数学知识点汇编(全套)
函数 1.函数的定义 (1)映射的定义:
相关文档
最新文档